101
|
Wang J, Hao F, Song K, Jin W, Fu B, Wei Y, Shi Y, Guo H, Liu W. Identification of a Novel NtLRR-RLK and Biological Pathways That Contribute to Tolerance of TMV in Nicotiana tabacum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:996-1006. [PMID: 32196398 DOI: 10.1094/mpmi-12-19-0343-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tobacco mosaic virus (TMV) infection can causes serious damage to tobacco crops. To explore the approach of preventing TMV infection of plants, two tobacco cultivars with different resistances to TMV were used to analyze transcription profiling before and after TMV infection. The involvement of biological pathways differed between the tolerant variety (Yuyan8) and the susceptible variety (NC89). In particular, the plant-virus interaction pathway was rapidly activated in Yuyan8, and specific resistance genes were enriched. Liquid chromatography tandem mass spectrometry analysis detected large quantities of antiviral substances in the tolerant Yuyan8. A novel Nicotiana tabacum leucine-rich repeat receptor kinase (NtLRR-RLK) gene was identified as being methylated and this was verified using bisulfite sequencing. Transient expression of TMV-green fluorescent protein in pRNAi-NtLRR-RLK transgenic plants confirmed that NtLRR-RLK was important for susceptibility to TMV. The specific protein interaction map generated from our study revealed that levels of BIP1, E3 ubiquitin ligase, and LRR-RLK were significantly elevated, and all were represented at node positions in the protein interaction map. The same expression tendency of these proteins was also found in pRNAi-NtLRR-RLK transgenic plants at 24 h after TMV inoculation. These data suggested that specific genes in the infection process can activate the immune signal cascade through different resistance genes, and the integration of signal pathways could produce resistance to the virus. These results contribute to the overall understanding of the molecular basis of plant resistance to TMV and in the long term could identify new strategies for prevention and control virus infection.
Collapse
Affiliation(s)
- Jing Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Fengsheng Hao
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Kunfeng Song
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Weihuan Jin
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Bo Fu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Yuanfang Wei
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yongchun Shi
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Weiqun Liu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
102
|
Jones TKL, Medina RF. Corn Stunt Disease: An Ideal Insect-Microbial-Plant Pathosystem for Comprehensive Studies of Vector-Borne Plant Diseases of Corn. PLANTS 2020; 9:plants9060747. [PMID: 32545891 PMCID: PMC7356856 DOI: 10.3390/plants9060747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
Over 700 plant diseases identified as vector-borne negatively impact plant health and food security globally. The pest control of vector-borne diseases in agricultural settings is in urgent need of more effective tools. Ongoing research in genetics, molecular biology, physiology, and vector behavior has begun to unravel new insights into the transmission of phytopathogens by their insect vectors. However, the intricate mechanisms involved in phytopathogen transmission for certain pathosystems warrant further investigation. In this review, we propose the corn stunt pathosystem (Zea mays-Spiroplasma kunkelii-Dalbulus maidis) as an ideal model for dissecting the molecular determinants and mechanisms underpinning the persistent transmission of a mollicute by its specialist insect vector to an economically important monocotyledonous crop. Corn stunt is the most important disease of corn in the Americas and the Caribbean, where it causes the severe stunting of corn plants and can result in up to 100% yield loss. A comprehensive study of the corn stunt disease system will pave the way for the discovery of novel molecular targets for genetic pest control targeting either the insect vector or the phytopathogen.
Collapse
Affiliation(s)
- Tara-kay L. Jones
- Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX 77843-2475, USA;
- Texas A&M AgriLife Research—Weslaco, 2415 E. Business 83, Weslaco, TX 78596-8344, USA
| | - Raul F. Medina
- Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX 77843-2475, USA;
- Correspondence: ; Tel.: +1-979-845-4775
| |
Collapse
|
103
|
Križnik M, Baebler Š, Gruden K. Roles of small RNAs in the establishment of tolerant interaction between plants and viruses. Curr Opin Virol 2020; 42:25-31. [PMID: 32480352 DOI: 10.1016/j.coviro.2020.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
In a tolerant plant-virus interaction, viral multiplication is sustained without substantial effects on plant growth or reproduction. Such interactions are, in natural environments, frequent and sometimes even beneficial for both interactors. Here we compiled evidence showing that small RNAs modulate plant immune responses and growth, hence adjusting its physiology to enable a tolerant interaction. Importantly, the role of small RNAs in tolerant interactions resembles that required for establishment of a mutualistic symbiosis. Tolerance can become a sustainable strategy for breeding for virus resistance as selection pressure for emergence of more aggressive strains is low. Understanding the processes underlying establishment of tolerance is, therefore, important for the development of future crops.
Collapse
Affiliation(s)
- Maja Križnik
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Špela Baebler
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Kristina Gruden
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
104
|
Kappagantu M, Collum TD, Dardick C, Culver JN. Viral Hacks of the Plant Vasculature: The Role of Phloem Alterations in Systemic Virus Infection. Annu Rev Virol 2020; 7:351-370. [PMID: 32453971 DOI: 10.1146/annurev-virology-010320-072410] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For plant viruses, the ability to load into the vascular phloem and spread systemically within a host is an essential step in establishing a successful infection. However, access to the vascular phloem is highly regulated, representing a significant obstacle to virus loading, movement, and subsequent unloading into distal uninfected tissues. Recent studies indicate that during virus infection, phloem tissues are a source of significant transcriptional and translational alterations, with the number of virus-induced differentially expressed genes being four- to sixfold greater in phloem tissues than in surrounding nonphloem tissues. In addition, viruses target phloem-specific components as a means to promote their own systemic movement and disrupt host defense processes. Combined, these studies provide evidence that the vascular phloem plays a significant role in the mediation and control of host responses during infection and as such is a site of considerable modulation by the infecting virus. This review outlines the phloem responses and directed reprograming mechanisms that viruses employ to promote their movement through the vasculature.
Collapse
Affiliation(s)
- Madhu Kappagantu
- Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA;
| | - Tamara D Collum
- Foreign Disease-Weed Science Research Unit, US Department of Agriculture Agricultural Research Service, Frederick, Maryland 21702, USA
| | - Christopher Dardick
- Appalachian Fruit Research Station, US Department of Agriculture Agricultural Research Service, Kearneysville, West Virginia 25430, USA
| | - James N Culver
- Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA; .,Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
105
|
Hyodo K, Okuno T. Hijacking of host cellular components as proviral factors by plant-infecting viruses. Adv Virus Res 2020; 107:37-86. [PMID: 32711734 DOI: 10.1016/bs.aivir.2020.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant viruses are important pathogens that cause serious crop losses worldwide. They are obligate intracellular parasites that commandeer a wide array of proteins, as well as metabolic resources, from infected host cells. In the past two decades, our knowledge of plant-virus interactions at the molecular level has exploded, which provides insights into how plant-infecting viruses co-opt host cellular machineries to accomplish their infection. Here, we review recent advances in our understanding of how plant viruses divert cellular components from their original roles to proviral functions. One emerging theme is that plant viruses have versatile strategies that integrate a host factor that is normally engaged in plant defense against invading pathogens into a viral protein complex that facilitates viral infection. We also highlight viral manipulation of cellular key regulatory systems for successful virus infection: posttranslational protein modifications for fine control of viral and cellular protein dynamics; glycolysis and fermentation pathways to usurp host resources, and ion homeostasis to create a cellular environment that is beneficial for viral genome replication. A deeper understanding of viral-infection strategies will pave the way for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan.
| | - Tetsuro Okuno
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
| |
Collapse
|
106
|
Fátyol K, Fekete KA, Ludman M. Double-Stranded-RNA-Binding Protein 2 Participates in Antiviral Defense. J Virol 2020; 94:e00017-20. [PMID: 32213615 PMCID: PMC7269452 DOI: 10.1128/jvi.00017-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023] Open
Abstract
Double-stranded RNA (dsRNA) is a common pattern formed during the replication of both RNA and DNA viruses. Perception of virus-derived dsRNAs by specialized receptor molecules leads to the activation of various antiviral measures. In plants, these defensive processes include the adaptive RNA interference (RNAi) pathway and innate pattern-triggered immune (PTI) responses. While details of the former process have been well established in recent years, the latter are still only partially understood at the molecular level. Nonetheless, emerging data suggest extensive cross talk between the different antiviral mechanisms. Here, we demonstrate that dsRNA-binding protein 2 (DRB2) of Nicotiana benthamiana plays a direct role in potato virus X (PVX)-elicited systemic necrosis. These results establish that DRB2, a known component of RNAi, is also involved in a virus-induced PTI response. In addition, our findings suggest that RNA-dependent polymerase 6 (RDR6)-dependent dsRNAs play an important role in the triggering of PVX-induced systemic necrosis. Based on our data, a model is formulated whereby competition between different DRB proteins for virus-derived dsRNAs helps establish the dominant antiviral pathways that are activated in response to virus infection.IMPORTANCE Plants employ multiple defense mechanisms to restrict viral infections, among which RNA interference is the best understood. The activation of innate immunity often leads to both local and systemic necrotic responses, which confine the virus to the infected cells and can also provide resistance to distal, noninfected parts of the organism. Systemic necrosis, which is regarded as a special form of the local hypersensitive response, results in necrosis of the apical stem region, usually causing the death of the plant. Here, we provide evidence that the dsRNA-binding protein 2 of Nicotiana benthamiana plays an important role in virus-induced systemic necrosis. Our findings are not only compatible with the recent hypothesis that DRB proteins act as viral invasion sensors but also extends it by proposing that DRBs play a critical role in establishing the dominant antiviral measures that are triggered during virus infection.
Collapse
Affiliation(s)
- Károly Fátyol
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation, Gödöllő, Hungary
| | - Katalin Anna Fekete
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation, Gödöllő, Hungary
| | - Márta Ludman
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation, Gödöllő, Hungary
| |
Collapse
|
107
|
Ismayil A, Yang M, Liu Y. Role of autophagy during plant-virus interactions. Semin Cell Dev Biol 2020; 101:36-40. [DOI: 10.1016/j.semcdb.2019.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/17/2019] [Accepted: 07/05/2019] [Indexed: 12/31/2022]
|
108
|
Guo W, Yan H, Ren X, Tang R, Sun Y, Wang Y, Feng J. Berberine induces resistance against tobacco mosaic virus in tobacco. PEST MANAGEMENT SCIENCE 2020; 76:1804-1813. [PMID: 31814252 DOI: 10.1002/ps.5709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Plant systemic resistance induced by botanical compounds is a promising alternative method of disease management. The natural product berberine, usually used as an antimicrobial in medicine, has been proven to have antifungal activity in agriculture. To investigate the induced resistance imparted by berberine, the effect of berberine against tobacco mosaic virus (TMV) and the mechanism governing this effect were determined. RESULT Berberine exhibited considerable in vivo anti-TMV activity of up to 68.3% but had no in vitro direct effect on TMV. Moreover, berberine could induce immune responses against TMV in tobacco, including the hypersensitive reaction (HR), accumulation of H2 O2 , increases in defense enzymes and overexpression of pathogenesis-related (PR) proteins. In addition, upregulation of salicylic acid (SA) biosynthesis genes PAL, CM1, ICS, PBS3 and the enzyme benzoic acid 2-hydroxylase (BA2H) confirmed that SA was involved in the defensive signals. Berberine can induce crop resistance against TMV, Phytophthora nicotianae, Botrytis cinerea and Blumeria graminis in the greenhouse. CONCLUSION This paper highlights the use of berberine in manipulating tobacco to generate defense responses against TMV, which can be attributed to SA-mediated induced resistance. The paper provides a theoretical basis for the application of berberine as a resistance activator and for further research on induced resistance by botanical natural product. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhui Guo
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - He Yan
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Xingyu Ren
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Ruirui Tang
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Yubo Sun
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Yong Wang
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| | - Juntao Feng
- College of Plant Protection, Engineering and Technology Centers of Biopesticide in Shaanxi, Northwest Agriculture and Forestry University, Yangling, China
| |
Collapse
|
109
|
Yang J, Zhang T, Li J, Wu N, Wu G, Yang J, Chen X, He L, Chen J. Chinese wheat mosaic virus-derived vsiRNA-20 can regulate virus infection in wheat through inhibition of vacuolar- (H + )-PPase induced cell death. THE NEW PHYTOLOGIST 2020; 226:205-220. [PMID: 31815302 PMCID: PMC7065157 DOI: 10.1111/nph.16358] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/22/2019] [Indexed: 05/18/2023]
Abstract
Vacuolar (H+ )-PPases (VPs), are key regulators of active proton (H+ ) transport across membranes using the energy generated from PPi hydrolysis. The VPs also play vital roles in plant responses to various abiotic stresses. Their functions in plant responses to pathogen infections are unknown. Here, we show that TaVP, a VP of wheat (Triticum aestivum) is important for wheat resistance to Chinese wheat mosaic virus (CWMV) infection. Furthermore, overexpression of TaVP in plants induces the activity of PPi hydrolysis, leading to plants cell death. A virus-derived small interfering RNA (vsiRNA-20) generated from CWMV RNA1 can regulate the mRNA accumulation of TaVP in wheat. The accumulation of vsiRNA-20 can suppress cell death induced by TaVP in a dosage-dependent manner. Moreover, we show that the accumulation of vsiRNA-20 can affect PPi hydrolysis and the concentration of H+ in CWMV-infected wheat cells to create a more favorable cellular environment for CWMV replication. We propose that vsiRNA-20 regulates TaVP expression to prevent cell death and to maintain a weak alkaline environment in cytoplasm to enhance CWMV infection in wheat. This finding may be used as a novel strategy to minimize virus pathogenicity and to develop new antiviral stratagems.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsKey Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingbo315211China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlZhejiang Provincial Key Laboratory of Plant VirologyInstitute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Tianye Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsKey Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingbo315211China
- School of Forestry and BiotechnologyZhejiang Agriculture and Forestry UniversityHangzhou310021China
| | - Juan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsKey Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingbo315211China
| | - Ne Wu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlZhejiang Provincial Key Laboratory of Plant VirologyInstitute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
- School of Forestry and BiotechnologyZhejiang Agriculture and Forestry UniversityHangzhou310021China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsKey Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingbo315211China
| | - Jin Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsKey Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingbo315211China
| | - Xuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsKey Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingbo315211China
| | - Long He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsKey Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingbo315211China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsKey Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang ProvinceInstitute of Plant VirologyNingbo UniversityNingbo315211China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlZhejiang Provincial Key Laboratory of Plant VirologyInstitute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| |
Collapse
|
110
|
Agrahari RK, Singh P, Koyama H, Panda SK. Plant-microbe Interactions for Sustainable Agriculture in the Post-genomic Era. Curr Genomics 2020; 21:168-178. [PMID: 33071611 PMCID: PMC7521031 DOI: 10.2174/1389202921999200505082116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 11/22/2022] Open
Abstract
Plant-microbe interactions are both symbiotic and antagonistic, and the knowledge of both these interactions is equally important for the progress of agricultural practice and produce. This review gives an insight into the recent advances that have been made in the plant-microbe interaction study in the post-genomic era and the application of those for enhancing agricultural production. Adoption of next-generation sequencing (NGS) and marker assisted selection of resistant genes in plants, equipped with cloning and recombination techniques, has progressed the techniques for the development of resistant plant varieties by leaps and bounds. Genome-wide association studies (GWAS) of both plants and microbes have made the selection of desirable traits in plants and manipulation of the genomes of both plants and microbes effortless and less time-consuming. Stress tolerance in plants has been shown to be accentuated by association of certain microorganisms with the plant, the study and application of the same have helped develop stress-resistant varieties of crops. Beneficial microbes associated with plants are being extensively used for the development of microbial consortia that can be applied directly to the plants or the soil. Next-generation sequencing approaches have made it possible to identify the function of microbes associated in the plant microbiome that are both culturable and non-culturable, thus opening up new doors and possibilities for the use of these huge resources of microbes that can have a potential impact on agriculture.
Collapse
Affiliation(s)
| | | | | | - Sanjib Kumar Panda
- Address correspondence to this author at the Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH 8, Bandarsindri, Ajmer 305817, Rajasthan, India; Tel: 9435370608; E-mail:
| |
Collapse
|
111
|
Shi W, Yao R, Sunwu R, Huang K, Liu Z, Li X, Yang Y, Wang J. Incidence and Molecular Identification of Apple Necrotic Mosaic Virus (ApNMV) in Southwest China. PLANTS 2020; 9:plants9040415. [PMID: 32231064 PMCID: PMC7237995 DOI: 10.3390/plants9040415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 11/30/2022]
Abstract
Apple mosaic disease has a great influence on apple production. In this study, an investigation into the incidence of apple mosaic disease in southwest China was performed, and the pathogen associated with the disease was detected. The results show that 2869 apple trees with mosaic disease were found in the Sichuan, Yunnan, and Guizhou Provinces, with an average incidence of 9.6%. Although apple mosaic virus (ApMV) is widespread in apples worldwide, the diseased samples were negative when tested for ApMV. However, a novel ilarvirus (apple necrotic mosaic virus, ApNMV) was identified in mosaic apple leaves which tested negative for ApMV. RT-PCR analysis indicated that ApNMV was detected in 322 out of 357 samples with mosaic symptoms. Phylogenetic analysis of coat protein (CP) sequences of ApNMV isolates suggested that, compared with ApMV, ApNMV was closer to prunus necrotic ringspot virus (PNRSV). The CP sequences of the isolates showed the diversity of ApNMV, which may enable the virus to adapt to the changeable environments. In addition, the pathology of mosaic disease was observed by microscope, and the result showed that the arrangement of the tissue and the shape of the cell, including the organelle, were seriously destroyed or drastically changed.
Collapse
|
112
|
Islam MT, Sherif SM. RNAi-Based Biofungicides as a Promising Next-Generation Strategy for Controlling Devastating Gray Mold Diseases. Int J Mol Sci 2020; 21:ijms21062072. [PMID: 32197315 PMCID: PMC7139463 DOI: 10.3390/ijms21062072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022] Open
Abstract
Botrytis cinerea is one of the most critical agro-economic phytopathogens and has been reported to cause gray mold disease in more than 1000 plant species. Meanwhile, small interfering RNA (siRNA), which induce RNA interference (RNAi), are involved in both host immunity and pathogen virulence. B. cinerea has been reported to use both siRNA effectors and host RNAi machinery to facilitate the progression of gray mold in host species. Accordingly, RNAi-based biofungicides that use double-stranded RNA (dsRNA) to target essential fungal genes are considered an emerging approach for controlling devastating gray mold diseases. Furthermore, spray-induced gene silencing (SIGS), in which the foliar application of dsRNA is used to silence the pathogen virulence genes, holds great potential as an alternative to host-induced gene silencing (HIGS). Recently, SIGS approaches have attracted research interest, owing to their ability to mitigate both pre- and post-harvest B. cinerea infections. The RNAi-mediated regulation of host immunity and susceptibility in B. cinerea–host interactions are summarized in this review, along with the limitations of the current knowledge of RNAi-based biofungicides, especially regarding SIGS approaches for controlling gray mold diseases under field conditions.
Collapse
|
113
|
Comparative Transcriptome Analysis of Two Cucumber Cultivars with Different Sensitivity to Cucumber Mosaic Virus Infection. Pathogens 2020; 9:pathogens9020145. [PMID: 32098056 PMCID: PMC7168641 DOI: 10.3390/pathogens9020145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Cucumber mosaic virus (CMV), with extremely broad host range including both monocots and dicots around the world, belongs to most important viral crop threats. Either natural or genetically constructed sources of resistance are being intensively investigated; for this purpose, exhaustive knowledge of molecular virus-host interaction during compatible and incompatible infection is required. New technologies and computer-based “omics” on various levels contribute markedly to this topic. In this work, two cucumber cultivars with different response to CMV challenge were tested, i.e., sensitive cv. Vanda and resistant cv. Heliana. The transcriptomes were prepared from both cultivars at 18 days after CMV or mock inoculation. Subsequently, four independent comparative analyses of obtained data were performed, viz. mock- and CMV-inoculated samples within each cultivar, samples from mock-inoculated cultivars to each other and samples from virus-inoculated cultivars to each other. A detailed picture of CMV-influenced genes, as well as constitutive differences in cultivar-specific gene expression was obtained. The compatible CMV infection of cv. Vanda caused downregulation of genes involved in photosynthesis, and induction of genes connected with protein production and modification, as well as components of signaling pathways. CMV challenge caused practically no change in the transcription profile of the cv. Heliana. The main differences between constitutive transcription activity of the two cultivars relied in the expression of genes responsible for methylation, phosphorylation, cell wall organization and carbohydrate metabolism (prevailing in cv. Heliana), or chromosome condensation and glucan biosynthesis (prevailing in cv. Vanda). Involvement of several genes in the resistant cucumber phenotype was predicted; this can be after biological confirmation potentially applied in breeding programs for virus-resistant crops.
Collapse
|
114
|
Baebler Š, Coll A, Gruden K. Plant Molecular Responses to Potato Virus Y: A Continuum of Outcomes from Sensitivity and Tolerance to Resistance. Viruses 2020; 12:E217. [PMID: 32075268 PMCID: PMC7077201 DOI: 10.3390/v12020217] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/25/2022] Open
Abstract
Potato virus Y (PVY) is the most economically important virus affecting potato production. PVY manipulates the plant cell machinery in order to successfully complete the infecting cycle. On the other side, the plant activates a sophisticated multilayer immune defense response to combat viral infection. The balance between these mechanisms, depending on the plant genotype and environment, results in a specific outcome that can be resistance, sensitivity, or tolerance. In this review, we summarize and compare the current knowledge on molecular events, leading to different phenotypic outcomes in response to PVY and try to link them with the known molecular mechanisms.
Collapse
|
115
|
Grafting alters tomato transcriptome and enhances tolerance to an airborne virus infection. Sci Rep 2020; 10:2538. [PMID: 32054920 PMCID: PMC7018947 DOI: 10.1038/s41598-020-59421-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/24/2020] [Indexed: 12/22/2022] Open
Abstract
Grafting of commercial tomato varieties and hybrids on the tomato ecotype Manduria resulted in high levels of tolerance to the infection of Sw5 resistance-breaking strains of tomato spotted wilt virus and of severe cucumber mosaic virus strains supporting hypervirulent satellite RNAs that co-determine stunting and necrotic phenotypes in tomato. To decipher the basis of such tolerance, here we used a RNAseq analysis to study the transcriptome profiles of the Manduria ecotype and of the susceptible variety UC82, and of their graft combinations, exposed or not to infection of the potato virus Y recombinant strain PVYC-to. The analysis identified graft- and virus-responsive mRNAs differentially expressed in UC82 and Manduria, which led to an overall suitable level of tolerance to viral infection confirmed by the appearance of a recovery phenotype in Manduria and in all graft combinations. The transcriptome analysis suggested that graft wounding and viral infection had diverging effects on tomato transcriptome and that the Manduria ecotype was less responsive than the UC82 to both graft wounding and potyviral infection. We propose that the differential response to the two types of stress could account for the tolerance to viral infection observed in the Manduria ecotype as well as in the susceptible tomato variety UC82 self-grafted or grafted on the Manduria ecotype.
Collapse
|
116
|
Spanò R, Ferrara M, Montemurro C, Mulè G, Gallitelli D, Mascia T. Grafting alters tomato transcriptome and enhances tolerance to an airborne virus infection. Sci Rep 2020. [PMID: 32054920 DOI: 10.1038/s41598-020-59421-59425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Grafting of commercial tomato varieties and hybrids on the tomato ecotype Manduria resulted in high levels of tolerance to the infection of Sw5 resistance-breaking strains of tomato spotted wilt virus and of severe cucumber mosaic virus strains supporting hypervirulent satellite RNAs that co-determine stunting and necrotic phenotypes in tomato. To decipher the basis of such tolerance, here we used a RNAseq analysis to study the transcriptome profiles of the Manduria ecotype and of the susceptible variety UC82, and of their graft combinations, exposed or not to infection of the potato virus Y recombinant strain PVYC-to. The analysis identified graft- and virus-responsive mRNAs differentially expressed in UC82 and Manduria, which led to an overall suitable level of tolerance to viral infection confirmed by the appearance of a recovery phenotype in Manduria and in all graft combinations. The transcriptome analysis suggested that graft wounding and viral infection had diverging effects on tomato transcriptome and that the Manduria ecotype was less responsive than the UC82 to both graft wounding and potyviral infection. We propose that the differential response to the two types of stress could account for the tolerance to viral infection observed in the Manduria ecotype as well as in the susceptible tomato variety UC82 self-grafted or grafted on the Manduria ecotype.
Collapse
Affiliation(s)
- Roberta Spanò
- Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy.
- Istituto per la Protezione Sostenibile delle Piante (IPSP) - CNR, UOS Bari, Via Amendola 122/D, 70126, Bari, Italy.
| | - Massimo Ferrara
- Istituto di Scienze delle Produzioni Alimentari (ISPA) - CNR Via Amendola 122/O, 70126, Bari, Italy
| | - Cinzia Montemurro
- Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
- Istituto per la Protezione Sostenibile delle Piante (IPSP) - CNR, UOS Bari, Via Amendola 122/D, 70126, Bari, Italy
| | - Giuseppina Mulè
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari - CNR, Via Amendola 122/O, 70126, Bari, Italia
| | - Donato Gallitelli
- Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
- Istituto per la Protezione Sostenibile delle Piante (IPSP) - CNR, UOS Bari, Via Amendola 122/D, 70126, Bari, Italy
| | - Tiziana Mascia
- Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
- Istituto per la Protezione Sostenibile delle Piante (IPSP) - CNR, UOS Bari, Via Amendola 122/D, 70126, Bari, Italy
| |
Collapse
|
117
|
Patton MF, Bak A, Sayre JM, Heck ML, Casteel CL. A polerovirus, Potato leafroll virus, alters plant-vector interactions using three viral proteins. PLANT, CELL & ENVIRONMENT 2020; 43:387-399. [PMID: 31758809 DOI: 10.1111/pce.13684] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 05/20/2023]
Abstract
Potato leafroll virus (PLRV), genus Polerovirus, family Luteoviridae, is a major pathogen of potato worldwide. PLRV is transmitted among host plants by aphids in a circulative-nonpropagative manner. Previous studies have demonstrated that PLRV infection increases aphid fecundity on, and attraction to, infected plants as compared to controls. However, the molecular mechanisms mediating this relationship are still poorly understood. In this study, we measured the impact of PLRV infection on plant-aphid interactions and plant chemistry in two hosts: Solanum tuberosum and Nicotiana benthamiana. Our study demonstrates that PLRV infection attenuates the induction of aphid-induced jasmonic acid and ethylene in S. tuberosum and N. benthamiana. Using transient expression experiments, insect bioassays and chemical analysis, we show that expression of three PLRV proteins (P0, P1, and P7) mediate changes in plant-aphid interactions and inhibition of aphid-induced jasmonic acid and ethylene in N. benthamiana. This study enhances our understanding of the plant-vector-pathogen interface by elucidating new mechanisms by which plant viruses transmitted in a circulative manner can manipulate plant hosts.
Collapse
Affiliation(s)
- MacKenzie F Patton
- Department of Plant Pathology, University of California, Davis, California
| | - Aurélie Bak
- Department of Plant Pathology, University of California, Davis, California
| | - Jordan M Sayre
- Department of Microbiology, University of California, Davis, California
| | - Michelle L Heck
- USDA Agricultural Research Service, Emerging Pests and Pathogens Research Unit, Ithaca, New York, 14853
- Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853
| | - Clare L Casteel
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853
| |
Collapse
|
118
|
Noronha Souza PF, Abreu Oliveira JT, Vasconcelos IM, Magalhães VG, Albuquerque Silva FD, Guedes Silva RG, Oliveira KS, Franco OL, Gomes Silveira JA, Leite Carvalho FE. H 2O 2Accumulation, Host Cell Death and Differential Levels of Proteins Related to Photosynthesis, Redox Homeostasis, and Required for Viral Replication Explain the Resistance of EMS-mutagenized Cowpea to Cowpea Severe Mosaic Virus. JOURNAL OF PLANT PHYSIOLOGY 2020; 245:153110. [PMID: 31918353 DOI: 10.1016/j.jplph.2019.153110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Infection with Cowpea severe mosaic virus (CPSMV) represents one of the main limitations for cowpea (Vigna unguiculata L. Walp.) productivity due to the severity of the disease symptoms, frequency of incidence, and difficulties in dissemination control. This study aimed to identify the proteins and metabolic pathways associated with the susceptibility and resistance of cowpea plants to CPSMV. Therefore, we treated the seeds of a naturally susceptible cowpea genotype (CE-31) with the mutagenic agent ethyl methane sulfonate (EMS) and compared the secondary leaf proteomic profile of the mutagenized resistant plants inoculated with CPSMV (MCPI plant group) to those of the naturally susceptible cowpea genotype CE-31 inoculated (CPI) and noninoculated (CPU) with CPSMV. MCPI responded to CPSMV by accumulating proteins involved in the oxidative burst, increasing H2O2 generation, promoting leaf cell death (LCD), increasing the synthesis of defense proteins, and decreasing host factors important for the establishment of CPSMV infection. In contrast, CPI accumulated several host factors that favor CPSMV infection and did not accumulate H2O2 or present LCD, which allowed CPSMV replication and systemic dissemination. Based on these results, we propose that the differential abundance of defense proteins and proteins involved in the oxidative burst, LCD, and the decrease in cowpea protein factors required for CPSMV replication are associated with the resistance trait acquired by the MCPI plant group.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kleber Sousa Oliveira
- Proteomics Analysis and Biochemical Center, Catholic University of Brasilia, Brasilia, Brazil
| | - Octavio Luis Franco
- Proteomics Analysis and Biochemical Center, Catholic University of Brasilia, Brasilia, Brazil; S-Inova Biotech, Catholic University Dom Bosco, Campo Grande, MS, Brazil.
| | | | | |
Collapse
|
119
|
Liu Q, Deng S, Liu B, Tao Y, Ai H, Liu J, Zhang Y, Zhao Y, Xu M. A helitron-induced RabGDIα variant causes quantitative recessive resistance to maize rough dwarf disease. Nat Commun 2020; 11:495. [PMID: 31980630 PMCID: PMC6981192 DOI: 10.1038/s41467-020-14372-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/01/2020] [Indexed: 12/15/2022] Open
Abstract
Maize rough dwarf disease (MRDD), caused by various species of the genus Fijivirus, threatens maize production worldwide. We previously identified a quantitative locus qMrdd1 conferring recessive resistance to one causal species, rice black-streaked dwarf virus (RBSDV). Here, we show that Rab GDP dissociation inhibitor alpha (RabGDIα) is the host susceptibility factor for RBSDV. The viral P7-1 protein binds tightly to the exon-10 and C-terminal regions of RabGDIα to recruit it for viral infection. Insertion of a helitron transposon into RabGDIα intron 10 creates alternative splicing to replace the wild-type exon 10 with a helitron-derived exon 10. The resultant splicing variant RabGDIα-hel has difficulty being recruited by P7-1, thus leading to quantitative recessive resistance to MRDD. All naturally occurring resistance alleles may have arisen from a recent single helitron insertion event. These resistance alleles are valuable to improve maize resistance to MRDD and potentially to engineer RBSDV resistance in other crops. Maize rough dwarf disease threatens its production. Here, the authors show that a helitron transposon insertion in the Rab GDP dissociation inhibitor alpha leads to recessive viral resistance by affecting its interaction with viral P7-1 protein and that all naturally occurring alleles come from a single mutation event after domestication.
Collapse
Affiliation(s)
- Qingcai Liu
- State Key Laboratory of Plant Physiology and Biochemistry/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R. China
| | - Suining Deng
- State Key Laboratory of Plant Physiology and Biochemistry/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R. China
| | - Baoshen Liu
- College of Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, P. R. China
| | - Yongfu Tao
- State Key Laboratory of Plant Physiology and Biochemistry/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R. China
| | - Haiyue Ai
- State Key Laboratory of Plant Physiology and Biochemistry/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R. China
| | - Jianju Liu
- State Key Laboratory of Plant Physiology and Biochemistry/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R. China
| | - Yongzhong Zhang
- College of Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, P. R. China
| | - Yan Zhao
- College of Agronomy/State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, P. R. China
| | - Mingliang Xu
- State Key Laboratory of Plant Physiology and Biochemistry/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R. China.
| |
Collapse
|
120
|
Xu M, Chen J, Huang Y, Shen D, Sun P, Xu Y, Tao X. Dynamic Transcriptional Profiles of Arabidopsis thaliana Infected by Tomato spotted wilt virus. PHYTOPATHOLOGY 2020; 110:153-163. [PMID: 31544594 DOI: 10.1094/phyto-06-19-0199-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tomato spotted wilt virus (TSWV) is a negative-stranded RNA virus that infects hundreds of plant species, causing great economic loss. Infected Arabidopsis thaliana plants develop symptoms including chlorosis and wilt, which can lead to cell death. From 9 to 15 days after TSWV infection, symptoms progress through a three-stage process of appearance, severity, and death. In this study, deep sequencing technology was first used to explore gene expression in response to TSWV infection in model plant A. thaliana at different symptom development stages. We found that plant immune defense and protein degradation are induced by TSWV infection and that both inductions became stronger over time. The photosynthesis pathway was attenuated with TSWV infection. Cell wall metabolism had a large extent of downregulation while some genes were upregulated. These results illustrate the dynamic nature of TSWV infection in A. thaliana at the whole-transcriptome level. The link between biological processes and subpathway metabolism was further analyzed. Our study provides new insight into host regulatory networks and dynamic processes in response to TSWV infection.
Collapse
Affiliation(s)
- Min Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jing Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Ying Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Peng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
121
|
Chowdhury RN, Lasky D, Karki H, Zhang Z, Goyer A, Halterman D, Rakotondrafara AM. HCPro Suppression of Callose Deposition Contributes to Strain-Specific Resistance Against Potato Virus Y. PHYTOPATHOLOGY 2020; 110:164-173. [PMID: 31532352 DOI: 10.1094/phyto-07-19-0229-fi] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Potato virus Y (PVY; Potyviridae) is a continuing challenge for potato production owing to the increasing popularity of strain-specific resistant cultivars. Hypersensitive resistance (HR) is one type of plant defense responses to restrict virus spread. In many potato cultivars, such as cultivar Premier Russet (PR), local necrosis at the site of infection protects against the most common PVYO strain, but the HR often fails to restrain necrotic strains, which spread systemically. Here, we established the role of callose accumulation in the strain-specific resistance responses to PVY infection. We first uncovered that PVY, independent of the strain, is naturally capable of suppressing pathogenesis-related callose formation in a susceptible host. Such activity can be dissociated from viral replication by the transient expression of the viral-encoded helper component proteinase (HCPro) protein, identifying it as the pathogen elicitor. However, unlike the necrotic strain, PVYO and its corresponding HCPro are unable to block callose accumulation in resistant PR potatoes, in which we observed an abundance of callose deposition and the inability of the virus to spread. The substitution of eight amino acid residues within the HCPro C-terminal region that differ between PVYO and PVYN strains and were previously shown to be responsible for eliciting the HR response, are sufficient to restore the ability of HCProO to suppress callose accumulation, despite the resistant host background, in line with a new viral function in pathogenicity.
Collapse
Affiliation(s)
- Rawnaq N Chowdhury
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Danny Lasky
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Hari Karki
- U.S. Department of Agriculture-Agricultural Research Service, Madison, WI 53706, U.S.A
| | - Zongying Zhang
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Aymeric Goyer
- Department of Botany and Plant Pathology, Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR 97838, U.S.A
| | - Dennis Halterman
- U.S. Department of Agriculture-Agricultural Research Service, Madison, WI 53706, U.S.A
| | | |
Collapse
|
122
|
Nair A, Thulasiram HV, Bhargava S. Role of Jasmonate in Modulation of Mycorrhizae-Induced Resistance Against Fungal Pathogens. Methods Mol Biol 2020; 2085:109-115. [PMID: 31734920 DOI: 10.1007/978-1-0716-0142-6_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Symbiotic association of plants with arbuscular mycorrhizal (AM) fungi brings about changes in levels of the phytohormone jasmonate (JA) in root and shoot tissues of a plant. The enhanced JA levels not only play a role in controlling the extent of AM colonization but are also involved in the expression of mycorrhizal-induced resistance (MIR) against pathogens. We describe a method used to study the levels of a volatile jasmonate derivative, methyl jasmonate (MeJA), in tomato plants colonized by AM fungi and in response to subsequent attack by the foliar pathogen Alternaria alternata.
Collapse
Affiliation(s)
- Aswathy Nair
- Botany Department, Savitribai Phule Pune University, Pune, India
| | - H V Thulasiram
- Chemical Biology Unit, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, India
| | - Sujata Bhargava
- Botany Department, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
123
|
Wang Y, Xu W, Abe J, Nakahara KS, Hajimorad MR. Precise Exchange of the Helper-Component Proteinase Cistron Between Soybean mosaic virus and Clover yellow vein virus: Impact on Virus Viability and Host Range Specificity. PHYTOPATHOLOGY 2020; 110:206-214. [PMID: 31509476 DOI: 10.1094/phyto-06-19-0193-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Soybean mosaic virus and Clover yellow vein virus are two definite species of the genus Potyvirus within the family Potyviridae. Soybean mosaic virus-N (SMV-N) is well adapted to cultivated soybean (Glycine max) genotypes and wild soybean (G. soja), whereas it remains undetectable in inoculated broad bean (Vicia faba). In contrast, clover yellow vein virus No. 30 (ClYVV-No. 30) is capable of systemic infection in broad bean and wild soybean; however, it infects cultivated soybean genotypes only locally. In this study, SMV-N was shown to also infect broad bean locally; hence, broad bean is a host for SMV-N. Based on these observations, it was hypothesized that lack of systemic infection by SMV-N in broad bean and by ClYVV-No. 30 in cultivated soybean is attributable to the incompatibility of multifunctional helper-component proteinase (HC-Pro) in these hosts. The logic of selecting the HC-Pro cistron as a target is based on its established function in systemic movement and being a relevant factor in host range specificity of potyviruses. To test this hypothesis, chimeras were constructed with precise exchanges of HC-Pro cistrons between SMV-N and ClYVV-No. 30. Upon inoculation, both chimeras were viable in infection, but host range specificity of the recombinant viruses did not differ from those of the parental viruses. These observations suggest that (i) HC-Pro cistrons from SMV-N and ClYVV-No. 30 are functionally compatible in infection despite 55.6 and 48.9% nucleotide and amino acid sequence identity, respectively, and (ii) HC-Pro cistrons from SMV-N and ClYVV-No. 30 are not the determinants of host specificity on cultivated soybean or broad beans, respectively.
Collapse
Affiliation(s)
- Y Wang
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
- Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| | - W Xu
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - J Abe
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - K S Nakahara
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - M R Hajimorad
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
| |
Collapse
|
124
|
Guerrero J, Regedanz E, Lu L, Ruan J, Bisaro DM, Sunter G. Manipulation of the Plant Host by the Geminivirus AC2/C2 Protein, a Central Player in the Infection Cycle. FRONTIERS IN PLANT SCIENCE 2020; 11:591. [PMID: 32508858 PMCID: PMC7248346 DOI: 10.3389/fpls.2020.00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/20/2020] [Indexed: 05/22/2023]
Abstract
Geminiviruses are a significant group of emergent plant DNA viruses causing devastating diseases in food crops worldwide, including the Southern United States, Central America and the Caribbean. Crop failure due to geminivirus-related disease can be as high as 100%. Improved global transportation has enhanced the spread of geminiviruses and their vectors, supporting the emergence of new, more virulent recombinant strains. With limited coding capacity, geminiviruses encode multifunctional proteins, including the AC2/C2 gene that plays a central role in the viral replication-cycle through suppression of host defenses and transcriptional regulation of the late viral genes. The AC2/C2 proteins encoded by mono- and bipartite geminiviruses and the curtovirus C2 can be considered virulence factors, and are known to interact with both basal and inducible systems. This review highlights the role of AC2/C2 in affecting the jasmonic acid and salicylic acid (JA and SA) pathways, the ubiquitin/proteasome system (UPS), and RNA silencing pathways. In addition to suppressing host defenses, AC2/C2 play a critical role in regulating expression of the coat protein during the viral life cycle. It is important that the timing of CP expression is regulated to ensure that ssDNA is converted to dsDNA early during an infection and is sequestered late in the infection. How AC2 interacts with host transcription factors to regulate CP expression is discussed along with how computational approaches can help identify critical host networks targeted by geminivirus AC2 proteins. Thus, the role of AC2/C2 in the viral life-cycle is to prevent the host from mounting an efficient defense response to geminivirus infection and to ensure maximal amplification and encapsidation of the viral genome.
Collapse
Affiliation(s)
- Jennifer Guerrero
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, United States
| | - Elizabeth Regedanz
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Liu Lu
- Department of Computer Science, North Dakota State University, Fargo, ND, United States
| | - Jianhua Ruan
- Department of Computer Science, University of Texas at San Antonio, San Antonio, TX, United States
| | - David M. Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Garry Sunter
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, United States
- *Correspondence: Garry Sunter,
| |
Collapse
|
125
|
Nováková S, Šubr Z, Kováč A, Fialová I, Beke G, Danchenko M. Cucumber mosaic virus resistance: Comparative proteomics of contrasting Cucumis sativus cultivars after long-term infection. J Proteomics 2019; 214:103626. [PMID: 31881349 DOI: 10.1016/j.jprot.2019.103626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/10/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
Abstract
Plant viruses are a significant threat to a wide range of host species, causing substantial losses in agriculture. Particularly, Cucumber mosaic virus (CMV) evokes severe symptoms, thus dramatically limiting yield. Activation of plant defense reactions is associated with changes in the cellular proteome to ensure virus resistance. Herein, we studied two cultivars of cucumber (Cucumis sativus) resistant host Heliana and susceptible host Vanda. Plant cotyledons were mechanically inoculated with CMV isolate PK1, and systemic leaves were harvested at 33 days post-inoculation. Proteome was profiled by ultrahigh-performance liquid chromatography and comprehensively quantified by ion mobility enhanced mass spectrometry. From 1516 reproducibly quantified proteins using a label-free approach, 133 were differentially abundant among cultivars or treatments by strict statistic and effect size criteria. Pigments and hydrogen peroxide measurements corroborated proteomic findings. Comparison of both cultivars in the uninfected state highlighted more abundant photosynthetic and development-related proteins in resistant cucumber cultivar. Long-term CMV infection caused worse preservation of energy processes and less robust translation in the susceptible cultivar. Contrary, compatible plants had numerous more abundant stress and defense-related proteins. We proposed promising targets for functional validation in transgenic lines: A step toward durable virus resistance in cucurbits and other crops. SIGNIFICANCE: Sustainable production of crops requires an understanding of natural mechanisms of resistance/susceptibility to ubiquitous viral infections. We report original findings of comparative analysis of plant genotypes exposed to CMV. Deep discovery proteomics of resistant and susceptible cucumber cultivars, inoculated with widespread phytovirus, allowed to suggest several novel molecular targets for functional testing in plant protection strategies.
Collapse
Affiliation(s)
- Slavomíra Nováková
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic; Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava; Mala Hora 4C, 03601 Martin, Slovak Republic.
| | - Zdeno Šubr
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences; Dubravska cesta 9, 84510 Bratislava, Slovak Republic.
| | - Ivana Fialová
- Plant Science and Biodiversity Center, Slovak Academy of Sciences; Dubravska cesta 9, 84523 Bratislava, Slovak Republic.
| | - Gábor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences; Dubravska cesta 21, 84551 Bratislava, Slovak Republic.
| | - Maksym Danchenko
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic; Plant Science and Biodiversity Center, Slovak Academy of Sciences; Dubravska cesta 9, 84523 Bratislava, Slovak Republic.
| |
Collapse
|
126
|
Abstract
Manihot esculenta Crantz (cassava) is a food crop originating from South America grown primarily for its starchy storage roots. Today, cassava is grown in the tropics of South America, Africa, and Asia with an estimated 800 million people relying on it as a staple source of calories. In parts of sub-Saharan Africa, cassava is particularly crucial for food security. Cassava root starch also has use in the pharmaceutical, textile, paper, and biofuel industries. Cassava has seen strong demand since 2000 and production has increased consistently year-over-year, but potential yields are hampered by susceptibility to biotic and abiotic stresses. In particular, bacterial and viral diseases can cause severe yield losses. Of note are cassava bacterial blight (CBB), cassava mosaic disease (CMD), and cassava brown streak disease (CBSD), all of which can cause catastrophic losses for growers. In this article, we provide an overview of the major microbial diseases of cassava, discuss current and potential future efforts to engineer new sources of resistance, and conclude with a discussion of the regulatory hurdles that face biotechnology.
Collapse
Affiliation(s)
- Z J Daniel Lin
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Nigel J Taylor
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Rebecca Bart
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| |
Collapse
|
127
|
Seasonality of interactions between a plant virus and its host during persistent infection in a natural environment. ISME JOURNAL 2019; 14:506-518. [PMID: 31664159 PMCID: PMC6976672 DOI: 10.1038/s41396-019-0519-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/17/2019] [Accepted: 08/25/2019] [Indexed: 11/08/2022]
Abstract
Persistent infection, wherein a pathogen is continually present in a host individual, is widespread in virus–host systems. However, little is known regarding how seasonal environments alter virus–host interaction during such metastability. We observed a lineage-to-lineage infection of the host plant Arabidopsis halleri with Turnip mosaic virus for 3 years without severe damage. Virus dynamics and virus–host interactions within hosts were highly season dependent. Virus accumulation in the newly formed leaves was temperature dependent and was suppressed during winter. Transcriptome analyses suggested that distinct defence mechanisms, i.e. salicylic acid (SA)-dependent resistance and RNA silencing, were predominant during spring and autumn, respectively. Transcriptomic difference between infected and uninfected plants other than defence genes appeared transiently only during autumn in upper leaves. However, the virus preserved in the lower leaves is transferred to the clonal offspring of the host plants during spring. In the linage-to-linage infection of the A. halleri–TuMV system, both host clonal reproduction and virus transmission into new clonal rosettes are secured during the winter–spring transition. How virus and host overwinter turned out to be critical for understanding a long-term virus–host interaction within hosts under temperate climates, and more generally, understanding seasonality provides new insight into ecology of plant viruses.
Collapse
|
128
|
Shaw J, Yu C, Makhotenko AV, Makarova SS, Love AJ, Kalinina NO, MacFarlane S, Chen J, Taliansky ME. Interaction of a plant virus protein with the signature Cajal body protein coilin facilitates salicylic acid-mediated plant defence responses. THE NEW PHYTOLOGIST 2019; 224:439-453. [PMID: 31215645 DOI: 10.1111/nph.15994] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/06/2019] [Indexed: 05/22/2023]
Abstract
In addition to well-known roles in RNA metabolism, the nucleolus and Cajal bodies (CBs), both located within the nucleus, are involved in plant responses to biotic and abiotic stress. Previously we showed that plants in which expression of the CB protein coilin is downregulated are more susceptible to certain viruses including tobacco rattle virus (TRV), suggesting a role of coilin in antiviral defence. Experiments with coilin-deficient plants and the deletion mutant of the TRV 16K protein showed that both 16K and coilin are required for restriction of systemic TRV infection. The potential mechanisms of coilin-mediated antiviral defence were elucidated via experiments involving co-immunoprecipitation, use of NahG transgenic plants deficient in salicylic acid (SA) accumulation, measurement of endogenous SA concentrations and assessment of SA-responsive gene expression. Here we show that TRV 16K interacts with and relocalizes coilin to the nucleolus. In wild-type plants these events are accompanied by activation of SA-responsive gene expression and restriction of TRV systemic infection. By contrast, viral systemic spread was enhanced in NahG plants, implicating SA in these processes. Our findings suggest that coilin is involved in plant defence, responding to TRV infection by recognition of the TRV-encoded 16K protein and activating SA-dependent defence pathways.
Collapse
Affiliation(s)
- Jane Shaw
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Chulang Yu
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 117997, China
| | - Antonida V Makhotenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, 117997, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia
| | - Svetlana S Makarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, 117997, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia
| | - Andrew J Love
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Natalia O Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, 117997, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia
| | - Stuart MacFarlane
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 117997, China
| | - Michael E Taliansky
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, 117997, Russia
| |
Collapse
|
129
|
An M, Zhou T, Guo Y, Zhao X, Wu Y. Molecular Regulation of Host Defense Responses Mediated by Biological Anti-TMV Agent Ningnanmycin. Viruses 2019; 11:E815. [PMID: 31484426 PMCID: PMC6784071 DOI: 10.3390/v11090815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 12/28/2022] Open
Abstract
Ningnanmycin (NNM) belongs to microbial pesticides that display comprehensive antiviral activity against plant viruses. NNM treatment has been shown to efficiently delay or suppress the disease symptoms caused by tobacco mosaic virus (TMV) infection in local-inoculated or systemic-uninoculated tobacco leaves, respectively. However, the underlying molecular mechanism of NNM-mediated antiviral activity remains to be further elucidated. In this study, 414 differentially expressed genes (DEGs), including 383 which were up-regulated and 31 down-regulated, caused by NNM treatment in TMV-infected BY-2 protoplasts, were discovered by RNA-seq. In addition, KEGG analysis indicated significant enrichment of DEGs in the plant-pathogen interaction and MAPK signaling pathway. The up-regulated expression of crucial DEGs, including defense-responsive genes, such as the receptor-like kinase FLS2, RLK1, and the mitogen-activated protein kinase kinase kinase MAPKKK, calcium signaling genes, such as the calcium-binding protein CML19, as well as phytohormone responsive genes, such as the WRKY transcription factors WRKY40 and WRKY70, were confirmed by RT-qPCR. These findings provided valuable insights into the antiviral mechanisms of NNM, which indicated that the agent induces tobacco systemic resistance against TMV via activating multiple plant defense signaling pathways.
Collapse
Affiliation(s)
- Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Tao Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yi Guo
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Xiuxiang Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| |
Collapse
|
130
|
Wang X, Luo C, Xu Y, Zhang C, Bao M, Dou J, Wang Q, Cheng Y. Expression of the p24 silencing suppressor of Grapevine leafroll-associated virus 2 from Potato virus X or Barley stripe mosaic virus vector elicits hypersensitive responses in Nicotiana benthamiana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:34-42. [PMID: 31255907 DOI: 10.1016/j.plaphy.2019.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/24/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
The 24-kDa protein (p24) encoded by Grapevine leafroll-associated virus 2 (GLRaV-2) is an RNA-silencing suppressor (RSS), but its effect on active viral infection is unclear. Using a Potato virus X (PVX)-based expression system, we demonstrated that p24 elicits lethal systemic necrosis in Nicotiana benthamiana, sharing typical characteristics of the hypersensitive response (HR), and that NbRAR1 (a cytoplasmic Zn2+-binding protein) is involved in the PVX-p24-mediated systemic necrosis. Moreover, expression of p24 from Barley stripe mosaic virus (BSMV) vector triggered local necrosis in infiltrated patches of N. benthamiana, likely inhibiting viral systemic spread. By deletion analysis, we demonstrated that amino acids (aa) 1 to 180, which are located in the region (aa 1-188) previously shown to be necessary for p24's RSS activity, is sufficient for p24 to elicit systemic necrosis in the context of PVX infection. Using substitution mutants, we revealed that silencing-suppression-defective mutants R2A and W54A induce only a mild necrotic response; two mutants without self-interaction ability previously shown to lose or retain weak suppression function also displayed decreased pathogenicity: W149A without RSS activity elicited a mild necrotic response, whereas V162H/L169H/L170H which retains weak RSS activity was able to induce systemic necrosis, but with a 1- to 2-day delay. Taken together, p24 plays an important role in GLRaV-2 pathogenesis, triggering HR-like necrosis in N. benthamiana plants when expressed from PVX or BSMV vector; both the silencing suppression and self-interaction are crucial for p24's pathogenicity activity, and the region of p24 for determining systemic necrosis is mapped to aa 1-180.
Collapse
Affiliation(s)
- Xianyou Wang
- Department of Pomology, China Agricultural University, Beijing, 100193, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, 100083, China
| | - Chen Luo
- Department of Pomology, China Agricultural University, Beijing, 100193, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, 100083, China
| | - Yanfei Xu
- DeLaval Tianjin Company, Tianjin, 300308, China
| | - Chenwei Zhang
- Department of Pomology, China Agricultural University, Beijing, 100193, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, 100083, China
| | - Mian Bao
- Department of Pomology, China Agricultural University, Beijing, 100193, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, 100083, China
| | - Junjie Dou
- Department of Pomology, China Agricultural University, Beijing, 100193, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, 100083, China
| | - Qi Wang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Yuqin Cheng
- Department of Pomology, China Agricultural University, Beijing, 100193, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture, Beijing, 100083, China.
| |
Collapse
|
131
|
An M, Zhao X, Zhou T, Wang G, Xia Z, Wu Y. A Novel Biological Agent Cytosinpeptidemycin Inhibited the Pathogenesis of Tobacco Mosaic Virus by Inducing Host Resistance and Stress Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7738-7747. [PMID: 31199650 DOI: 10.1021/acs.jafc.9b02662] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cytosinpeptidemycin (CytPM) is a microbial pesticide that displayed broad-spectrum antiviral activity against various plant viruses. However, the molecular mechanism underlying antiviral activity of CytPM is poorly understood. In this study, the results demonstrated that CytPM could effectively delay the systemic infection of tobacco mosaic virus (TMV) in Nicotiana benthamiana and significantly inhibit the viral accumulation in tobacco BY-2 protoplasts. Results of RNA-seq indicated that 210 and 120 differential expressed genes (DEGs) were significantly up- and down-regulated after CytPM treatment in BY-2 protoplasts, respectively. In addition, KEGG analysis indicated that various DEGs were involved in endoplasmic reticulum (ER) protein processing, suggesting a possible correlation between ER homeostasis and virus resistance. RT-qPCR was performed to validate the gene expression of crucial DEGs related with defense, stress responses, signaling transduction, and phytohormone, which were consistent with results of RNA-seq. Our works provided valuable insights into the antiviral mechanism of CytPM that induced host resistance to viral infection.
Collapse
Affiliation(s)
- Mengnan An
- College of Plant Protection , Shenyang Agricultural University , Shenyang 110866 , China
| | - Xiuxiang Zhao
- College of Plant Protection , Shenyang Agricultural University , Shenyang 110866 , China
| | - Tao Zhou
- College of Plant Protection , Shenyang Agricultural University , Shenyang 110866 , China
| | - Guanzhong Wang
- College of Plant Protection , Shenyang Agricultural University , Shenyang 110866 , China
| | - Zihao Xia
- College of Plant Protection , Shenyang Agricultural University , Shenyang 110866 , China
| | - Yuanhua Wu
- College of Plant Protection , Shenyang Agricultural University , Shenyang 110866 , China
| |
Collapse
|
132
|
Adhab M, Angel C, Rodriguez A, Fereidouni M, Király L, Scheets K, Schoelz JE. Tracing the Lineage of Two Traits Associated with the Coat Protein of the Tombusviridae: Silencing Suppression and HR Elicitation in Nicotiana Species. Viruses 2019; 11:588. [PMID: 31261652 PMCID: PMC6669612 DOI: 10.3390/v11070588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 11/16/2022] Open
Abstract
In this paper we have characterized the lineage of two traits associated with the coat proteins (CPs) of the tombusvirids: Silencing suppression and HR elicitation in Nicotiana species. We considered that the tombusvirid CPs might collectively be considered an effector, with the CP of each CP-encoding species comprising a structural variant within the family. Thus, a phylogenetic analysis of the CP could provide insight into the evolution of a pathogen effector. The phylogeny of the CP of tombusvirids indicated that CP representatives of the family could be divided into four clades. In two separate clades the CP triggered a hypersensitive response (HR) in Nicotiana species of section Alatae but did not have silencing suppressor activity. In a third clade the CP had a silencing suppressor activity but did not have the capacity to trigger HR in Nicotiana species. In the fourth clade, the CP did not carry either function. Our analysis illustrates how structural changes that likely occurred in the CP effector of progenitors of the current genera led to either silencing suppressor activity, HR elicitation in select Nicotiana species, or neither trait.
Collapse
Affiliation(s)
- Mustafa Adhab
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
- Department of Plant Protection, University of Baghdad, 10071 Baghdad, Iraq
| | - Carlos Angel
- National Coffee Research Center-Cenicafe, Planalto, km. 4, Vía antigua Chinchiná-Manizales, Manizales (Caldes), Colombia
| | - Andres Rodriguez
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Lóránt Király
- Department of Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Budapest, Herman Ottó str. 15, Hungary
| | - Kay Scheets
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK 74078, USA
| | - James E Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
133
|
Shukla A, López-González S, Hoffmann G, Hafrén A. Diverse plant viruses: a toolbox for dissection of cellular pathways. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3029-3034. [PMID: 30882863 PMCID: PMC6598076 DOI: 10.1093/jxb/erz122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 05/12/2023]
Abstract
Research in virology has usually focused on one selected host-virus pathosystem to examine the mechanisms underlying a particular disease. However, as exemplified by the mechanistically versatile suppression of antiviral RNA silencing by plant viruses, there may be functionally convergent evolution. Assuming this is a widespread feature, we propose that effector proteins from diverse plant viruses can be a powerful resource for discovering new regulatory mechanisms of distinct cellular pathways. The efficiency of this approach will depend on how deeply and widely the studied pathway is integrated into viral infections. Beyond this, comparative studies using broad virus diversity should increase our global understanding of plant-virus interactions.
Collapse
Affiliation(s)
- Aayushi Shukla
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Silvia López-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Gesa Hoffmann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
134
|
Hao Z, Xie W, Chen B. Arbuscular Mycorrhizal Symbiosis Affects Plant Immunity to Viral Infection and Accumulation. Viruses 2019; 11:E534. [PMID: 31181739 PMCID: PMC6630321 DOI: 10.3390/v11060534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 11/22/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi, as root symbionts of most terrestrial plants, improve plant growth and fitness. In addition to the improved plant nutritional status, the physiological changes that trigger metabolic changes in the root via AM fungi can also increase the host ability to overcome biotic and abiotic stresses. Plant viruses are one of the important limiting factors for the commercial cultivation of various crops. The effect of AM fungi on viral infection is variable, and considerable attention is focused on shoot virus infection. This review provides an overview of the potential of AM fungi as bioprotection agents against viral diseases and emphasizes the complex nature of plant-fungus-virus interactions. Several mechanisms, including modulated plant tolerance, manipulation of induced systemic resistance (ISR), and altered vector pressure are involved in such interactions. We propose that using "omics" tools will provide detailed insights into the complex mechanisms underlying mycorrhizal-mediated plant immunity.
Collapse
Affiliation(s)
- Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wei Xie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
135
|
Zhuang J, Lin W, Coates CJ, Shang P, Wei T, Wu Z, Xie L. Cleavage of the Babuvirus Movement Protein B4 into Functional Peptides Capable of Host Factor Conjugation is Required for Virulence. Virol Sin 2019; 34:295-305. [PMID: 30868360 PMCID: PMC6599508 DOI: 10.1007/s12250-019-00094-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/18/2019] [Indexed: 11/29/2022] Open
Abstract
Banana bunchy top virus (BBTV) poses a serious danger to banana crops worldwide. BBTV-encoded protein B4 is a determinant of pathogenicity. However, the relevant molecular mechanisms underlying its effects remain unknown. In this study, we found that a functional peptide could be liberated from protein B4, likely via proteolytic processing. Site-directed mutagenesis indicated that the functional processing of protein B4 is required for its pathogenic effects, including dwarfism and sterility, in plants. The released protein fragment targets host proteins, such as the large subunit of RuBisCO (RbcL) and elongation factor 2 (EF2), involved in protein synthesis. Therefore, the peptide released from B4 (also a precursor) may act as a non-canonical modifier to influence host-pathogen interactions involving BBTV and plants.
Collapse
Affiliation(s)
- Jun Zhuang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wenwu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Christopher J Coates
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - Pengxiang Shang
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zujian Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianhui Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
136
|
Prasad A, Sharma N, Muthamilarasan M, Rana S, Prasad M. Recent advances in small RNA mediated plant-virus interactions. Crit Rev Biotechnol 2019; 39:587-601. [PMID: 30947560 DOI: 10.1080/07388551.2019.1597830] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Small RNAs (sRNA) are reported to play pivotal roles in the epigenetic and post-transcriptional regulation of gene expression during growth, development, and stress response in plants. Recently, the involvement of two different classes of sRNAs namely, miRNAs (microRNAs), and siRNAs (small interfering RNAs) in biotic stress response has been underlined. Notably, during virus infection, these sRNAs deploy antiviral defense by regulating the gene expression of the modulators of host defense pathways. As a counter defense, viruses have evolved strategic pathways involving the production of suppressors that interfere with the host silencing machinery. This molecular arms race between the sophisticated gene regulatory mechanism of host plants fine-tuned by sRNAs and the defense response exhibited by the virus has gained much attention among the researchers. So far, several reports have been published showing the mechanistic insights on sRNA-regulated defense mechanism in response to virus infection in several crop plants. In this context, our review enumerates the molecular mechanisms underlying host immunity against viruses mediated by sRNAs, the counter defense strategies employed by viruses to surpass this immunogenic response and the advances made in our understanding of plant-virus interactions. Altogether, the report would be insightful for the researchers working to decode the sRNA-mediated defense response in crop plants challenged with virus infection.
Collapse
Affiliation(s)
- Ashish Prasad
- a National Institute of Plant Genome Research , New Delhi , India
| | - Namisha Sharma
- a National Institute of Plant Genome Research , New Delhi , India
| | - Mehanathan Muthamilarasan
- a National Institute of Plant Genome Research , New Delhi , India.,b ICAR-National Research Centre on Plant Biotechnology , New Delhi , India
| | - Sumi Rana
- a National Institute of Plant Genome Research , New Delhi , India.,b ICAR-National Research Centre on Plant Biotechnology , New Delhi , India
| | - Manoj Prasad
- a National Institute of Plant Genome Research , New Delhi , India
| |
Collapse
|
137
|
Frąckowiak P, Pospieszny H, Smiglak M, Obrępalska-Stęplowska A. Assessment of the Efficacy and Mode of Action of Benzo(1,2,3)-Thiadiazole-7-Carbothioic Acid S-Methyl Ester (BTH) and Its Derivatives in Plant Protection Against Viral Disease. Int J Mol Sci 2019; 20:E1598. [PMID: 30935036 PMCID: PMC6480033 DOI: 10.3390/ijms20071598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/17/2022] Open
Abstract
Systemic acquired resistance (SAR) induction is one of the primary defence mechanisms of plants against a broad range of pathogens. It can be induced by infectious agents or by synthetic molecules, such as benzo(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH). SAR induction is associated with increases in salicylic acid (SA) accumulation and expression of defence marker genes (e.g., phenylalanine ammonia-lyase (PAL), the pathogenesis-related (PR) protein family, and non-expressor of PR genes (NPR1)). Various types of pathogens and pests induce plant responses by activating signalling pathways associated with SA, jasmonic acid (JA) and ethylene (ET). This work presents an analysis of the influence of BTH and its derivatives as resistance inducers in healthy and virus-infected plants by determining the expression levels of selected resistance markers associated with the SA, JA, and ET pathways. The phytotoxic effects of these compounds and their influence on the course of viral infection were also studied. Based on the results obtained, the best-performing BTH derivatives and their optimal concentration for plant performance were selected, and their mode of action was suggested. It was shown that application of BTH and its derivatives induces increased expression of marker genes of both the SA- and JA-mediated pathways.
Collapse
Affiliation(s)
- Patryk Frąckowiak
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection, National Research Institute, ul. Władysława Węgorka 20, 60-318 Poznań, Poland.
| | - Henryk Pospieszny
- Department of Virology and Bacteriology, Institute of Plant Protection, National Research Institute, ul. Władysława Węgorka 20, 60-318 Poznań, Poland.
| | - Marcin Smiglak
- Poznań Science and Technology Park, Adam Mickiewicz University Foundation, ul. Rubież 46, 61-612 Poznań, Poland.
| | - Aleksandra Obrępalska-Stęplowska
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection, National Research Institute, ul. Władysława Węgorka 20, 60-318 Poznań, Poland.
| |
Collapse
|
138
|
Das PP, Chua GM, Lin Q, Wong SM. iTRAQ-based analysis of leaf proteome identifies important proteins in secondary metabolite biosynthesis and defence pathways crucial to cross-protection against TMV. J Proteomics 2019; 196:42-56. [PMID: 30726703 DOI: 10.1016/j.jprot.2019.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/23/2022]
Abstract
Cross-protection is a phenomenon in which infection with a mild virus strain protects host plants against subsequent infection with a closely related severe virus strain. This study showed that a mild strain mutant virus, Tobacco mosaic virus (TMV)-43A could cross protect Nicotiana benthamiana plants against wild-type TMV. Furthermore, we investigated the host responses at the proteome level to identify important host proteins involved in cross-protection. We used the isobaric tags for relative and absolute quantification (iTRAQ) technique to analyze the proteome profiles of TMV, TMV-43A and cross-protected plants at different time-points. Our results showed that TMV-43A can cross-protect N. benthamiana plants from TMV. In cross-protected plants, photosynthetic activities were augmented, as supported by the increased accumulation of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) and geranylgeranyl diphosphate synthase (GGPS) enzymes, which are crucial for chlorophyll biosynthesis. The increased abundance of ROS scavenging enzymes like thioredoxins and L-ascorbate peroxidase would prevent oxidative damage in cross-protected plants. Interestingly, the abundance of defence-related proteins (14-3-3 and NbSGT1) decreased, along with a reduction in virus accumulation during cross-protection. In conclusion, we have identified several important host proteins that are crucial in cross-protection to counter TMV infection in N. benthamiana plants. BIOLOGICAL SIGNIFICANCE: TMV is the most studied model for host-virus interaction in plants. It can infect wide varieties of plant species, causing significant economic losses. Cross protection is one of the methods to combat virus infection. A few cross-protection mechanisms have been proposed, including replicase/coat protein-mediated resistance, RNA silencing, and exclusion/spatial separation between virus strains. However, knowledge on host responses at the proteome level during cross protection is limited. To address this knowledge gap, we have leveraged on a global proteomics analysis approach to study cross protection. We discovered that TMV-43A (protector) protects N. benthamiana plants from TMV (challenger) infection through multiple host pathways: secondary metabolite biosynthesis, photosynthesis, defence, carbon metabolism, protein translation and processing and amino acid biosynthesis. In the secondary metabolite biosynthesis pathway, enzymes 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) and geranylgeranyl diphosphate synthase (GGPS) play crucial roles in chlorophyll biosynthesis during cross protection. In addition, accumulation of ROS scavenging enzymes was also found in cross-protected plants, providing rescues from excessive oxidative damage. Reduced abundance of plant defence proteins is correlated to reduced virus accumulation in host plants. These findings have increased our knowledge in host responses during cross-protection.
Collapse
Affiliation(s)
- Prem Prakash Das
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore.
| | - Gao Ming Chua
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore.
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore.
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore; National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
139
|
de Haro LA, Arellano SM, Novák O, Feil R, Dumón AD, Mattio MF, Tarkowská D, Llauger G, Strnad M, Lunn JE, Pearce S, Figueroa CM, del Vas M. Mal de Río Cuarto virus infection causes hormone imbalance and sugar accumulation in wheat leaves. BMC PLANT BIOLOGY 2019; 19:112. [PMID: 30902042 PMCID: PMC6431059 DOI: 10.1186/s12870-019-1709-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/11/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Mal de Río Cuarto virus (MRCV) infects several monocotyledonous species including maize and wheat. Infected plants show shortened internodes, partial sterility, increased tillering and reduced root length. To better understand the molecular basis of the plant-virus interactions leading to these symptoms, we combined RNA sequencing with metabolite and hormone measurements. RESULTS More than 3000 differentially accumulated transcripts (DATs) were detected in MRCV-infected wheat plants at 21 days post inoculation compared to mock-inoculated plants. Infected plants exhibited decreased levels of TaSWEET13 transcripts, which are involved in sucrose phloem loading. Soluble sugars, starch, trehalose 6-phosphate (Tre6P), and organic and amino acids were all higher in MRCV-infected plants. In addition, several transcripts related to plant hormone metabolism, transport and signalling were increased upon MRCV infection. Transcripts coding for GA20ox, D14, MAX2 and SMAX1-like proteins involved in gibberellin biosynthesis and strigolactone signalling, were reduced. Transcripts involved in jasmonic acid, ethylene and brassinosteroid biosynthesis, perception and signalling and in auxin transport were also altered. Hormone measurements showed that jasmonic acid, brassinosteroids, abscisic acid and indole-3-acetic acid were significantly higher in infected leaves. CONCLUSIONS Our results indicate that MRCV causes a profound hormonal imbalance that, together with alterations in sugar partitioning, could account for the symptoms observed in MRCV-infected plants.
Collapse
Affiliation(s)
| | - Sofía Maité Arellano
- Instituto de Biotecnología, CICVyA, INTA, CONICET, Hurlingham, Buenos Aires Argentina
| | - Ondrej Novák
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany Czech Academy of Sciences, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | | | - Danuše Tarkowská
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany Czech Academy of Sciences, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Gabriela Llauger
- Instituto de Biotecnología, CICVyA, INTA, CONICET, Hurlingham, Buenos Aires Argentina
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany Czech Academy of Sciences, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO USA
| | | | - Mariana del Vas
- Instituto de Biotecnología, CICVyA, INTA, CONICET, Hurlingham, Buenos Aires Argentina
| |
Collapse
|
140
|
Sun YD, Folimonova SY. The p33 protein of Citrus tristeza virus affects viral pathogenicity by modulating a host immune response. THE NEW PHYTOLOGIST 2019; 221:2039-2053. [PMID: 30220089 DOI: 10.1111/nph.15482] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
Accumulation of reactive oxygen species (ROS) is a general plant basal defense strategy against viruses. In this study, we show that infection by Citrus tristeza virus (CTV) triggered ROS burst in Nicotiana benthamiana and in the natural citrus host, the extent of which was virus-dose dependent. Using Agrobacterium-mediated expression of CTV-encoded proteins in N. benthamiana, we found that p33, a unique viral protein, contributed to the induction of ROS accumulation and programmed cell death. The role of p33 in CTV pathogenicity was assessed based on gene knockout and complementation in N. benthamiana. In the citrus-CTV pathosystem, deletion of the p33 open reading frame in a CTV variant resulted in a significant decrease in ROS production, compared to that of the wild type CTV, which correlated with invasion of the mutant virus into the immature xylem tracheid cells and abnormal differentiation of the vascular system. By contrast, the wild type CTV exhibited phloem-limited distribution with a minor effect on the vasculature. We conclude that the p33 protein is a CTV effector that negatively affects virus pathogenicity and suggest that N. benthamiana recognizes p33 to activate the host immune response to restrict CTV into the phloem tissue and minimize the disease syndrome.
Collapse
Affiliation(s)
- Yong-Duo Sun
- Plant Pathology Department, University of Florida, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32611, USA
| | - Svetlana Y Folimonova
- Plant Pathology Department, University of Florida, Gainesville, FL, 32611, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
141
|
The Tug-of-War between Plants and Viruses: Great Progress and Many Remaining Questions. Viruses 2019; 11:v11030203. [PMID: 30823402 PMCID: PMC6466000 DOI: 10.3390/v11030203] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 12/19/2022] Open
Abstract
Plants are persistently challenged by various phytopathogens. To protect themselves, plants have evolved multilayered surveillance against all pathogens. For intracellular parasitic viruses, plants have developed innate immunity, RNA silencing, translation repression, ubiquitination-mediated and autophagy-mediated protein degradation, and other dominant resistance gene-mediated defenses. Plant viruses have also acquired diverse strategies to suppress and even exploit host defense machinery to ensure their survival. A better understanding of the defense and counter-defense between plants and viruses will obviously benefit from the development of efficient and broad-spectrum virus resistance for sustainable agriculture. In this review, we summarize the cutting edge of knowledge concerning the defense and counter-defense between plants and viruses, and highlight the unexploited areas that are especially worth investigating in the near future.
Collapse
|
142
|
Aguilar E, del Toro FJ, Brosseau C, Moffett P, Canto T, Tenllado F. Cell death triggered by the P25 protein in Potato virus X-associated synergisms results from endoplasmic reticulum stress in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2019; 20:194-210. [PMID: 30192053 PMCID: PMC6637867 DOI: 10.1111/mpp.12748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The synergistic interaction of Potato virus X (PVX) with a number of potyviruses results in systemic necrosis in Nicotiana spp. Previous investigations have indicated that the viral suppressor of RNA silencing (VSR) protein P25 of PVX triggers systemic necrosis in PVX-associated synergisms in a threshold-dependent manner. However, little is still known about the cellular processes that lead to this necrosis, and whether the VSR activity of P25 is involved in its elicitation. Here, we show that transient expression of P25 in the presence of VSRs from different viruses, including the helper component-proteinase (HC-Pro) of potyviruses, induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), which ultimately lead to ER collapse. However, the host RNA silencing pathway was dispensable for the elicitation of cell death by P25. Confocal microscopy studies in leaf patches co-expressing P25 and HC-Pro showed dramatic alterations in ER membrane structures, which correlated with the up-regulation of bZIP60 and several ER-resident chaperones, including the ER luminal binding protein (BiP). Overexpression of BiP alleviated the cell death induced by the potexviral P25 protein when expressed together with VSRs derived from different viruses. Conversely, silencing of the UPR master regulator, bZIP60, led to an increase in cell death elicited by the P25/HC-Pro combination as well as by PVX-associated synergism. In addition to its role as a negative regulator of P25-induced cell death, UPR partially restricted PVX infection. Thus, systemic necrosis caused by PVX-associated synergistic infections is probably the effect of an unmitigated ER stress following the overaccumulation of a viral protein, P25, with ER remodelling activity.
Collapse
Affiliation(s)
- Emmanuel Aguilar
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas, CSICMadrid28040Spain
| | - Francisco J. del Toro
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas, CSICMadrid28040Spain
| | - Chantal Brosseau
- Centre SÈVE, Département de BiologieUniversité de SherbrookeSherbrookeQCJ1K 2R1Canada
| | - Peter Moffett
- Centre SÈVE, Département de BiologieUniversité de SherbrookeSherbrookeQCJ1K 2R1Canada
| | - Tomás Canto
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas, CSICMadrid28040Spain
| | - Francisco Tenllado
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas, CSICMadrid28040Spain
| |
Collapse
|
143
|
Yoshida T, Shiraishi T, Hagiwara-Komoda Y, Komatsu K, Maejima K, Okano Y, Fujimoto Y, Yusa A, Yamaji Y, Namba S. The Plant Noncanonical Antiviral Resistance Protein JAX1 Inhibits Potexviral Replication by Targeting the Viral RNA-Dependent RNA Polymerase. J Virol 2019; 93:e01506-18. [PMID: 30429349 PMCID: PMC6340027 DOI: 10.1128/jvi.01506-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/08/2018] [Indexed: 11/20/2022] Open
Abstract
Understanding the innate immune mechanisms of plants is necessary for the breeding of disease-resistant lines. Previously, we identified the antiviral resistance gene JAX1 from Arabidopsis thaliana, which inhibits infection by potexviruses. JAX1 encodes a unique jacalin-type lectin protein. In this study, we analyzed the molecular mechanisms of JAX1-mediated resistance. JAX1 restricted the multiplication of a potexviral replicon lacking movement-associated proteins, suggesting inhibition of viral replication. Therefore, we developed an in vitro potato virus X (PVX) translation/replication system using vacuole- and nucleus-free lysates from tobacco protoplasts, and we revealed that JAX1 inhibits viral RNA synthesis but not the translation of the viral RNA-dependent RNA polymerase (RdRp). JAX1 did not affect the replication of a resistance-breaking mutant of PVX. Blue native polyacrylamide gel electrophoresis of fractions separated by sucrose gradient sedimentation showed that PVX RdRp constituted the high-molecular-weight complex that seems to be crucial for viral replication. JAX1 was detected in this complex of the wild-type PVX replicon but not in that of the resistance-breaking mutant. In addition, JAX1 interacted with the RdRp of the wild-type virus but not with that of a virus with a point mutation at the resistance-breaking residue. These results suggest that JAX1 targets RdRp to inhibit potexviral replication.IMPORTANCE Resistance genes play a crucial role in plant antiviral innate immunity. The roles of conventional nucleotide-binding leucine-rich repeat (NLR) proteins and the associated defense pathways have long been studied. In contrast, recently discovered resistance genes that do not encode NLR proteins (non-NLR resistance genes) have not been investigated extensively. Here we report that the non-NLR resistance factor JAX1, a unique jacalin-type lectin protein, inhibits de novo potexviral RNA synthesis by targeting the huge complex of viral replicase. This is unlike other known antiviral resistance mechanisms. Molecular elucidation of the target in lectin-type protein-mediated antiviral immunity will enhance our understanding of the non-NLR-mediated plant resistance system.
Collapse
Affiliation(s)
- Tetsuya Yoshida
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Shiraishi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuka Hagiwara-Komoda
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ken Komatsu
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukari Okano
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Fujimoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akira Yusa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
144
|
Li P, Liu C, Deng WH, Yao DM, Pan LL, Li YQ, Liu YQ, Liang Y, Zhou XP, Wang XW. Plant begomoviruses subvert ubiquitination to suppress plant defenses against insect vectors. PLoS Pathog 2019; 15:e1007607. [PMID: 30789967 PMCID: PMC6400417 DOI: 10.1371/journal.ppat.1007607] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 03/05/2019] [Accepted: 01/30/2019] [Indexed: 11/18/2022] Open
Abstract
Most plant viruses are vectored by insects and the interactions of virus-plant-vector have important ecological and evolutionary implications. Insect vectors often perform better on virus-infected plants. This indirect mutualism between plant viruses and insect vectors promotes the spread of virus and has significant agronomical effects. However, few studies have investigated how plant viruses manipulate plant defenses and promote vector performance. Begomoviruses are a prominent group of plant viruses in tropical and sub-tropical agro-ecosystems and are transmitted by whiteflies. Working with the whitefly Bemisia tabaci, begomoviruses and tobacco, we revealed that C2 protein of begomoviruses lacking DNA satellites was responsible for the suppression of plant defenses against whitefly vectors. We found that infection of plants by tomato yellow leaf curl virus (TYLCV), one of the most devastating begomoviruses worldwide, promoted the survival and reproduction of whitefly vectors. TYLCV C2 protein suppressed plant defenses by interacting with plant ubiquitin. This interaction compromised the degradation of JAZ1 protein, thus inhibiting jasmonic acid defense and the expression of MYC2-regulated terpene synthase genes. We further demonstrated that function of C2 protein among begomoviruses not associated with satellites is well conserved and ubiquitination is an evolutionarily conserved target of begomoviruses for the suppression of plant resistance to whitefly vectors. Taken together, these results demonstrate that ubiquitination inhibition by begomovirus C2 protein might be a general mechanism in begomovirus, whitefly and plant interactions.
Collapse
Affiliation(s)
- Ping Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Chao Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Hao Deng
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Dan-Mei Yao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Long Pan
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yun-Qin Li
- Center of Analysis and Measurement, Zhejiang University, Hangzhou, China
| | - Yin-Quan Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yan Liang
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xue-Ping Zhou
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
145
|
Hashimoto M, Yamaji Y, Komatsu K. Analysis of Antiviral Resistance Signaling Pathways by Virus-Induced Gene Silencing in Nicotiana benthamiana. Methods Mol Biol 2019; 2028:85-95. [PMID: 31228109 DOI: 10.1007/978-1-4939-9635-3_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Owing to the absence of antiviral chemicals, strategies to deploy antiviral resistance in plants are desirable. Deciphering antiviral resistance mechanisms has been extensively promoted by virus-induced gene silencing (VIGS) technique, which decreases the transcriptional level of the gene of interest via RNA silencing machinery triggered by the partial gene fragment inserted into a viral vector. This technique has contributed to addressing the function of a number of host genes, which are involved in signaling pathways leading to Resistance (R) protein-mediated resistance and the viral disease symptoms such as systemic necrosis. Here we describe the general VIGS protocol and its tips to analyze antiviral resistance mechanism using Tobacco rattle virus (TRV)-based VIGS vector in tobacco plant Nicotiana benthamiana. In most cases, the knockdown of host genes by TRV vector is highly efficient and uniform at the whole plant level but is not associated with any severe symptoms. Using this method together with inoculation of a challenge virus and transient overexpression of a viral elicitor or another host signaling component by agroinfiltration, as well as measurement of hallmarks of antiviral responses, we can address the role of the host factors and the epistatic relationship between several host factors in the resistance signaling pathway against plant virus infection. The protocol described here using the highly susceptible host N. benthamiana to a variety of plant viruses provides the opportunity to study resistance mechanisms underlying many host-virus interactions.
Collapse
Affiliation(s)
- Masayoshi Hashimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Yamaji
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.
| |
Collapse
|
146
|
Ali Z, Zaidi SSEA, Tashkandi M, Mahfouz MM. A Simplified Method to Engineer CRISPR/Cas9-Mediated Geminivirus Resistance in Plants. Methods Mol Biol 2019; 2028:167-183. [PMID: 31228115 DOI: 10.1007/978-1-4939-9635-3_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Throughout the world, geminiviruses cause devastating losses in economically important crops, including tomato, cotton, cassava, potato, chili, and cucumber; however, control mechanisms such as genetic resistance remain expensive and ineffective. CRISPR/Cas9 is an adaptive immunity mechanism used by prokaryotes to defend against invading nucleic acids of phages and plasmids. The CRISPR/Cas9 system has been harnessed for targeted genome editing in a variety of eukaryotic species, and in plants, CRISPR/Cas9 has been used to modify or introduce many traits, including virus resistance. Recently, we demonstrated that the CRISPR/Cas9 system could be used to engineer plant immunity against geminiviruses by directly targeting the viral genome for degradation. In this chapter, we describe a detailed method for engineering CRISPR/Cas9-mediated resistance against geminiviruses. This method may provide broad, durable viral resistance, as it can target conserved regions of the viral genome and can also be customized to emerging viral variants. Moreover, this method can be used in many crop species, as it requires little or no knowledge of the host plant's genome.
Collapse
Affiliation(s)
- Zahir Ali
- Laboratory for Genome Engineering, Division of Environmental and Biological Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Syed Shan-E-Ali Zaidi
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Manal Tashkandi
- Laboratory for Genome Engineering, Division of Environmental and Biological Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering, Division of Environmental and Biological Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
147
|
Hyodo K, Suzuki N, Okuno T. Hijacking a host scaffold protein, RACK1, for replication of a plant RNA virus. THE NEW PHYTOLOGIST 2019; 221:935-945. [PMID: 30169907 DOI: 10.1111/nph.15412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/25/2018] [Indexed: 05/23/2023]
Abstract
Receptor for activated C kinase 1 (RACK1) is strictly conserved across eukaryotes and acts as a versatile scaffold protein involved in various signaling pathways. Plant RACK1 is known to exert important functions in innate immunity against fungal and bacterial pathogens. However, the role of the RACK1 in plant-virus interactions remains unknown. Here, we addressed the role of RACK1 of Nicotiana benthamiana during infection by red clover necrotic mosaic virus (RCNMV), a plant positive-stranded RNA virus. NbRACK1 was shown to be recruited by the p27 viral replication protein into endoplasmic reticulum-derived aggregated structures (possible replication sites). Downregulation of NbRACK1 by virus-induced gene silencing inhibited viral cap-independent translation and p27-mediated reactive oxygen species (ROS) accumulation, which are prerequisite for RCNMV replication. We also found that NbRACK1 interacted with a host calcium-dependent protein kinase (NbCDPKiso2) that activated a ROS-generating enzyme. Interestingly, NbRACK1 was required for the interaction of p27 with NbCDPKiso2, suggesting that NbRACK1 acts as a bridge between the p27 viral replication protein and NbCDPKiso2. Collectively, our findings provide an example of a viral strategy in which a host multifaceted scaffold protein RACK1 is highjacked for promoting viral protein-triggered ROS production necessary for robust viral replication.
Collapse
Grants
- 15H04456 JSPS KAKENHI
- 17K15229 JSPS KAKENHI
- 16H06429 Ministry of Education, Culture, Science, Sports and Technology (MEXT)
- 16K21723 Ministry of Education, Culture, Science, Sports and Technology (MEXT)
- 16H06436 Ministry of Education, Culture, Science, Sports and Technology (MEXT)
- 17H05818 Ministry of Education, Culture, Science, Sports and Technology (MEXT)
Collapse
Affiliation(s)
- Kiwamu Hyodo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Tetsuro Okuno
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
| |
Collapse
|
148
|
He Y, Fan M, Sun Y, Li L. Genome-Wide Analysis of Watermelon HSP20s and Their Expression Profiles and Subcellular Locations under Stresses. Int J Mol Sci 2018; 20:E12. [PMID: 30577505 PMCID: PMC6337729 DOI: 10.3390/ijms20010012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 12/01/2022] Open
Abstract
Watermelon (Citrullus lanatus L.), which is an economically important cucurbit crop that is cultivated worldwide, is vulnerable to various adverse environmental conditions. Small heat shock protein 20s (HSP20s) are the most abundant plant HSPs and they play important roles in various biotic and abiotic stress responses. However, they have not been systematically investigated in watermelon. In this study, we identified 44 watermelon HSP20 genes and analyzed their gene structures, conserved domains, phylogenetic relationships, chromosomal distributions, and expression profiles. All of the watermelon HSP20 proteins have a conserved the α-crystallin (ACD) domain. Half of the ClHSP20s arose through gene duplication events. Plant HSP20s were grouped into 18 subfamiles and a new subfamily, nucleo-cytoplasmic XIII (CXIII), was identified in this study. Numerous stress- and hormone-responsive cis-elements were detected in the putative promoter regions of the watermelon HSP20 genes. Different from that in other species, half of the watermelon HSP20s were repressed by heat stress. Plant HSP20s displayed diverse responses to different virus infections and most of the ClHSP20s were generally repressed by Cucumber green mottle mosaic virus (CGMMV). Some ClHSP20s exhibited similar transcriptional responses to abscisic acid, melatonin, and CGMMV. Subcellular localization analyses of six selected HSP20- green fluorescence protein fusion proteins revealed diverse subcellular targeting. Some ClHSP20 proteins were affected by CGMMV, as reflected by changes in the size, number, and distribution of fluorescent granules. These systematic analyses provide a foundation for elucidating the physiological functions and biological roles of the watermelon HSP20 gene family.
Collapse
Affiliation(s)
- Yanjun He
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou 310021, China.
| | - Min Fan
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou 310021, China.
| | - Yuyan Sun
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou 310021, China.
| | - Lili Li
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou 310021, China.
| |
Collapse
|
149
|
Bhushan K. CRISPR/Cas13a targeting of RNA virus in plants. PLANT CELL REPORTS 2018; 37:1707-1712. [PMID: 29779095 DOI: 10.1007/s00299-018-2297-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
KEY MESSAGE This approach is quite promising to control plant viral diseases and create synthetic networks to better understand the structure/function relationship in RNA and proteins. Plant viruses are obligate intracellular parasites which causes enormous losses in crop yield worldwide. These viruses replicate into infected cells by highjacking host cellular machinery. Over the last two decades, diverse approaches such as conventional breeding, transgenic approach and gene silencing strategies have been used to control RNA viruses, but escaped due to high rate of mutation. Recently, a novel CRISPR enzyme, called Cas13a, has been used engineered to confer RNA viruses resistance in plants. Here, we summarize the recent breakthrough of CRISPR/Cas13a and its applications in RNA biology.
Collapse
Affiliation(s)
- Kul Bhushan
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
150
|
Varela ALN, Oliveira JTA, Komatsu S, Silva RGG, Martins TF, Souza PFN, Lobo AKM, Vasconcelos IM, Carvalho FEL, Silveira JAG. A resistant cowpea (Vigna unguiculata [L.] Walp.) genotype became susceptible to cowpea severe mosaic virus (CPSMV) after exposure to salt stress. J Proteomics 2018; 194:200-217. [PMID: 30471437 DOI: 10.1016/j.jprot.2018.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/07/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
In nature, plants are simultaneously challenged by biotic and abiotic stresses. However, little is known about the effects of these combined stresses for most crops. This work aimed to evaluate the responsed of the virus-resistant cowpea genotype BRS-Marataoã to the exposure of salt stress combined with CPSMV infection. Cowpea plants were exposed to 200 mM NaCl either simultaneously (SV plant group) or 24 h prior to the CPSMV infection [S(24 h)V plant group]. Physiological, biochemical, and proteomic analyses at 2 and 6 days post salt stress (DPS) revealed that cowpea significantly reprogrammed its cellular metabolism. Indeed, plant size, photosynthetic parameters (net photosynthesis, transpiration rate, stomatal conductance, and internal CO2 partial pressure) and chlorophyll and carotenoid contents were reduced in S(24 h)V compared to SV. Moreover, accumulation of viral particles at 6 DPS in S(24 h)V was observed indicating that the salt stress imposed prior to virus infection favors viral particle proliferation. Proteomic analysis showed differential contents of 403 and 330 proteins at 2 DPS and 6 DPS, respectively, out of 733 differentially abundant proteins between the two plant groups. The altered leaf proteins are involved in energy and metabolism, photosynthesis, stress response, and oxidative burst. BIOLOGICAL SIGNIFICANCE: This is an original study in which a virus-resistant cowpea genotype (BRS-Marataoã) was (i) exposed simultaneously to 200 mM NaCl and inoculation with CPSMV (SV plant group) or (ii) exposed to 200 mM NaCl stress 24 h prior to inoculation with CPSMV [S(24 h)V plant group]. The purpose was to shed light on how this CPSMV resistant cowpea responded to the combined stresses. Numerous key proteins and associated pathways were altered in the cowpea plants challenged with both stresses, but unexpectedly, the salt stress imposed 24 h prior to CPSMV inoculation allowed viral proliferation, turning the cowpea genotype from resistant to susceptible.
Collapse
Affiliation(s)
- Anna Lídia Nunes Varela
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, CE 60440-900, Brazil
| | - Jose Tadeu Abreu Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, CE 60440-900, Brazil.
| | - Setsuko Komatsu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | | | - Thiago Fernandes Martins
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, CE 60440-900, Brazil
| | | | - Ana Karla Moreira Lobo
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, CE 60440-900, Brazil
| | - Ilka Maria Vasconcelos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, CE 60440-900, Brazil
| | | | | |
Collapse
|