101
|
Checker VG, Chhibbar AK, Khurana P. Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Res 2011; 21:939-57. [PMID: 22160463 DOI: 10.1007/s11248-011-9577-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/25/2011] [Indexed: 11/26/2022]
Abstract
Coping with different kinds of biotic and abiotic stresses is the foundation of sustainable agriculture. Although conventional breeding and marker-assisted selection are being employed in mulberry (Morus indica L.) to develop better varieties, nonetheless the longer time periods required for these approaches necessitates the use of precise biotechnological approaches for sustainable agriculture. In an attempt to improve stress tolerance of mulberry, an important plant of the sericulture industry, an encoding late embryogenesis abundant gene from barley (HVA1) was introduced into mulberry plants by Agrobacterium-mediated transformation. Transgenic mulberry with barley Hva1 under a constitutive promoter actin1 was shown to enhance drought and salinity tolerance. Here, we report that overexpression of barley Hva1 also confers cold tolerance in transgenic mulberry. Further, barley Hva1 gene under control of a stress-inducible promoter rd29A can effectively negate growth retardation under non-stress conditions and confer stress tolerance in transgenic mulberry. Transgenic lines display normal morphology to enhanced growth and an increased tolerance against drought, salt and cold conditions as measured by free proline, membrane stability index and PSII activity. Protein accumulation was detected under stress conditions confirming inductive expression of HVA1 in transgenics. Investigations to assess stress tolerance of these plants under field conditions revealed an overall better performance than the non-transgenic plants. Enhanced expression of stress responsive genes such as Mi dnaJ and Mi 2-cysperoxidin suggests that Hva1 can regulate downstream genes associated with providing abiotic stress tolerance. The investigation of transgenic lines presented here demonstrates the acquisition of tolerance against drought, salt and cold stress in plants overexpressing barley Hva1, indicating that Arabidopsis rd29A promoter can function in mulberry.
Collapse
Affiliation(s)
- Vibha G Checker
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, 110021, India
| | | | | |
Collapse
|
102
|
Senthil-Kumar M, Mysore KS. New dimensions for VIGS in plant functional genomics. TRENDS IN PLANT SCIENCE 2011; 16:656-65. [PMID: 21937256 DOI: 10.1016/j.tplants.2011.08.006] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/07/2011] [Accepted: 08/22/2011] [Indexed: 05/18/2023]
Abstract
Virus-induced gene silencing (VIGS) is an efficient tool for gene function studies. It has been used to perform both forward and reverse genetics to identify plant genes involved in several plant processes. However, this technology has not yet been used to its full potential. This can be attributed to several of its limitations such as inability to silence genes during seed germination and the non-stable nature of silencing. However, several recent studies have shown that these limitations can now be overcome. In this review, we will discuss the limitations of VIGS and suitable solutions. In addition, we also describe the recent improvements and future prospects of using VIGS in plant biology.
Collapse
Affiliation(s)
- Muthappa Senthil-Kumar
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | |
Collapse
|
103
|
Dong L, Liu M, Fang YY, Zhao JH, He XF, Ying XB, Zhang YY, Xie Q, Chua NH, Guo HS. DRD1-Pol V-dependent self-silencing of an exogenous silencer restricts the non-cell autonomous silencing of an endogenous target gene. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:633-45. [PMID: 21771120 PMCID: PMC3204326 DOI: 10.1111/j.1365-313x.2011.04714.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In plants, the exogenous transgene transcribing inverted-repeat (exo-IR) sequences produces double-stranded RNAs that are processed by DCL4. The 21-nt small interfering RNAs generated function as mobile signals to trigger non-cell autonomous silencing of target endogenes in the neighboring 10-15 cells. The potential involvement of nuclear silencing pathway components in signal spreading or sensing in target cells is not clear. Here, we demonstrate that the exo-IR silencer (exo-Pdsi) is negatively autoregulated through methylation spreading, which acts in cis to reinforce the self-silencing of the silencer. Mutations affecting nuclear proteins DRD1 and Pol V (NRPE1 or NRPD2) relieved exo-Pdsi self-silencing, resulting in higher levels of Pdsi transcripts, which increased the non-cell autonomous silencing of endo-PDS. Our results suggest that in an experimental silencing pathway, methylation spreading on a silencer transgene may not have a direct endogenous plant counterpart when the protein-encoding gene is the target. DRD1-Pol V-dependent de novo methylation, by acting in cis to reinforce self-silencing of exo-IR, may play a role in restraining the inappropriate silencing of active protein-coding genes in plants.
Collapse
Affiliation(s)
- Li Dong
- State Key Laboratory of Plant Genomics and National Center for Plant gene research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng Liu
- State Key Laboratory of Plant Genomics and National Center for Plant gene research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuan-Yuan Fang
- State Key Laboratory of Plant Genomics and National Center for Plant gene research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant gene research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang-Feng He
- State Key Laboratory of Plant Genomics and National Center for Plant gene research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Bao Ying
- State Key Laboratory of Plant Genomics and National Center for Plant gene research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi-Yue Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10021
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics and National Center for Plant gene research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Corresponding author: Hui-Shan Guo, , Tel: 010-64847989, Fax: 010-64847989
| |
Collapse
|
104
|
Dalakouras A, Moser M, Boonrod K, Krczal G, Wassenegger M. Diverse spontaneous silencing of a transgene among two Nicotiana species. PLANTA 2011; 234:699-707. [PMID: 21617990 DOI: 10.1007/s00425-011-1433-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 05/03/2011] [Indexed: 05/30/2023]
Abstract
In plants, transgenes frequently become spontaneously silenced for unknown reasons. Typically, transgene silencing involves the generation of small interfering RNAs (siRNAs) that directly or indirectly target cognate DNA and mRNA sequences for methylation and degradation, respectively. In this report, we compared spontaneous silencing of a transgene in Nicotiana benthamiana and Nicotiana tabacum. In both species, abundant siRNAs were produced. In N. benthamiana, the self-silencing process involved mRNA degradation and dense DNA methylation of the homologous coding region. In N. tabacum, self-silencing occurred without complete mRNA degradation and with low methylation of the cognate coding region. Our data indicated that in plants, siRNA-mediated spontaneous silencing is, in addition to mRNA degradation, based on translational inhibition. Differences in the initiation and establishment of self-silencing together with marked differences in the degree of de novo DNA methylation showed that the mechanistic details of RNA silencing, although largely conserved, may vary also in genetically close plant species.
Collapse
MESH Headings
- Cotyledon/genetics
- Cotyledon/metabolism
- DNA Methylation/genetics
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Gene Expression Regulation, Plant/genetics
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Plant Leaves/genetics
- Plant Leaves/metabolism
- Plants, Genetically Modified
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Interfering/genetics
- Nicotiana/genetics
- Nicotiana/metabolism
- Transcription, Genetic
- Transgenes/genetics
Collapse
Affiliation(s)
- Athanasios Dalakouras
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, 67435, Neustadt, Germany
| | | | | | | | | |
Collapse
|
105
|
Christie M, Croft LJ, Carroll BJ. Intron splicing suppresses RNA silencing in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:159-67. [PMID: 21689169 DOI: 10.1111/j.1365-313x.2011.04676.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Silencing of introduced transgenes constitutes a major bottleneck in the production of transgenic crops. Commonly, these transgenes contain no introns, a feature shared with transposons, which are also prime targets for gene silencing. Given that introns are very common in endogenous genes but are often lacking in transgenes and transposons, we hypothesised that introns may suppress gene silencing. To investigate this, we conducted a genome-wide analysis of small RNA densities in exons from intronless versus intron-containing genes in Arabidopsis thaliana. We found that small RNA libraries are strongly enriched for exon sequences derived from intronless genes. Small RNA densities in exons of intronless genes were comparable to exons of transposable elements. To test these findings in vivo we used a transgenic reporter system to determine whether introns are able to suppress gene silencing in Arabidopsis. Introducing an intron into a transgene reduced silencing by more than fourfold. Compared with intronless transcripts, the spliced transcripts were less effective substrates for RNA-dependent RNA polymerase 6-mediated gene silencing. This intron suppression of transgene silencing requires efficient intron splicing and is dependent on ABH1, the Arabidopsis orthologue of human cap-binding protein 80.
Collapse
Affiliation(s)
- Michael Christie
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | |
Collapse
|
106
|
Epigenetic mechanisms in developmental programming of adult disease. Drug Discov Today 2011; 16:1007-18. [PMID: 21945859 DOI: 10.1016/j.drudis.2011.09.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 07/05/2011] [Accepted: 09/09/2011] [Indexed: 12/13/2022]
Abstract
Adverse insults during intrauterine life can result in permanent changes in the physiology and metabolism of the offspring, which in turn leads to an increased risk of disease in adulthood. This is an adaptational response by the fetus to changes in the environmental signals that it receives during early life to ensure its survival and prepare itself for postnatal life. Increasing evidence suggests that the epigenetic regulation of gene expression patterns has a crucial role in the developmental programming of adult disease. This review summarizes recent studies of epigenetic mechanisms and focuses particularly on studies that explore identifiable epigenetic biomarkers in the promoters of specific disease-associated genes. Such biomarkers would enable early recognition of children who might be at risk of developing adult disease with fetal origins.
Collapse
|
107
|
Bai S, Kasai A, Yamada K, Li T, Harada T. A mobile signal transported over a long distance induces systemic transcriptional gene silencing in a grafted partner. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4561-70. [PMID: 21652532 PMCID: PMC3170550 DOI: 10.1093/jxb/err163] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/24/2011] [Accepted: 04/26/2011] [Indexed: 05/18/2023]
Abstract
Transcriptional gene silencing (TGS) can be induced by promoter-targeted small interfering RNA (siRNA). Long-distance transmission of TGS by viral infection in plants has been reported. However, systemic TGS has not been observed in the case of using an inverted repeat transgene as the silencing trigger. Here it is reported that a mobile signal, presumably the siRNA, produced from a hairpin structure transgene controlled by a companion cell-specific promoter can also induce transmissible TGS in both a modified agroinfiltration and a grafting system. Although the transmissible TGS occurred only in cells located in the vicinity of a leaf vein in the scion, very strong silencing was observed in the root system, especially the lateral roots, including the root apical meristem. The transmissible TGS was maintained through tissue culture and subsequently inherited by the progeny. The results suggest the potential application of mobile promoter-targeting siRNA in horticulture for improvement of plant cultivars by grafting.
Collapse
Affiliation(s)
- Songling Bai
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
| | - Atsushi Kasai
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Kaori Yamada
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Tianzhong Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Takeo Harada
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
| |
Collapse
|
108
|
Kanazawa A, Inaba JI, Kasai M, Shimura H, Masuta C. RNA-mediated epigenetic modifications of an endogenous gene targeted by a viral vector: a potent gene silencing system to produce a plant that does not carry a transgene but has altered traits. PLANT SIGNALING & BEHAVIOR 2011; 6:1090-3. [PMID: 21772121 PMCID: PMC3260699 DOI: 10.4161/psb.6.8.16046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 04/25/2011] [Indexed: 05/07/2023]
Abstract
Nucleotide-sequence-specific interactions mediated by double-stranded RNA (dsRNA) can induce gene silencing. Gene silencing through transcriptional repression can be induced by dsRNA targeted to a gene promoter. However, until recently, no plant has been produced that harbors an endogenous gene that remains silenced in the absence of promoter-targeting dsRNA. We have reported for the first time that transcriptional gene silencing can be induced by targeting dsRNA to the endogenous gene promoters in petunia and tomato plants, using a Cucumber mosaic virus (CMV)-based vector and that the induced gene silencing is heritable. Efficient silencing depended on the function of the 2b protein encoded in the vector, which facilitates epigenetic modifications through the transport of short interfering RNA (siRNA) to the nucleus. Here we show that gene silencing that is mediated by targeting dsRNA to a gene promoter via the CMV vector can be as strong as co-suppression in terms of both the extent of mRNA decrease and phenotypic changes. We also show that the expression of genes involved in RNA-directed DNA methylation and in demethylation are upregulated and downregulated, respectively, in Arabidopsis plants infected with CMV. Thus, along with the function of the 2b protein, that transports siRNA to the nucleus, the promoter-targeted silencing system using the CMV vector has some property that facilitates heritable epigenetic changes on endogenous genes, enabling the production of a novel class of modified plants that do not have a transgene.
Collapse
Affiliation(s)
- Akira Kanazawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
109
|
Bhadauria V, Banniza S, Vandenberg A, Selvaraj G, Wei Y. EST mining identifies proteins putatively secreted by the anthracnose pathogen Colletotrichum truncatum. BMC Genomics 2011; 12:327. [PMID: 21699715 PMCID: PMC3149586 DOI: 10.1186/1471-2164-12-327] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/23/2011] [Indexed: 01/01/2023] Open
Abstract
Background Colletotrichum truncatum is a haploid, hemibiotrophic, ascomycete fungal pathogen that causes anthracnose disease on many economically important leguminous crops. This pathogen exploits sequential biotrophic- and necrotrophic- infection strategies to colonize the host. Transition from biotrophy to a destructive necrotrophic phase called the biotrophy-necrotrophy switch is critical in symptom development. C. truncatum likely secretes an arsenal of proteins that are implicated in maintaining a compatible interaction with its host. Some of them might be transition specific. Results A directional cDNA library was constructed from mRNA isolated from infected Lens culinaris leaflet tissues displaying the biotrophy-necrotrophy switch of C. truncatum and 5000 expressed sequence tags (ESTs) with an average read of > 600 bp from the 5-prime end were generated. Nearly 39% of the ESTs were predicted to encode proteins of fungal origin and among these, 162 ESTs were predicted to contain N-terminal signal peptides (SPs) in their deduced open reading frames (ORFs). The 162 sequences could be assembled into 122 tentative unigenes comprising 32 contigs and 90 singletons. Sequence analyses of unigenes revealed four potential groups: hydrolases, cell envelope associated proteins (CEAPs), candidate effectors and other proteins. Eleven candidate effector genes were identified based on features common to characterized fungal effectors, i.e. they encode small, soluble (lack of transmembrane domain), cysteine-rich proteins with a putative SP. For a selected subset of CEAPs and candidate effectors, semiquantitative RT-PCR showed that these transcripts were either expressed constitutively in both in vitro and in planta or induced during plant infection. Using potato virus X (PVX) based transient expression assays, we showed that one of the candidate effectors, i. e. contig 8 that encodes a cerato-platanin (CP) domain containing protein, unlike CP proteins from other fungal pathogens was unable to elicit a hypersensitive response (HR). Conclusions The current study catalogues proteins putatively secreted at the in planta biotrophy-necrotrophy transition of C. truncatum. Some of these proteins may have a role in establishing compatible interaction with the host plant.
Collapse
Affiliation(s)
- Vijai Bhadauria
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2 Canada
| | | | | | | | | |
Collapse
|
110
|
Wang Q, Han C, Ferreira AO, Yu X, Ye W, Tripathy S, Kale SD, Gu B, Sheng Y, Sui Y, Wang X, Zhang Z, Cheng B, Dong S, Shan W, Zheng X, Dou D, Tyler BM, Wang Y. Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire. THE PLANT CELL 2011; 23:2064-86. [PMID: 21653195 PMCID: PMC3160037 DOI: 10.1105/tpc.111.086082] [Citation(s) in RCA: 309] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 04/05/2011] [Accepted: 05/25/2011] [Indexed: 05/18/2023]
Abstract
The genome of the soybean pathogen Phytophthora sojae contains nearly 400 genes encoding candidate effector proteins carrying the host cell entry motif RXLR-dEER. Here, we report a broad survey of the transcription, variation, and functions of a large sample of the P. sojae candidate effectors. Forty-five (12%) effector genes showed high levels of polymorphism among P. sojae isolates and significant evidence for positive selection. Of 169 effectors tested, most could suppress programmed cell death triggered by BAX, effectors, and/or the PAMP INF1, while several triggered cell death themselves. Among the most strongly expressed effectors, one immediate-early class was highly expressed even prior to infection and was further induced 2- to 10-fold following infection. A second early class, including several that triggered cell death, was weakly expressed prior to infection but induced 20- to 120-fold during the first 12 h of infection. The most strongly expressed immediate-early effectors could suppress the cell death triggered by several early effectors, and most early effectors could suppress INF1-triggered cell death, suggesting the two classes of effectors may target different functional branches of the defense response. In support of this hypothesis, misexpression of key immediate-early and early effectors severely reduced the virulence of P. sojae transformants.
Collapse
Affiliation(s)
- Qunqing Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Changzhi Han
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Adriana O. Ferreira
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia 24061
| | - Xiaoli Yu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Sucheta Tripathy
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia 24061
| | - Shiv D. Kale
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia 24061
| | - Biao Gu
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia 24061
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuting Sheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangyang Sui
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoli Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Baoping Cheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixing Shan
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia 24061
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Brett M. Tyler
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia 24061
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| |
Collapse
|
111
|
Simón-Mateo C, García JA. Antiviral strategies in plants based on RNA silencing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:722-31. [PMID: 21652000 DOI: 10.1016/j.bbagrm.2011.05.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/17/2011] [Accepted: 05/18/2011] [Indexed: 01/25/2023]
Abstract
One of the challenges being faced in the twenty-first century is the biological control of plant viral infections. Among the different strategies to combat virus infections, those based on pathogen-derived resistance (PDR) are probably the most powerful approaches to confer virus resistance in plants. The application of the PDR concept not only revealed the existence of a previously unknown sequence-specific RNA-degradation mechanism in plants, but has also helped to design antiviral strategies to engineer viral resistant plants in the last 25 years. In this article, we review the different platforms related to RNA silencing that have been developed during this time to obtain plants resistant to viruses and illustrate examples of current applications of RNA silencing to protect crop plants against viral diseases of agronomic relevance. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.
Collapse
|
112
|
Crhák Khaitová L, Fojtová M, Křížová K, Lunerová J, Fulneček J, Depicker A, Kovařík A. Paramutation of tobacco transgenes by small RNA-mediated transcriptional gene silencing. Epigenetics 2011; 6:650-60. [PMID: 21521939 PMCID: PMC3121974 DOI: 10.4161/epi.6.5.15764] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 04/06/2011] [Indexed: 02/03/2023] Open
Abstract
It has been well established that trans-acting small RNAs guide promoter methylation leading to its inactivation and gene silencing at the transcriptional level (TGS). Here we addressed the question of the influence of the locus structure and epigenetic modifications of the target locus on its susceptibility for being paramutated by trans-acting small RNA molecules. Silencing was induced by crossing a 35S promoter silencer locus 271 with two different 35S-driven transgene loci, locus 2 containing a highly expressed single copy gene and locus 1 containing an inverted posttranscriptionally silenced (PTGS) repeat of this gene. Three generations of exposure to RNA signals from the 271 locus were required to complete silencing and methylation of the 35S promoter within locus 2. Segregating methylated locus 2 epialleles were obtained only from the third generation of hybrids, and this methylation was not correlated with silencing. Strikingly, only one generation was required for the PTGS locus 1 to acquire complete TGS and 35S promoter methylation. In this case, paramutated locus 1 epialleles bearing methylated and inactive 35S promoters segregated already from the first generation of hybrids. The results support the hypothesis that PTGS loci containing a palindrome structure and methylation in the coding region are more sensitive to paramutation by small RNAs and exhibit a strong tendency to formation of meiotically transmissible TGS epialleles. These features contrast with a non-methylated single copy transgenic locus that required several generations of contact with RNA silencing molecules to become imprinted in a stable epiallele.
Collapse
Affiliation(s)
- Lucie Crhák Khaitová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Miloslava Fojtová
- Department of Functional Genomics and Proteomics; Institute of Experimental Biology; Faculty of Science; Masaryk University; Brno, Czech Republic
| | - Kateřina Křížová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Jana Lunerová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Jaroslav Fulneček
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Anna Depicker
- Department of Plant Systems Biology; VIB; Department of Plant Biotechnology and Genetics; Ghent University; Ghent, Belgium
| | - Aleš Kovařík
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| |
Collapse
|
113
|
Shimura H, Pantaleo V. Viral induction and suppression of RNA silencing in plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:601-12. [PMID: 21550428 DOI: 10.1016/j.bbagrm.2011.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 11/19/2022]
Abstract
RNA silencing in plants and insects can function as a defence mechanism against invading viruses. RNA silencing-based antiviral defence entails the production of virus-derived small interfering RNAs which guide specific antiviral effector complexes to inactivate viral genomes. As a response to this defence system, viruses have evolved viral suppressors of RNA silencing (VSRs) to overcome the host defence. VSRs can act on various steps of the different silencing pathways. Viral infection can have a profound impact on the host endogenous RNA silencing regulatory pathways; alterations of endogenous short RNA expression profile and gene expression are often associated with viral infections and their symptoms. Here we discuss our current understanding of the main steps of RNA-silencing responses to viral invasion in plants and the effects of VSRs on endogenous pathways. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.
Collapse
Affiliation(s)
- Hanako Shimura
- Research Faculty of Agriculture-Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
114
|
Zhao MX, Li JM, Du L, Tan CP, Xia Q, Mao ZW, Ji LN. Targeted cellular uptake and siRNA silencing by quantum-dot nanoparticles coated with β-cyclodextrin coupled to amino acids. Chemistry 2011; 17:5171-9. [PMID: 21465588 DOI: 10.1002/chem.201003523] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Indexed: 12/27/2022]
Abstract
Quantum dots (QDs) have the potential to serve as photostable beacons to track siRNA delivery, which is fast becoming an attractive approach to probe gene function in cells. In this paper, we synthesized QD nanoparticles coated with β-cyclodextrin (β-CD) coupled to amino acids with different surface charges (positive, negative, and neutral) through direct ligand-exchange reactions and used them to deliver siRNA. We found that these QDs are diffluent in biological buffer with high colloidal stability and have strong optical emission properties similar to those of tri-n-octylphosphine oxide (TOPO)-coated QDs and also have a long fluorescence lifetime (12.5 ns for L-His-β-CD-coated CdSe/ZnSe QDs). The results of in vitro cytotoxicity and internalization of these modified QDs in normal and cancer cells showed that the β-CD coupled to amino acid outlayers greatly improved the biocompatibility of QDs, and conferred with lower cytotoxicity even at very high concentration. In particular, the L-His-β-CD-coated CdSe/ZnSe QDs presented lower cytotoxicity to these cells (CC(50) value is 180.6±3.4 μg mL(-1) in ECV-304 cells for 48 h). Transmission electron microscope (TEM) images showed that the QDs were localized in vesicles in the cytoplasm of the cells. Furthermore, compared with existing transfection agents, gene-silencing efficiency of the modified QDs was slightly improved for HPV18 E6 gene in HeLa cells by gel electrophoresis analysis. Finally, the unique optical properties of QDs allow visible imaging of siRNA delivery in live cells. Taken together, our study not only provides new insights into the mechanisms of amino acid mediated delivery, but also greatly facilities the monitoring of gene-silencing studies.
Collapse
Affiliation(s)
- Mei-Xia Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | | | | | | | | | | | | |
Collapse
|
115
|
Eamens AL, Wang MB. Alternate approaches to repress endogenous microRNA activity in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2011; 6:349-59. [PMID: 21358288 PMCID: PMC3142414 DOI: 10.4161/psb.6.3.14340] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are an endogenous class of regulatory small RNA (sRNA). In plants, miRNAs are processed from short non-protein-coding messenger RNAs (mRNAs) transcribed from small miRNA genes (MIR genes). Traditionally in the model plant Arabidopsis thaliana (Arabidopsis), the functional analysis of a gene product has relied on the identification of a corresponding T-DNA insertion knockout mutant from a large, randomly-mutagenized population. However, because of the small size of MIR genes and presence of multiple, highly conserved members in most plant miRNA families, it has been extremely laborious and time consuming to obtain a corresponding single, or multiple, null mutant plant line. Our recent study published in Molecular Plant ( 1) outlines an alternate method for the functional characterization of miRNA action in Arabidopsis, termed anti-miRNA technology. Using this approach we demonstrated that the expression of individual miRNAs, or entire miRNA families, can be readily and efficiently knocked-down. Our approach is in addition to two previously reported methodologies that also allow for the targeted suppression of either individual miRNAs, or all members of a MIR gene family; these include miRNA target mimicry and transcriptional gene silencing (TGS) of MIR gene promoters. All three methodologies rely on endogenous gene regulatory machinery and in this article we provide an overview of these technologies and discuss their strengths and weaknesses in inhibiting the activity of their targeted miRNA(s).
Collapse
Affiliation(s)
- Andrew L Eamens
- School of Molecular Bioscience, University of Sydney, Sydney, Australia.
| | | |
Collapse
|
116
|
Hyun TK, Uddin MN, Rim Y, Kim JY. Cell-to-cell trafficking of RNA and RNA silencing through plasmodesmata. PROTOPLASMA 2011; 248:101-16. [PMID: 21042816 DOI: 10.1007/s00709-010-0225-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/14/2010] [Indexed: 05/05/2023]
Abstract
Plasmodesmata (PD) are plasma membrane-lined cytoplasmic channels that cross the cell wall and establish symplasmic continuity between neighboring cells in plants. Recently, a wide range of cellular RNAs (including mRNAs and small RNAs (sRNAs)) have been reported to move from cell to cell through PD trafficking pathways. sRNAs are key molecules that function in transcriptional and post-transcriptional RNA silencing, which is a gene expression regulatory mechanism that is conserved among eukaryotes and is important for protection against invading nucleic acids (such as viruses and transposons) and for developmental and physiological regulation. One of the most intriguing aspects of RNA silencing is that it can function either cell autonomously or non-cell autonomously in post-transcriptional RNA silencing pathways. Although the mechanisms underlying cell-to-cell trafficking of RNA and RNA silencing signals are not fully understood, the movement of specific RNAs seems to play a critical role in cell-to-cell and long-distance regulation of gene expression, thereby coordinating growth and developmental processes, gene silencing, and stress responses. In this review, we summarize the current knowledge regarding cell-to-cell trafficking of RNA molecules (including small RNAs), and we discuss potential molecular mechanisms of cell-to-cell trafficking that are mediated by complex networks.
Collapse
Affiliation(s)
- Tae Kyung Hyun
- Department of Biochemistry, Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, South Korea
| | | | | | | |
Collapse
|
117
|
Kanazawa A, Inaba JI, Shimura H, Otagaki S, Tsukahara S, Matsuzawa A, Kim BM, Goto K, Masuta C. Virus-mediated efficient induction of epigenetic modifications of endogenous genes with phenotypic changes in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:156-168. [PMID: 21175898 DOI: 10.1111/j.1365-313x.2010.04401.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gene silencing through transcriptional repression can be induced by targeting double-stranded RNA (dsRNA) to a gene promoter. It has been reported that a transgene was silenced by targeting dsRNA to the promoter, and the silenced state was inherited to the progeny plant even after removal of the silencing inducer from cells. In contrast, no plant has been produced that harbors silenced endogenous gene after removal of promoter-targeting dsRNA. Here, we show that heritable gene silencing can be induced by targeting dsRNA to the endogenous gene promoters in petunia and tomato plants, using the Cucumber mosaic virus (CMV)-based vector. We found that efficient silencing of endogenous genes depends on the function of the 2b protein encoded in the vector virus, which has the ability to facilitate epigenetic modifications through the transport of short interfering RNA to nucleus. Bisulfite sequencing analyses on the targeted promoter in the virus-infected and its progeny plants revealed that cytosine methylation was found not only at CG or CNG but also at CNN sites. The observed inheritance of asymmetric DNA methylation is quite unique, suggesting that plants have a mechanism to maintain even asymmetric methylation. This CMV-based gene silencing system provides a useful tool to artificially modify DNA methylation in plant genomes and elucidate the mechanism for epigenetic controls.
Collapse
Affiliation(s)
- Akira Kanazawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Jun-Ichi Inaba
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Hanako Shimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Shungo Otagaki
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Sayuri Tsukahara
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Akihiko Matsuzawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Bo Min Kim
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Kazunori Goto
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
118
|
Slootweg E, Roosien J, Spiridon LN, Petrescu AJ, Tameling W, Joosten M, Pomp R, van Schaik C, Dees R, Borst JW, Smant G, Schots A, Bakker J, Goverse A. Nucleocytoplasmic distribution is required for activation of resistance by the potato NB-LRR receptor Rx1 and is balanced by its functional domains. THE PLANT CELL 2010; 22:4195-215. [PMID: 21177483 PMCID: PMC3027179 DOI: 10.1105/tpc.110.077537] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 10/18/2010] [Accepted: 11/19/2010] [Indexed: 05/18/2023]
Abstract
The Rx1 protein, as many resistance proteins of the nucleotide binding-leucine-rich repeat (NB-LRR) class, is predicted to be cytoplasmic because it lacks discernable nuclear targeting signals. Here, we demonstrate that Rx1, which confers extreme resistance to Potato virus X, is located both in the nucleus and cytoplasm. Manipulating the nucleocytoplasmic distribution of Rx1 or its elicitor revealed that Rx1 is activated in the cytoplasm and cannot be activated in the nucleus. The coiled coil (CC) domain was found to be required for accumulation of Rx1 in the nucleus, whereas the LRR domain promoted the localization in the cytoplasm. Analyses of structural subdomains of the CC domain revealed no autonomous signals responsible for active nuclear import. Fluorescence recovery after photobleaching and nuclear fractionation indicated that the CC domain binds transiently to large complexes in the nucleus. Disruption of the Rx1 resistance function and protein conformation by mutating the ATP binding phosphate binding loop in the NB domain, or by silencing the cochaperone SGT1, impaired the accumulation of Rx1 protein in the nucleus, while Rx1 versions lacking the LRR domain were not affected in this respect. Our results support a model in which interdomain interactions and folding states determine the nucleocytoplasmic distribution of Rx1.
Collapse
Affiliation(s)
- Erik Slootweg
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Llave C. Virus-derived small interfering RNAs at the core of plant-virus interactions. TRENDS IN PLANT SCIENCE 2010; 15:701-7. [PMID: 20926332 DOI: 10.1016/j.tplants.2010.09.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/25/2010] [Accepted: 09/03/2010] [Indexed: 05/21/2023]
Abstract
Once a virus enters a cell, viral double-stranded RNA (dsRNA) is targeted by the RNA silencing machinery to initiate a cascade of regulatory events directed by viral small interfering RNAs (vsiRNAs). Recent genetic and functional studies along with the high-throughput sequencing of vsiRNAs have shed light on the genetic and structural requirements for virus targeting, the origins and compositions of vsiRNAs and their potential for controlling gene expression. The precise nature of the triggering molecules of virus-induced RNA silencing or the targeting constraints for viral genome recognition and processing represent outstanding questions that will be discussed in this review. The contribution of vsiRNAs to antiviral defense and host genome modifications has profound implications for our understanding of viral pathogenicity and host specificity in plants.
Collapse
Affiliation(s)
- César Llave
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
120
|
Slootweg E, Roosien J, Spiridon LN, Petrescu AJ, Tameling W, Joosten M, Pomp R, van Schaik C, Dees R, Borst JW, Smant G, Schots A, Bakker J, Goverse A. Nucleocytoplasmic distribution is required for activation of resistance by the potato NB-LRR receptor Rx1 and is balanced by its functional domains. THE PLANT CELL 2010; 22:4195-4215. [PMID: 21177483 DOI: 10.2307/41059420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The Rx1 protein, as many resistance proteins of the nucleotide binding-leucine-rich repeat (NB-LRR) class, is predicted to be cytoplasmic because it lacks discernable nuclear targeting signals. Here, we demonstrate that Rx1, which confers extreme resistance to Potato virus X, is located both in the nucleus and cytoplasm. Manipulating the nucleocytoplasmic distribution of Rx1 or its elicitor revealed that Rx1 is activated in the cytoplasm and cannot be activated in the nucleus. The coiled coil (CC) domain was found to be required for accumulation of Rx1 in the nucleus, whereas the LRR domain promoted the localization in the cytoplasm. Analyses of structural subdomains of the CC domain revealed no autonomous signals responsible for active nuclear import. Fluorescence recovery after photobleaching and nuclear fractionation indicated that the CC domain binds transiently to large complexes in the nucleus. Disruption of the Rx1 resistance function and protein conformation by mutating the ATP binding phosphate binding loop in the NB domain, or by silencing the cochaperone SGT1, impaired the accumulation of Rx1 protein in the nucleus, while Rx1 versions lacking the LRR domain were not affected in this respect. Our results support a model in which interdomain interactions and folding states determine the nucleocytoplasmic distribution of Rx1.
Collapse
Affiliation(s)
- Erik Slootweg
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
βC1 encoded by tomato yellow leaf curl China betasatellite forms multimeric complexes in vitro and in vivo. Virology 2010; 409:156-62. [PMID: 21035158 DOI: 10.1016/j.virol.2010.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/14/2010] [Accepted: 10/05/2010] [Indexed: 11/23/2022]
Abstract
The βC1 protein encoded by betasatellites associated with begomoviruses is multi-functional. To investigate its properties, the βC1 protein encoded by tomato yellow leaf curl China betasatellite (TYLCCNB) was expressed in Escherichia coli and analyzed for its ability to self-interaction. The βC1 protein formed large soluble multimeric complexes in vitro and in vivo. Mutations that prevented formation of multimeric complexes in vitro, also prevented formation of granular bodies in vivo, suggesting that granular bodies resulted from βC1 oligomerization. Similarly, βC1 mutants unable to form complexes also did not induce typical symptoms in plants when expressed from a Potato virus X (PVX) vector, suggesting that βC1 self-interaction was required for symptom induction in planta. Deletion analysis revealed that amino acid sequences spanning two predicted α-helices at the C-terminal end of the protein were important in multimerization.
Collapse
|
122
|
Sun W, Julie Li YS, Huang HD, Shyy JYJ, Chien S. microRNA: a master regulator of cellular processes for bioengineering systems. Annu Rev Biomed Eng 2010; 12:1-27. [PMID: 20415587 DOI: 10.1146/annurev-bioeng-070909-105314] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
microRNAs (miRNAs) are small RNAs 18 to 24 nucleotides in length that serve the pivotal function of regulating gene expression. Instead of being translated into proteins, the mature single-stranded miRNA binds to messenger RNAs (mRNAs) to interfere with the translational process. It is estimated that whereas only 1% of the genomic transcripts in mammalian cells encode miRNA, nearly one-third of the encoded genes are regulated by miRNA. Various bioinformatics databases, tools, and algorithms have been developed to predict the sequences of miRNAs and their target genes. In combination with the in silico approaches in systems biology, experimental studies on miRNA provide a new bioengineering approach for understanding the mechanism of fine-tuning gene regulation. This review aims to provide state-of-the-art information on this important mechanism of gene regulation for researchers working in biomedical engineering and related fields. Particular emphases are placed on summarizing the current tools and strategies for miRNA study from a bioengineering perspective and the possible applications of miRNAs (such as antagomirs and miRNA sponges) in biomedical engineering research.
Collapse
Affiliation(s)
- Wei Sun
- Division of Biomedical Sciences, University of California, Riverside, California 92521, USA
| | | | | | | | | |
Collapse
|
123
|
Chen LL, Carmichael GG. Long noncoding RNAs in mammalian cells: what, where, and why? WILEY INTERDISCIPLINARY REVIEWS. RNA 2010; 1:2-21. [PMID: 21956903 DOI: 10.1002/wrna.5] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Not all long, polyadenylated cellular RNAs encode polypeptides. In recent years, it has become apparent that a number of organisms express abundant amounts of transcripts that lack open reading frames or that are retained in the nucleus. Rather than accumulating silently in the cell, we now know that many of these long noncoding RNAs (lncRNAs) play important roles in nuclear architecture or in the regulation of gene expression. Here, we discuss some recent progress in our understanding of the functions of a number of important lncRNAs in mammalian cells.
Collapse
Affiliation(s)
- Ling-Ling Chen
- Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | |
Collapse
|
124
|
Dalakouras A, Moser M, Krczal G, Wassenegger M. A chimeric satellite transgene sequence is inefficiently targeted by viroid-induced DNA methylation in tobacco. PLANT MOLECULAR BIOLOGY 2010; 73:439-47. [PMID: 20364297 DOI: 10.1007/s11103-010-9631-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 03/18/2010] [Indexed: 05/29/2023]
Abstract
In plants, transgenes containing Potato spindle tuber viroid (PSTVd) cDNA sequences were efficient targets of PSTVd infection-mediated RNA-directed DNA methylation. Here, we demonstrate that in PSTVd-infected tobacco plants, a 134 bp PSTVd fragment (PSTVd-134) did not become densely methylated when it was inserted into a chimeric Satellite tobacco mosaic virus (STMV) construct. Only about 4-5% of all cytosines (Cs) of the PSTVd-134 were methylated when flanked by satellite sequences. In the same plants, C methylation was approximately 92% when the PSTVd-134 was in a PSTVd full length sequence context and roughly 33% when flanked at its 3' end by a 19 bp PSTVd and at its 5' end by a short viroid-unrelated sequence. In addition, PSTVd small interfering RNAs (siRNAs) produced from the replicating viroid failed to target PSTVd-134-containing chimeric STMV RNA for degradation. Satellite RNAs appear to have adopted secondary structures that protect them against RNA interference (RNAi)-mediated degradation. Protection can be extended to short non-satellite sequences residing in satellite RNAs, rendering them poor targets for nuclear and cytoplasmic RNAi induced in trans.
Collapse
Affiliation(s)
- Athanasios Dalakouras
- AlPlanta-Institute for Plant Research, RLP AgroScience GmbH, 67435 Neustadt, Germany
| | | | | | | |
Collapse
|
125
|
Lacorte C, Ribeiro SG, Lohuis D, Goldbach R, Prins M. Potatovirus X and Tobacco mosaic virus-based vectors compatible with the Gateway cloning system. J Virol Methods 2010; 164:7-13. [PMID: 19903495 DOI: 10.1016/j.jviromet.2009.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 11/21/2022]
Abstract
Virus-based expression vectors are important tools for high-level production of foreign proteins and for gene function analysis through virus induced gene silencing. To exploit further their advantages as fast, high yield replicons, a set of vectors was produced by converting and adapting Potato virus X (PVX) and Tobacco mosaic virus (TMV)-based vectors to allow easy cloning of foreign sequences by the Gateway cloning system. Target genes were cloned efficiently by recombination and successfully expressed in Nicotiana benthamiana following inoculation by Agrobacterium (agroinfection). Using green fluorescent protein (GFP) as marker, high-level expression with both PVX-GW and TMV-GW vectors was confirmed. A Gateway inserted phytoene desaturase gene (pds) fragment in PVX-GW and TMV-GW vectors (PVX-GW-PDS and TMC-GW-PDS), induced gene silencing of the endogenous pds gene in N. benthamiana as evidenced by chlorotic leaves. The PVX-GW vector was adapted further by cloning the GFP gene upstream of the Gateway sequences, allowing the easy production of GFP fusions after recombination of a target gene. Subcellular localization of resulting GFP fusion was validated by recombining and expressing the coat protein gene from Tomato chlorotic mottle virus, revealing its nuclear localization. A PVX-GW transient expression assay of a nucleocapsid protein gene fragment of Tomato spotted wilt virus and of a single chain antibody against this protein was shown to confer effective resistance to TSWV infection.
Collapse
Affiliation(s)
- Cristiano Lacorte
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
126
|
Draghici HK, Varrelmann M. Evidence for similarity-assisted recombination and predicted stem-loop structure determinant in potato virus X RNA recombination. J Gen Virol 2010; 91:552-62. [PMID: 19864501 DOI: 10.1099/vir.0.014712-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Virus RNA recombination, one of the main factors for genetic variability and evolution, is thought to be based on different mechanisms. Here, the recently described in vivo potato virus X (PVX) recombination assay [Draghici, H.-K. & Varrelmann, M. (2009). J Virol 83, 7761-7769] was applied to characterize structural parameters of recombination. The assay uses an Agrobacterium-mediated expression system incorporating a PVX green fluorescent protein (GFP)-labelled full-length clone. The clone contains a partial coat protein (CP) deletion that causes defectiveness in cell-to-cell movement, together with a functional CP+3' non-translated region (ntr) transcript, in Nicotiana benthamiana leaf tissue. The structural parameters assessed were the length of sequence overlap, the distance between mutations and the degree of sequence similarity. The effects on the observed frequency of reconstitution and the composition of the recombination products were characterized. Application of four different type X intact PVX CP genes with variable composition allowed the estimation of the junction sites of precise homologous recombination. Although one template switch would have been sufficient for functional reconstitution, between one and seven template switches were observed. Use of PVX-GFP mutants with CP deletions of variable length resulted in a linear decrease of the reconstitution frequency. The critical length observed for homologous recombination was 20-50 nt. Reduction of the reconstitution frequency was obtained when a phylogenetically distant PVX type Bi CP gene was used. Finally, the prediction of CP and 3'-ntr RNA secondary structure demonstrated that recombination-junction sites were located mainly in regions of stem-loop structures, allowing the recombination observed to be categorized as similarity-assisted.
Collapse
Affiliation(s)
- Heidrun-Katharina Draghici
- Department of Crop Sciences, Section Plant Virology, University of Göttingen, Grisebachstrasse 6, D-37077 Göttingen, Germany
| | | |
Collapse
|
127
|
|
128
|
Wang J, Turina M, Stewart LR, Lindbo JA, Falk BW. Agroinoculation of the Crinivirus, Lettuce infectious yellows virus, for systemic plant infection. Virology 2009; 392:131-6. [PMID: 19632699 DOI: 10.1016/j.virol.2009.06.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/09/2009] [Accepted: 06/19/2009] [Indexed: 11/15/2022]
Abstract
Lettuce infectious yellows virus (LIYV) is phloem-limited, non-mechanically transmissible, and is transmitted to plants only by Bemisia tabaci. Here, we developed agroinoculation to deliver LIYV to plants thereby obviating the need for B. tabaci. Agroinfiltration of RNA 1 containing a green fluorescent protein gene into Nicotiana benthamiana leaves resulted in subliminal infections, as judged by green fluorescence. Agroinfiltration of LIYV wild-type RNA 1 and 2 constructs resulted in systemic infections in N. benthamiana plants and typical LIYV symptoms. In addition, partially purified LIYV virions from agroinoculated N. benthamiana plants were successfully acquired via membrane-feeding and transmitted to lettuce plants by B. tabaci. Agroinoculation coupled with targeted mutagenesis technologies will greatly enhance LIYV reverse genetics studies to characterize LIYV gene functions in planta for processes such as virus replication, recombination, trafficking, symptom elicitation and virus-vector interactions.
Collapse
Affiliation(s)
- Jinbo Wang
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
129
|
VAN Poppel PMJA, Jiang RHY, Sliwka J, Govers F. Recognition of Phytophthora infestans Avr4 by potato R4 is triggered by C-terminal domains comprising W motifs. MOLECULAR PLANT PATHOLOGY 2009; 10:611-20. [PMID: 19694952 PMCID: PMC6640270 DOI: 10.1111/j.1364-3703.2009.00556.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
SUMMARY Oomycete RXLR-dEER effector proteins are rapidly evolving proteins with the selective pressure targeted predominantly at their C-terminal ends. The majority of RXLR-dEER proteins have recognizable motifs of 21-30 amino acids in the C-terminal domain that are named after conserved amino acid residues at fixed positions within the respective motifs. In this article, it is reported that the Phytophthora infestans RXLR-dEER protein Avr4 contains three W motifs and one Y motif in its C-terminal domain. Agroinfection assays using constructs encoding modified forms of PiAvr4 have shown that the region containing the W2 motif, in combination with either the W1 or W3 motif, triggers a necrotic response in potato plants carrying the resistance gene R4. By mining the superfamily of avirulence homologues (Avh) deduced from three sequenced Phytophthora genomes, several Avh proteins were identified as homologues of PiAvr4: six in P. infestans, one in P. ramorum and seven in P. sojae. One very close homologue of PiAvr4 was cloned from the sibling species, P. mirabilis. This species is not pathogenic on potato but, similar to PiAvr4, PmirAvh4 triggered a necrotic response on potato clones carrying R4, but not on clones lacking R4. Genes encoding RXLR-dEER effectors are often located in regions showing genome rearrangements. Alignment of the genomic region harbouring PiAvr4 with syntenic regions in P. sojae and P. ramorum revealed that PiAvr4 is located on a 100-kb indel block and is surrounded by transposable elements.
Collapse
Affiliation(s)
- Pieter M J A VAN Poppel
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | |
Collapse
|
130
|
Draghici HK, Varrelmann M. Evidence that the linker between the methyltransferase and helicase domains of potato virus X replicase is involved in homologous RNA recombination. J Virol 2009; 83:7761-9. [PMID: 19439477 PMCID: PMC2708637 DOI: 10.1128/jvi.00179-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 05/07/2009] [Indexed: 12/29/2022] Open
Abstract
Recombination in RNA viruses, one of the main factors contributing to their genetic variability and evolution, is a widespread phenomenon. In this study, an in vivo assay to characterize RNA recombination in potato virus X (PVX), under high selection pressure, was established. Agrobacterium tumefaciens was used to express in Nicotiana benthamiana leaf tissue both a PVX isolate labeled with green fluorescent protein (GFP) containing a coat protein deletion mutation (DeltaCP) and a transcript encoding a functional coat protein +3'-ntr. Coexpression of the constructs led to virus movement and systemic infection; reconstituted recombinants were observed in 92% of inoculated plants. Similar results were obtained using particle bombardment, demonstrating that recombination mediated by A. tumefaciens was not responsible for the occurrence of PXC recombinants. The speed of recombination could be estimated by agroinfection of two PVX mutants lacking the 3' and 5' halves of the genome, respectively, with an overlap in the triple gene block 1 gene, allowing GFP expression only in the case of recombination. Ten different pentapeptide insertion scanning replicase mutants with replication abilities comparable to wild-type virus were applied in the different recombination assays. Two neighboring mutants affecting the linker between the methyltransferase and helicase domains were shown to be strongly debilitated in their ability to recombine. The possible functional separation of replication and recombination in the replicase molecule supports the model that RNA recombination represents a distinct function of this protein, although the underlying mechanism still needs to be investigated.
Collapse
Affiliation(s)
- Heidrun-Katharina Draghici
- Department of Crop Sciences, Section Plant Virology, University of Göttingen, Grisebachstrasse 6, D-37077 Göttingen, Germany
| | | |
Collapse
|
131
|
Class B beta-expansins are needed for pollen separation and stigma penetration. ACTA ACUST UNITED AC 2009; 22:141-52. [PMID: 20033435 DOI: 10.1007/s00497-009-0099-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 05/14/2009] [Indexed: 01/01/2023]
Abstract
Group 1 grass pollen allergens comprise a distinctive clade within the beta-expansin family of cell wall-loosening proteins and are divided by sequence divergence into two phylogenetically separable classes (A and B). They have been proposed to loosen the walls of the stigma and style. Supporting this idea, we recently showed that a transposon insertion in one of the maize group-1 allergen genes reduces the ability of pollen to effect fertilization under conditions of pollen competition. In this work, we provide additional information on the phenotype of this mutant, showing that pollen deficient in beta-expansin gene expression tended to form large aggregates, leading to poor pollen dispersal on anther dehiscence, and that emerging pollen tubes had difficulties entering the silk. In addition, a silencing construct was created to reduce expression of all the class B genes with results that are consistent with those seen with the transposon insertional line, including reduced transgene transmission through the pollen. Our results provide a more detailed understanding of the role of group 1 allergens (pollen beta-expansins) in maize pollen development, pollen dispersal, pollen tube penetration into the style, and pollen tube growth through the transmitting tract.
Collapse
|
132
|
De Riso V, Raniello R, Maumus F, Rogato A, Bowler C, Falciatore A. Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res 2009; 37:e96. [PMID: 19487243 PMCID: PMC2724275 DOI: 10.1093/nar/gkp448] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Diatoms are a major but poorly understood phytoplankton group. The recent completion of two whole genome sequences has revealed that they contain unique combinations of genes, likely recruited during their history as secondary endosymbionts, as well as by horizontal gene transfer from bacteria. A major limitation for the study of diatom biology and gene function is the lack of tools to generate targeted gene knockout or knockdown mutants. In this work, we have assessed the possibility of triggering gene silencing in Phaeodactylum tricornutum using constructs containing either anti-sense or inverted repeat sequences of selected target genes. We report the successful silencing of a GUS reporter gene expressed in transgenic lines, as well as the knockdown of endogenous phytochrome (DPH1) and cryptochrome (CPF1) genes. To highlight the utility of the approach we also report the first phenotypic characterization of a diatom mutant (cpf1). Our data open the way for reverse genetics in diatoms and represent a major advance for understanding their biology and ecology. Initial molecular analyses reveal that targeted downregulation likely occurs through transcriptional and post-transcriptional gene silencing mechanisms. Interestingly, molecular players involved in RNA silencing in other eukaryotes are only poorly conserved in diatoms.
Collapse
Affiliation(s)
- Valentina De Riso
- Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
133
|
Wang MB, Dennis ES. SPT5-like, a new component in plant RdDM. EMBO Rep 2009; 10:573-5. [PMID: 19444314 DOI: 10.1038/embor.2009.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 04/20/2009] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ming-Bo Wang
- Commonwealth Scientific and Industrial Research Organization, Plant Industry, Canberra, Australia
| | | |
Collapse
|
134
|
Buchmann RC, Asad S, Wolf JN, Mohannath G, Bisaro DM. Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation. J Virol 2009. [PMID: 19279102 DOI: 10.1128/jvi.01771-1778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Geminiviruses replicate single-stranded DNA genomes through double-stranded intermediates that associate with cellular histone proteins. Unlike RNA viruses, they are subject to RNA-directed methylation pathways that target viral chromatin and likely lead to transcriptional gene silencing (TGS). Here we present evidence that the related geminivirus proteins AL2 and L2 are able to suppress this aspect of host defense. AL2 and L2 interact with and inactivate adenosine kinase (ADK), which is required for efficient production of S-adenosyl methionine, an essential methyltransferase cofactor. We demonstrate that the viral proteins can reverse TGS of a green fluorescent protein (GFP) transgene in Nicotiana benthamiana when overexpressed from a Potato virus X vector and that reversal of TGS by geminiviruses requires L2 function. We also show that AL2 and L2 cause ectopic expression of endogenous Arabidopsis thaliana loci silenced by methylation in a manner that correlates with ADK inhibition. However, at one exceptional locus, ADK inhibition was insufficient and TGS reversal required the transcriptional activation domain of AL2. Using restriction-sensitive PCR and bisulfite sequencing, we showed that AL2-mediated TGS suppression is accompanied by reduced cytosine methylation. Finally, using a methylation-sensitive single-nucleotide extension assay, we showed that transgenic expression of AL2 or L2 causes global reduction in cytosine methylation. Our results provide further evidence that viral chromatin methylation is an important host defense and allow us to propose that as a countermeasure, geminivirus proteins reverse TGS by nonspecifically inhibiting cellular transmethylation reactions. To our knowledge, this is the first report that viral proteins can inhibit TGS.
Collapse
Affiliation(s)
- R Cody Buchmann
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
135
|
Buchmann RC, Asad S, Wolf JN, Mohannath G, Bisaro DM. Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation. J Virol 2009; 83:5005-13. [PMID: 19279102 PMCID: PMC2682068 DOI: 10.1128/jvi.01771-08] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 02/24/2009] [Indexed: 12/31/2022] Open
Abstract
Geminiviruses replicate single-stranded DNA genomes through double-stranded intermediates that associate with cellular histone proteins. Unlike RNA viruses, they are subject to RNA-directed methylation pathways that target viral chromatin and likely lead to transcriptional gene silencing (TGS). Here we present evidence that the related geminivirus proteins AL2 and L2 are able to suppress this aspect of host defense. AL2 and L2 interact with and inactivate adenosine kinase (ADK), which is required for efficient production of S-adenosyl methionine, an essential methyltransferase cofactor. We demonstrate that the viral proteins can reverse TGS of a green fluorescent protein (GFP) transgene in Nicotiana benthamiana when overexpressed from a Potato virus X vector and that reversal of TGS by geminiviruses requires L2 function. We also show that AL2 and L2 cause ectopic expression of endogenous Arabidopsis thaliana loci silenced by methylation in a manner that correlates with ADK inhibition. However, at one exceptional locus, ADK inhibition was insufficient and TGS reversal required the transcriptional activation domain of AL2. Using restriction-sensitive PCR and bisulfite sequencing, we showed that AL2-mediated TGS suppression is accompanied by reduced cytosine methylation. Finally, using a methylation-sensitive single-nucleotide extension assay, we showed that transgenic expression of AL2 or L2 causes global reduction in cytosine methylation. Our results provide further evidence that viral chromatin methylation is an important host defense and allow us to propose that as a countermeasure, geminivirus proteins reverse TGS by nonspecifically inhibiting cellular transmethylation reactions. To our knowledge, this is the first report that viral proteins can inhibit TGS.
Collapse
Affiliation(s)
- R Cody Buchmann
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
136
|
Xiong R, Wu J, Zhou Y, Zhou X. Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus. Virology 2009; 387:29-40. [PMID: 19251298 DOI: 10.1016/j.virol.2009.01.045] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/22/2008] [Accepted: 01/29/2009] [Indexed: 11/24/2022]
Abstract
Rice stripe virus (RSV) is a single-stranded (ss) RNA virus belonging to the genus Tenuivirus. RSV is present in many East Asian countries and causes severe diseases in rice fields, especially in China. In this study, we analyzed six proteins encoded by the virus for their abilities to suppress RNA silencing in plant using a green fluorescent protein (GFP)-based transient expression assay. Our results indicate that NS3 encoded by RSV RNA3, but not other five RSV encoded proteins, can strongly suppress local GFP silencing in agroinfiltrated Nicotiana benthamiana leaves. NS3 can reverse the GFP silencing, it can also prevent long distance spread of silencing signals which have been reported to be necessary for inducing systemic silencing in host plants. The NS3 protein can significantly reduce the levels of small interfering RNAs (siRNAs) in silencing cells, and was found to bind 21-nucleotide ss-siRNA, siRNA duplex and long ssRNA but not long double-stranded (ds)-RNA. Both N and C terminal of the NS3 protein are critical for silencing suppression, and mutation of the putative nuclear localization signal decreases its local silencing suppression efficiency and blocks its systemic silencing suppression. The NS3-GFP fusion protein and NS3 were shown to accumulate predominantly in nuclei of onion, tobacco and rice cells through transient expression assay or immunocytochemistry and electron microscopy. In addition, transgenic rice and tobacco plants expressing the NS3 did not show any apparent alteration in plant growth and morphology, although NS3 was proven to be a pathogenicity determinant in the PVX heterogenous system. Taken together, our results demonstrate that RSV NS3 is a suppressor of RNA silencing in planta, possibly through sequestering siRNA molecules generated in cells that are undergoing gene silencing.
Collapse
Affiliation(s)
- Ruyi Xiong
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
| | | | | | | |
Collapse
|
137
|
Draghici HK, Pilot R, Thiel H, Varrelmann M. Functional mapping of PVX RNA-dependent RNA-replicase using pentapeptide scanning mutagenesis-Identification of regions essential for replication and subgenomic RNA amplification. Virus Res 2009; 143:114-24. [PMID: 19463728 DOI: 10.1016/j.virusres.2009.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/23/2009] [Accepted: 03/25/2009] [Indexed: 12/31/2022]
Abstract
The replicase protein of Potato virus X (PVX), type species of the genus Potexvirus, was selected to identify regions essential for replication and subgenomic RNA synthesis. Replicase amino acid (aa) sequence alignment of 16 Potexvirus species resulted in the detection of overall sequence homology of 34.4-65.4%. Two regions of consensus with a high proportion of conserved aa (1-411 and 617-1437 according to PVX) were separated by a hyper-variable linker region. Pentapeptide scanning (PS) mutagenesis in a PVX full-length clone expressing green fluorescent protein (GFP) was carried out. For 69 selected PS-mutants where insertions were spread randomly over the replicase ORF the position of the insertion was determined. The replication activity was evaluated by GFP expression from subgenomic viral RNA of PVX replicase mutants. Only one functional PS-mutant was detected in the N-terminal 430 aa, containing the conserved methyltransferase domain of the protein. In the linker region from aa 430-595, nine mutations were discovered which did not induce significant effects on the replicase replication ability. The part of the protein including helicase and polymerase domains was highly intolerant for the PS insertion as demonstrated by 24 independent more or less uniformly spread mutants.
Collapse
Affiliation(s)
- Heidrun-Katharina Draghici
- Department of Crop Sciences, Section Plant Virology, University of Göttingen, Grisebachstrasse 6, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
138
|
Vaistij FE, Jones L. Compromised virus-induced gene silencing in RDR6-deficient plants. PLANT PHYSIOLOGY 2009; 149:1399-407. [PMID: 19129420 PMCID: PMC2649407 DOI: 10.1104/pp.108.132688] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Accepted: 12/31/2008] [Indexed: 05/18/2023]
Abstract
RNA silencing in plants serves as a potent antiviral defense mechanism through the action of small interfering RNAs (siRNAs), which direct RNA degradation. siRNAs can be derived directly from the viral genome or via the action of host-encoded RNA-dependent RNA polymerases (RDRs). Plant genomes encode multiple RDRs, and it has been demonstrated that plants defective for RDR6 hyperaccumulate several classes of virus. In this study, we compared the effectiveness of virus-induced gene silencing (VIGS) and RNA-directed DNA methylation (RdDM) in wild-type and RDR6-deficient Nicotiana benthamiana plants. For the potexvirus Potato virus X (PVX) and the potyvirus Plum pox virus (PPV), the efficiency of both VIGS and RdDM were compromised in RDR6-defective plants despite accumulating high levels of viral siRNAs similar to infection of wild-type plants. The reduced efficiency of VIGS and RdDM was unrelated to the size class of siRNA produced and, at least for PVX, was not dependent on the presence of the virus-encoded silencing suppressor protein, 25K. We suggest that primary siRNAs produced from PVX and PPV in the absence of RDR6 may not be good effectors of silencing and that RDR6 is required to produce secondary siRNAs that drive a more effective antiviral response.
Collapse
Affiliation(s)
- Fabián E Vaistij
- Centre for Novel Agricultural Products , University of York, York YO10 5DD, UK.
| | | |
Collapse
|
139
|
Sherbet GV. Metastasis promoter S100A4 is a potentially valuable molecular target for cancer therapy. Cancer Lett 2008; 280:15-30. [PMID: 19059703 DOI: 10.1016/j.canlet.2008.10.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/30/2008] [Accepted: 10/27/2008] [Indexed: 11/25/2022]
Abstract
The growth, invasion and metastatic spread of cancer have been identified with the deregulation of cell proliferation, altered intercellular and cell-substratum adhesion and enhanced motility and the deposition of disseminated cancer cells at distant sites. The identification of therapeutic targets for cancer is crucial to human welfare. Drug development, molecular modelling and design of effective drugs greatly depend upon the identification of suitable therapeutic targets. Several genetic determinants relating to proliferation and growth, invasion and metastasis have been identified. S100A4 appears to be able to activate and integrate pathways to generate the phenotypic responses that are characteristic of cancer. S100A4 signalling can focus on factors associated with normal and aberrant proliferation, apoptosis and growth, and differentiation. It is able to activate signalling pathways leading to the remodelling of the cell membrane and the extracellular matrix; modulation of cytoskeletal dynamics, acquisition of invasiveness and induction of angiogenesis. Therefore S100A4 is arguably a molecular target of considerable potential possessing a wide ranging biological activity that can alter and regulate the major phenotypic features of cancer. The evolution of an appropriate strategy that permits the identification of therapeutic targets most likely to be effective in the disease process without unduly affecting normal biological processes and function is an incontrovertible imperative. By virtue of its ability to activate interacting and multi-functional signalling systems, S100A4 appears to offer suitable targets for developing new therapeutic procedures. Some effectors of the S100A4-activated pathways might also lend themselves as foci of therapeutic interest.
Collapse
Affiliation(s)
- G V Sherbet
- School of Electrical, Electronic and Computer Engineering, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
140
|
Describing Epigenomic Information in Arabidopsis. Epigenomics 2008. [DOI: 10.1007/978-1-4020-9187-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
141
|
Miki D, Shimamoto K. De novo DNA methylation induced by siRNA targeted to endogenous transcribed sequences is gene-specific and OsMet1-independent in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:539-49. [PMID: 18643988 DOI: 10.1111/j.1365-313x.2008.03624.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Small interfering RNA (siRNA) is an essential factor for epigenetic modification of the genome. Recent studies have suggested that endogenous siRNAs induce DNA methylation, chromatin modification and chromatin inactivation at homologous sequences. We have shown that siRNAs targeted to promoter regions of endogenous rice genes induce strong DNA methylation of the targeted sequences, but transcriptional gene silencing is rarely observed. Here, an analysis of epigenetic modifications induced by RNAi targeted to transcribed regions of endogenous rice genes shows that the effects of siRNA are gene-specific, but that they tend to induce higher de novo DNA methylation of CpG dinucleotides than of other cytosines. However, loss of OsMet1 expression by RNAi did not significantly affect levels and patterns of de novo DNA methylation or post-transcriptional mRNA suppression. We also showed that sequence-specific de novo DNA methylation extended both 5' and 3' of the targeted sequences, but there was no significant extension of siRNA signals either 5' or 3'. These results suggest that exogenous siRNAs are strong inducers of de novo DNA methylation in transcribed sequences of rice endogenous genes, but are insufficient to induce heterochromatin formation.
Collapse
Affiliation(s)
- Daisuke Miki
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma 630-0101, Japan
| | | |
Collapse
|
142
|
van Poppel PMJA, Guo J, van de Vondervoort PJI, Jung MWM, Birch PRJ, Whisson SC, Govers F. The Phytophthora infestans avirulence gene Avr4 encodes an RXLR-dEER effector. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1460-70. [PMID: 18842095 DOI: 10.1094/mpmi-21-11-1460] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Resistance in potato against the oomycete Phytophthora infestans is conditioned by resistance (R) genes that are introgressed from wild Solanum spp. into cultivated potato. According to the gene-for-gene model, proteins encoded by R genes recognize race-specific effectors resulting in a hypersensitive response (HR). We isolated P. infestans avirulence gene PiAvr4 using a combined approach of genetic mapping, transcriptional profiling, and bacterial artificial chromosome marker landing. PiAvr4 encodes a 287-amino-acid-protein that belongs to a superfamily of effectors sharing the putative host-cell-targeting motif RXLR-dEER. Transformation of P. infestans race 4 strains with PiAvr4 resulted in transformants that were avirulent on R4 potato plants, demonstrating that PiAvr4 is responsible for eliciting R4-mediated resistance. Moreover, expression of PiAvr4 in R4 plants using PVX agroinfection and agroinfiltration showed that PiAvr4 itself is the effector that elicits HR on R4 but not r0 plants. The presence of the RXLR-dEER motif suggested intracellular recognition of PiAvr4. This was confirmed in agroinfiltration assays but not with PVX agroinfection. Because there was always recognition of PiAvr4 retaining the signal peptide, extracellular recognition cannot be excluded. Deletion of the RXLR-dEER domain neither stimulated nor prevented elicitor activity of PiAvr4. Race 4 strains have frame shift mutations in PiAvr4 that result in truncated peptides; hence, PiAvr4 is apparently not crucial for virulence.
Collapse
Affiliation(s)
- Pieter M J A van Poppel
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen and Graduate School Experimental Plant Sciences, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
143
|
Lovato FA, Inoue-Nagata AK, Nagata T, de Avila AC, Pereira LAR, Resende RO. The N protein of Tomato spotted wilt virus (TSWV) is associated with the induction of programmed cell death (PCD) in Capsicum chinense plants, a hypersensitive host to TSWV infection. Virus Res 2008; 137:245-52. [PMID: 18722487 DOI: 10.1016/j.virusres.2008.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Revised: 07/13/2008] [Accepted: 07/20/2008] [Indexed: 11/30/2022]
Abstract
In sweet pepper, the Tsw gene, originally described in Capsicum chinense, has been widely used as an efficient gene for inducing a hypersensitivity response (HR) derived Tomato spotted wilt virus (TSWV) resistance. Since previously reported studies suggested that the TSWV-S RNA mutation(s) are associated with the breakdown of Tsw mediated TSWV resistance in peppers, the TSWV genes N (structural nucleocapsid protein) and NS(S) (non-structural silencing suppressor protein) were cloned into a Potato virus X (PVX)-based expression vector, and inoculated into the TSWV-resistant C. chinense genotype, PI 159236, to identify the Tsw-HR viral elicitor. Typical HR-like chlorotic and necrotic lesions followed by leaf abscission were observed only in C. chinense plants inoculated with the PVX-N construct. Cytopathological analyses of these plants identified fragmented genomic DNA, indicative of programmed cell death (PCD), in mesophyll cell nuclei surrounding PVX-N-induced necrotic lesions. The other constructs induced only PVX-like symptoms without HR-like lesions and there were no microscopic signs of PCD. The mechanism of TSWV N-gene HR induction is apparently species specific as the N gene of a related tospovirus, Tomato chlorotic spot virus, was not a HR elicitor and did not cause PCD in infected cells.
Collapse
|
144
|
Multiple suppressors of RNA silencing encoded by both genomic RNAs of the crinivirus, Tomato chlorosis virus. Virology 2008; 379:168-74. [DOI: 10.1016/j.virol.2008.06.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 06/08/2008] [Accepted: 06/16/2008] [Indexed: 11/22/2022]
|
145
|
Vleeshouwers VGAA, Rietman H, Krenek P, Champouret N, Young C, Oh SK, Wang M, Bouwmeester K, Vosman B, Visser RGF, Jacobsen E, Govers F, Kamoun S, Van der Vossen EAG. Effector genomics accelerates discovery and functional profiling of potato disease resistance and phytophthora infestans avirulence genes. PLoS One 2008; 3:e2875. [PMID: 18682852 PMCID: PMC2483939 DOI: 10.1371/journal.pone.0002875] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 07/08/2008] [Indexed: 11/18/2022] Open
Abstract
Potato is the world's fourth largest food crop yet it continues to endure late blight, a devastating disease caused by the Irish famine pathogen Phytophthora infestans. Breeding broad-spectrum disease resistance (R) genes into potato (Solanum tuberosum) is the best strategy for genetically managing late blight but current approaches are slow and inefficient. We used a repertoire of effector genes predicted computationally from the P. infestans genome to accelerate the identification, functional characterization, and cloning of potentially broad-spectrum R genes. An initial set of 54 effectors containing a signal peptide and a RXLR motif was profiled for activation of innate immunity (avirulence or Avr activity) on wild Solanum species and tentative Avr candidates were identified. The RXLR effector family IpiO induced hypersensitive responses (HR) in S. stoloniferum, S. papita and the more distantly related S. bulbocastanum, the source of the R gene Rpi-blb1. Genetic studies with S. stoloniferum showed cosegregation of resistance to P. infestans and response to IpiO. Transient co-expression of IpiO with Rpi-blb1 in a heterologous Nicotiana benthamiana system identified IpiO as Avr-blb1. A candidate gene approach led to the rapid cloning of S. stoloniferum Rpi-sto1 and S. papita Rpi-pta1, which are functionally equivalent to Rpi-blb1. Our findings indicate that effector genomics enables discovery and functional profiling of late blight R genes and Avr genes at an unprecedented rate and promises to accelerate the engineering of late blight resistant potato varieties.
Collapse
|
146
|
Eamens A, Vaistij FE, Jones L. NRPD1a and NRPD1b are required to maintain post-transcriptional RNA silencing and RNA-directed DNA methylation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:596-606. [PMID: 18433438 DOI: 10.1111/j.1365-313x.2008.03525.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In plants, both transcriptional (TGS) and post-transcriptional gene silencing (PTGS) can be self-reinforcing, and this allows maintenance of silencing once the initiator has been removed or suppressed. For TGS, this can be accomplished by the generation of small interfering RNAs (siRNAs) from methylated DNA templates by RNA polymerase IV (PolIV), RNA-dependent RNA polymerase 2 (RDR2), DICER-LIKE 3 (DCL3), and the RNA-directed DNA methylation (RdDM) machinery. Maintenance of PTGS requires RNA-dependent RNA polymerase 6 (RDR6), and may be associated with DNA methylation and transitive production of secondary siRNAs. In this work, mutants defective for the NRPD1a and NRPD1b alternative largest subunits of PolIV were tested for their ability to undergo RdDM, transitive RNA silencing and maintenance of PTGS. PTGS could be initiated in both nrpd1a and nrpd1b mutants, and this was associated with production of secondary siRNAs; silencing was not maintained however. nrpd1a mutants could support RdDM although this was lost upon reversal of silencing, as was methylation in rdr6 mutants. We conclude that components of the machinery that maintain TGS are required for maintenance of PTGS, and that RDR6 uses distinct templates in the initiation and maintenance phases of RNA silencing.
Collapse
|
147
|
Chan SWL. Inputs and outputs for chromatin-targeted RNAi. TRENDS IN PLANT SCIENCE 2008; 13:383-389. [PMID: 18550415 DOI: 10.1016/j.tplants.2008.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 05/01/2008] [Accepted: 05/01/2008] [Indexed: 05/26/2023]
Abstract
Plant gene silencing is targeted to transposons and repeated sequences by small RNAs from the RNA interference (RNAi) pathway. Like classical RNAi, RNA-directed chromatin silencing involves the cleavage of double-stranded RNA by Dicer endonucleases to create small interfering RNAs (siRNAs), which bind to the Argonaute protein. The production of double-stranded RNA (dsRNA) must be carefully controlled to prevent inappropriate silencing. A plant-specific RNA polymerase IV (Pol IV) initiates siRNA production at silent heterochromatin, but Pol IV-independent mechanisms for making dsRNA also exist. Downstream of siRNA biogenesis, multiple chromatin marks might be targeted by Argonaute-siRNA complexes, yet mechanisms of chromatin modification remain poorly understood. Genomic studies of siRNA target loci promise to reveal novel biological functions for chromatin-targeted RNAi.
Collapse
Affiliation(s)
- Simon W-L Chan
- Department of Plant Biology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
148
|
Sarathi M, Simon MC, Venkatesan C, Hameed ASS. Oral administration of bacterially expressed VP28dsRNA to protect Penaeus monodon from white spot syndrome virus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:242-249. [PMID: 18202890 DOI: 10.1007/s10126-007-9057-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 09/13/2007] [Accepted: 09/27/2007] [Indexed: 05/25/2023]
Abstract
We explored the possibility of protecting Penaeus monodon against white spot syndrome virus (WSSV) infection via interference RNA technology by oral administration of bacterially expressed WSSV VP28dsRNA. Shrimp were given dsRNA orally via two methods. In the first method, pellet feed was coated with inactivated bacteria containing overexpressed dsRNA of the WSSV VP28 gene, and in the second method, pellet feed was coated with VP28dsRNA-chitosan complex nanoparticles. The treated shrimp were orally challenged with WSSV by feeding WSSV-infected tissue. The experiment was conducted for 30 days. The dsRNA-treated shrimp challenged with WSSV showed higher survival compared to control shrimp. Sixty-eight percent survival was observed in shrimp fed with feed coated with inactivated bacteria containing dsRNA of the WSSV VP28 gene whereas 37% survival was observed in shrimp fed with VP28dsRNA-chitosan complex nanoparticle-coated feed. The WSSV caused 100% mortality in shrimp fed with pellet feed coated with inactivated bacteria with empty LITMUS38i vector. At the end of the experiment, the tissue samples prepared from randomly selected shrimp that survived were analyzed via reverse transcriptase-polymerase chain reaction and Western blot analysis for WSSV. The samples were negative for WSSV. Based on the present data and the advantages of dsRNA, we believe that oral administration of crude extract of bacterially expressed VP28dsRNA is a potential therapeutic agent against WSSV infection of shrimp.
Collapse
Affiliation(s)
- M Sarathi
- Aquaculture Biotechnology Division, Department of Zoology, C. Abdul Hakeem College, Melvisharam -632 509, Vellore Dist., Tamil Nadu, India
| | | | | | | |
Collapse
|
149
|
Wang MB, Helliwell CA, Wu LM, Waterhouse PM, Peacock WJ, Dennis ES. Hairpin RNAs derived from RNA polymerase II and polymerase III promoter-directed transgenes are processed differently in plants. RNA (NEW YORK, N.Y.) 2008; 14:903-13. [PMID: 18367720 PMCID: PMC2327362 DOI: 10.1261/rna.760908] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 02/06/2008] [Indexed: 05/21/2023]
Abstract
RNA polymerase III (Pol III) as well as Pol II (35S) promoters are able to drive hairpin RNA (hpRNA) expression and induce target gene silencing in plants. siRNAs of 21 nt are the predominant species in a 35S Pol II line, whereas 24- and/or 22-nucleotide (nt) siRNAs are produced by a Pol III line. The 35S line accumulated the loop of the hpRNA, in contrast to full-length hpRNA in the Pol III line. These suggest that Pol II and Pol III-transcribed hpRNAs are processed by different pathways. One Pol III transgene produced only 24-nt siRNAs but silenced the target gene efficiently, indicating that the 24-nt siRNAs can direct mRNA degradation; specific cleavage was confirmed by 5' rapid amplification of cDNA ends (RACE). Both Pol II- and Pol III-directed hpRNA transgenes induced cytosine methylation in the target DNA. The extent of methylation is not correlated with the level of 21-nt siRNAs, suggesting that they are not effective inducers of DNA methylation. The promoter of a U6 transgene was significantly methylated, whereas the promoter of the endogenous U6 gene was almost free of cytosine methylation, suggesting that endogenous sequences are more resistant to de novo DNA methylation than are transgene constructs.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Base Sequence
- DNA Methylation
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Gene Silencing
- Genes, Plant
- Oryza/genetics
- Oryza/metabolism
- Plants/genetics
- Plants/metabolism
- Plants, Genetically Modified
- Promoter Regions, Genetic
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA Polymerase III/genetics
- RNA Polymerase III/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Ming-Bo Wang
- Commonwealth Scientific and Industrial Research Organisation Plant Industry, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | | | | | |
Collapse
|
150
|
Sarathi M, Simon MC, Ahmed VPI, Kumar SR, Hameed ASS. Silencing VP28 gene of white spot syndrome virus of shrimp by bacterially expressed dsRNA. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:198-206. [PMID: 17965920 DOI: 10.1007/s10126-007-9052-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Revised: 09/01/2007] [Accepted: 09/04/2007] [Indexed: 05/25/2023]
Abstract
An in vivo expression system to produce large amounts of virus-derived dsRNAs in bacteria to provide a practical control of white spot syndrome virus (WSSV) in shrimp was developed. The bacterially synthesized dsRNA specific to VP28 gene of WSSV promoted gene-specific interference with the WSSV infection in shrimp. Virus infectivity was significantly reduced in WSSV-challenged shrimp injected with VP28-dsRNA and 100% survival was recorded. The inhibition of the expression of WSSV VP28 gene in experimentally challenged animals by VP28-dsRNA was confirmed by RT-PCR and Western blot analyses. Furthermore, we have demonstrated the efficacy of bacterially expressed VP28-dsRNA to silence VP28 gene expression in SISK cell line transfected with eukaryotic expression vector (pcDNA3.1) inserted with VP28 gene of WSSV. The expression level of VP28 gene in SISK cells was determined by fluorescent microscopy and ELISA. The results showed that the expression was significantly reduced in cells transfected with VP28dsRNA, whereas the cells transected with pcDNA-VP28 alone showed higher expression. The in vivo production of dsRNA using prokaryotic expression system could be an alternative to in vitro method for large-scale production of dsRNA corresponding to VP28 gene of WSSV for practical application to control the WSSV in shrimp farming.
Collapse
Affiliation(s)
- M Sarathi
- Aquaculture Biotechnology Division, Department of Zoology, C. Abdul Hakeem College, Melvisharam-632, 509, Tamil Nadu, India
| | | | | | | | | |
Collapse
|