101
|
Wang Y, Zuo L, Wei T, Zhang Y, Zhang Y, Ming R, Bachar D, Xiao W, Madiha K, Chen C, Fan Q, Li C, Liu JH. CHH methylation of genes associated with fatty acid and jasmonate biosynthesis contributes to cold tolerance in autotetraploids of Poncirus trifoliata. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2327-2343. [PMID: 36218272 DOI: 10.1111/jipb.13379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Polyploids have elevated stress tolerance, but the underlying mechanisms remain largely elusive. In this study, we showed that naturally occurring tetraploid plants of trifoliate orange (Poncirus trifoliata (L.) Raf.) exhibited enhanced cold tolerance relative to their diploid progenitors. Transcriptome analysis revealed that whole-genome duplication was associated with higher expression levels of a range of well-characterized cold stress-responsive genes. Global DNA methylation profiling demonstrated that the tetraploids underwent more extensive DNA demethylation in comparison with the diploids under cold stress. CHH methylation in the promoters was associated with up-regulation of related genes, whereas CG, CHG, and CHH methylation in the 3'-regions was relevant to gene down-regulation. Of note, genes involved in unsaturated fatty acids (UFAs) and jasmonate (JA) biosynthesis in the tetraploids displayed different CHH methylation in the gene flanking regions and were prominently up-regulated, consistent with greater accumulation of UFAs and JA when exposed to the cold stress. Collectively, our findings explored the difference in cold stress response between diploids and tetraploids at both transcriptional and epigenetic levels, and gained new insight into the molecular mechanisms underlying enhanced cold tolerance of the tetraploid. These results contribute to uncovering a novel regulatory role of DNA methylation in better cold tolerance of polyploids.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lanlan Zuo
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tonglu Wei
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruhong Ming
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dahro Bachar
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Xiao
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Khan Madiha
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanwu Chen
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Qijun Fan
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
102
|
Jimenez Aleman GH, Thirumalaikumar VP, Jander G, Fernie AR, Skirycz A. OPDA, more than just a jasmonate precursor. PHYTOCHEMISTRY 2022; 204:113432. [PMID: 36115386 DOI: 10.1016/j.phytochem.2022.113432] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
The oxylipin 12-oxo-phytodienoic acid (OPDA) is known as a biosynthetic precursor of the important plant hormone jasmonic acid. However, OPDA is also a signaling molecule with functions independent of jasmonates. OPDA involvement in diverse biological processes, from plant defense and stress responses to growth regulation and development, has been documented across plant species. OPDA is synthesized in the plastids from alpha-linolenic acid, and OPDA binding to plastidial cyclophilins activates TGA transcription factors upstream of genes associated with stress responses. Here, we summarize what is known about OPDA metabolism and signaling while briefly discussing its jasmonate dependent and independent roles. We also describe open questions, such as the OPDA protein interactome and biological roles of OPDA conjugates.
Collapse
Affiliation(s)
| | | | - Georg Jander
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany.
| | | |
Collapse
|
103
|
Batool R, Umer MJ, Shabbir MZ, Wang Y, Ahmed MA, Guo J, He K, Zhang T, Bai S, Chen J, Wang Z. Seed Myco-priming improves crop yield and herbivory induced defenses in maize by coordinating antioxidants and Jasmonic acid pathway. BMC PLANT BIOLOGY 2022; 22:554. [PMID: 36456930 PMCID: PMC9714066 DOI: 10.1186/s12870-022-03949-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Seed Myco-priming based on consortium of entomopathogenic fungi is very effective seed treatment against Ostrinia furnacalis herbivory. Maize regulates defense responses against herbivory by the production of defense-related enzymatic and non-enzymatic antioxidants, phytohormones, and their corresponding genes. Jasmonic acid (JA) plays a key role in plant-entomopathogenic fungi-herbivore interaction. RESULTS To understand how a consortium of the entomopathogenic fungi Beauveria bassiana and Trichoderma asperellum induce changes in the response of maize to herbivory and increase the crop yield, 2-year field experiment, antioxidant enzymes, leaf transcriptome, and phytohormone were performed. Fungal inoculation enhanced the production of antioxidant enzymes and JA signaling pathway more than the normal herbivory. The comparison between single inoculated, consortium inoculated, and non-inoculated plants resulted in distinct transcriptome profiles representing a considerable difference in expression of antioxidant- and JA- responsive genes identified through Weighted gene co-expression network analysis (WGCNA) and expression analysis, respectively. Seed priming with a consortium of B. bassiana and T. asperellum significantly enhanced the expression of genes involved in antioxidants production and JA biosynthesis cascade, with the highest expression recorded at 24-h post O. furnacalis larval infestation. They reduced the larval nutritional indices and survival up to 87% and enhancing crop yield and gross return up to 82-96% over the year 2018 and 2019. CONCLUSION From our results we suggest that a consortium of B. bassiana and T. asperellum can be used synergistically against O. furnacalis in maize under field condition and can mediate antioxidants- and JA- associated maize defense response by boosting up the expression of their responsive genes, thereby enhancing crop yield.
Collapse
Affiliation(s)
- Raufa Batool
- State Key Laboratory for Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100000 China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | | | - Yangzhou Wang
- Insect Ecology, Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, 130000 China
| | - Muhammad Afaq Ahmed
- State Key Laboratory for Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100000 China
| | - Jingfei Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100000 China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100000 China
| | - Tiantao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100000 China
| | - Shuxiong Bai
- State Key Laboratory for Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100000 China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200000 China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pest, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100000 China
| |
Collapse
|
104
|
Serrano-Bueno G, de Los Reyes P, Chini A, Ferreras-Garrucho G, Sánchez de Medina-Hernández V, Boter M, Solano R, Valverde F. Regulation of floral senescence in Arabidopsis by coordinated action of CONSTANS and jasmonate signaling. MOLECULAR PLANT 2022; 15:1710-1724. [PMID: 36153646 DOI: 10.1016/j.molp.2022.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
In Arabidopsis, photoperiodic flowering is controlled by the regulatory hub gene CONSTANS (CO), whereas floral organ senescence is regulated by the jasmonates (JAs). Because these processes are chronologically ordered, it remains unknown whether there are common regulators of both processes. In this study, we discovered that CO protein accumulates in Arabidopsis flowers after floral induction, and it displays a diurnal pattern in floral organs different from that in the leaves. We observed that altered CO expression could affect flower senescence and abscission by interfering with JA response, as shown by petal-specific transcriptomic analysis as well as CO overexpression in JA synthesis and signaling mutants. We found that CO has a ZIM (ZINC-FINGER INFLORESCENCE MERISTEM) like domain that mediates its interaction with the JA response repressor JAZ3 (jasmonate ZIM-domain 3). Their interaction inhibits the repressor activity of JAZ3, resulting in activation of downstream transcription factors involved in promoting flower senescence. Furthermore, we showed that CO, JAZ3, and the E3 ubiquitin ligase COI1 (Coronatine Insensitive 1) could form a protein complex in planta, which promotes the degradation of both CO and JAZ3 in the presence of JAs. Taken together, our results indicate that CO, a key regulator of photoperiodic flowering, is also involved in promoting flower senescence and abscission by augmenting JA signaling and response. We propose that coordinated recruitment of photoperiodic and JA signaling pathways could be an efficient way for plants to chronologically order floral processes and ensure the success of offspring production.
Collapse
Affiliation(s)
- Gloria Serrano-Bueno
- Plant Development Group, Institute for Plant Biochemistry and Photosynthesis, CSIC-Universidad de Sevilla, 41092 Sevilla, Spain.
| | - Pedro de Los Reyes
- Plant Development Group, Institute for Plant Biochemistry and Photosynthesis, CSIC-Universidad de Sevilla, 41092 Sevilla, Spain
| | - Andrea Chini
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Gabriel Ferreras-Garrucho
- Plant Development Group, Institute for Plant Biochemistry and Photosynthesis, CSIC-Universidad de Sevilla, 41092 Sevilla, Spain
| | | | - Marta Boter
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Federico Valverde
- Plant Development Group, Institute for Plant Biochemistry and Photosynthesis, CSIC-Universidad de Sevilla, 41092 Sevilla, Spain.
| |
Collapse
|
105
|
Lopes-Caitar VS, Nomura RBG, Hishinuma-Silva SM, de Carvalho MCDCG, Abdelnoor RV, Dias WP, Marcelino-Guimarães FC. Time Course RNA-seq Reveals Soybean Responses against Root-Lesion Nematode and Resistance Players. PLANTS (BASEL, SWITZERLAND) 2022; 11:2983. [PMID: 36365436 PMCID: PMC9655969 DOI: 10.3390/plants11212983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Pratylenchus brachyurus causes serious damage to soybean production and other crops worldwide. Plant molecular responses to RLN infection remain largely unknown and no resistance genes have been identified in soybean. In this study, we analyzed molecular responses to RLN infection in moderately resistant BRSGO (Chapadões-BRS) and susceptible TMG115 RR (TMG) Glycine max genotypes. Differential expression analysis revealed two stages of response to RLN infection and a set of differentially expressed genes (DEGs) in the first stage suggested a pattern-triggered immunity (PTI) in both genotypes. The divergent time-point of DEGs between genotypes was observed four days post-infection, which included the activation of mitogen-activated protein kinase (MAPK) and plant-pathogen interaction genes in the BRS, suggesting the occurrence of an effector-triggered immunity response (ETI) in BRS. The co-expression analyses combined with single nucleotide polymorphism (SNP) uncovered a key element, a transcription factor phytochrome-interacting factor (PIF7) that is a potential regulator of moderate resistance to RLN infection. Two genes for resistance-related leucine-rich repeat (LRR) proteins were found as BRS-specific expressed genes. In addition, alternative splicing analysis revealed an intron retention in a myo-inositol oxygenase (MIOX) transcript, a gene related to susceptibility, may cause a loss of function in BRS.
Collapse
Affiliation(s)
- Valéria Stefania Lopes-Caitar
- Department of Biological Sciences, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
| | - Rafael Bruno Guayato Nomura
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
- Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil
| | - Suellen Mika Hishinuma-Silva
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
- Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil
| | | | | | - Waldir Pereira Dias
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
| | | |
Collapse
|
106
|
The Core Jasmonic Acid-Signalling Module CoCOI1/CoJAZ1/CoMYC2 Are Involved in Jas Mediated Growth of the Pollen Tube in Camellia oleifera. Curr Issues Mol Biol 2022; 44:5405-5415. [PMID: 36354678 PMCID: PMC9689390 DOI: 10.3390/cimb44110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Camellia oleifera is a woody edible oil species with late self-incompatibility characteristics. Previous transcriptome analysis showed that genes involved in jasmonic acid signal transduction were significantly different in self-and cross-pollinated pistils of Camellia oleifera. To investigate the relationship between jasmonate signal and self-incompatibility by studying the core genes of jasmonate signal transduction. The results showed that exogenous JA and MeJA at 1.0 mM significantly inhibited pollen tube germination and pollen tube elongation. and JA up-regulated CoCOI1, CoJAZ1, and CoMYC, the core genes of jasmonate signal transduction. Subcellular localization indicated that CoCOI1 and CoJAZ1 were located in the nucleus and CoMYC2 in the endoplasmic reticulum. The three genes exhibited tissue-specific expression pattern. CoCOI1 was significantly expressed in pollen, CoJAZ1 was significantly expressed in ovary, CoMYC2 was significantly expressed in filaments, but not in pollen. Furthermore, CoJAZ1 and CoMYC2 were highly expressing at 24 h in self-pollinated styles. These results suggested that JA signal transduction of C. oleifera was involved in the process of self-pollination, and thus in the process of plant defense. When pollen tubes grew slowly in the style, ovary may receive JA signal, which initiates the molecular mechanism of inhibiting the growth of self-pollinating pollen tubes.
Collapse
|
107
|
Zhao Y, Yang B, Xu H, Wu J, Xu Z, Wang Y. The Phytophthora effector Avh94 manipulates host jasmonic acid signaling to promote infection. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2199-2210. [PMID: 36067028 DOI: 10.1111/jipb.13358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The oomycete pathogen Phytophthora sojae is a causal agent of soybean root rot. Upon colonization of soybeans, P. sojae secretes various RXLR effectors to suppress host immune responses, supporting successful infection. Previous research has demonstrated that the RXLR effector Avh94 functions as a virulence effector, but the molecular mechanism underlying its role in virulence remains unknown. Here, we demonstrate that Avh94 overexpression in plants and pathogens promotes Phytophthora infection. Avh94 interacts with soybean JAZ1/2, which is a repressor of jasmonic acid (JA) signaling. Avh94 stabilizes JAZ1/2 to inhibit JA signaling and silencing of JAZ1/2 enhances soybean resistance against P. sojae. Moreover, P. sojae lines overexpressing Avh94 inhibit JA signaling. Furthermore, exogenous application of methyl jasmonate improves plant resistance to Phytophthora. Taken together, these findings suggest that P. sojae employs an RXLR effector to hijack JA signaling and thereby promote infection.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huawei Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinbin Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyang Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
108
|
Sun T, Zhou Q, Zhou Z, Song Y, Li Y, Wang HB, Liu B. SQUINT Positively Regulates Resistance to the Pathogen Botrytis cinerea via miR156-SPL9 Module in Arabidopsis. PLANT & CELL PHYSIOLOGY 2022; 63:1414-1432. [PMID: 35445272 DOI: 10.1093/pcp/pcac042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/23/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
SQUINT (SQN) regulates plant maturation by promoting the activity of miR156, which functions primarily in the miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE9 (SPL9) module regulating plant growth and development. Here, we show that SQN acts in the jasmonate (JA) pathway, a major signaling pathway regulating plant responses to insect herbivory and pathogen infection. Arabidopsis thaliana sqn mutants showed elevated sensitivity to the necrotrophic fungus Botrytis cinerea compared with wild type. However, SQN is not involved in the early pattern-triggered immunity response often triggered by fungal attack. Rather, SQN positively regulates the JA pathway, as sqn loss-of-function mutants treated with B. cinerea showed reduced JA accumulation, JA response and sensitivity to JA. Furthermore, the miR156-SPL9 module regulates plant resistance to B. cinerea: mir156 mutant, and SPL9 overexpression plants displayed elevated sensitivity to B. cinerea. Moreover, constitutively expressing miR156a or reducing SPL9 expression in the sqn-1 mutant restored the sensitivity of Arabidopsis to B. cinerea and JA responses. These results suggest that SQN positively modulates plant resistance to B. cinerea through the JA pathway, and the miR156-SPL9 module functions as a bridge between SQN and JA to mediate plant resistance to this pathogen.
Collapse
Affiliation(s)
- Ting Sun
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Qi Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zhou Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Yuxiao Song
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - You Li
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Hong-Bin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
109
|
Rahman FU, Khan IA, Aslam A, Liu R, Sun L, Wu Y, Aslam MM, Khan AU, Li P, Jiang J, Fan X, Liu C, Zhang Y. Transcriptome analysis reveals pathogenesis-related gene 1 pathway against salicylic acid treatment in grapevine ( Vitis vinifera L). Front Genet 2022; 13:1033288. [PMID: 36338979 PMCID: PMC9631220 DOI: 10.3389/fgene.2022.1033288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 08/27/2023] Open
Abstract
Salicylic acid (SA) is a well-studied phenolic plant hormone that plays an important role in plant defense against the hemi-biothrophic and biothrophic pathogens and depends on the living cells of host for the successful infection. In this study, a pathogenesis test was performed between Vitis davidii and V. vinifera cultivars against grape white rot disease (Coniella diplodiella). V. davidii was found to be resistant against this disease. SA contents were found to be higher in the resistant grape cultivar after different time points. RNA-seq analysis was conducted on susceptible grapevine cultivars after 12, 24, and 48 h of SA application with the hypothesis that SA may induce defense genes in susceptible cultivars. A total of 511 differentially expressed genes (DEGs) were identified from the RNA-seq data, including some important genes, VvWRKY1/2, VvNPR1, VvTGA2, and VvPR1, for the SA defense pathway. DEGs related to phytohormone signal transduction and flavonoid biosynthetic pathways were also upregulated. The quantitative real-time PCR (qRT-PCR) results of the significantly expressed transcripts were found to be consistent with the transcriptome data, with a high correlation between the two analyses. The pathogenesis-related gene 1 (VvPR1), which is an important marker gene for plant defense, was selected for further promoter analysis. The promoter sequence showed that it contains some important cis-elements (W-box, LS7, as-1, and TCA-element) to recruit the transcription factors VvWRKY, VvNPR1, and VvTGA2 to express the VvPR1 gene in response to SA treatment. Furthermore, the VvPR1 promoter was serially deleted into different fragments (-1,837, -1,443, -1,119, -864, -558, -436, and -192 ) bp and constructed vectors with the GUS reporter gene. Deletion analysis revealed that the VvPR1 promoter between -1837 bp to -558 bp induced significant GUS expression with respect to the control. On the basis of these results, the -558 bp region was assumed to be an important part of the VvPR1 promoter, and this region contained the important cis-elements related to SA, such as TCA-element (-1,472 bp), LS7 (-1,428 bp), and as-1 (-520 bp), that recruit the TFs and induce the expression of the VvPR1 gene. This study expanded the available information regarding SA-induced defense in susceptible grapes and recognized the molecular mechanisms through which this defense might be mediated.
Collapse
Affiliation(s)
- Faiz Ur Rahman
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Irshad Ahmad Khan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ali Aslam
- Faculty of Agriculture and Veterinary Sciences, Superior University, Lahore, Pakistan
| | - Ruitao Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lei Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yandi Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Muhammad Muzammal Aslam
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Asad Ullah Khan
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Hangzhou, China
| | - Peng Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jianfu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiucai Fan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ying Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
110
|
Orf I, Tenenboim H, Omranian N, Nikoloski Z, Fernie AR, Lisec J, Brotman Y, Bromke MA. Transcriptomic and Metabolomic Analysis of a Pseudomonas-Resistant versus a Susceptible Arabidopsis Accession. Int J Mol Sci 2022; 23:ijms232012087. [PMID: 36292941 PMCID: PMC9603445 DOI: 10.3390/ijms232012087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022] Open
Abstract
Accessions of one plant species may show significantly different levels of susceptibility to stresses. The Arabidopsis thaliana accessions Col-0 and C24 differ significantly in their resistance to the pathogen Pseudomonas syringae pv. tomato (Pst). To help unravel the underlying mechanisms contributing to this naturally occurring variance in resistance to Pst, we analyzed changes in transcripts and compounds from primary and secondary metabolism of Col-0 and C24 at different time points after infection with Pst. Our results show that the differences in the resistance of Col-0 and C24 mainly involve mechanisms of salicylic-acid-dependent systemic acquired resistance, while responses of jasmonic-acid-dependent mechanisms are shared between the two accessions. In addition, arginine metabolism and differential activity of the biosynthesis pathways of aliphatic glucosinolates and indole glucosinolates may also contribute to the resistance. Thus, this study highlights the difference in the defense response strategies utilized by different genotypes.
Collapse
Affiliation(s)
- Isabel Orf
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Hezi Tenenboim
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Nooshin Omranian
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Jan Lisec
- Department of Analytical Chemistry, Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Correspondence: (Y.B.); (M.A.B.)
| | - Mariusz A. Bromke
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, ul. Chałubińskiego 10, 50-367 Wrocław, Poland
- Correspondence: (Y.B.); (M.A.B.)
| |
Collapse
|
111
|
Liao CJ, Hailemariam S, Sharon A, Mengiste T. Pathogenic strategies and immune mechanisms to necrotrophs: Differences and similarities to biotrophs and hemibiotrophs. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102291. [PMID: 36063637 DOI: 10.1016/j.pbi.2022.102291] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Pathogenesis in plant diseases is complex comprising diverse pathogen virulence and plant immune mechanisms. These pathogens cause damaging plant diseases by deploying specialized and generic virulence strategies that are countered by intricate resistance mechanisms. The significant challenges that necrotrophs pose to crop production are predicted to increase with climate change. Immunity to biotrophs and hemibiotrophs is dominated by intracellular receptors that recognize specific effectors and activate resistance. These mechanisms play only minor roles in resistance to necrotrophs. Pathogen- or host-derived conserved pattern molecules trigger immune responses that broadly contribute to plant immunity. However, certain pathogen or host-derived immune elicitors are enriched by the virulence activities of necrotrophs. Different plant hormones modulate systemic resistance and cell death that have differential impacts on resistance to pathogens of different lifestyles. Knowledge of mechanisms that contribute to resistance to necrotrophs has expanded. Besides toxins and cell wall degrading enzymes that dominate the pathogenesis of necrotrophs, other effectors with subtle contributions are being identified.
Collapse
Affiliation(s)
- Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Sara Hailemariam
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
112
|
Jenner BN, Henry PM. Pathotypes of Fusarium oxysporum f. sp. fragariae express discrete repertoires of accessory genes and induce distinct host transcriptional responses during root infection. Environ Microbiol 2022; 24:4570-4586. [PMID: 35706142 PMCID: PMC9796522 DOI: 10.1111/1462-2920.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/16/2022] [Accepted: 06/11/2022] [Indexed: 01/01/2023]
Abstract
Convergent evolution of phytopathogenicity is poorly described, especially among multiple strains of a single microbial species. We investigated this phenomenon with genetically diverse isolates of Fusarium oxysporum f. sp. fragariae (Fof) that cause one of two syndromes: chlorosis and wilting (the 'yellows-fragariae' pathotype), or only wilting (the 'wilt-fragariae' pathotype). We challenged strawberry (Fragaria × ananassa) plants to root infection by five fungal isolates: three yellows-fragariae, one wilt-fragariae and one that is not pathogenic to strawberry. All Fof isolates had chromosome-level assemblies; three were newly generated. The two pathotypes triggered distinct host responses, especially among phytohormone-associated genes; yellows-fragariae isolates strongly induced jasmonic acid-associated genes, whereas the wilt-fragariae isolate primarily induced ethylene biosynthesis and signalling. The differentially expressed genes on fungal accessory chromosomes were almost entirely distinct between pathotypes. We identified an ~150 kbp 'pathogenicity island' that was horizontally transferred between wilt-fragariae strains. This predicted pathogenicity island was enriched with differentially expressed genes whose predicted functions were related to plant infection, and only one of these genes was also upregulated in planta by yellows-fragariae isolates. These results support the conclusion that wilt- and yellows-fragariae cause physiologically distinct syndromes by the expression of discrete repertoires of genes on accessory chromosomes.
Collapse
Affiliation(s)
- Bradley N. Jenner
- Department of Plant PathologyUniversity of California at DavisDavisCaliforniaUSA
| | - Peter M. Henry
- United States Department of Agriculture, Agricultural Research ServiceSalinasCaliforniaUSA
| |
Collapse
|
113
|
Mahmud S, Ullah C, Kortz A, Bhattacharyya S, Yu P, Gershenzon J, Vothknecht UC. Constitutive expression of JASMONATE RESISTANT 1 induces molecular changes that prime the plants to better withstand drought. PLANT, CELL & ENVIRONMENT 2022; 45:2906-2922. [PMID: 35864601 DOI: 10.1111/pce.14402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
In this study, we investigated Arabidopsis thaliana plants with altered levels of the enzyme JASMONATE RESISTANT 1 (JAR1), which converts jasmonic acid (JA) to jasmonoyl-l-isoleucine (JA-Ile). Analysis of a newly generated overexpression line (35S::JAR1) revealed that constitutively increased JA-Ile production in 35S::JAR1 alters plant development, resulting in stunted growth and delayed flowering. Under drought-stress conditions, 35S::JAR1 plants showed reduced wilting and recovered better from desiccation than the wild type. By contrast, jar1-11 plants with a strong reduction in JA-Ile content were hypersensitive to drought. RNA-sequencing analysis and hormonal profiling of plants under normal and drought conditions provided insights into the molecular reprogramming caused by the alteration in JA-Ile content. Especially 35S::JAR1 plants displayed changes in expression of developmental genes related to growth and flowering. Further transcriptional differences pertained to drought-related adaptive systems, including stomatal density and aperture, but also reactive oxygen species production and detoxification. Analysis of wild type and jar1-11 plants carrying the roGFP-Orp1 sensor support a role of JA-Ile in the alleviation of methyl viologen-induced H2 O2 production. Our data substantiate a role of JA-Ile in abiotic stress response and suggest that JAR1-mediated increase in JA-Ile content primes Arabidopsis towards improved drought stress tolerance.
Collapse
Affiliation(s)
- Sakil Mahmud
- Plant Cell Biology, Institute of Cellular and Moleculara Botany, University of Bonn, Bonn, Germany
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Chhana Ullah
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Annika Kortz
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Sabarna Bhattacharyya
- Plant Cell Biology, Institute of Cellular and Moleculara Botany, University of Bonn, Bonn, Germany
| | - Peng Yu
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ute C Vothknecht
- Plant Cell Biology, Institute of Cellular and Moleculara Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
114
|
Val-Torregrosa B, Bundó M, Mallavarapu MD, Chiou TJ, Flors V, San Segundo B. Loss-of-function of NITROGEN LIMITATION ADAPTATION confers disease resistance in Arabidopsis by modulating hormone signaling and camalexin content. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111374. [PMID: 35839945 DOI: 10.1016/j.plantsci.2022.111374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/02/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus is an important macronutrient required for plant growth and development. It is absorbed by the roots in the form of inorganic phosphate (Pi). Under Pi limiting conditions, plants activate the Phosphate Starvation Response (PSR) system to enhance Pi acquisition. The NITROGEN LIMITATION ADAPTION (NLA) gene is a component of the Arabidopsis PSR, and its expression is post-transcriptionally regulated by miR827. We show that loss-of-function of NLA and MIR827 overexpression increases Pi level and enhances resistance to infection by the fungal pathogen Plectosphaerella cucumerina in Arabidopsis. Upon pathogen infection, high Pi plants (e.g. nla plants and wild type plants grown under high Pi supply) showed enhanced callose deposition. High Pi plants also exhibited superinduction of camalexin biosynthesis genes which is consistent with increased levels of camalexin during pathogen infection. Pathogen infection and treatment with fungal elicitors, triggered up-regulation of MIR827 and down-regulation of NLA expression. Under non-infection conditions, the nla plants showed increased levels of SA and JA compared with wild type plants, their levels further increasing upon pathogen infection. Overall, the outcomes of this study suggest that NLA plays a role in Arabidopsis immunity, while supporting convergence between Pi signaling and immune signaling in Arabidopsis.
Collapse
Affiliation(s)
- Beatriz Val-Torregrosa
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Carrer de la Vall Moronta, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Mireia Bundó
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Carrer de la Vall Moronta, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Mani Deepika Mallavarapu
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Carrer de la Vall Moronta, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Road, Nankang, 115 Taipei, Taiwan
| | - Victor Flors
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Superior de Tecnología y Ciencias Experimentales, Universitat Jaume I, Castellón 12071, Spain
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Carrer de la Vall Moronta, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain; Consejo Superior de Investigaciones Científicas (CSIC), Serrano, 117, 28010 Madrid, Spain.
| |
Collapse
|
115
|
Gao DM, Zhang ZJ, Qiao JH, Gao Q, Zang Y, Xu WY, Xie L, Fang XD, Ding ZH, Yang YZ, Wang Y, Wang XB. A rhabdovirus accessory protein inhibits jasmonic acid signaling in plants to attract insect vectors. PLANT PHYSIOLOGY 2022; 190:1349-1364. [PMID: 35771641 PMCID: PMC9516739 DOI: 10.1093/plphys/kiac319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Plant rhabdoviruses heavily rely on insect vectors for transmission between sessile plants. However, little is known about the underlying mechanisms of insect attraction and transmission of plant rhabdoviruses. In this study, we used an arthropod-borne cytorhabdovirus, Barley yellow striate mosaic virus (BYSMV), to demonstrate the molecular mechanisms of a rhabdovirus accessory protein in improving plant attractiveness to insect vectors. Here, we found that BYSMV-infected barley (Hordeum vulgare L.) plants attracted more insect vectors than mock-treated plants. Interestingly, overexpression of BYSMV P6, an accessory protein, in transgenic wheat (Triticum aestivum L.) plants substantially increased host attractiveness to insect vectors through inhibiting the jasmonic acid (JA) signaling pathway. The BYSMV P6 protein interacted with the constitutive photomorphogenesis 9 signalosome subunit 5 (CSN5) of barley plants in vivo and in vitro, and negatively affected CSN5-mediated deRUBylation of cullin1 (CUL1). Consequently, the defective CUL1-based Skp1/Cullin1/F-box ubiquitin E3 ligases could not mediate degradation of jasmonate ZIM-domain proteins, resulting in compromised JA signaling and increased insect attraction. Overexpression of BYSMV P6 also inhibited JA signaling in transgenic Arabidopsis (Arabidopsis thaliana) plants to attract insects. Our results provide insight into how a plant cytorhabdovirus subverts plant JA signaling to attract insect vectors.
Collapse
Affiliation(s)
- Dong-Min Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen-Jia Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ji-Hui Qiao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qiang Gao
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ying Zang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wen-Ya Xu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Liang Xie
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiao-Dong Fang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhi-Hang Ding
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi-Zhou Yang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
116
|
Stroud EA, Jayaraman J, Templeton MD, Rikkerink EHA. Comparison of the pathway structures influencing the temporal response of salicylate and jasmonate defence hormones in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:952301. [PMID: 36160984 PMCID: PMC9504473 DOI: 10.3389/fpls.2022.952301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
Defence phytohormone pathways evolved to recognize and counter multiple stressors within the environment. Salicylic acid responsive pathways regulate the defence response to biotrophic pathogens whilst responses to necrotrophic pathogens, herbivory, and wounding are regulated via jasmonic acid pathways. Despite their contrasting roles in planta, the salicylic acid and jasmonic acid defence networks share a common architecture, progressing from stages of biosynthesis, to modification, regulation, and response. The unique structure, components, and regulation of each stage of the defence networks likely contributes, in part, to the speed, establishment, and longevity of the salicylic acid and jasmonic acid signaling pathways in response to hormone treatment and various biotic stressors. Recent advancements in the understanding of the Arabidopsis thaliana salicylic acid and jasmonic acid signaling pathways are reviewed here, with a focus on how the structure of the pathways may be influencing the temporal regulation of the defence responses, and how biotic stressors and the many roles of salicylic acid and jasmonic acid in planta may have shaped the evolution of the signaling networks.
Collapse
Affiliation(s)
- Erin A. Stroud
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jay Jayaraman
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Bioprotection Aotearoa, Lincoln, New Zealand
| | - Matthew D. Templeton
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Bioprotection Aotearoa, Lincoln, New Zealand
| | - Erik H. A. Rikkerink
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
117
|
Sun T, Zhang J, Zhang Q, Li X, Li M, Yang Y, Zhou J, Wei Q, Zhou B. Exogenous application of acetic acid enhances drought tolerance by influencing the MAPK signaling pathway induced by ABA and JA in apple plants. TREE PHYSIOLOGY 2022; 42:1827-1840. [PMID: 35323984 DOI: 10.1093/treephys/tpac034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
The external application of acetic acid (AA) has been shown to improve drought survival in plants, such as Arabidopsis, rice, maize, wheat, rapeseed and cassava, and the application of AA also increased drought tolerance in perennial woody apple (Malus domestica) plants. An understanding of AA-induced drought tolerance in apple plants at the molecular level will contribute to the development of technology that can be used to enhance drought tolerance. In this study, the morphological, physiological and transcriptomic responses to drought stress were analyzed in apple plants after watering without AA (CK), watering with AA (AA), drought treatment (D) and drought treatment with AA (DA). The results suggested that the AA-treated apple plants had a higher tolerance to drought than water-treated plants. Higher levels of chlorophyll and carotenoids were found under the DA conditions than under D stress. The levels of abscisic acid (ABA), jasmonic acid (JA) and methyl jasmonate were increased in AA-treated apple plants. Transcriptomic profiling indicated the key biological pathways involved in metabolic processes, mitogen-activated protein kinase (MAPK) signaling, plant hormone signal transduction and the biosynthesis of secondary metabolites in response to different drought conditions. The 9-cis-epoxycarotenoid dioxygenase, (9S,13S)-cis-oxophytodienoic acid reductase, allene oxide synthase, allene oxide cyclase and lipoxygenase genes participate in the synthase of ABA and JA under drought and AA treatments. Collectively, the results showed that external application of AA enhanced drought tolerance in apple plants by influencing the ABA- and JA-induced MAPK signaling pathways. These data indicated that the application of AA in plants is beneficial for enhancing drought tolerance and decreasing growth inhibition in agricultural fields.
Collapse
Affiliation(s)
- Tingting Sun
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Junke Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Qiang Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Xingliang Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Minji Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Yuzhang Yang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Jia Zhou
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Qinping Wei
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Beibei Zhou
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| |
Collapse
|
118
|
Ligand diversity contributes to the full activation of the jasmonate pathway in Marchantia polymorpha. Proc Natl Acad Sci U S A 2022; 119:e2202930119. [PMID: 36037336 PMCID: PMC9457472 DOI: 10.1073/pnas.2202930119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In plants, jasmonate signaling regulates a wide range of processes from growth and development to defense responses and thermotolerance. Jasmonates, such as jasmonic acid (JA), (+)-7-iso-jasmonoyl-l-isoleucine (JA-Ile), 12-oxo-10,15(Z)-phytodienoic acid (OPDA), and dinor-12-oxo-10,15(Z)-phytodienoic acid (dn-OPDA), are derived from C18 (18 Carbon atoms) and C16 polyunsaturated fatty acids (PUFAs), which are found ubiquitously in the plant kingdom. Bryophytes are also rich in C20 and C22 long-chain polyunsaturated fatty acids (LCPUFAs), which are found only at low levels in some vascular plants but are abundant in organisms of other kingdoms, including animals. The existence of bioactive jasmonates derived from LCPUFAs is currently unknown. Here, we describe the identification of an OPDA-like molecule derived from a C20 fatty acid (FA) in the liverwort Marchantia polymorpha (Mp), which we term (5Z,8Z)-10-(4-oxo-5-((Z)-pent-2-en-1-yl)cyclopent-2-en-1-yl)deca-5,8-dienoic acid (C20-OPDA). This molecule accumulates upon wounding and, when applied exogenously, can activate known Coronatine Insensitive 1 (COI1) -dependent and -independent jasmonate responses. Furthermore, we identify a dn-OPDA-like molecule (Δ4-dn-OPDA) deriving from C20-OPDA and demonstrate it to be a ligand of the jasmonate coreceptor (MpCOI1-Mp Jasmonate-Zinc finger inflorescence meristem domain [MpJAZ]) in Marchantia. By analyzing mutants impaired in the production of LCPUFAs, we elucidate the major biosynthetic pathway of C20-OPDA and Δ4-dn-OPDA. Moreover, using a double mutant compromised in the production of both Δ4-dn-OPDA and dn-OPDA, we demonstrate the additive nature of these molecules in the activation of jasmonate responses. Taken together, our data identify a ligand of MpCOI1 and demonstrate LCPUFAs as a source of bioactive jasmonates that are essential to the immune response of M. polymorpha.
Collapse
|
119
|
Song S, Liu B, Song J, Pang S, Song T, Gao S, Zhang Y, Huang H, Qi T. A molecular framework for signaling crosstalk between jasmonate and ethylene in anthocyanin biosynthesis, trichome development, and defenses against insect herbivores in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1770-1788. [PMID: 35763421 DOI: 10.1111/jipb.13319] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
The phytohormones ethylene (ET) and jasmonate (JA) regulate plant development, growth, and defense responses; however, the molecular basis for their signaling crosstalk is unclear. Here, we show that JA-ZIM-domain (JAZ) proteins, which repress JA signaling, repress trichome initiation/branching and anthocyanin accumulation, and inhibit the transcriptional activity of the basic helix-loop-helix (bHLH)-MYB members (GLABRA3 (GL3)-GL1 and TRANSPARENT TESTA 8 (TT8)-MYB75) of WD-repeat/bHLH/MYB (WBM) complexes. The ET-stabilized transcription factors ETHYLENE-INSENSITIVE3 (EIN3) and EIN3-LIKE1 (EIL1) were found to bind to several members of WBM complexes, including GL3, ENHANCER OF GLABRA3 (EGL3), TT8, GL1, MYB75, and TRANSPARENT TESTA GLABRA1 (TTG1). This binding repressed the transcriptional activity of the bHLH-MYB proteins and inhibited anthocyanin accumulation, trichome formation, and defenses against insect herbivores while promoting root hair formation. Conversely, the JA-activated bHLH members GL3, EGL3, and TT8 of WBM complexes were able to interact with and attenuate the transcriptional activity of EIN3/EIL1 at the HOOKLESS1 promoter, and their overexpression inhibited apical hook formation. Thus, this study demonstrates a molecular framework for signaling crosstalk between JA and ET in plant development, secondary metabolism, and defense responses.
Collapse
Affiliation(s)
- Susheng Song
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Bei Liu
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Junqiao Song
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Shihai Pang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Tianxue Song
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shang Gao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yue Zhang
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Huang Huang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Tiancong Qi
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
120
|
Liang Y, Heyman J, Xiang Y, Vandendriessche W, Canher B, Goeminne G, De Veylder L. The wound-activated ERF15 transcription factor drives Marchantia polymorpha regeneration by activating an oxylipin biosynthesis feedback loop. SCIENCE ADVANCES 2022; 8:eabo7737. [PMID: 35960801 PMCID: PMC9374346 DOI: 10.1126/sciadv.abo7737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The regenerative potential in response to wounding varies widely among species. Within the plant lineage, the liverwort Marchantia polymorpha displays an extraordinary regeneration capacity. However, its molecular pathways controlling the initial regeneration response are unknown. Here, we demonstrate that the MpERF15 transcription factor gene is instantly activated after wounding and is essential for gemmaling regeneration following tissue incision. MpERF15 operates both upstream and downstream of the MpCOI1 oxylipin receptor by controlling the expression of oxylipin biosynthesis genes. The resulting rise in the oxylipin dinor-12-oxo-phytodienoic acid (dn-OPDA) levels results in an increase in gemma cell number and apical notch organogenesis, generating highly disorganized and compact thalli. Our data pinpoint MpERF15 as a key factor activating an oxylipin biosynthesis amplification loop after wounding, which eventually results in reactivation of cell division and regeneration. We suggest that the genetic networks controlling oxylipin biosynthesis in response to wounding might have been reshuffled over evolution.
Collapse
Affiliation(s)
- Yuanke Liang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Yanli Xiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Wiske Vandendriessche
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Balkan Canher
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| |
Collapse
|
121
|
Chung K, Demianski AJ, Harrison GA, Laurie-Berry N, Mitsuda N, Kunkel BN. Jasmonate Hypersensitive 3 negatively regulates both jasmonate and ethylene-mediated responses in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5067-5083. [PMID: 35552406 DOI: 10.1093/jxb/erac208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Jasmonate (JA) is an important hormone involved in regulating diverse responses to environmental factors as well as growth and development, and its signalling is influenced by other hormones such as ethylene (ET). However, our understanding of the regulatory relationship between the JA and ET signalling pathways is limited. In this study, we isolated an Arabidopsis JA-hypersensitive mutant, jah3 (jasmonate hypersensitive3)-1. Map-based cloning revealed that the JAH3 gene corresponds to At4g16535. JAH3 encodes a protein of unknown function whose amino acid sequence has similarity to leukocyte receptor cluster-like protein. The mutation in jah3-1 is caused by a single nucleotide change from A to T at position 220 of 759 bp. Using CRISPR-Cas9, we generated a second allele, jah3-2, that encodes a truncated protein. Both of these loss-of-function alleles resulted in hypersensitivity to JA, ET-induced root growth inhibition, and accelerated dark-induced senescence. Double mutant analyses employing coronatine insensitive 1 (coi1) and ethylene insensitive 3 (ein3) mutants (jah3 coi1 and jah3 ein3) demonstrated that the hypersensitive phenotypes of the jah3 mutants are mediated by JA and ET signalling components COI1 and EIN3. Therefore, we propose that JAH3 is a negative regulator of both JA and ET signalling.
Collapse
Affiliation(s)
- KwiMi Chung
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Agnes J Demianski
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Gregory A Harrison
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Neva Laurie-Berry
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Barbara N Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
122
|
Huang LQ, Li PP, Yin J, Li YK, Chen DK, Bao HN, Fan RY, Liu HZ, Yao N. Arabidopsis alkaline ceramidase ACER functions in defense against insect herbivory. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4954-4967. [PMID: 35436324 DOI: 10.1093/jxb/erac166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Plant sphingolipids are important membrane components and bioactive molecules in development and defense responses. However, the function of sphingolipids in plant defense, especially against herbivores, is not fully understood. Here, we report that Spodoptera exigua feeding affects sphingolipid metabolism in Arabidopsis, resulting in increased levels of sphingoid long-chain bases, ceramides, and hydroxyceramides. Insect-induced ceramide and hydroxyceramide accumulation is dependent on the jasmonate signaling pathway. Loss of the Arabidopsis alkaline ceramidase ACER increases ceramides and decreases long-chain base levels in plants; in this work, we found that loss of ACER enhances plant resistance to S. exigua and improves response to mechanical wounding. Moreover, acer-1 mutants exhibited more severe root-growth inhibition and higher anthocyanin accumulation than wild-type plants in response to methyl jasmonate treatment, indicating that loss of ACER increases sensitivity to jasmonate and that ACER functions in jasmonate-mediated root growth and secondary metabolism. Transcript levels of ACER were also negatively regulated by jasmonates, and this process involves the transcription factor MYC2. Thus, our findings reveal that ACER is involved in mediating jasmonate-related plant growth and defense and that jasmonates function in regulating the expression of ACER.
Collapse
Affiliation(s)
- Li-Qun Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Ping-Ping Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yong-Kang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - He-Nan Bao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Rui-Yuan Fan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hao-Zhuo Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
123
|
An C, Deng L, Zhai H, You Y, Wu F, Zhai Q, Goossens A, Li C. Regulation of jasmonate signaling by reversible acetylation of TOPLESS in Arabidopsis. MOLECULAR PLANT 2022; 15:1329-1346. [PMID: 35780296 DOI: 10.1016/j.molp.2022.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The plant hormone jasmonate (JA) regulates plant immunity and adaptive growth by orchestrating a genome-wide transcriptional program. Key regulators of JA-responsive gene expression include the master transcription factor MYC2, which is repressed by the conserved Groucho/Tup1-like corepressor TOPLESS (TPL) in the resting state. However, the mechanisms underlying TPL-mediated transcriptional repression of MYC2 activity and hormone-dependent switching between repression and de-repression remain enigmatic. Here, we report the regulation of TPL activity and JA signaling by reversible acetylation of TPL. We found that the histone acetyltransferase GCN5 could mediate TPL acetylation, which enhances its interaction with the NOVEL-INTERACTOR-OF-JAZ (NINJA) adaptor and promotes its recruitment to MYC2 target promoters, facilitating transcriptional repression. Conversely, TPL deacetylation by the histone deacetylase HDA6 weakens TPL-NINJA interaction and inhibits TPL recruitment to MYC2 target promoters, facilitating transcriptional activation. In the resting state, the opposing activities of GCN5 and HDA6 maintain TPL acetylation homeostasis, promoting transcriptional repression activity of TPL. In response to JA elicitation, HDA6 expression is transiently induced, resulted in decreased TPL acetylation and repressor activity, thereby transcriptional activation of MYC2 target genes. Thus, the GCN5-TPL-HDA6 module maintains the homeostasis of acetylated TPL, thereby determining the transcriptional state of JA-responsive genes. Our findings uncovered a mechanism by which the TPL corepressor activity in JA signaling is actively tuned in a rapid and reversible manner.
Collapse
Affiliation(s)
- Chunpeng An
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huawei Zhai
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yanrong You
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangming Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
124
|
Srivastava M, Srivastava AK, Roy D, Mansi M, Gough C, Bhagat PK, Zhang C, Sadanandom A. The conjugation of SUMO to the transcription factor MYC2 functions in blue light-mediated seedling development in Arabidopsis. THE PLANT CELL 2022; 34:2892-2906. [PMID: 35567527 PMCID: PMC9338799 DOI: 10.1093/plcell/koac142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 05/04/2022] [Indexed: 05/26/2023]
Abstract
A key function of photoreceptor signaling is the coordinated regulation of a large number of genes to optimize plant growth and development. The basic helix loop helix (bHLH) transcription factor MYC2 is crucial for regulating gene expression in Arabidopsis thaliana during development in blue light. Here we demonstrate that blue light induces the SUMOylation of MYC2. Non-SUMOylatable MYC2 is less effective in suppressing blue light-mediated photomorphogenesis than wild-type (WT) MYC2. MYC2 interacts physically with the SUMO proteases SUMO PROTEASE RELATED TO FERTILITY1 (SPF1) and SPF2. Blue light exposure promotes the degradation of SPF1 and SPF2 and enhances the SUMOylation of MYC2. Phenotypic analysis revealed that SPF1/SPF2 function redundantly as positive regulators of blue light-mediated photomorphogenesis. Our data demonstrate that SUMO conjugation does not affect the dimerization of MYC transcription factors but modulates the interaction of MYC2 with its cognate DNA cis-element and with the ubiquitin ligase Plant U-box 10 (PUB10). Finally, we show that non-SUMOylatable MYC2 is less stable and interacts more strongly with PUB10 than the WT. Taken together, we conclude that SUMO functions as a counterpoint to the ubiquitin-mediated degradation of MYC2, thereby enhancing its function in blue light signaling.
Collapse
Affiliation(s)
| | | | - Dipan Roy
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Mansi Mansi
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Catherine Gough
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | | - Cunjin Zhang
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | |
Collapse
|
125
|
Liu R, Niimi H, Ueda M, Takaoka Y. Coordinately regulated transcription factors EIN3/EIL1 and MYCs in ethylene and jasmonate signaling interact with the same domain of MED25. Biosci Biotechnol Biochem 2022; 86:1405-1412. [PMID: 35876657 DOI: 10.1093/bbb/zbac119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/05/2022] [Indexed: 11/15/2022]
Abstract
Ethylene (ET) and jasmonate (JA) are plant hormones that act synergistically to regulate plant development and defense against necrotrophic fungi infections, and antagonistically in response to wounds and apical hook formation. Previous studies revealed that the coordination of these responses is due to dynamic protein-protein interactions (PPI) between their master transcription factors (TFs) EIN3/EIL1 and MYC in ET and JA signaling, respectively. In addition, both TFs are activated via interactions with the same transcriptional mediator MED25, which upregulates downstream gene expression. Herein, we analyzed the PPI between EIN3/EIL1 and MED25, and as with the PPI between MYC3 and MED25, found that the short binding domain of MED25 (CMIDM) is also responsible for the interaction with EIN3/EIL1 - a finding which suggests that both TFs compete for binding with MED25. These results further inform our understanding of the coordination between the ET and JA regulatory systems.
Collapse
Affiliation(s)
- Ruiqi Liu
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Hikaru Niimi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Minoru Ueda
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yousuke Takaoka
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| |
Collapse
|
126
|
Reboledo G, Agorio A, Ponce De León I. Moss transcription factors regulating development and defense responses to stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4546-4561. [PMID: 35167679 DOI: 10.1093/jxb/erac055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Transcription factors control gene expression, leading to regulation of biological processes that determine plant development and adaptation to the environment. Land colonization by plants occurred 450-470 million years ago and was accompanied by an increase in the complexity of transcriptional regulation associated to transcription factor gene expansions. AP2/ERF, bHLH, MYB, NAC, GRAS, and WRKY transcription factor families increased in land plants compared with algae. In angiosperms, they play crucial roles in regulating plant growth and responses to environmental stressors. However, less information is available in bryophytes and only in a few cases is the functional role of moss transcription factors in stress mechanisms known. In this review, we discuss current knowledge of the transcription factor families involved in development and defense responses to stress in mosses and other bryophytes. By exploring and analysing the Physcomitrium patens public database and published transcriptional profiles, we show that a high number of AP2/ERF, bHLH, MYB, NAC, GRAS, and WRKY genes are differentially expressed in response to abiotic stresses and during biotic interactions. Expression profiles together with a comprehensive analysis provide insights into relevant transcription factors involved in moss defenses, and hint at distinct and conserved biological roles between bryophytes and angiosperms.
Collapse
Affiliation(s)
- Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Astrid Agorio
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
127
|
Valea I, Motegi A, Kawamura N, Kawamoto K, Miyao A, Ozawa R, Takabayashi J, Gomi K, Nemoto K, Nozawa A, Sawasaki T, Shinya T, Galis I, Miyamoto K, Nojiri H, Okada K. The rice wound-inducible transcription factor RERJ1 sharing same signal transduction pathway with OsMYC2 is necessary for defense response to herbivory and bacterial blight. PLANT MOLECULAR BIOLOGY 2022; 109:651-666. [PMID: 34476681 DOI: 10.1007/s11103-021-01186-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
This study describes biological functions of the bHLH transcription factor RERJ1 involved in the jasmonate response and the related defense-associated metabolic pathways in rice, with particular focus on deciphering the regulatory mechanisms underlying stress-induced volatile emission and herbivory resistance. RERJ1 is rapidly and drastically induced by wounding and jasmonate treatment but its biological function remains unknown as yet. Here we provide evidence of the biological function of RERJ1 in plant defense, specifically in response to herbivory and pathogen attack, and offer insights into the RERJ1-mediated regulation of metabolic pathways of specialized defense compounds, such as monoterpene linalool, in possible collaboration with OsMYC2-a well-known master regulator in jasmonate signaling. In rice (Oryza sativa L.), the basic helix-loop-helix (bHLH) family transcription factor RERJ1 is induced under environmental stresses, such as wounding and drought, which are closely linked to jasmonate (JA) accumulation. Here, we investigated the biological function of RERJ1 in response to biotic stresses, such as herbivory and pathogen infection, using an RERJ1-defective mutant. Transcriptome analysis of the rerj1-Tos17 mutant revealed that RERJ1 regulated the expression of a typical family of conserved JA-responsive genes (e.g., terpene synthases, proteinase inhibitors, and jasmonate ZIM domain proteins). Upon exposure to armyworm attack, the rerj1-Tos17 mutant exhibited more severe damage than the wildtype, and significant weight gain of the larvae fed on the mutant was observed. Upon Xanthomonas oryzae infection, the rerj1-Tos17 mutant developed more severe symptoms than the wildtype. Among RERJ1-regulated terpene synthases, linalool synthase expression was markedly disrupted and linalool emission after wounding was significantly decreased in the rerj1-Tos17 mutant. RERJ1 appears to interact with OsMYC2-a master regulator of JA signaling-and many OsJAZ proteins, although no obvious epistatic interaction was detected between them at the transcriptional level. These results indicate that RERJ1 is involved in the transcriptional induction of JA-mediated stress-responsive genes via physical association with OsMYC2 and mediates defense against herbivory and bacterial infection through JA signaling.
Collapse
Affiliation(s)
- Ioana Valea
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Atsushi Motegi
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naoko Kawamura
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Koichi Kawamoto
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Akio Miyao
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8518, Japan
| | - Rika Ozawa
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan
| | - Junji Takabayashi
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan
| | - Kenji Gomi
- Graduate School of Agriculture, Kagawa University, Kita-gun, Kagawa, 761-0795, Japan
| | - Keiichirou Nemoto
- Proteo-Science Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Akira Nozawa
- Proteo-Science Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Tatsuya Sawasaki
- Proteo-Science Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Koji Miyamoto
- Graduate School of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan
| | - Hideaki Nojiri
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kazunori Okada
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
128
|
Li J, Chen M, Fan T, Mu X, Gao J, Wang Y, Jing T, Shi C, Niu H, Zhen S, Fu J, Zheng J, Wang G, Tang J, Gou M. Underlying mechanism of accelerated cell death and multiple disease resistance in a maize lethal leaf spot 1 allele. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3991-4007. [PMID: 35303096 DOI: 10.1093/jxb/erac116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Multiple disease resistance (MDR) in maize has attracted increasing attention. However, the interplay between cell death and metabolite changes and their contributions to MDR remains elusive in maize. In this study, we identified a mutant named as lesion mimic 30 (les30) that showed 'suicidal' lesion formation in the absence of disease and had enhanced resistance to the fungal pathogen Curvularia lunata. Using map-based cloning, we identified the causal gene encoding pheophorbide a oxidase (PAO), which is known to be involved in chlorophyll degradation and MDR, and is encoded by LETHAL LEAF SPOT1 (LLS1). LLS1 was found to be induced by both biotic and abiotic stresses. Transcriptomics analysis showed that genes involved in defense responses and secondary metabolite biosynthesis were mildly activated in leaves of the les30 mutant without lesions, whilst they were strongly activated in leaves with lesions. In addition, in les30 leaves with lesions, there was overaccumulation of defense-associated phytohormones including jasmonic acid and salicylic acid, and of phytoalexins including phenylpropanoids, lignin, and flavonoids, suggesting that their biosynthesis was activated in a lesion-dependent manner. Taken together, our study implies the existence of an interactive amplification loop of interrupted chlorophyll degradation, cell death, expression of defense-related genes, and metabolite changes that results in suicidal lesion formation and MDR, and this has the potential to be exploited by genetic manipulation to improve maize disease resistance.
Collapse
Affiliation(s)
- Jiankun Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengyao Chen
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tianyuan Fan
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaohuan Mu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jie Gao
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ying Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Teng Jing
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Cuilan Shi
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongbin Niu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Sihan Zhen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jihua Tang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- The Shennong Laboratory, Zhengzhou, Henan 450002, China
| | - Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
129
|
Wang S, Li LX, Fang Y, Li D, Mao Z, Zhu Z, Chen XS, Feng SQ. MdERF1B-MdMYC2 module integrates ethylene and jasmonic acid to regulate the biosynthesis of anthocyanin in apple. HORTICULTURE RESEARCH 2022; 9:uhac142. [PMID: 36072842 PMCID: PMC9437725 DOI: 10.1093/hr/uhac142] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Ethylene and jasmonic acid (JA) are crucial hormones that promote anthocyanin synthesis in apple (Malus × domestica). However, the mechanism by which these hormones cooperate to modulate anthocyanin production in apple is unclear. According to our results, MdERF1B expression was strongly induced by ethylene and JA. Physiological phenotypes and the results of molecular biological analyses indicated that MdERF1B encodes a positive regulator of anthocyanin synthesis. Specifically, MdERF1B was capable of combining directly with the MdMYC2 promoter to promote gene expression. Additionally, MdERF1B interacted with two JA signaling pathway inhibitors, namely MdJAZ5 and MdJAZ10. The MdERF1B-MdJAZ5/10 protein complex decreased the ability of MdERF1B to activate the MdMYC2 promoter. Furthermore, MdEIL1, which is a crucial protein for ethylene signal transduction, was observed to bind directly to the MdERF1B promoter, thereby upregulating gene expression. These results suggest that MdERF1B is a core gene responsive to JA and ethylene signals. The encoded protein, together with MdMYC2, MdJAZ5/10, and MdEIL1, modulates anthocyanin synthesis in apple. This study clarifies the synergistic mechanism by which JA and ethylene regulate anthocyanin production in apple.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Li-Xian Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yue Fang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Dan Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Zuolin Mao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Zihao Zhu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | | | | |
Collapse
|
130
|
Li J, Chen L, Ding X, Fan W, Liu J. Transcriptome Analysis Reveals Crosstalk between the Abscisic Acid and Jasmonic Acid Signaling Pathways in Rice-Mediated Defense against Nilaparvata lugens. Int J Mol Sci 2022; 23:6319. [PMID: 35682997 PMCID: PMC9181446 DOI: 10.3390/ijms23116319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
The brown planthopper (BPH) impacts both rice yield and quality. The exogenous application of abscisic acid (ABA) and jasmonic acid (JA) has been previously shown to induce rice resistance to BPH; however, the regulation of rice-mediated defense by these plant growth regulators is unclear. We applied exogenous JA and ABA to rice and analyzed molecular responses to BPH infestation. Nine RNA libraries were sequenced, and 6218 differentially expressed genes (DEGs) were generated and annotated. After ABA + BPH and JA + BPH treatments, 3491 and 2727 DEGs, respectively, were identified when compared with the control (BPH alone). GO enrichment and KEGG pathway analysis showed that the expression of several JA pathway genes (OsAOS2, encoding allene oxide synthase; OsOPR, 12-oxo-phytodienoic acid reductase; and OsACOX, acy1-CoA oxidase) were significantly up-regulated after ABA + BPH treatment. Furthermore, exogenous JA increased the expression of genes involved in ABA synthesis. Meanwhile, the expression levels of genes encoding WRKY transcription factors, myelocytomatosis protein 2 (MYC2) and basic leucine zippers (bZIPs) were up-regulated significantly, indicating that ABA and JA might function together to increase the expression of transcription factors during the rice defense response. The DEGs identified in this study provide vital insights into the synergism between ABA and JA and further contribute to the mechanistic basis of rice resistance to BPH.
Collapse
Affiliation(s)
- Jitong Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.L.); (L.C.); (X.D.); (W.F.)
| | - Lin Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.L.); (L.C.); (X.D.); (W.F.)
| | - Xu Ding
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.L.); (L.C.); (X.D.); (W.F.)
| | - Wenyan Fan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.L.); (L.C.); (X.D.); (W.F.)
| | - Jinglan Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.L.); (L.C.); (X.D.); (W.F.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
131
|
Xiao G, Zhang Q, Zeng X, Chen X, Liu S, Han Y. Deciphering the Molecular Signatures Associated With Resistance to Botrytis cinerea in Strawberry Flower by Comparative and Dynamic Transcriptome Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:888939. [PMID: 35720571 PMCID: PMC9198642 DOI: 10.3389/fpls.2022.888939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Gray mold caused by Botrytis cinerea, which is considered to be the second most destructive necrotrophic fungus, leads to major economic losses in strawberry (Fragaria × ananassa) production. B. cinerea preferentially infects strawberry flowers and fruits, leading to flower blight and fruit rot. Compared with those of the fruit, the mechanisms of flower defense against B. cinerea remain largely unexplored. Therefore, in this study, we aimed to unveil the resistance mechanisms of strawberry flower through dynamic and comparative transcriptome analysis with resistant and susceptible strawberry cultivars. Our experimental data suggest that resistance to B. cinerea in the strawberry flower is probably regulated at the transcriptome level during the early stages of infection and strawberry flower has highly complex and dynamic regulatory networks controlling a multi-layered defense response to B. cinerea. First of all, the higher expression of disease-resistance genes but lower expression of cell wall degrading enzymes and peroxidases leads to higher resistance to B. cinerea in the resistant cultivar. Interestingly, CPKs, RBOHDs, CNGCs, and CMLs comprised a calcium signaling pathway especially play a crucial role in enhancing resistance by increasing their expression. Besides, six types of phytohormones forming a complex regulatory network mediated flower resistance, especially JA and auxin. Finally, the genes involved in the phenylpropanoid and amino acids biosynthesis pathways were gene sets specially expressed or different expression genes, both of them contribute to the flower resistance to B. cinerea. These data provide the foundation for a better understanding of strawberry gray mold, along with detailed genetic information and resistant materials to enable genetic improvement of strawberry plant resistance to gray mold.
Collapse
|
132
|
Sharma M, Sharma M, Jamsheer K M, Laxmi A. Jasmonic acid coordinates with light, glucose and auxin signalling in regulating branching angle of Arabidopsis lateral roots. PLANT, CELL & ENVIRONMENT 2022; 45:1554-1572. [PMID: 35147228 DOI: 10.1111/pce.14290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 06/14/2023]
Abstract
The role of jasmonates (JAs) in primary root growth and development and in plant response to external stimuli is already known. However, its role in lateral root (LR) development remains to be explored. Our work identified methyl jasmonate (MeJA) as a key phytohormone in determining the branching angle of Arabidopsis LRs. MeJA inclines the LRs to a more vertical orientation, which was dependent on the canonical JAR1-COI1-MYC2,3,4 signalling. Our work also highlights the dual roles of light in governing LR angle. Light signalling enhances JA biosynthesis, leading to erect root architecture; whereas, glucose (Glc) induces wider branching angles. Combining physiological and molecular assays, we revealed that Glc antagonises the MeJA response via TARGET OF RAPAMYCIN (TOR) signalling. Moreover, physiological assays using auxin mutants, MYC2-mediated transcriptional activation of LAZY2, LAZY4 and auxin biosynthetic gene CYP79B2, and asymmetric distribution of DR5::GFP and PIN2::GFP pinpointed the role of an intact auxin machinery required by MeJA for vertical growth of LRs. We also demonstrated that light perception and signalling are indispensable for inducing vertical angles by MeJA. Thus, our investigation highlights antagonism between light and Glc signalling and how they interact with JA-auxin signals to optimise the branching angle of LRs.
Collapse
Affiliation(s)
- Manvi Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | - Mohan Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
133
|
Chen C, Liu F, Zhang K, Niu X, Zhao H, Liu Q, Georgiev MI, Xu X, Zhang X, Zhou M. MeJA-responsive bHLH transcription factor LjbHLH7 regulates cyanogenic glucoside biosynthesis in Lotus japonicus. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2650-2665. [PMID: 35083483 DOI: 10.1093/jxb/erac026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/25/2022] [Indexed: 05/27/2023]
Abstract
Cyanogenic glucosides (CNglcs) play an important role in plant defense response; however, the mechanism of regulation of CNglc synthesis by the external environment and endogenous hormones is largely unclear. In this study, we found that jasmonates (JAs) promoted the synthesis of CNglcs by activating the expression of CNglc biosynthesis genes in Lotus japonicus. Several differentially expressed basic helix-loop-helix (bHLH) family genes related to the synthesis of CNglcs were identified by RNA-seq. LjbHLH7 can directly activate the expression of CYP79D3 gene, the first step of CNglc synthesis, by binding to the G-box sequence of its promoter. Transgenic plants overexpressing LjbHLH7 exhibited higher relative CNglc content and enhanced insect resistance compared with the wild type. Furthermore, the transcriptional activity of LjbHLH7 was suppressed by the interaction with the L. japonicus JASMONATE-ZIM DOMAIN protein LjJAZ4. Based on these results, we propose that LjbHLH7 acts as an activator and LjJAZ4 acts as a repressor of JA-induced regulation of CNglc biosynthesis in L. japonicus.
Collapse
Affiliation(s)
- Cheng Chen
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fu Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaolei Niu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Hui Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiuxu Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Milen I Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Xiaoheng Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
134
|
Vincent SA, Kim JM, Pérez-Salamó I, To TK, Torii C, Ishida J, Tanaka M, Endo TA, Bhat P, Devlin PF, Seki M, Devoto A. Jasmonates and Histone deacetylase 6 activate Arabidopsis genome-wide histone acetylation and methylation during the early acute stress response. BMC Biol 2022; 20:83. [PMID: 35399062 PMCID: PMC8996529 DOI: 10.1186/s12915-022-01273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Jasmonates (JAs) mediate trade-off between responses to both biotic and abiotic stress and growth in plants. The Arabidopsis thaliana HISTONE DEACETYLASE 6 is part of the CORONATINE INSENSITIVE1 receptor complex, co-repressing the HDA6/COI1-dependent acetic acid-JA pathway that confers plant drought tolerance. The decrease in HDA6 binding to target DNA mirrors histone H4 acetylation (H4Ac) changes during JA-mediated drought response, and mutations in HDA6 also cause depletion in the constitutive repressive marker H3 lysine 27 trimethylation (H3K27me3). However, the genome-wide effect of HDA6 on H4Ac and much of the impact of JAs on histone modifications and chromatin remodelling remain elusive. RESULTS We performed high-throughput ChIP-Seq on the HDA6 mutant, axe1-5, and wild-type plants with or without methyl jasmonate (MeJA) treatment to assess changes in active H4ac and repressive H3K27me3 histone markers. Transcriptional regulation was investigated in parallel by microarray analysis in the same conditions. MeJA- and HDA6-dependent histone modifications on genes for specialized metabolism; linolenic acid and phenylpropanoid pathways; and abiotic and biotic stress responses were identified. H4ac and H3K27me3 enrichment also differentially affects JAs and HDA6-mediated genome integrity and gene regulatory networks, substantiating the role of HDA6 interacting with specific families of transposable elements in planta and highlighting further specificity of action as well as novel targets of HDA6 in the context of JA signalling for abiotic and biotic stress responses. CONCLUSIONS The findings demonstrate functional overlap for MeJA and HDA6 in tuning plant developmental plasticity and response to stress at the histone modification level. MeJA and HDA6, nonetheless, maintain distinct activities on histone modifications to modulate genetic variability and to allow adaptation to environmental challenges.
Collapse
Affiliation(s)
- Stacey A Vincent
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Jong-Myong Kim
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Present address: Ac-Planta Inc., 2-16-9 Yushima, Bunkyo-ku, Tokyo, 113-0034, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Imma Pérez-Salamó
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Taiko Kim To
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Present address: Department of Biological Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Chieko Torii
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Junko Ishida
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Maho Tanaka
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takaho A Endo
- Bioinformatics and Systems Engineering Division, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Present address: Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Prajwal Bhat
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Paul F Devlin
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Motoaki Seki
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
135
|
Nykiel M, Gietler M, Fidler J, Prabucka B, Rybarczyk-Płońska A, Graska J, Boguszewska-Mańkowska D, Muszyńska E, Morkunas I, Labudda M. Signal Transduction in Cereal Plants Struggling with Environmental Stresses: From Perception to Response. PLANTS (BASEL, SWITZERLAND) 2022; 11:1009. [PMID: 35448737 PMCID: PMC9026486 DOI: 10.3390/plants11081009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 05/13/2023]
Abstract
Cereal plants under abiotic or biotic stressors to survive unfavourable conditions and continue growth and development, rapidly and precisely identify external stimuli and activate complex molecular, biochemical, and physiological responses. To elicit a response to the stress factors, interactions between reactive oxygen and nitrogen species, calcium ions, mitogen-activated protein kinases, calcium-dependent protein kinases, calcineurin B-like interacting protein kinase, phytohormones and transcription factors occur. The integration of all these elements enables the change of gene expression, and the release of the antioxidant defence and protein repair systems. There are still numerous gaps in knowledge on these subjects in the literature caused by the multitude of signalling cascade components, simultaneous activation of multiple pathways and the intersection of their individual elements in response to both single and multiple stresses. Here, signal transduction pathways in cereal plants under drought, salinity, heavy metal stress, pathogen, and pest attack, as well as the crosstalk between the reactions during double stress responses are discussed. This article is a summary of the latest discoveries on signal transduction pathways and it integrates the available information to better outline the whole research problem for future research challenges as well as for the creative breeding of stress-tolerant cultivars of cereals.
Collapse
Affiliation(s)
- Małgorzata Nykiel
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Justyna Fidler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Beata Prabucka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Anna Rybarczyk-Płońska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Jakub Graska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | | | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland;
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| |
Collapse
|
136
|
Li C, Xu M, Cai X, Han Z, Si J, Chen D. Jasmonate Signaling Pathway Modulates Plant Defense, Growth, and Their Trade-Offs. Int J Mol Sci 2022; 23:ijms23073945. [PMID: 35409303 PMCID: PMC8999811 DOI: 10.3390/ijms23073945] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Lipid-derived jasmonates (JAs) play a crucial role in a variety of plant development and defense mechanisms. In recent years, significant progress has been made toward understanding the JA signaling pathway. In this review, we discuss JA biosynthesis, as well as its core signaling pathway, termination mechanisms, and the evolutionary origin of JA signaling. JA regulates not only plant regeneration, reproductive growth, and vegetative growth but also the responses of plants to stresses, including pathogen as well as virus infection, herbivore attack, and abiotic stresses. We also focus on the JA signaling pathway, considering its crosstalk with the gibberellin (GA), auxin, and phytochrome signaling pathways for mediation of the trade-offs between growth and defense. In summary, JA signals regulate multiple outputs of plant defense and growth and act to balance growth and defense in order to adapt to complex environments.
Collapse
Affiliation(s)
- Cong Li
- Correspondence: (C.L.); (D.C.)
| | | | | | | | | | | |
Collapse
|
137
|
Val‐Torregrosa B, Bundó M, Martín‐Cardoso H, Bach‐Pages M, Chiou T, Flors V, Segundo BS. Phosphate-induced resistance to pathogen infection in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:452-469. [PMID: 35061924 PMCID: PMC9303409 DOI: 10.1111/tpj.15680] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 05/12/2023]
Abstract
In nature, plants are concurrently exposed to a number of abiotic and biotic stresses. Our understanding of convergence points between responses to combined biotic/abiotic stress pathways remains, however, rudimentary. Here we show that MIR399 overexpression, loss-of-function of PHOSPHATE2 (PHO2), or treatment with high phosphate (Pi) levels is accompanied by an increase in Pi content and accumulation of reactive oxygen species (ROS) in Arabidopsis thaliana. High Pi plants (e.g., miR399 overexpressors, pho2 mutants, and plants grown under high Pi supply) exhibited resistance to infection by necrotrophic and hemibiotrophic fungal pathogens. In the absence of pathogen infection, the expression levels of genes in the salicylic acid (SA)- and jasmonic acid (JA)-dependent signaling pathways were higher in high Pi plants compared to wild-type plants grown under control conditions, which is consistent with increased levels of SA and JA in non-infected high Pi plants. During infection, an opposite regulation in the two branches of the JA pathway (ERF1/PDF1.2 and MYC2/VSP2) occurs in high Pi plants. Thus, while pathogen infection induces PDF1.2 expression in miR399 OE and pho2 plants, VSP2 expression is downregulated by pathogen infection in these plants. This study supports the notion that Pi accumulation promotes resistance to infection by fungal pathogens in Arabidopsis, while providing a basis to better understand interactions between Pi signaling and hormonal signaling pathways for modulation of plant immune responses.
Collapse
Affiliation(s)
- Beatriz Val‐Torregrosa
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)BarcelonaSpain
| | - Mireia Bundó
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)BarcelonaSpain
| | - Héctor Martín‐Cardoso
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)BarcelonaSpain
| | - Marcel Bach‐Pages
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)BarcelonaSpain
| | - Tzyy‐Jen Chiou
- Agricultural Biotechnology Research Center, Academia SinicaTaipei 115Taiwan
| | - Victor Flors
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Superior de Tecnología y Ciencias ExperimentalesUniversitat Jaume ICastellóSpain
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés)BarcelonaSpain
- Consejo Superior de Investigaciones Científicas (CSIC)BarcelonaSpain
| |
Collapse
|
138
|
Perreca E, Eberl F, Santoro MV, Wright LP, Schmidt A, Gershenzon J. Effect of Drought and Methyl Jasmonate Treatment on Primary and Secondary Isoprenoid Metabolites Derived from the MEP Pathway in the White Spruce Picea glauca. Int J Mol Sci 2022; 23:ijms23073838. [PMID: 35409197 PMCID: PMC8998179 DOI: 10.3390/ijms23073838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
White spruce (Picea glauca) emits monoterpenes that function as defensive signals and weapons after herbivore attack. We assessed the effects of drought and methyl jasmonate (MeJA) treatment, used as a proxy for herbivory, on monoterpenes and other isoprenoids in P. glauca. The emission of monoterpenes was significantly increased after MeJA treatment compared to the control, but drought suppressed the MeJA-induced increase. The composition of the emitted blend was altered strongly by stress, with drought increasing the proportion of oxygenated compounds and MeJA increasing the proportion of induced compounds such as linalool and (E)-β-ocimene. In contrast, no treatment had any significant effect on the levels of stored monoterpenes and diterpenes. Among other MEP pathway-derived isoprenoids, MeJA treatment decreased chlorophyll levels by 40%, but had no effect on carotenoids, while drought stress had no impact on either of these pigment classes. Of the three described spruce genes encoding 1-deoxy-D-xylulose-5-phosphate synthase (DXS) catalyzing the first step of the MEP pathway, the expression of only one, DXS2B, was affected by our treatments, being increased by MeJA and decreased by drought. These findings show the sensitivity of monoterpene emission to biotic and abiotic stress regimes, and the mediation of the response by DXS genes.
Collapse
Affiliation(s)
- Erica Perreca
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (F.E.); (M.V.S.); (A.S.); (J.G.)
- Correspondence:
| | - Franziska Eberl
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (F.E.); (M.V.S.); (A.S.); (J.G.)
- Faculty of Biological Sciences, Friedrich Schiller University, 07745 Jena, Germany
| | - Maricel Valeria Santoro
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (F.E.); (M.V.S.); (A.S.); (J.G.)
| | | | - Axel Schmidt
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (F.E.); (M.V.S.); (A.S.); (J.G.)
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (F.E.); (M.V.S.); (A.S.); (J.G.)
| |
Collapse
|
139
|
Lee HM, Park JS, Kim SJ, Kim SG, Park YD. Using Transcriptome Analysis to Explore Gray Mold Resistance-Related Genes in Onion (Allium cepa L.). Genes (Basel) 2022; 13:genes13030542. [PMID: 35328095 PMCID: PMC8955018 DOI: 10.3390/genes13030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022] Open
Abstract
Gray mold disease caused by Botrytis in onions (Allium cepa L.) during growth and storage negatively affects their yield and quality. Exploring the genes related to gray mold resistance in onion and their application to the breeding of resistant onion lines will support effective and ecological control methods of the disease. Here, the genetic relationship of 54 onion lines based on random amplified polymorphic DNA (RAPD) and in vitro-cultured onion lines infected with gray mold were used for screening resistance and susceptibility traits. Two genetically related onion lines were selected, one with a resistant and one with a susceptible phenotype. In vitro gray mold infection was repeated with these two lines, and leaf samples were collected for gene expression studies in time series. Transcript sequences obtained by RNA sequencing were subjected to DEG analysis, variant analysis, and KEGG mapping. Among the KEGG pathways, ‘α-linoleic acid metabolism’ was selected because the comparison of the time series expression pattern of Jasmonate resistant 1 (JAR1), Coronatine-insensitive protein 1 (COI 1), and transcription factor MYC2 (MYC2) genes between the resistant and susceptible lines revealed its significant relationship with gray-mold-resistant phenotypes. Expression pattern and SNP of the selected genes were verified by quantitative real-time PCR and high-resolution melting (HRM) analysis, respectively. The results of this study will be useful for the development of molecular marker and finally breeding of gray-mold-resistant onions.
Collapse
|
140
|
Ling S, Rizvi SAH, Xiong T, Liu J, Gu Y, Wang S, Zeng X. Volatile Signals From Guava Plants Prime Defense Signaling and Increase Jasmonate-Dependent Herbivore Resistance in Neighboring Citrus Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:833562. [PMID: 35371180 PMCID: PMC8965645 DOI: 10.3389/fpls.2022.833562] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/11/2022] [Indexed: 05/15/2023]
Abstract
Intercropping can reduce agricultural pest incidence and represents an important sustainable alternative to conventional pest control methods. Citrus intercropped with guava (Psidium guajava L.) has a lower incidence of Asian citrus psyllid (ACP, Diaphorina citri Kuwayama) and huanglongbing disease (HLB), but the mechanisms are still unknown. In this study, we tested whether volatile organic compounds (VOCs) emitted by guava plants play a role in plant-plant communications and trigger defense responses in sweet orange (Citrus sinensis L. Osbeck) in the laboratory. The results showed that the behavioral preference and developmental performance of ACP on citrus plants that were exposed to guava VOCs were suppressed. The expression of defense-related pathways involved in early signaling, jasmonate (JA) biosynthesis, protease inhibitor (PI), terpenoid, phenylpropanoid, and flavonoid biosynthesis was induced in guava VOC-exposed citrus plants. Headspace analysis revealed that guava plants constitutively emit high levels of (E)-β-caryophyllene and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), which can induce the accumulation of JA and promote stronger defense responses of citrus to ACP feeding. In addition, exposure to guava VOCs also increased the indirect defense of citrus by attracting the parasitic wasp Tamarixia radiata. Together, our findings indicate that citrus plants can eavesdrop on the VOC cues emitted by neighboring intact guava plants to boost their JA-dependent anti-herbivore activities. The knowledge gained from this study will provide mechanisms underlying citrus-guava intercropping for the ecological management of insect pests.
Collapse
Affiliation(s)
- Siquan Ling
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Syed Arif Hussain Rizvi
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Insect Pest Management Program, National Agricultural Research Centre, Islamabad, Pakistan
| | - Ting Xiong
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Jiali Liu
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yanping Gu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Siwei Wang
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xinnian Zeng
- Guangdong Engineering Research Center for Insect Behavior Regulation, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
141
|
Dastogeer KMG, Zahan MI, Rhaman MS, Sarker MSA, Chakraborty A. Microbe-Mediated Thermotolerance in Plants and Pertinent Mechanisms- A Meta-Analysis and Review. Front Microbiol 2022; 13:833566. [PMID: 35330772 PMCID: PMC8940538 DOI: 10.3389/fmicb.2022.833566] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/04/2022] [Indexed: 01/10/2023] Open
Abstract
Microbial symbionts can mediate plant stress responses by enhancing thermal tolerance, but less attention has been paid to measuring these effects across plant-microbe studies. We performed a meta-analysis of published studies as well as discussed with relevant literature to determine how the symbionts influence plant responses under non-stressed versus thermal-stressed conditions. As compared to non-inoculated plants, inoculated plants had significantly higher biomass and photosynthesis under heat stress conditions. A significantly decreased accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2) indicated a lower oxidation level in the colonized plants, which was also correlated with the higher activity of catalase, peroxidase, glutathione reductase enzymes due to microbial colonization under heat stress. However, the activity of superoxide dismutase, ascorbate oxidase, ascorbate peroxidase, and proline were variable. Our meta-analysis revealed that microbial colonization influenced plant growth and physiology, but their effects were more noticeable when their host plants were exposed to high-temperature stress than when they grew under ambient temperature conditions. We discussed the mechanisms of microbial conferred plant thermotolerance, including at the molecular level based on the available literature. Further, we highlighted and proposed future directions toward exploring the effects of symbionts on the heat tolerances of plants for their implications in sustainable agricultural production.
Collapse
Affiliation(s)
| | - Mst. I. Zahan
- Scientific Officer (Breeding Division), Bangladesh Sugarcrop Research Institute, Pabna, Bangladesh
| | - Mohammad S. Rhaman
- Department of Seed Science and Technology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad S. A. Sarker
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute (BJRI), Dhaka, Bangladesh
| | - Anindita Chakraborty
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
142
|
Kang H, Liu Y, Fan T, Ma J, Wu D, Heitz T, Shen WH, Zhu Y. Arabidopsis CHROMATIN REMODELING 19 acts as a transcriptional repressor and contributes to plant pathogen resistance. THE PLANT CELL 2022; 34:1100-1116. [PMID: 34954802 PMCID: PMC8894922 DOI: 10.1093/plcell/koab318] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Chromatin remodelers act in an ATP-dependent manner to modulate chromatin structure and thus genome function. Here, we report that the Arabidopsis (Arabidopsis thaliana) remodeler CHROMATIN REMODELING19 (CHR19) is enriched in gene body regions, and its depletion causes massive changes in nucleosome position and occupancy in the genome. Consistent with these changes, an in vitro assay verified that CHR19 can utilize ATP to slide nucleosomes. A variety of inducible genes, including several important genes in the salicylic acid (SA) and jasmonic acid (JA) pathways, were transcriptionally upregulated in the chr19 mutant under normal growth conditions, indicative of a role of CHR19 in transcriptional repression. In addition, the chr19 mutation triggered higher susceptibility to the JA pathway-defended necrotrophic fungal pathogen Botrytis cinerea, but did not affect the growth of the SA pathway-defended hemibiotrophic bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Expression of CHR19 was tissue-specific and inhibited specifically by SA treatment. Such inhibition significantly decreased the local chromatin enrichment of CHR19 at the associated SA pathway genes, which resulted in their full activation upon SA treatment. Overall, our findings clarify CHR19 to be a novel regulator acting at the chromatin level to impact the transcription of genes underlying plant resistance to different pathogens.
Collapse
Affiliation(s)
- Huijia Kang
- Department of Biochemistry, Institute of Plant Biology, School of Life
Sciences, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for
Genetics and Development, Fudan University, Shanghai 200438, China
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de
Strasbourg, Strasbourg Cedex 67084, France
| | - Yuhao Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer
Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Shenzhen 518116, China; Chinese
Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021,
China
| | - Tianyi Fan
- Department of Biochemistry, Institute of Plant Biology, School of Life
Sciences, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for
Genetics and Development, Fudan University, Shanghai 200438, China
| | - Jing Ma
- Department of Biochemistry, Institute of Plant Biology, School of Life
Sciences, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for
Genetics and Development, Fudan University, Shanghai 200438, China
| | - Di Wu
- Department of Biochemistry, Institute of Plant Biology, School of Life
Sciences, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for
Genetics and Development, Fudan University, Shanghai 200438, China
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de
Strasbourg, Strasbourg Cedex 67084, France
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de
Strasbourg, Strasbourg Cedex 67084, France
| | - Yan Zhu
- Department of Biochemistry, Institute of Plant Biology, School of Life
Sciences, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for
Genetics and Development, Fudan University, Shanghai 200438, China
| |
Collapse
|
143
|
Genome-Wide Identification of the TIFY Gene Family in Brassiceae and Its Potential Association with Heavy Metal Stress in Rapeseed. PLANTS 2022; 11:plants11050667. [PMID: 35270137 PMCID: PMC8912736 DOI: 10.3390/plants11050667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
The TIFY gene family plays important roles in various plant biological processes and responses to stress and hormones. The chromosome-level genome of the Brassiceae species has been released, but knowledge concerning the TIFY family is lacking in the Brassiceae species. The current study performed a bioinformatics analysis on the TIFY family comparing three diploid (B. rapa, B. nigra, and B. oleracea) and two derived allotetraploid species (B. juncea, and B. napus). A total of 237 putative TIFY proteins were identified from five Brassiceae species, and classified into ten subfamilies (six JAZ types, one PPD type, two TIFY types, and one ZML type) based on their phylogenetic relationships with TIFY proteins in A. thaliana and Brassiceae species. Duplication and synteny analysis revealed that segmental and tandem duplications led to the expansion of the TIFY family genes during the process of polyploidization, and most of these TIFY family genes (TIFYs) were subjected to purifying selection after duplication based on Ka/Ks values. The spatial and temporal expression patterns indicated that different groups of BnaTIFYs have distinct spatiotemporal expression patterns under normal conditions and heavy metal stresses. Most of the JAZIII subfamily members were highest in all tissues, but JAZ subfamily members were strongly induced by heavy metal stresses. BnaTIFY34, BnaTIFY59, BnaTIFY21 and BnaTIFY68 were significantly upregulated mostly under As3+ and Cd2+ treatment, indicating that they could be actively induced by heavy metal stress. Our results may contribute to further exploration of TIFYs, and provided valuable information for further studies of TIFYs in plant tolerance to heavy metal stress.
Collapse
|
144
|
Zhang H, Deng W, Lu C, He M, Yan H. SMRT sequencing of full-length transcriptome and gene expression analysis in two chemical types of Pogostemon cablin (Blanco) Benth. PeerJ 2022; 10:e12940. [PMID: 35223208 PMCID: PMC8877398 DOI: 10.7717/peerj.12940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Pogostemon cablin (Blanco) Benth. also called patchouli, is a traditional medicinal and aromatic plant that grows mainly in Southeast Asia and China. In China, P. cablin is divided into two chemical types: the patchouliol-type and the pogostone-type. Patchouliol-type patchouli usually grow taller, with thicker stems and bigger leaves, and produce more aromatic oil. METHODS To better understand the genetic differences between the two chemical types that contribute to their differences in morphology and biosynthetic capabilities, we constructed de novo transcriptomes from both chemical types using the Pacific Biosciences (PacBio) Sequel platform and performed differential expression analysis of multiple tissues using Illumina short reads. RESULTS In this study, using single-molecule real-time (SMRT) long-read sequencing, we obtained 22.07 GB of clean data and 134,647 nonredundant transcripts from two chemical types. Additionally, we identified 126,576 open reading frames (ORFs), 100,638 coding sequences (CDSs), 4,106 long noncoding RNAs (lncRNAs) and 6,829 transcription factors (TFs) from two chemical types of P. cablin. We adopted PacBio and Illumina sequencing to identify differentially expressed transcripts (DEGs) in three tissues of the two chemical types. More DEGs were observed in comparisons of different tissues collected from the same chemical type relative to comparisons of the same tissue collected from different chemical types. Furthormore, using KEGG enrichment analysis of DEGs, we found that the most enriched biosynthetic pathways of secondary metabolites of the two chemical types were "terpenoid backbone biosynthesis", "phenylpropanoid biosynthesis", "plant hormone signal transduction", "sesquiterpenoid and triterpenoid biosynthesis", "ubiquinone and other terpenoid-quinone biosynthesis", "flavonoid biosynthesis", and "flavone and flavonol biosynthesis". However, the main pathways of the patchouliol-type also included "diterpene biosynthesis" and "monoterpene biosynthesis". Additionally, by comparing the expression levels of the three tissues verified by qRT-PCR, more DEGs in the roots were upregulated in the mevalonate (MVA) pathway in the cytoplasm, but more DEGs in the leaves were upregulated in the methylerythritol phosphate (MEP) pathway in the plastid, both of which are important pathways for terpenoids biosynthesis. These findings promote the study of further genome annotation and transcriptome research in P. cablin.
Collapse
|
145
|
Begum S, Jing S, Yu L, Sun X, Wang E, Abu Kawochar M, Qin J, Liu J, Song B. Modulation of JA signalling reveals the influence of StJAZ1-like on tuber initiation and tuber bulking in potato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:952-964. [PMID: 34837279 DOI: 10.1111/tpj.15606] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 05/24/2023]
Abstract
Phytohormones and their interactions play critical roles in Solanum tuberosum (potato) tuberization. The stimulatory role of jasmonic acid (JA) in tuber development is well established because of its significant promotion of tuber initiation and tuber bulking. However, the dynamics and potential function of JA signalling in potato tuberization remain largely unknown. The present study investigated the role of the JAZ1 subtype, a suppressor of JA signalling, in potato tuberization. Using 35S:StJAZ1-like-GUS as a reporter, we showed that JA signalling was attenuated from the bud end to the stem end shortly after tuber initiation. Overexpression of StJAZ1-like suppressed tuber initiation by restricting the competence for tuber formation in stolon tips, as demonstrated by grafting an untransformed potato cultivar to the stock of StJAZ1-like-overexpressing transgenic potato plants (StJAZ1-like ox). In addition, transcriptional profiling analysis revealed that StJAZ1-like modulates the expression of genes associated with transcriptional regulators, cell cycle, cytoskeleton and phytohormones. Furthermore, we showed that StJAZ1-like is destabilised upon treatment with abcisic acid (ABA), and the attenuated tuberization phenotype in StJAZ1-like ox plants can be partially rescued by ABA treatment. Altogether, these results revealed that StJAZ1-like-mediated JA signalling plays an essential role in potato tuberization.
Collapse
Affiliation(s)
- Shahnewaz Begum
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, 1701, Bangladesh
| | - Shenglin Jing
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Liu Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiaomeng Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Enshuang Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Md Abu Kawochar
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, 1701, Bangladesh
| | - Jun Qin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jun Liu
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
146
|
Soriano G, Kneeshaw S, Jimenez-Aleman G, Zamarreño ÁM, Franco-Zorrilla JM, Rey-Stolle MF, Barbas C, García-Mina JM, Solano R. An evolutionarily ancient fatty acid desaturase is required for the synthesis of hexadecatrienoic acid, which is the main source of the bioactive jasmonate in Marchantia polymorpha. THE NEW PHYTOLOGIST 2022; 233:1401-1413. [PMID: 34846752 DOI: 10.1111/nph.17850] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Jasmonates are fatty acid-derived hormones that regulate multiple aspects of plant development, growth and stress responses. Bioactive jasmonates, defined as the ligands of the conserved COI1 receptor, differ between vascular plants and bryophytes (jasmonoyl-l-isoleucine (JA-Ile) and dinor-12-oxo-10,15(Z)-phytodienoic acid (dn-OPDA), respectively). The biosynthetic pathways of JA-Ile in the model vascular plant Arabidopsis thaliana have been elucidated. However, the details of dn-OPDA biosynthesis in bryophytes are still unclear. Here, we identify an orthologue of Arabidopsis fatty-acid-desaturase 5 (AtFAD5) in the model liverwort Marchantia polymorpha and show that FAD5 function is ancient and conserved between species separated by more than 450 million years (Myr) of independent evolution. Similar to AtFAD5, MpFAD5 is required for the synthesis of 7Z-hexadecenoic acid. Consequently, in Mpfad5 mutants, the hexadecanoid pathway is blocked, dn-OPDA concentrations are almost completely depleted and normal chloroplast development is impaired. Our results demonstrate that the main source of wounding-induced dn-OPDA in Marchantia is the hexadecanoid pathway and the contribution of the octadecanoid pathway (i.e. from OPDA) is minimal. Remarkably, despite extremely low concentrations of dn-OPDA, MpCOI1-mediated responses to wounding and insect feeding can still be activated in Mpfad5, suggesting that dn-OPDA may not be the only bioactive jasmonate and COI1 ligand in Marchantia.
Collapse
Affiliation(s)
- Gonzalo Soriano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, 28049, Spain
- Facultad de Ciencia y Tecnología, Universidad de La Rioja, Madre de Dios 53, Logroño (La Rioja), 26006, Spain
| | - Sophie Kneeshaw
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, 28049, Spain
| | - Guillermo Jimenez-Aleman
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, 28049, Spain
| | - Ángel M Zamarreño
- Department of Environmental Biology, University of Navarra, Navarra, 31008, Spain
| | - José Manuel Franco-Zorrilla
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, 28049, Spain
| | - Mª Fernanda Rey-Stolle
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty, Universidad San Pablo-CEU, Boadilla del Monte, Madrid, 28668, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty, Universidad San Pablo-CEU, Boadilla del Monte, Madrid, 28668, Spain
| | - Jose M García-Mina
- Department of Environmental Biology, University of Navarra, Navarra, 31008, Spain
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, 28049, Spain
| |
Collapse
|
147
|
BnA.JAZ5 Attenuates Drought Tolerance in Rapeseed through Mediation of ABA–JA Crosstalk. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Drought stress reduces water availability in plant cells and influences rapeseed yield. Currently, key genetic regulators that contribute to rapeseed response to drought remain largely unexplored, which limits breeding of drought-resistant rapeseed. In this study, we found that Brassica napus JASMONATE ZIM-DOMAIN 5 (BnA.JAZ5), one of the transcriptional repressors functioning in the jasmonate (JA) signaling pathway, was triggered by drought treatment in rapeseed, and drought-susceptibility increased in BnA.JAZ5-overexpressing rapeseed plants as compared to wild-type plants, resulting in a lower survival rate after recovery from dehydration. After recovery for 3 days, 22–40% of p35S::BnA.JAZ5 transgenic plants survived, while approximately 61% of wild-type plants survived. Additionally, seed germination of BnA.JAZ5-overexpressing rapeseed was hyposensitive to abscisic acid (ABA). The germination rate of five transgenic lines was 32~42% under 9 µM ABA treatment, while the germination rate of wild-type plants was 14%. We also found that the average stomatal density of five overexpressing lines was 371~446/mm2, which is higher than that of wild-type (232/mm2) plants under normal conditions. These results indicate that BnA.JAZ5 regulated drought response in an ABA-dependent manner, possibly by affecting stomatal density. Interestingly, methyl jasmonate (MeJA) treatment rescued the ABA-hyposensitive seed germination, revealing crosstalk between JAZ5-meidated JA and the ABA signaling pathway. Taken together, our results suggest that BnA.JAZ5 attenuated drought resistance through the ABA-dependent pathway, which could represent important genetic loci for drought-resistant rapeseed breeding.
Collapse
|
148
|
Yu Y, Gui Y, Li Z, Jiang C, Guo J, Niu D. Induced Systemic Resistance for Improving Plant Immunity by Beneficial Microbes. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030386. [PMID: 35161366 PMCID: PMC8839143 DOI: 10.3390/plants11030386] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 05/05/2023]
Abstract
Plant beneficial microorganisms improve the health and growth of the associated plants. Application of beneficial microbes triggers an enhanced resistance state, also termed as induced systemic resistance (ISR), in the host, against a broad range of pathogens. Upon the activation of ISR, plants employ long-distance systemic signaling to provide protection for distal tissue, inducing rapid and strong immune responses against pathogens invasions. The transmission of ISR signaling was commonly regarded to be a jasmonic acid- and ethylene-dependent, but salicylic acid-independent, transmission. However, in the last decade, the involvement of both salicylic acid and jasmonic acid/ethylene signaling pathways and the regulatory roles of small RNA in ISR has been updated. In this review, the plant early recognition, responsive reactions, and the related signaling transduction during the process of the plant-beneficial microbe interaction was discussed, with reflection on the crucial regulatory role of small RNAs in the beneficial microbe-mediated ISR.
Collapse
Affiliation(s)
- Yiyang Yu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (Y.G.); (Z.L.); (C.J.); (J.G.)
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Ying Gui
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (Y.G.); (Z.L.); (C.J.); (J.G.)
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Zijie Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (Y.G.); (Z.L.); (C.J.); (J.G.)
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Chunhao Jiang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (Y.G.); (Z.L.); (C.J.); (J.G.)
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Jianhua Guo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (Y.G.); (Z.L.); (C.J.); (J.G.)
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | - Dongdong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Y.Y.); (Y.G.); (Z.L.); (C.J.); (J.G.)
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
149
|
An JP, Xu RR, Liu X, Su L, Yang K, Wang XF, Wang GL, You CX. Abscisic acid insensitive 4 interacts with ICE1 and JAZ proteins to regulate ABA signaling-mediated cold tolerance in apple. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:980-997. [PMID: 34555166 DOI: 10.1093/jxb/erab433] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Abscisic acid is involved in the regulation of cold stress response, but its molecular mechanism remains to be elucidated. In this study, we demonstrated that the APETALA2/ethylene responsive factor (AP2/ERF) family protein MdABI4 positively regulates abscisic acid-mediated cold tolerance in apple. We found that MdABI4 interacts with MdICE1, a key regulatory protein involved in the cold stress response, and enhances the transcriptional regulatory function of MdICE1 on its downstream target gene MdCBF1, thus improving abscisic acid-mediated cold tolerance. The jasmonate-ZIM domain (JAZ) proteins MdJAZ1 and MdJAZ2 negatively modulate MdABI4-improved cold tolerance in apple by interacting with the MdABI4 protein. Further investigation showed that MdJAZ1 and MdJAZ2 interfere with the interaction between the MdABI4 and MdICE1 proteins. Together, our data revealed that MdABI4 integrates jasmonic acid and abscisic acid signals to precisely modulate cold tolerance in apple through the JAZ-ABI4-ICE1-CBF regulatory cascade. These findings provide insights into the crosstalk between jasmonic acid and abscisic acid signals in response to cold stress.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Rui-Rui Xu
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong, College of Biological and Agricultural Engineering, Weifang University, Weifang, Shandong, China
| | - Xin Liu
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Ling Su
- Shandong Academy of Grape, Jinan, Shandong, China
| | - Kuo Yang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
150
|
Dorostkar S, Dadkhodaie A, Ebrahimie E, Heidari B, Ahmadi-Kordshooli M. Comparative transcriptome analysis of two contrasting resistant and susceptible Aegilops tauschii accessions to wheat leaf rust (Puccinia triticina) using RNA-sequencing. Sci Rep 2022; 12:821. [PMID: 35039525 PMCID: PMC8764039 DOI: 10.1038/s41598-021-04329-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Leaf rust, caused by Puccinia triticina Eriks., is the most common rust disease of wheat (Triticum aestivum L.) worldwide. Owing to the rapid evolution of virulent pathotypes, new and effective leaf rust resistance sources must be found. Aegilops tauschii, an excellent source of resistance genes to a wide range of diseases and pests, may provide novel routes for resistance to this disease. In this study, we aimed to elucidate the transcriptome of leaf rust resistance in two contrasting resistant and susceptible Ae. tauschii accessions using RNA-sequencing. Gene ontology, analysis of pathway enrichment and transcription factors provided an apprehensible review of differentially expressed genes and highlighted biological mechanisms behind the Aegilops–P. triticina interaction. The results showed the resistant accession could uniquely recognize pathogen invasion and respond precisely via reducing galactosyltransferase and overexpressing chromatin remodeling, signaling pathways, cellular homeostasis regulation, alkaloid biosynthesis pathway and alpha-linolenic acid metabolism. However, the suppression of photosynthetic pathway and external stimulus responses were observed upon rust infection in the susceptible genotype. In particular, this first report of comparative transcriptome analysis offers an insight into the strength and weakness of Aegilops against leaf rust and exhibits a pipeline for future wheat breeding programs.
Collapse
Affiliation(s)
- Saeideh Dorostkar
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Dadkhodaie
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Esmaeil Ebrahimie
- La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, 3086, Australia.,School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA, 5371, Australia.,School of BioSciences, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|