101
|
Elhiti M, Wally OSD, Belmonte MF, Chan A, Cao Y, Xiang D, Datla R, Stasolla C. Gene expression analysis in microdissected shoot meristems of Brassica napus microspore-derived embryos with altered SHOOTMERISTEMLESS levels. PLANTA 2013; 237:1065-1082. [PMID: 23242073 DOI: 10.1007/s00425-012-1814-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/12/2012] [Indexed: 05/28/2023]
Abstract
Altered expression of Brassica napus (Bn) SHOOTMERISTEMLESS (STM) affects the morphology and behaviour of microspore-derived embryos (MDEs). While down-regulation of BnSTM repressed the formation of the shoot meristem (SAM) and reduced the number of Brassica MDEs able to regenerate viable plants at germination, over-expression of BnSTM enhanced the structure of the SAM and improved regeneration frequency. Within dissected SAMs, the induction of BnSTM up-regulated the expression of many transcription factors (TFs) some of which directly involved in the formation of the meristem, i.e. CUP-SHAPED COTYLEDON1 and WUSCHEL, and regulatory components of the antioxidant response, hormone signalling, and cell wall synthesis and modification. Opposite expression patterns for some of these genes were observed in the SAMs of MDEs down-regulating BnSTM. Altered expression of BnSTM affected transcription of cell wall and lignin biosynthetic genes. The expression of PHENYLALANINE AMMONIA LYASE2, CINNAMATE 4-4HYDROXYLASE, and CINNAMYL ALCOHOL DEHYDROGENASE were repressed in SAMs over-expressing BnSTM. Since lignin formation is a feature of irreversible cell differentiation, these results suggest that one way in which BnSTM promotes indeterminate cell fate may be by preventing the expression of components of biochemical pathways involved in the accumulation of lignin in the meristematic cells. Overall, these studies provide evidence for a novel function of BnSTM in enhancing the quality of in vitro produced meristems, and propose that this gene can be used as a potential target to improve regeneration of cultured embryos.
Collapse
Affiliation(s)
- Mohamed Elhiti
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Chatfield SP, Capron R, Severino A, Penttila PA, Alfred S, Nahal H, Provart NJ. Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in WUSCHEL-dependent conversion of lateral root primordia into shoot meristems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013. [PMID: 23181633 DOI: 10.1111/tpj.12085] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Adventitious shoot organogenesis contributes to the fitness of diverse plant species, and control of this process is a vital step in plant transformation and in vitro propagation. New shoot meristems (SMs) can be induced by the conversion of lateral root primorida/meristems (LRP/LRMs) or callus expressing markers for this identity. To study this important and fascinating process we developed a high-throughput methodology for the synchronous initiation of LRP by auxin, and subsequent cytokinin-induced conversion of these LRP to SMs. Cytokinin treatment induces the expression of the shoot meristematic gene WUSCHEL (WUS) in converting LRP (cLRP) within 24-30 h, and WUS is required for LRP → SM conversion. Subsequently, a transcriptional reporter for CLAVATA3 (CLV3) appeared 32-48 h after transfer to cytokinin, marking presumptive shoot stem cells at the apex of cLRP. Thus the spatial expression of these two components (WUS and CLV3) of a regulatory network maintaining SM stem cells already resembles that seen in a vegetative shoot apical meristem (SAM), suggesting the very rapid initiation and establishment of the new SMs. Our high-throughput methodology enabled us to successfully apply a systems approach to the study of plant regeneration. Herein we characterize transcriptional reporter expression and global gene expression changes during LRP → SM conversion, elaborate the role of WUS and WUS-responsive genes in the conversion process, identify and test putative functional targets, perform a comparative analysis of domain-specific expression in cLRP and SM tissue, and develop a bioinformatic tool for examining gene expression in diverse regeneration systems.
Collapse
Affiliation(s)
- Steven P Chatfield
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada.
| | | | | | | | | | | | | |
Collapse
|
103
|
|
104
|
Di Giacomo E, Serino G, Frugis G. Emerging role of the ubiquitin proteasome system in the control of shoot apical meristem function(f). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:7-20. [PMID: 23164365 DOI: 10.1111/jipb.12010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The shoot apical meristem (SAM) is a population of undifferentiated cells at the tip of the shoot axis that establishes early during plant embryogenesis and gives rise to all shoot organs throughout the plant's life. A plethora of different families of transcription factors (TFs) play a key role in establishing the equilibrium between cell differentiation and stem cell maintenance in the SAM. Fine tuning of these regulatory proteins is crucial for a proper and fast SAM response to environmental and hormonal cues, and for development progression. One effective way to rapidly inactivate TFs involves regulated proteolysis by the ubiquitin/26S proteasome system (UPS). However, a possible role of UPS-dependent protein degradation in the regulation of key SAM TFs has not been thoroughly investigated. Here, we summarize recent evidence supporting a role for the UPS in SAM maintenance and function. We integrate this survey with an in silico analysis of publicly-available microarray databases which identified ubiquitin ligases that are expressed in specific areas within the SAM, suggesting that they may regulate or act downstream of meristem-specific factors.
Collapse
Affiliation(s)
- Elisabetta Di Giacomo
- Istituto di Biologia e Biotecnologia Agraria, UOS Roma, Consiglio Nazionale delle Ricerche, Monterotondo Scalo, Roma 00015, Italy
| | | | | |
Collapse
|
105
|
Gene expression analysis of aquatic angiosperms podostemaceae to gain insight into the evolution of their enigmatic morphology. Methods Mol Biol 2013; 959:83-95. [PMID: 23299669 DOI: 10.1007/978-1-62703-221-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Podostemaceae is a family of aquatic angiosperms growing submerged on rocks in fast-flowing water and called moss-like or alga-like riverweeds. It evolved remarkable innovations to adapt to such an extreme environment, one of which is reduced shoots borne on roots adhering to rock surface. Recent observations revealed that the basal subfamily Tristichoideae, like most other angiosperms, has typical shoot apical meristems (SAMs). In species of the subfamily Podostemoideae, however, shoot apical meristems (SAMs) are not formed during development and new leaves arise from the meristematic basal region of preexisting leaves. The genetic basis of this shoot organogenesis process, e.g., the expression patterns of genes homologous to transcription factors regulating shoot development, is essential to better understand the evolution of Podostemaceae. A gene expression analysis found that the SAM-less Podostemoideae leaf has mixed identity of SAM and leaf, and provided insight into the evolution of the shoot in Podostemaceae.
Collapse
|
106
|
Somorjai IML, Lohmann JU, Holstein TW, Zhao Z. Stem cells: a view from the roots. Biotechnol J 2012; 7:704-22. [PMID: 22581706 DOI: 10.1002/biot.201100349] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/15/2012] [Accepted: 04/12/2012] [Indexed: 12/22/2022]
Abstract
In both plants and animals, regeneration requires the activation of stem cells. This is possibly related to the origin and requirements of multicellularity. Although long diverged from a common ancestry, plant and animal models such as Arabidopsis, Drosophila and mouse share considerable similarities in stem cell regulation. This includes stem cell niche organisation, epigenetic modification of DNA and histones, and the role of small RNA machinery in differentiation and pluripotency states. Dysregulation of any of these can lead to premature ageing, patterning and specification defects, as well as cancers. Moreover, emerging basal animal and plant systems are beginning to provide important clues concerning the diversity and evolutionary history of stem cell regulatory mechanisms in eukaryotes. This review provides a comparative framework, highlighting both the commonalities and differences among groups, which should promote the intelligent design of artificial stem cell systems, and thereby fuel the field of biomaterials science.
Collapse
Affiliation(s)
- Ildiko M L Somorjai
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|
107
|
Yoshida A, Ohmori Y, Kitano H, Taguchi-Shiobara F, Hirano HY. Aberrant spikelet and panicle1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:327-39. [PMID: 22136599 DOI: 10.1111/j.1365-313x.2011.04872.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Post-embryonic development depends on the activity of meristems in plants, and thus control of cell fate in the meristem is crucial to plant development and its architecture. In grasses such as rice and maize, the fate of reproductive meristems changes from indeterminate meristems, such as inflorescence and branch meristems, to determinate meristems, such as the spikelet meristem. Here we analyzed a recessive mutant of rice, aberrant spikelet and panicle1 (asp1), that showed pleiotropic phenotypes such as a disorganized branching pattern, aberrant spikelet morphology, and disarrangement of phyllotaxy. Close examination revealed that regulation of meristem fate was compromised in asp1: degeneration of the inflorescence meristem was delayed, transition from the branch meristem to the spikelet meristem was accelerated, and stem cell maintenance in both the branch meristem and the spikelet meristem was compromised. The genetic program was also disturbed in terms of spikelet development. Gene isolation revealed that ASP1 encodes a transcriptional co-repressor that is related to TOPLESS (TPL) in Arabidopsis and RAMOSA ENHANCER LOCUS2 (REL2) in maize. It is likely that the pleiotropic defects are associated with de-repression of multiple genes related to meristem function in the asp1 mutant. The asp1 mutant also showed de-repression of axillary bud growth and disturbed phyllotaxy in the vegetative phase, suggesting that the function of this gene is closely associated with auxin action. Consistent with these observations and the molecular function of Arabidopsis TPL, auxin signaling was also compromised in the rice asp1 mutant. Taken together, these results indicate that ASP1 regulates various aspects of developmental processes and physiological responses as a transcriptional co-repressor in rice.
Collapse
Affiliation(s)
- Akiko Yoshida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
108
|
Causier B, Lloyd J, Stevens L, Davies B. TOPLESS co-repressor interactions and their evolutionary conservation in plants. PLANT SIGNALING & BEHAVIOR 2012; 7:325-8. [PMID: 22476455 PMCID: PMC3443911 DOI: 10.4161/psb.19283] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Large-scale protein-protein interaction studies recently demonstrated that the Arabidopsis TPL/TPR family of transcriptional co-repressors is involved in a broad range of developmental processes. TPL/TPRs predominantly interact with transcription factors that contain repression domain (RD) sequences. Interestingly, RDs reported in the literature are quite diverse in sequence, yet TPL/TPRs interact with proteins containing all of the known motifs. These data lead us to conclude that the TPL/TPRs act as general repressors of gene transcription in plants. To investigate this further, we examined interactions between TPL/TPR proteins encoded by the moss Physcomitrella patens genome and components of the auxin signaling pathway. As in Arabidopsis, moss TPL proteins interact with AUX/IAA and ARF proteins, suggesting that they act in both forms of ARF-mediated transcriptional repression. These data suggest that the involvement of TPL in auxin signaling has been conserved across evolution, since mosses and angiosperms diverged approximately 450 million years ago.
Collapse
|
109
|
Perales M, Reddy GV. Stem cell maintenance in shoot apical meristems. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:10-6. [PMID: 22079787 DOI: 10.1016/j.pbi.2011.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/06/2011] [Accepted: 10/19/2011] [Indexed: 05/18/2023]
Abstract
Stem cell homeostasis in shoot apical meristems of higher plants is regulated through a dynamic balance between spatial regulation of gene expression, cell growth patterns and patterns of differentiation. Cell-cell communication mediated by both the local factors and long-range signals have been implicated in stem cell homeostasis. Here we have reviewed recent developments on spatio-temporal regulation of cell-cell communication processes with an emphasis on how ubiquitously utilized signals such as plant hormones function with local factors in mediating stem cell homeostasis. We also provide a brief overview of how the activity of ubiquitously utilized epigenetic regulators are modulated locally to orchestrate gene expression.
Collapse
Affiliation(s)
- Mariano Perales
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, United States
| | | |
Collapse
|
110
|
Lau S, Slane D, Herud O, Kong J, Jürgens G. Early embryogenesis in flowering plants: setting up the basic body pattern. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:483-506. [PMID: 22224452 DOI: 10.1146/annurev-arplant-042811-105507] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Early embryogenesis is the critical developmental phase during which the basic features of the plant body are established: the apical-basal axis of polarity, different tissue layers, and both the root pole and the shoot pole. Polarization of the zygote correlates with the generation of apical and basal (embryonic and extraembryonic) cell fates. Whereas mechanisms of zygote polarization are still largely unknown, distinct expression domains of WOX family transcription factors as well as directional auxin transport and local auxin response are known to be involved in early apical-basal patterning. Radial patterning of tissue layers appears to be mediated by cell-cell communication involving both peptide signaling and transcription factor movement. Although the initiation of the shoot pole is still unclear, the apical organization of the embryo depends on both the proper establishment of transcription factor expression domains and, for cotyledon initiation, upward auxin flow in the protoderm. Here we focus on the essential patterning processes, drawing mainly on data from Arabidopsis thaliana and also including relevant data from other species if available.
Collapse
Affiliation(s)
- Steffen Lau
- Department of Cell Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | | |
Collapse
|
111
|
Causier B, Ashworth M, Guo W, Davies B. The TOPLESS interactome: a framework for gene repression in Arabidopsis. PLANT PHYSIOLOGY 2012; 158:423-38. [PMID: 22065421 PMCID: PMC3252085 DOI: 10.1104/pp.111.186999] [Citation(s) in RCA: 396] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/04/2011] [Indexed: 05/17/2023]
Abstract
Transcription factors activate or repress target gene expression or switch between activation and repression. In animals and yeast, Groucho/Tup1 corepressor proteins are recruited by diverse transcription factors to induce context-specific transcriptional repression. Two groups of Groucho/Tup1-like corepressors have been described in plants. LEUNIG and LEUNIG_HOMOLOG constitute one group and TOPLESS (TPL) and the four TPL-related (TPR) corepressors form the other. To discover the processes in which TPL and the TPR corepressors operate, high-throughput yeast two-hybrid approaches were used to identify interacting proteins. We found that TPL/TPR corepressors predominantly interact directly with specific transcription factors, many of which were previously implicated in transcriptional repression. The interacting transcription factors reveal that the TPL/TPR family has been coopted multiple times to modulate gene expression in diverse processes, including hormone signaling, stress responses, and the control of flowering time, for which we also show biological validation. The interaction data suggest novel mechanisms for the involvement of TPL/TPR corepressors in auxin and jasmonic acid signaling. A number of short repression domain (RD) sequences have previously been identified in Arabidopsis (Arabidopsis thaliana) transcription factors. All known RD sequences were enriched among the TPL/TPR interactors, and novel TPL-RD interactions were identified. We show that the presence of RD sequences is essential for TPL/TPR recruitment. These data provide a framework for TPL/TPR-dependent transcriptional repression. They allow for predictions about new repressive transcription factors, corepressor interactions, and repression mechanisms and identify a wide range of plant processes that utilize TPL/TPR-mediated gene repression.
Collapse
|
112
|
Nardmann J, Werr W. The invention of WUS-like stem cell-promoting functions in plants predates leptosporangiate ferns. PLANT MOLECULAR BIOLOGY 2012; 78:123-34. [PMID: 22076631 DOI: 10.1007/s11103-011-9851-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/31/2011] [Indexed: 05/18/2023]
Abstract
The growth of land plants depends on stem cell-containing meristems which show major differences in their architecture from basal to higher plant species. In Arabidopsis, the stem cell niches in the shoot and root meristems are promoted by WUSCHEL (WUS) and WOX5, respectively. Both genes are members of a non-ancestral clade of the WUS-related homeobox (WOX) gene family, which is absent in extant bryophytes and lycophytes. Our analyses of five fern species suggest that a single WUS orthologue was present in the last common ancestor (LCA) of leptosporangiate ferns and seed plants. In the extant fern Ceratopteris richardii, the WUS pro-orthologue marks the pluripotent cell fate of immediate descendants of the root apical initial, so-called merophytes, which undergo a series of stereotypic cell divisions and give rise to all cell types of the root except the root cap. The invention of a WUS-like function within the WOX gene family in an ancestor of leptosporangiate ferns and seed plants and its amplification and sub-functionalisation to different stem cell niches might relate to the success of seed plants, especially angiosperms.
Collapse
Affiliation(s)
- Judith Nardmann
- Institute of Developmental Biology, University of Cologne, Cologne Biocenter, Cologne, Germany
| | | |
Collapse
|
113
|
Lee JE, Golz JF. Diverse roles of Groucho/Tup1 co-repressors in plant growth and development. PLANT SIGNALING & BEHAVIOR 2012; 7:86-92. [PMID: 22301974 PMCID: PMC3357377 DOI: 10.4161/psb.7.1.18377] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Transcriptional regulation involves coordinated and often complex interactions between activators and repressors that together dictate the temporal and spatial activity of target genes. While the study of developmental regulation has often focused on positively acting transcription factors, it is becoming increasingly clear that transcriptional repression is a key regulatory mechanism underpinning many developmental processes in both plants and animals. In this review, we focus on the plant Groucho (Gro)/Tup1-like co-repressors and discuss their roles in establishing the apical-basal axis of the developing embryo, maintaining the stem cell population in the shoot apex and determining floral organ identity. As well as being developmental regulators, recent studies have shown that these co-repressors play a central role in regulating auxin and jasmonate signalling pathways and are also linked to the regulation of pectin structure in the seed coat. These latest findings point to the Gro/Tup1-like co-repressors playing a much broad role in plant growth and development than previously thought; an observation that underlines the central importance of transcriptional repression in plant gene regulation.
Collapse
|
114
|
Xiang D, Yang H, Venglat P, Cao Y, Wen R, Ren M, Stone S, Wang E, Wang H, Xiao W, Weijers D, Berleth T, Laux T, Selvaraj G, Datla R. POPCORN functions in the auxin pathway to regulate embryonic body plan and meristem organization in Arabidopsis. THE PLANT CELL 2011; 23:4348-67. [PMID: 22158464 PMCID: PMC3269870 DOI: 10.1105/tpc.111.091777] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The shoot and root apical meristems (SAM and RAM) formed during embryogenesis are crucial for postembryonic plant development. We report the identification of POPCORN (PCN), a gene required for embryo development and meristem organization in Arabidopsis thaliana. Map-based cloning revealed that PCN encodes a WD-40 protein expressed both during embryo development and postembryonically in the SAM and RAM. The two pcn alleles identified in this study are temperature sensitive, showing defective embryo development when grown at 22°C that is rescued when grown at 29°C. In pcn mutants, meristem-specific expression of WUSCHEL (WUS), CLAVATA3, and WUSCHEL-RELATED HOMEOBOX5 is not maintained; SHOOTMERISTEMLESS, BODENLOS (BDL) and MONOPTEROS (MP) are misexpressed. Several findings link PCN to auxin signaling and meristem function: ectopic expression of DR5(rev):green fluorescent protein (GFP), pBDL:BDL-GFP, and pMP:MP-β-glucuronidase in the meristem; altered polarity and expression of pPIN1:PIN1-GFP in the apical domain of the developing embryo; and resistance to auxin in the pcn mutants. The bdl mutation rescued embryo lethality of pcn, suggesting that improper auxin response is involved in pcn defects. Furthermore, WUS, PINFORMED1, PINOID, and TOPLESS are dosage sensitive in pcn, suggesting functional interaction. Together, our results suggest that PCN functions in the auxin pathway, integrating auxin signaling in the organization and maintenance of the SAM and RAM.
Collapse
Affiliation(s)
- Daoquan Xiang
- Plant Biotechnology Institute, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Hui Yang
- Plant Biotechnology Institute, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Prakash Venglat
- Plant Biotechnology Institute, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Yongguo Cao
- Plant Biotechnology Institute, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Rui Wen
- University of Saskatchewan, Health Sciences Building, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Maozhi Ren
- Plant Biotechnology Institute, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Sandra Stone
- Plant Biotechnology Institute, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Edwin Wang
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | - Hong Wang
- University of Saskatchewan, Health Sciences Building, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Wei Xiao
- University of Saskatchewan, Health Sciences Building, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Dolf Weijers
- Wageningen University, Laboratory of Biochemistry, 6703 HA Wageningen, The Netherlands
| | - Thomas Berleth
- Department of Botany, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Thomas Laux
- BIOSS, University of Freiburg, 79104 Freiburg, Germany
| | - Gopalan Selvaraj
- Plant Biotechnology Institute, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Raju Datla
- Plant Biotechnology Institute, National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
- Address correspondence to
| |
Collapse
|
115
|
Kieffer M, Master V, Waites R, Davies B. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:147-58. [PMID: 21668538 PMCID: PMC3229714 DOI: 10.1111/j.1365-313x.2011.04674.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 05/19/2023]
Abstract
TCP transcription factors constitute a small family of plant-specific bHLH-containing, DNA-binding proteins that have been implicated in the control of cell proliferation in plants. Despite the significant role that is likely to be played by genes that control cell division in the elaboration of plant architecture, functional analysis of this family by forward and reverse genetics has been hampered by genetic redundancy. Here we show that mutants in two related class I TCP genes display a range of growth-related phenotypes, consistent with their dynamic expression patterns; these phenotypes are enhanced in the double mutant. Together, the two genes influence plant stature by promoting cell division in young internodes. Reporter gene analysis and use of SRDX fusions suggested that TCP14 and TCP15 modulate cell proliferation in the developing leaf blade and specific floral tissues; a role that was not apparent in our phenotypic analysis of single or double mutants. However, when the relevant mutants were subjected to computer-aided morphological analysis of the leaves, the consequences of loss of either or both genes became obvious. The effects on cell proliferation of perturbing the function of TCP14 and TCP15 vary with tissue, as has been suggested for other TCP factors. These findings indicate that the precise elaboration of plant form is dependent on the cumulative influence of many TCP factors acting in a context-dependent fashion. The study highlights the need for advanced methods of phenotypic analysis in order to characterize phenotypes and to construct a dynamic model for TCP gene function.
Collapse
Affiliation(s)
- Martin Kieffer
- Centre for Plant Sciences, Faculty of Biological Sciences, University of LeedsLeeds LS2 9JT, UK
| | - Vera Master
- Department of Biology, University of YorkPO Box 373, York YO10 5YW, UK
| | - Richard Waites
- Department of Biology, University of YorkPO Box 373, York YO10 5YW, UK
| | - Brendan Davies
- Centre for Plant Sciences, Faculty of Biological Sciences, University of LeedsLeeds LS2 9JT, UK
- *For correspondence (fax +44 1133 233144; e-mail )
| |
Collapse
|
116
|
Abstract
Plants have unique features that evolved in response to their environments and ecosystems. A full account of the complex cellular networks that underlie plant-specific functions is still missing. We describe a proteome-wide binary protein-protein interaction map for the interactome network of the plant Arabidopsis thaliana containing about 6200 highly reliable interactions between about 2700 proteins. A global organization of plant biological processes emerges from community analyses of the resulting network, together with large numbers of novel hypothetical functional links between proteins and pathways. We observe a dynamic rewiring of interactions following gene duplication events, providing evidence for a model of evolution acting upon interactome networks. This and future plant interactome maps should facilitate systems approaches to better understand plant biology and improve crops.
Collapse
Affiliation(s)
-
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
117
|
Evidence for network evolution in an Arabidopsis interactome map. Science 2011. [PMID: 21798944 DOI: 10.1126/science.120387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants have unique features that evolved in response to their environments and ecosystems. A full account of the complex cellular networks that underlie plant-specific functions is still missing. We describe a proteome-wide binary protein-protein interaction map for the interactome network of the plant Arabidopsis thaliana containing about 6200 highly reliable interactions between about 2700 proteins. A global organization of plant biological processes emerges from community analyses of the resulting network, together with large numbers of novel hypothetical functional links between proteins and pathways. We observe a dynamic rewiring of interactions following gene duplication events, providing evidence for a model of evolution acting upon interactome networks. This and future plant interactome maps should facilitate systems approaches to better understand plant biology and improve crops.
Collapse
|
118
|
Ung N, Lal S, Smith HM. The role of PENNYWISE and POUND-FOOLISH in the maintenance of the shoot apical meristem in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:605-14. [PMID: 21505100 PMCID: PMC3177262 DOI: 10.1104/pp.110.171462] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Growth of the aerial part of the plant is dependent upon the maintenance of the shoot apical meristem (SAM). A balance between the self-renewing stem cells in the central zone (CZ) and organogenesis in the peripheral zone (PZ) is essential for the integrity, function, and maintenance of the SAM. Understanding how the SAM maintains a balance between stem cell perpetuation and organogenesis is a central question in plant biology. Two related BELL1-like homeodomain proteins, PENNYWISE (PNY) and POUND-FOOLISH (PNF), act to specify floral meristems during reproductive development. However, genetic studies also show that PNY and PNF regulate the maintenance of the SAM. To understand the role of PNY and PNF in meristem maintenance, the expression patterns for genes that specifically localize to the peripheral and central regions of the SAM were examined in Arabidopsis (Arabidopsis thaliana). Results from these experiments indicate that the integrity of the CZ is impaired in pny pnf plants, which alters the balance of stem cell renewal and organogenesis. As a result, pools of CZ cells may be allocated into initiating leaf primordia. Consistent with these results, the integrity of the central region of pny pnf SAMs can be partially restored by increasing the size of the CZ. Interestingly, flower specification is also reestablished by augmenting the size of the SAM in pny pnf plants. Taken together, we propose that PNY and PNF act to restrict organogenesis to the PZ by maintaining a boundary between the CZ and PZ.
Collapse
|
119
|
Zhang Y, Wu R, Qin G, Chen Z, Gu H, Qu LJ. Over-expression of WOX1 leads to defects in meristem development and polyamine homeostasis in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:493-506. [PMID: 21658178 DOI: 10.1111/j.1744-7909.2011.01054.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In plants, the meristem has to maintain a separate population of pluripotent cells that serve two main tasks, i.e., self-maintenance and organ initiation, which are separated spatially in meristem. Prior to our study, WUS and WUS-like WOX genes had been reported as essential for the development of the SAM. In this study, the consequences of gain of WOX1 function are described. Here we report the identification of an Arabidopsis gain-of-function mutant wox1-D, in which the expression level of the WOX1 (WUSCHEL HOMEOBOX 1) was elevated and subtle defects in meristem development were observed. The wox1-D mutant phenotype is dwarfed and slightly bushy, with a smaller shoot apex. The wox1-D mutant also produced small and dark green leaves, and exhibited a failure in anther dehiscence and male sterility. Molecular evidences showed that the transcription of the stem cell marker gene CLV3 was down-regulated in the meristem of wox1-D but accumulated in the other regions, i.e., in the root-hypocotyl junction and at the sites for lateral root initiation. The fact that the organ size and cell size in leaves of wox1-D are smaller than those in wild type suggests that cell expansion is possibly affected in order to have partially retarded the development of lateral organs, possibly through alteration of CLV3 expression pattern in the meristem. An S-adenosylmethionine decarboxylase (SAMDC) protein, SAMDC1, was found able to interact with WOX1 by yeast two-hybrid and pull-down assays in vitro. HPLC analysis revealed a significant reduction of polyamine content in wox1-D. Our results suggest that WOX1 plays an important role in meristem development in Arabidopsis, possibly via regulation of SAMDC activity and polyamine homeostasis, and/or by regulating CLV3 expression.
Collapse
Affiliation(s)
- Yanxia Zhang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | |
Collapse
|
120
|
Gambino G, Minuto M, Boccacci P, Perrone I, Vallania R, Gribaudo I. Characterization of expression dynamics of WOX homeodomain transcription factors during somatic embryogenesis in Vitis vinifera. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1089-1101. [PMID: 21127025 DOI: 10.1093/jxb/erq349] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Different cultivars of Vitis vinifera vary in their potential to form embryogenic tissues. The WUSCHEL (WUS)-related homeobox (WOX) genes have been shown to play an important role in coordinating the gene transcription involved in the early phases of embryogenesis. The expression dynamics of 12 VvWOX genes present in the V. vinifera genome in embryogenic and other tissues of 'Chardonnay' were analysed. In order to understand the influence of WOX genes on the somatic embryogenic process, their expression profiles were compared in two cultivars of V. vinifera ('Chardonnay' and 'Cabernet Sauvignon') that show different aptitudes for embryogenesis. The expression of all VvWOX genes was influenced by culture conditions. VvWOX2 and VvWOX9 were the principal WOX genes expressed during the somatic embryogenesis process, and the low aptitude for embryogenesis of 'Cabernet Sauvignon' was generally correlated with the low expression levels of these VvWOX genes. VvWOX3 and VvWOX11 were strongly activated in correspondence to torpedo and cotyledonary stages of somatic embryos, with low expression in the earlier developmental stages (pre-embryogenic masses and globular embryos) and during embryo germination. VvWOX genes appeared to be key regulators of somatic embryogenesis in grapevine, and the regulation of these genes during early phases of somatic embryogenesis differed between the two cultivars of the same species.
Collapse
Affiliation(s)
- Giorgio Gambino
- Plant Virology Institute, National Research Council, UOS Grugliasco, Via L. da Vinci 44, I-10095 Grugliasco, TO, Italy.
| | | | | | | | | | | |
Collapse
|
121
|
Single amino acid change alters the ability to specify male or female organ identity. Proc Natl Acad Sci U S A 2010; 107:18898-902. [PMID: 20956314 DOI: 10.1073/pnas.1009050107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms underlying the developmental processes that shape living organisms provide a basis to understand the evolution of biological complexity. Gene duplication allows biological functions to become separated, leading to increased complexity through subfunctionalization. Recently, the relative contributions to morphological evolution of changes to the regulatory and/or coding regions of duplicated genes have been the subject of debate. Duplication generated multiple copies of the MADS-box transcription factor genes that play essential roles in specifying organ identity in the flower, making this evolutionary novelty a good model to investigate the nature of the changes necessary to drive subfunctionalization. Here, we show that naturally occurring variation at a single amino acid in a MADS-box transcription factor switches its ability to specify male and female reproductive organs by altering its repertoire of protein-protein interactions. However, these different developmental fates are only manifest because of an underlying variation in the expression pattern of interacting proteins. This shows that the morphological outcomes of changes to protein sequence and gene expression must be interpreted in the context of the wider regulatory network. It also suggests an explanation for the surprisingly widespread duplications of some of the floral transcription factors.
Collapse
|
122
|
Busch W, Miotk A, Ariel FD, Zhao Z, Forner J, Daum G, Suzaki T, Schuster C, Schultheiss SJ, Leibfried A, Haubeiss S, Ha N, Chan RL, Lohmann JU. Transcriptional control of a plant stem cell niche. Dev Cell 2010; 18:849-61. [PMID: 20493817 DOI: 10.1016/j.devcel.2010.03.012] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 02/03/2010] [Accepted: 03/02/2010] [Indexed: 12/30/2022]
Abstract
Despite the independent evolution of multicellularity in plants and animals, the basic organization of their stem cell niches is remarkably similar. Here, we report the genome-wide regulatory potential of WUSCHEL, the key transcription factor for stem cell maintenance in the shoot apical meristem of the reference plant Arabidopsis thaliana. WUSCHEL acts by directly binding to at least two distinct DNA motifs in more than 100 target promoters and preferentially affects the expression of genes with roles in hormone signaling, metabolism, and development. Striking examples are the direct transcriptional repression of CLAVATA1, which is part of a negative feedback regulation of WUSCHEL, and the immediate regulation of transcriptional repressors of the TOPLESS family, which are involved in auxin signaling. Our results shed light on the complex transcriptional programs required for the maintenance of a dynamic and essential stem cell niche.
Collapse
Affiliation(s)
- Wolfgang Busch
- AG Lohmann, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Twenty years on: The inner workings of the shoot apical meristem, a developmental dynamo. Dev Biol 2010; 341:95-113. [PMID: 19961843 DOI: 10.1016/j.ydbio.2009.11.029] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 12/25/2022]
|
124
|
Graf P, Dolzblasz A, Würschum T, Lenhard M, Pfreundt U, Laux T. MGOUN1 encodes an Arabidopsis type IB DNA topoisomerase required in stem cell regulation and to maintain developmentally regulated gene silencing. THE PLANT CELL 2010; 22:716-28. [PMID: 20228247 PMCID: PMC2861470 DOI: 10.1105/tpc.109.068296] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 02/05/2010] [Accepted: 03/01/2010] [Indexed: 05/18/2023]
Abstract
Maintenance of stem cells in the Arabidopsis thaliana shoot meristem is regulated by signals from the underlying cells of the organizing center, provided through the transcription factor WUSCHEL (WUS). Here, we report the isolation of several independent mutants of MGOUN1 (MGO1) as genetic suppressors of ectopic WUS activity and enhancers of stem cell defects in hypomorphic wus alleles. mgo1 mutants have previously been reported to result in a delayed progression of meristem cells into differentiating organ primordia (Laufs et al., 1998). Genetic analyses indicate that MGO1 functions together with WUS in stem cell maintenance at all stages of shoot and floral meristems. Synergistic interactions of mgo1 with several chromatin mutants suggest that MGO1 affects gene expression together with chromatin remodeling pathways. In addition, the expression states of developmentally regulated genes are randomly switched in mgo1 in a mitotically inheritable way, indicating that MGO1 stabilizes epigenetic states against stochastically occurring changes. Positional cloning revealed that MGO1 encodes a putative type IB topoisomerase, which in animals and yeast has been shown to be required for regulation of DNA coiling during transcription and replication. The specific developmental defects in mgo1 mutants link topoisomerase IB function in Arabidopsis to stable propagation of developmentally regulated gene expression.
Collapse
Affiliation(s)
- Philipp Graf
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Alicja Dolzblasz
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Tobias Würschum
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Michael Lenhard
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ulrike Pfreundt
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Laux
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Institute of Advanced Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
125
|
Kagale S, Links MG, Rozwadowski K. Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis. PLANT PHYSIOLOGY 2010; 152:1109-34. [PMID: 20097792 PMCID: PMC2832246 DOI: 10.1104/pp.109.151704] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 01/17/2010] [Indexed: 05/17/2023]
Abstract
The ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif is a transcriptional regulatory motif identified in members of the ethylene-responsive element binding factor, C2H2, and auxin/indole-3-acetic acid families of transcriptional regulators. Sequence comparison of the core EAR motif sites from these proteins revealed two distinct conservation patterns: LxLxL and DLNxxP. Proteins containing these motifs play key roles in diverse biological functions by negatively regulating genes involved in developmental, hormonal, and stress signaling pathways. Through a genome-wide bioinformatics analysis, we have identified the complete repertoire of the EAR repressome in Arabidopsis (Arabidopsis thaliana) comprising 219 proteins belonging to 21 different transcriptional regulator families. Approximately 72% of these proteins contain a LxLxL type of EAR motif, 22% contain a DLNxxP type of EAR motif, and the remaining 6% have a motif where LxLxL and DLNxxP are overlapping. Published in vitro and in planta investigations support approximately 40% of these proteins functioning as negative regulators of gene expression. Comparative sequence analysis of EAR motif sites and adjoining regions has identified additional preferred residues and potential posttranslational modification sites that may influence the functionality of the EAR motif. Homology searches against protein databases of poplar (Populus trichocarpa), grapevine (Vitis vinifera), rice (Oryza sativa), and sorghum (Sorghum bicolor) revealed that the EAR motif is conserved across these diverse plant species. This genome-wide analysis represents the most extensive survey of EAR motif-containing proteins in Arabidopsis to date and provides a resource enabling investigations into their biological roles and the mechanism of EAR motif-mediated transcriptional regulation.
Collapse
|
126
|
Abstract
The plant-specific WOX family of homeobox proteins have key functions in plant development.
The WOX genes form a plant-specific subclade of the eukaryotic homeobox transcription factor superfamily, which is characterized by the presence of a conserved DNA-binding homeodomain. The analysis of WOX gene expression and function shows that WOX family members fulfill specialized functions in key developmental processes in plants, such as embryonic patterning, stem-cell maintenance and organ formation. These functions can be related to either promotion of cell division activity and/or prevention of premature cell differentiation. The phylogenetic tree of the plant WOX proteins can be divided into three clades, termed the WUS, intermediate and ancient clade. WOX proteins of the WUS clade appear to some extent able to functionally complement other members. The specific function of individual WOX-family proteins is most probably determined by their spatiotemporal expression pattern and probably also by their interaction with other proteins, which may repress their transcriptional activity. The prototypic WOX-family member WUS has recently been shown to act as a bifunctional transcription factor, functioning as repressor in stem-cell regulation and as activator in floral patterning. Past research has mainly focused on part of the WOX protein family in some model flowering plants, such as Arabidopsis thaliana (thale cress) or Oryza sativa (rice). Future research, including so-far neglected clades and non-flowering plants, is expected to reveal how these master switches of plant differentiation and embryonic patterning evolved and how they fulfill their function.
Collapse
Affiliation(s)
- Eric van der Graaff
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
127
|
Sang Y, Wu MF, Wagner D. The stem cell--chromatin connection. Semin Cell Dev Biol 2009; 20:1143-8. [PMID: 19765665 PMCID: PMC3407560 DOI: 10.1016/j.semcdb.2009.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/26/2009] [Accepted: 09/08/2009] [Indexed: 11/30/2022]
Abstract
Stem cells self-renew and give rise to all differentiated cell types of the adult body. They are classified as toti-, pluri- or multi-potent based on the number of different cell types they can give rise to. Recently it has become apparent that chromatin regulation plays a critical role in determining the fate of stem cells and their descendants. In this review we will discuss the role of chromatin regulators in maintenance of stem cells and their ability to give rise to differentiating cells in both the animal and plant kingdom. We will highlight similarities and differences in chromatin-mediated control of stem cell fate in plants and animals. We will consider possible reasons why chromatin regulators play a central role in pluripotency in both kingdoms given that multicellularity evolved independently in each.
Collapse
Affiliation(s)
| | | | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
128
|
Alvarez-Buylla ER, Azpeitia E, Barrio R, Benítez M, Padilla-Longoria P. From ABC genes to regulatory networks, epigenetic landscapes and flower morphogenesis: making biological sense of theoretical approaches. Semin Cell Dev Biol 2009; 21:108-17. [PMID: 19922810 DOI: 10.1016/j.semcdb.2009.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 11/07/2009] [Accepted: 11/09/2009] [Indexed: 01/16/2023]
Abstract
The ABC model postulates that expression combinations of three classes of genes (A, B and C) specify the four floral organs at early stages of flower development. This classic model provides a solid framework to study flower development and has been the foundation for multiple studies in different plant species, as well as for new evolutionary hypotheses. Nevertheless, it has been shown that in spite of being necessary, these three gene classes are not sufficient for flower organ specification. Rather, flower organ specification depends on complex interactions of several genes, and probably other non-genetic factors. Being useful to study systems of complex interactions, mathematical and computational models have enlightened the origin of the A, B and C stereotyped and robust expression patterns and the process of early flower morphogenesis. Here, we present a brief introduction to basic modeling concepts and techniques and review the results that these models have rendered for the particular case of the Arabidopsis thaliana flower organ specification. One of the main results is the uncovering of a robust functional module that is sufficient to recover the gene configurations characterizing flower organ primordia. Another key result is that the temporal sequence with which such gene configurations are attained may be recovered only by modeling the aforementioned functional module as a noisy or stochastic system. Finally, modeling approaches enable testable predictions regarding the role of non-genetic factors (noise, mechano-elastic forces, etc.) in development. These predictions, along with some perspectives for future work, are also reviewed and discussed.
Collapse
Affiliation(s)
- Elena R Alvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. Universitaria, México, D.F. 04510, Mexico.
| | | | | | | | | |
Collapse
|
129
|
Ikeda M, Mitsuda N, Ohme-Takagi M. Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning. THE PLANT CELL 2009; 21:3493-505. [PMID: 19897670 PMCID: PMC2798335 DOI: 10.1105/tpc.109.069997] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/24/2009] [Accepted: 10/18/2009] [Indexed: 05/18/2023]
Abstract
Most transcription factors act either as activators or repressors, and no such factors with dual function have been unequivocally identified and characterized in plants. We demonstrate here that the Arabidopsis thaliana protein WUSCHEL (WUS), which regulates the maintenance of stem cell populations in shoot meristems, is a bifunctional transcription factor that acts mainly as a repressor but becomes an activator when involved in the regulation of the AGAMOUS (AG) gene. We show that the WUS box, which is conserved among WOX genes, is the domain that is essential for all the activities of WUS, namely, for regulation of stem cell identity and size of floral meristem. All the known activities of WUS were eliminated by mutation of the WUS box, including the ability of WUS to induce the expression of AG. The mutation of the WUS box was complemented by fusion of an exogenous repression domain, with resultant induction of somatic embryogenesis in roots and expansion of floral meristems as observed upon ectopic expression of WUS. By contrast, fusion of an exogenous activation domain did not result in expanded floral meristems but induced flowers similar to those induced by the ectopic expression of AG. Our results demonstrate that WUS acts mainly as a repressor and that its function changes from that of a repressor to that of an activator in the case of regulation of the expression of AG.
Collapse
|
130
|
Rieu I, Laux T. Signaling pathways maintaining stem cells at the plant shoot apex. Semin Cell Dev Biol 2009; 20:1083-8. [PMID: 19770061 DOI: 10.1016/j.semcdb.2009.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 09/11/2009] [Indexed: 11/29/2022]
Abstract
The above ground organs of plants are generated by the shoot apical meristem. Cellular characteristics and molecular markers indicate that the shoot meristem is patterned into domains with different functions, with stem cells residing in the outer three cell layers of the central zone of the meristem. The boundaries of the domains are determined by positional signals. Here we will discuss our current understanding of the signaling network involved in determining stem cell fate and in setting the boundaries of the stem cell niche at the plant shoot apex.
Collapse
Affiliation(s)
- Ivo Rieu
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | | |
Collapse
|
131
|
Mellor EA, Langdale JA. The filifolium1 mutation perturbs shoot architecture in Zea mays (Poaceae). AMERICAN JOURNAL OF BOTANY 2009; 96:1594-602. [PMID: 21622345 DOI: 10.3732/ajb.0800388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plant architecture is elaborated through the activity of shoot apical meristems (SAMs), which produce repeating units known as phytomers, that are comprised of leaf, node, internode, and axillary bud. Insight into how SAMs function and how individual phytomer components are related to each other can been obtained through characterization of recessive mutants with perturbed shoot development. In this study, we characterized a new mutant to further understand mechanisms underlying shoot development in maize. The filifolium1-0 (ffm1-0) mutants develop narrow leaves on dwarfed shoots. Shoot growth often terminates at the seedling stage from depletion of the SAM, but if plants survive to maturity they are invariably bushy. KN1-like homeobox (KNOX) proteins are inappropriately regulated in mutant apices, adaxial identity is not specified in mutant leaves, and axillary meristems develop precociously. We propose that FFM1 acts to demarcate zones within the SAM so that appropriate fates can be conferred on cells within those zones by other factors. On the basis of the mutant phenotype, we also speculate about different relationships between phytomer components in maize and Arabidopsis.
Collapse
Affiliation(s)
- E Anne Mellor
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | |
Collapse
|
132
|
Liang D, Wong CE, Singh MB, Beveridge CA, Phipson B, Smyth GK, Bhalla PL. Molecular dissection of the pea shoot apical meristem. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:4201-13. [PMID: 19706781 PMCID: PMC2755034 DOI: 10.1093/jxb/erp254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/31/2009] [Accepted: 07/31/2009] [Indexed: 05/08/2023]
Abstract
The shoot apical meristem (SAM) is responsible for the development of all the above-ground parts of a plant. Our understanding of the SAM at the molecular level is incomplete. This study investigates the gene expression repertoire of SAMs in the garden pea (Pisum sativum). To this end, 10 346 EST sequences representing 7610 unique genes were generated from SAM cDNA libraries. These sequences, together with previously reported pea ESTs, were used to construct a 12K oligonucleotide array to identify genes with differential SAM expression, as compared to axillary meristems, root apical meristems, or non-meristematic tissues. A number of genes were identified, predominantly expressed in specific cell layers or domains of the SAM and thus are likely components of the gene networks involved in stem cell maintenance or the initiation of lateral organs. Further in situ hybridization analysis confirmed the spatial localization of some of these genes within the SAM. Our data also indicate the diversification of some gene expression patterns and hence functions in legume crop plants. A number of transcripts highly expressed in all three meristems have also been uncovered and these candidates may provide valuable insight into molecular networks that underpin the maintenance of meristematic functionality.
Collapse
Affiliation(s)
- Dacheng Liang
- Plant Molecular Biology and Biotechnology Laboratory, Australian Research Council Centre of Excellence for Integrative Legume Research, Faculty of Land and Food Resources, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Chui E. Wong
- Plant Molecular Biology and Biotechnology Laboratory, Australian Research Council Centre of Excellence for Integrative Legume Research, Faculty of Land and Food Resources, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Australian Research Council Centre of Excellence for Integrative Legume Research, Faculty of Land and Food Resources, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christine A. Beveridge
- Australian Research Council Centre of Excellence for Integrative Legume Research, University of Queensland, Brisbane St Lucia, QLD 4072, Australia
| | - Belinda Phipson
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Gordon K. Smyth
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Australian Research Council Centre of Excellence for Integrative Legume Research, Faculty of Land and Food Resources, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
133
|
Mantegazza R, Tononi P, Möller M, Spada A. WUS and STM homologs are linked to the expression of lateral dominance in the acaulescent Streptocarpus rexii (Gesneriaceae). PLANTA 2009; 230:529-542. [PMID: 19526368 DOI: 10.1007/s00425-009-0965-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 05/28/2009] [Indexed: 05/27/2023]
Abstract
Acaulescent species of Streptocarpus Lindl. show unusual patterns of growth, characterized by anisocotyly (i.e. the unequal growth of cotyledons after germination) and lack of a conventional embryonic shoot apical meristem (SAM). A SAM-like structure appears during post-embryonic development on the axis of the continuously growing cotyledon. Since we have shown previously that KNOX genes are involved in this unusual morphology of Streptocarpus rexii, here we investigated the expression pattern of WUSCHEL (WUS), which is also required for the indeterminacy of the SAM, but is expressed independently from KNOX in Arabidopsis thaliana. In A. thaliana WUSCHEL is involved in the maintenance of the stem cell fate in the organizing centre. The expression pattern of the WUS ortholog in S. rexii (SrWUS) strongly deviates from that of the model plant, suggesting a fundamentally different spatial and temporal regulation of signalling involved in meristem initiation and maintenance. In S. rexii, exogenous application of growth regulators, i.e. gibberellin (GA(3)), cytokinin (CK) and a gibberellin biosynthesis inhibitor (PAC), prevents anisocotyly and relocates meristematic cells to a position of conventional SAMs; this coincides with a re-localization of the two main pathways controlling meristem formation, the SrWUS and the KNOX pathways. Our results suggest that the establishment of a hormone imbalance in the seedlings is the basis of anisocotyly, causing a lateral dominance of the macrocotyledon over the microcotyledon. The peculiar morphogenetic program in S. rexii is linked to this delicate hormone balance and is the result of crosstalk between endogenous hormones and regulatory genes.
Collapse
Affiliation(s)
- Raffaella Mantegazza
- Dipartimento di Biologia, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | | | | | | |
Collapse
|
134
|
Vandenbussche M, Horstman A, Zethof J, Koes R, Rijpkema AS, Gerats T. Differential recruitment of WOX transcription factors for lateral development and organ fusion in Petunia and Arabidopsis. THE PLANT CELL 2009; 21:2269-83. [PMID: 19717616 PMCID: PMC2751957 DOI: 10.1105/tpc.109.065862] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 07/20/2009] [Accepted: 08/07/2009] [Indexed: 05/19/2023]
Abstract
Petal fusion in petunia (Petunia x hybrida) results from lateral expansion of the five initially separate petal primordia, forming a ring-like primordium that determines further development. Here, we show that MAEWEST (MAW) and CHORIPETALA SUZANNE (CHSU) are required for petal and carpel fusion, as well as for lateral outgrowth of the leaf blade. Morphological and molecular analysis of maw and maw chsu double mutants suggest that polarity defects along the adaxial/abaxial axis contribute to the observed reduced lateral outgrowth of organ primordia. We show that MAW encodes a member of the WOX (WUSCHEL-related homeobox) transcription factor family and that a partly similar function is redundantly encoded by WOX1 and PRESSED FLOWER (PRS) in Arabidopsis thaliana, indicating a conserved role for MAW/WOX1/PRS genes in regulating lateral organ development. Comparison of petunia maw and Arabidopsis wox1 prs phenotypes suggests differential recruitment of WOX gene function depending on organ type and species. Our comparative data together with previous reports on WOX gene function in different species identify the WOX gene family as highly dynamic and, therefore, an attractive subject for future evo-devo studies.
Collapse
Affiliation(s)
- Michiel Vandenbussche
- Department of Plant Genetics, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525 ED, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
135
|
Nardmann J, Reisewitz P, Werr W. Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms. Mol Biol Evol 2009; 26:1745-55. [PMID: 19387013 DOI: 10.1093/molbev/msp084] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The morphologically diverse bodies of seed plants comprising gymnosperms and angiosperms, which separated some 350 Ma, grow by the activity of meristems containing stem cell niches. In the dicot model Arabidopsis thaliana, these are maintained by the stem cell-promoting functions of WUS and WUSCHEL-related homeobox 5 (WOX5) in the shoot and the root, respectively. Both genes are members of the WOX gene family, which has a monophyletic origin in green algae. The establishment of the WOX gene phylogeny from basal land plants through gymnosperms to basal and higher angiosperms reveals three major branches: a basal clade consisting of WOX13-related genes present in some green algae and throughout all land plant genomes, a second clade containing WOX8/9/11/12 homologues, and a modern clade restricted to seed plants. The analysis of the origin of the modern branch in two basal angiosperms (Amborella trichopoda and Nymphaea jamesoniana) and three gymnosperms (Pinus sylvestris, Ginkgo biloba, and Gnetum gnemon) shows that all members of the modern clade consistently found in monocots and dicots exist at the base of the angiosperm lineage, including WUS and WOX5 orthologues. In contrast, our analyses identify a single WUS/WOX5 homologue in all three gymnosperm genomes, consistent with a monophyletic origin in the last common ancestor of gymnosperms and angiosperms. Phylogenetic data, WUS- and WOX5-specific evolutionary signatures, as well as the expression pattern and stem cell-promoting function of the single gymnosperm WUS/WOX5 pro-orthologue in Arabidopsis indicate a gene duplication event followed by subfunctionalization at the base of angiosperms.
Collapse
Affiliation(s)
- Judith Nardmann
- Institut für Entwicklungsbiologie, Universität zu Köln, Köln, Germany
| | | | | |
Collapse
|
136
|
Causier B, Bradley D, Cook H, Davies B. Conserved intragenic elements were critical for the evolution of the floral C-function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:41-52. [PMID: 19054363 DOI: 10.1111/j.1365-313x.2008.03759.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The floral C-function, which specifies stamen and carpel development, played a pivotal role in the evolution of flowers. An important aspect of this was the establishment of mechanisms regulating the temporal and spatial expression domain of the C-function genes. Transcription of the Arabidopsis C-function gene AGAMOUS (AG) is tightly controlled by factors that interact with cis-elements within its large second intron. Little is known about the regulatory role of intragenic elements in C-function genes from species other than Arabidopsis. We show that a binding site for the LEAFY (LFY) transcription factor, present in the AG intron, is conserved in the introns of diverse C-function genes and is positioned close to other conserved motifs. Using an in planta mutagenesis approach, we targeted evolutionarily conserved sequences in the intron of the Antirrhinum PLENA (PLE) gene to establish whether they regulate PLE expression. Small sequence deletions resulted in a novel class of heterochronic C-function mutants with delayed onset of PLE expression and loss of stamen identity. These phenotypes differ significantly from weak C-function mutant alleles in Antirrhinum and Arabidopsis. Our findings demonstrate that the PLE intron contains regulatory cis-elements, including a LFY-binding site, critical for establishing the correct C-function expression domain. We show that the LFY site, and other conserved intron elements, pre-date the divergence of the monocot and dicot lineages, suggesting that they were a determinant in the evolution of the C-function, and propose a threshold model to explain phenotypic divergence observed between C-function mutants.
Collapse
Affiliation(s)
- Barry Causier
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | |
Collapse
|
137
|
Haerizadeh F, Wong CE, Singh MB, Bhalla PL. Genome-wide analysis of gene expression in soybean shoot apical meristem. PLANT MOLECULAR BIOLOGY 2009; 69:711-27. [PMID: 19115044 DOI: 10.1007/s11103-008-9450-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 12/15/2008] [Indexed: 05/11/2023]
Abstract
The shoot apical meristem (SAM) contains undifferentiated stem cells that are responsible for the initiation of above-ground organs. The nature of genetic programs and the regulatory networks underlying SAM function in a major legume crop, soybean was investigated here. We used soybean GeneChip (containing 37,744 probe sets) to examine the transcript profiles associated with micro-dissected, actively growing SAMs or growth arrested axillary meristems (AMs) experiencing apical dominance, in comparison to that of non-meristem (NM) tissue. A total of 1,090 and 1,523 transcripts were identified to be significantly up- or down-regulated in the SAM in comparison to the NM. RT-PCR and in situ hybridization analysis were also carried out to verify the experimental approach. The resulting gene expression profiles point to the combinatorial role of diverse regulatory pathways including those associated with cell division and proliferation, epigenetic regulation, auxin-mediated responses and microRNA regulation in meristem function. In situ hybridization analysis on selected transcripts has implicated their roles in SAM maintenance and the establishment of organ polarity. We also identified a gene, ANGUSITFOLIA3 that could potentially serve as a novel marker for differentiating cells in the meristem. Computational analysis on the promoter regions of Arabidopsis thaliana orthologs of genes with high expression in the soybean SAM revealed a conserved over-representation of three cis-acting regulatory motifs. Our data show that plant meristems possess a unique transcriptional profile, with shared "molecular signatures" in apical and axillary meristems providing a rich source of novel target genes for further studies into a fundamental process that impacts plant growth and crop productivity.
Collapse
Affiliation(s)
- Farzad Haerizadeh
- Plant Molecular Biology and Biotechnology Laboratory, Australian Research Centre of Excellence for Integrative Legume Research, Faculty of Land and Food Resources, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | |
Collapse
|
138
|
Miwa H, Kinoshita A, Fukuda H, Sawa S. Plant meristems: CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem. JOURNAL OF PLANT RESEARCH 2009; 122:31-9. [PMID: 19104754 DOI: 10.1007/s10265-008-0207-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 11/27/2008] [Indexed: 05/23/2023]
Abstract
The plant meristems, shoot apical meristem (SAM) and root apical meristem (RAM), are unique structures made up of a self-renewing population of undifferentiated pluripotent stem cells. The SAM produces all aerial parts of postembryonic organs, and the RAM promotes the continuous growth of roots. Even though the structures of the SAM and RAM differ, the signaling components required for stem cell maintenance seem to be relatively conserved. Both meristems utilize cell-to-cell communication to maintain proper meristematic activities and meristem organization and to coordinate new organ formation. In SAM, an essential regulatory mechanism for meristem organization is a regulatory loop between WUSCHEL (WUS) and CLAVATA (CLV), which functions in a non-cell-autonomous manner. This intercellular signaling network coordinates the development of the organization center, organ boundaries and distant organs. The CLAVATA3/ESR (CLE)-related genes produce signal peptides, which act non-cell-autonomously in the meristem regulation in SAM. In RAM, it has been suggested that a similar mechanism can regulate meristem maintenance, but these functions are largely unknown. Here, we overview the WUS-CLV signaling network for stem cell maintenance in SAM and a related mechanism in RAM maintenance. We also discuss conservation of the regulatory system for stem cells in various plant species.
Collapse
Affiliation(s)
- Hiroki Miwa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
139
|
Deveaux Y, Toffano-Nioche C, Claisse G, Thareau V, Morin H, Laufs P, Moreau H, Kreis M, Lecharny A. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Evol Biol 2008; 8:291. [PMID: 18950478 PMCID: PMC2584047 DOI: 10.1186/1471-2148-8-291] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 10/24/2008] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The Wuschel related homeobox (WOX) family proteins are key regulators implicated in the determination of cell fate in plants by preventing cell differentiation. A recent WOX phylogeny, based on WOX homeodomains, showed that all of the Physcomitrella patens and Selaginella moellendorffii WOX proteins clustered into a single orthologous group. We hypothesized that members of this group might preferentially share a significant part of their function in phylogenetically distant organisms. Hence, we first validated the limits of the WOX13 orthologous group (WOX13 OG) using the occurrence of other clade specific signatures and conserved intron insertion sites. Secondly, a functional analysis using expression data and mutants was undertaken. RESULTS The WOX13 OG contained the most conserved plant WOX proteins including the only WOX detected in the highly proliferating basal unicellular and photosynthetic organism Ostreococcus tauri. A large expansion of the WOX family was observed after the separation of mosses from other land plants and before monocots and dicots have arisen. In Arabidopsis thaliana, AtWOX13 was dynamically expressed during primary and lateral root initiation and development, in gynoecium and during embryo development. AtWOX13 appeared to affect the floral transition. An intriguing clade, represented by the functional AtWOX14 gene inside the WOX13 OG, was only found in the Brassicaceae. Compared to AtWOX13, the gene expression profile of AtWOX14 was restricted to the early stages of lateral root formation and specific to developing anthers. A mutational insertion upstream of the AtWOX14 homeodomain sequence led to abnormal root development, a delay in the floral transition and premature anther differentiation. CONCLUSION Our data provide evidence in favor of the WOX13 OG as the clade containing the most conserved WOX genes and established a functional link to organ initiation and development in Arabidopsis, most likely by preventing premature differentiation. The future use of Ostreococcus tauri and Physcomitrella patens as biological models should allow us to obtain a better insight into the functional importance of WOX13 OG genes.
Collapse
Affiliation(s)
- Yves Deveaux
- Université Paris-Sud 11, Institut de Biotechnologie des Plantes, Bâtiment 630, UMR/CNRS 8618, F-91405 Orsay, France
| | - Claire Toffano-Nioche
- Université Paris-Sud 11, Institut de Biotechnologie des Plantes, Bâtiment 630, UMR/CNRS 8618, F-91405 Orsay, France
| | - Gaelle Claisse
- Université Paris-Sud 11, Institut de Biotechnologie des Plantes, Bâtiment 630, UMR/CNRS 8618, F-91405 Orsay, France
| | - Vincent Thareau
- Université Paris-Sud 11, Institut de Biotechnologie des Plantes, Bâtiment 630, UMR/CNRS 8618, F-91405 Orsay, France
| | - Halima Morin
- Laboratoire de Biologie Cellulaire, Institut J. P. Bourgin, INRA, 78026 Versailles Cedex, France
| | - Patrick Laufs
- Laboratoire de Biologie Cellulaire, Institut J. P. Bourgin, INRA, 78026 Versailles Cedex, France
| | - Hervé Moreau
- Observatoire Océanologique, Laboratoire Arago, Unité Mixte de Recherche 7628, CNRS-Université Pierre et Marie Curie, BP44, 66651 Banyuls sur Mer Cedex, France
| | - Martin Kreis
- Université Paris-Sud 11, Institut de Biotechnologie des Plantes, Bâtiment 630, UMR/CNRS 8618, F-91405 Orsay, France
| | - Alain Lecharny
- Université Paris-Sud 11, Institut de Biotechnologie des Plantes, Bâtiment 630, UMR/CNRS 8618, F-91405 Orsay, France
| |
Collapse
|
140
|
Lin MK, Lee YJ, Lough TJ, Phinney BS, Lucas WJ. Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol Cell Proteomics 2008; 8:343-56. [PMID: 18936055 DOI: 10.1074/mcp.m800420-mcp200] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Increasing evidence suggests that proteins present in the angiosperm sieve tube system play an important role in the long distance signaling system of plants. To identify the nature of these putatively non-cell-autonomous proteins, we adopted a large scale proteomics approach to analyze pumpkin phloem exudates. Phloem proteins were fractionated by fast protein liquid chromatography using both anion and cation exchange columns and then either in-solution or in-gel digested following further separation by SDS-PAGE. A total of 345 LC-MS/MS data sets were analyzed using a combination of Mascot and X!Tandem against the NCBI non-redundant green plant database and an extensive Cucurbit maxima expressed sequence tag database. In this analysis, 1,209 different consensi were obtained of which 1,121 could be annotated from GenBank and BLAST search analyses against three plant species, Arabidopsis thaliana, rice (Oryza sativa), and poplar (Populus trichocarpa). Gene ontology (GO) enrichment analyses identified sets of phloem proteins that function in RNA binding, mRNA translation, ubiquitin-mediated proteolysis, and macromolecular and vesicle trafficking. Our findings indicate that protein synthesis and turnover, processes that were thought to be absent in enucleate sieve elements, likely occur within the angiosperm phloem translocation stream. In addition, our GO analysis identified a set of phloem proteins that are associated with the GO term "embryonic development ending in seed dormancy"; this finding raises the intriguing question as to whether the phloem may exert some level of control over seed development. The universal significance of the phloem proteome was highlighted by conservation of the phloem proteome in species as diverse as monocots (rice), eudicots (Arabidopsis and pumpkin), and trees (poplar). These results are discussed from the perspective of the role played by the phloem proteome as an integral component of the whole plant communication system.
Collapse
Affiliation(s)
- Ming-Kuem Lin
- Department of Plant Biology, College of Biological Sciences, Genome Center, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
141
|
Matsui K, Umemura Y, Ohme-Takagi M. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:954-67. [PMID: 18532977 DOI: 10.1111/j.1365-313x.2008.03565.x] [Citation(s) in RCA: 379] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In Arabidopsis, MYB transcription factors regulate flavonoid biosynthesis via the formation of protein complexes with a basic helix-loop-helix (bHLH) transcription factor and a WD40 repeat protein. Several R3-type single-MYB proteins (R3-MYB), such as CPC and TRY, act as negative regulators of the development of epidermal cells. However, such regulators of flavonoid biosynthesis have not yet been reported, to our knowledge. We show here that an R3-MYB protein, AtMYBL2, acts as a transcriptional repressor and negatively regulates the biosynthesis of anthocyanin in Arabidopsis. In an AtMYBL2 knockout line (mybl2), the expression of the DFR and TT8 genes was enhanced and resulted in the ectopic accumulation of anthocyanin, while ectopic expression of AtMYBL2 or of a chimeric repressor that is a dominant negative form of AtMYBL2 suppressed the expression of DFR and TT8, and the biosynthesis of anthocyanin. The expression of AtMYBL2 was detected in various tissues but not in those in which anthocyanin accumulated or TT8 was expressed. The minimal repression domain of AtMYBL2 was found to be the six amino acids (TLLLFR) at the carboxyl terminus, and TLLLFR appears to be a novel repression motif that is different from the ERF-associated amphiphilic repression (EAR) motif. The defective phenotype of mybl2 mutants was complemented by 35S:AtMYBL2 but enhanced by a truncated form of AtMYBL2 from which the repression domain had been deleted. AtMYBL2 bound directly to TT8 protein and this complex suppressed the expression of DFR and TT8. The repression activity of AtMYBL2 appears to play a critical role in the regulation of anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Kyoko Matsui
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | | | | |
Collapse
|
142
|
Colombo L, Battaglia R, Kater MM. Arabidopsis ovule development and its evolutionary conservation. TRENDS IN PLANT SCIENCE 2008; 13:444-50. [PMID: 18571972 DOI: 10.1016/j.tplants.2008.04.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 04/03/2008] [Accepted: 04/28/2008] [Indexed: 05/03/2023]
Abstract
Ovules have an important role during the life cycle of the plant, and they provide an excellent model for studying organogenesis in plants. As such, the molecular control of ovule development has been studied for many years. Recent studies in Arabidopsis have revealed important new data concerning ovule primordia formation, ovule identity determination, and patterning. Furthermore, interesting results about ovule development in other species, such as Petunia and rice, have been published recently. In this review, we discuss these recent findings in reference to ovule development in Arabidopsis. We compare available data with those of other species to investigate the evolutionary conservation of the regulatory pathways.
Collapse
Affiliation(s)
- Lucia Colombo
- Dipartimento di Biologia, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | | | | |
Collapse
|
143
|
Han P, Li Q, Zhu YX. Mutation of Arabidopsis BARD1 causes meristem defects by failing to confine WUSCHEL expression to the organizing center. THE PLANT CELL 2008; 20:1482-93. [PMID: 18591352 PMCID: PMC2483370 DOI: 10.1105/tpc.108.058867] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 06/02/2008] [Accepted: 06/14/2008] [Indexed: 05/18/2023]
Abstract
Stem cell fate in the Arabidopsis thaliana shoot apical meristem (SAM) is controlled by WUSCHEL (WUS) and CLAVATA. Here, we examine BARD1 (for BRCA1-associated RING domain 1), which had previously been implicated in DNA repair functions; we find that it also regulates WUS expression. We observed severe SAM defects in the knockout mutant bard1-3. WUS transcripts accumulated >238-fold in bard1-3 compared with the wild type and were located mainly in the outermost cell layers instead of the usual organizing center. A specific WUS promoter region was recognized by nuclear protein extracts obtained from wild-type plants, and this protein-DNA complex was recognized by antibodies against BARD1. The double mutant (wus-1 bard1-3) showed prematurely terminated SAM structures identical to those of wus-1, indicating that BARD1 functions through regulation of WUS. BARD1 overexpression resulted in reduced WUS transcript levels, giving a wus-1-like phenotype. Either full-length BARD1 or a clone that encoded the C-terminal domain (BARD1:C-ter;bard1-3) was sufficient to complement the bard1-3 phenotype, indicating that BARD1 functions through its C-terminal domain. Our data suggest that BARD1 regulates SAM organization and maintenance by limiting WUS expression to the organizing center.
Collapse
Affiliation(s)
- Pei Han
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
144
|
Zhang Y, Feng S, Chen F, Chen H, Wang J, McCall C, Xiong Y, Deng XW. Arabidopsis DDB1-CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes. THE PLANT CELL 2008; 20:1437-55. [PMID: 18552200 PMCID: PMC2483375 DOI: 10.1105/tpc.108.058891] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 05/01/2008] [Accepted: 05/30/2008] [Indexed: 05/20/2023]
Abstract
The human DDB1-CUL4 ASSOCIATED FACTOR (DCAF) proteins have been reported to interact directly with UV-DAMAGED DNA BINDING PROTEIN1 (DDB1) through the WDxR motif in their WD40 domain and function as substrate-recognition receptors for CULLIN4-based E3 ubiquitin ligases. Here, we identified and characterized a homolog of human DCAF1/VprBP in Arabidopsis thaliana. Yeast two-hybrid analysis demonstrated the physical interaction between DCAF1 and DDB1 from Arabidopsis, which is likely mediated via the WD40 domain of DCAF1 that contains two WDxR motifs. Moreover, coimmunoprecipitation assays showed that DCAF1 associates with DDB1, RELATED TO UBIQUITIN-modified CUL4, and the COP9 signalosome in vivo but not with CULLIN-ASSOCIATED and NEDDYLATION-DISSOCIATED1, CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), or the COP10-DET1-DDB1 complex, supporting the existence of a distinct Arabidopsis CUL4 E3 ubiquitin ligase, the CUL4-DDB1-DCAF1 complex. Transient expression of fluorescently tagged DCAF1, DDB1, and CUL4 in onion epidermal cells showed their colocalization in the nucleus, consistent with the notion that the CUL4-DDB1-DCAF1 complex functions as a nuclear E3 ubiquitin ligase. Genetic and phenotypic analysis of two T-DNA insertion mutants of DCAF1 showed that embryonic development of the dcaf1 homozygote is arrested at the globular stage, indicating that DCAF1 is essential for plant embryogenesis. Reducing the levels of DCAF1 leads to diverse developmental defects, implying that DCAF1 might be involved in multiple developmental pathways.
Collapse
Affiliation(s)
- Yu Zhang
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Sitaraman J, Bui M, Liu Z. LEUNIG_HOMOLOG and LEUNIG perform partially redundant functions during Arabidopsis embryo and floral development. PLANT PHYSIOLOGY 2008; 147:672-81. [PMID: 18390806 PMCID: PMC2409011 DOI: 10.1104/pp.108.115923] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 03/30/2008] [Indexed: 05/19/2023]
Abstract
Transcription corepressors play important roles in animal and plant development. In Arabidopsis (Arabidopsis thaliana), LEUNIG (LUG) and LEUNIG_HOMOLOG (LUH) encode two highly homologous proteins that are similar to the animal and fungal Gro/Tup1-type corepressors. LUG was previously shown to form a putative corepressor complex with another protein, SEUSS (SEU), and to repress the transcription of AGAMOUS in floral organ identity specification. However, the function of LUH is completely unknown. Here, we show that single luh loss-of-function mutants develop normal flowers, but lug; luh double mutants are embryo lethal, uncovering a previously unknown function of LUG and LUH in embryonic development. In addition, luh/+ enhances the floral phenotype of lug, revealing a minor role of LUH in flower development. Functional diversification between LUH and LUG is evidenced by the inability of 35S::LUH overexpression to rescue lug mutants and by the opposite expression trends of LUG and LUH in response to biotic and abiotic stresses. The luh-1 mutation does not enhance the defect of seu in flower development, but LUH could directly interact with SEU in yeast. We propose a model that explains the complex relationships among LUH, LUG, and SEU. As most eukaryotes have undergone at least one round of whole-genome duplication during evolution, gene duplication and functional diversification are important issues to consider in uncovering gene function. Our study provides important insights into the complexity in the relationship between two highly homologous paralogous genes.
Collapse
Affiliation(s)
- Jayashree Sitaraman
- Department of Cell Biology and Molecular Genetics , University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
146
|
de la Fuente van Bentem S, Anrather D, Dohnal I, Roitinger E, Csaszar E, Joore J, Buijnink J, Carreri A, Forzani C, Lorkovic ZJ, Barta A, Lecourieux D, Verhounig A, Jonak C, Hirt H. Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis. J Proteome Res 2008; 7:2458-70. [PMID: 18433157 DOI: 10.1021/pr8000173] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An estimated one-third of all proteins in higher eukaryotes are regulated by phosphorylation by protein kinases (PKs). Although plant genomes encode more than 1000 PKs, the substrates of only a small fraction of these kinases are known. By mass spectrometry of peptides from cytoplasmic- and nuclear-enriched fractions, we determined 303 in vivo phosphorylation sites in Arabidopsis proteins. Among 21 different PKs, 12 were phosphorylated in their activation loops, suggesting that they were in their active state. Immunoblotting and mutational analysis confirmed a tyrosine phosphorylation site in the activation loop of a GSK3/shaggy-like kinase. Analysis of phosphorylation motifs in the substrates suggested links between several of these PKs and many target sites. To perform quantitative phosphorylation analysis, peptide arrays were generated with peptides corresponding to in vivo phosphorylation sites. These peptide chips were used for kinome profiling of subcellular fractions as well as H 2O 2-treated Arabidopsis cells. Different peptide phosphorylation profiles indicated the presence of overlapping but distinct PK activities in cytosolic and nuclear compartments. Among different H 2O 2-induced PK targets, a peptide of the serine/arginine-rich (SR) splicing factor SCL30 was most strongly affected. SRPK4 (SR protein-specific kinase 4) and MAPKs (mitogen-activated PKs) were found to phosphorylate this peptide, as well as full-length SCL30. However, whereas SRPK4 was constitutively active, MAPKs were activated by H 2O 2. These results suggest that SCL30 is targeted by different PKs. Together, our data demonstrate that a combination of mass spectrometry with peptide chip phosphorylation profiling has a great potential to unravel phosphoproteome dynamics and to identify PK substrates.
Collapse
Affiliation(s)
- Sergio de la Fuente van Bentem
- Department of Plant Molecular Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Castellano MM, Sablowski R. Phosducin-Like Protein 3 is required for microtubule-dependent steps of cell division but not for meristem growth in Arabidopsis. THE PLANT CELL 2008; 20:969-81. [PMID: 18390592 PMCID: PMC2390725 DOI: 10.1105/tpc.107.057737] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Given the central role of cell division in meristems, one might expect meristem growth to be regulated by mitotic checkpoints, including checkpoints for correct microtubule function. Here, we studied the role of two close Phosducin-Like Protein 3 homologs from Arabidopsis thaliana (PLP3a and PLP3b) in the microtubule assembly pathway and determined the consequences of inhibiting PLP3a and PLP3b expression in the meristem. PLP3 function is essential in Arabidopsis: impairing PLP3a and PLP3b expression disrupted microtubule arrays and caused polyploidy, aneuploidy, defective cytokinesis, and disoriented cell growth. Consistent with a role in microtubule formation, PLP3a interacted with beta-tubulin in the yeast two-hybrid assay and, when overexpressed, increased resistance to drugs that inhibit tubulin polymerization. Inhibition of PLP3 function targeted to the meristem caused severe mitotic defects, but the cells carried on cycling through DNA replication and abortive cytokinesis. Thus, we showed that PLP3 is involved in microtubule formation in Arabidopsis and provided genetic evidence that cell viability and growth in the meristem are not subordinate to successful completion of microtubule-dependent steps of cell division.
Collapse
Affiliation(s)
- M Mar Castellano
- Department of Cell and Developmental Biology, John Ines Centre, Norwich, NR4 7UH, United Kingdom
| | | |
Collapse
|
148
|
Liu Z, Karmarkar V. Groucho/Tup1 family co-repressors in plant development. TRENDS IN PLANT SCIENCE 2008; 13:137-44. [PMID: 18314376 DOI: 10.1016/j.tplants.2007.12.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 12/05/2007] [Accepted: 12/14/2007] [Indexed: 05/23/2023]
Abstract
Transcription repression is emerging as a key regulatory mechanism underlying cell fate specification and body patterning in both animals and plants. In animals and fungi, the Groucho (Gro)/Tup1 family co-repressors generate the repressed chromatin state in genetic loci that control major developmental decisions ranging from dorsal-ventral patterning to eye development. In higher plants, information about the Gro/Tup1 co-repressors is beginning to emerge. Several recent publications have revealed both conserved and unique structural and mechanistic features of plant Gro/Tup1 co-repressors, including LEUNIG (LUG), TOPLESS (TPL) and WUSCHEL-INTERACTING PROTEINS (WSIPs). These co-repressors regulate key developmental processes in floral organ identity specification, embryo apical-basal fate determination, and stem cell maintenance at the shoot apex.
Collapse
Affiliation(s)
- Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
149
|
Palovaara J, Hakman I. Conifer WOX-related homeodomain transcription factors, developmental consideration and expression dynamic of WOX2 during Picea abies somatic embryogenesis. PLANT MOLECULAR BIOLOGY 2008; 66:533-549. [PMID: 18209956 DOI: 10.1007/s11103-008-9289-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 01/02/2008] [Indexed: 05/25/2023]
Abstract
In angiosperms, the WOX family of transcription factors has important functions in meristem regulation and in control of the partitioning of developing embryos into functional domains. In this study, a putative WOX2 homologous gene was isolated from Picea abies, and its expression pattern during somatic embryo development was followed using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). We used strategies of both absolute and relative quantification of gene expression, and benefits and disadvantages of the two methods are presented and discussed. During embryogenesis, PaWOX2 expression was highest at the earliest stages of development, but low levels were also detected in seedling tissues. No PaWOX2 expression was detected in a non-embryogenic cell culture, indicating that PaWOX2 plays a fundamental role during early somatic embryo development, and can be used as a possible marker for embryogenic potential. Additional results show that conifers, like angiosperms, contain a large number of WOX-related genes, many of them expressed during embryo development. In phylogenetic analysis based on the deduced homeodomain of retrieved pine and spruce EST sequences, no conifer WUS homolog was found. Neither did we find any homeodomain to cluster with WOX5. Interestingly, a clade including only conifer sequences derived from various tissues was resolved as sister to a Physcomitrella WOX-like gene, suggestive of the early origin of this gene family. Our results thus provide basic information for further studies of the evolution of this gene family and of their function in relation to meristem dynamics and specification of stem cells in gymnosperms.
Collapse
Affiliation(s)
- Joakim Palovaara
- School of Pure and Applied Natural Sciences, University of Kalmar, SE-391 82, Kalmar, Sweden.
| | | |
Collapse
|
150
|
Derbyshire P, Drea S, Shaw PJ, Doonan JH, Dolan L. Proximal-distal patterns of transcription factor gene expression during Arabidopsis root development. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:235-245. [PMID: 18263631 DOI: 10.1093/jxb/erm301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The expression pattern of genes can identify the cells in which the respective proteins are active during development. As a step towards defining the genetic network that controls the development of roots, a high-throughput method of whole-mount in situ hybridization has been developed that does not require expensive equipment and allows the definition of the expression patterns of 137 transcription factor genes in young developing roots. Of the 137 transcription factors, 81.8% were expressed in the root while 18.2% showed no detectable expression. In all three proximal distal zones (meristem, elongation, and differentiation) of the root, 52.6% were expressed whereas 21.2% were expressed in only two zones. Eight percent of the genes were expressed in a single proximal distal zone. Cell-specific gene expression patterns were also detected. This rapid approach identified potential key regulators of cell differentiation and provides important spatial information for the expression patterns of a large number of transcriptional regulators that function during root development.
Collapse
Affiliation(s)
- Paul Derbyshire
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | | | | | | | | |
Collapse
|