101
|
Wu J, Yan M, Zhang D, Zhou D, Yamaguchi N, Ito T. Histone Demethylases Coordinate the Antagonistic Interaction Between Abscisic Acid and Brassinosteroid Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:596835. [PMID: 33324437 PMCID: PMC7724051 DOI: 10.3389/fpls.2020.596835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/03/2020] [Indexed: 05/30/2023]
Abstract
Abscisic acid (ABA) interacts antagonistically with brassinosteroids (BRs) to control plant growth and development in response to stress. The response to environmental cues includes hormonal control via epigenetic regulation of gene expression. However, the details of the ABA-BR crosstalk remain largely unknown. Here, we show that JUMONJI-C domain containing histone demethylases (JMJs) coordinate the antagonistic interaction between ABA and BR signaling pathways during the post-germination stage in Arabidopsis. BR blocks ABA-mediated seedling arrest through repression of JMJ30. JMJs remove the repressive histone marks from the BRASSINAZOLE RESISTANT1 (BZR1) locus for its activation to balance ABA and BR signaling pathways. JMJs and BZR1 co-regulate genes encoding three membrane proteins, a regulator of vacuole morphology, and two lipid-transfer proteins, each of which play a different role in transport. BZR1 also regulates stimuli-related target genes in a JMJ-independent pathway. Our findings suggest that the histone demethylases integrate ABA and BR signals, leading to changes in growth program after germination.
Collapse
Affiliation(s)
- Jinfeng Wu
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Mingli Yan
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Dawei Zhang
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Dinggang Zhou
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, China
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi-shi, Japan
| | - Toshiro Ito
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
102
|
Wang L, Hart BE, Khan GA, Cruz ER, Persson S, Wallace IS. Associations between phytohormones and cellulose biosynthesis in land plants. ANNALS OF BOTANY 2020; 126:807-824. [PMID: 32619216 PMCID: PMC7539351 DOI: 10.1093/aob/mcaa121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/01/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Phytohormones are small molecules that regulate virtually every aspect of plant growth and development, from basic cellular processes, such as cell expansion and division, to whole plant environmental responses. While the phytohormone levels and distribution thus tell the plant how to adjust itself, the corresponding growth alterations are actuated by cell wall modification/synthesis and internal turgor. Plant cell walls are complex polysaccharide-rich extracellular matrixes that surround all plant cells. Among the cell wall components, cellulose is typically the major polysaccharide, and is the load-bearing structure of the walls. Hence, the cell wall distribution of cellulose, which is synthesized by large Cellulose Synthase protein complexes at the cell surface, directs plant growth. SCOPE Here, we review the relationships between key phytohormone classes and cellulose deposition in plant systems. We present the core signalling pathways associated with each phytohormone and discuss the current understanding of how these signalling pathways impact cellulose biosynthesis with a particular focus on transcriptional and post-translational regulation. Because cortical microtubules underlying the plasma membrane significantly impact the trajectories of Cellulose Synthase Complexes, we also discuss the current understanding of how phytohormone signalling impacts the cortical microtubule array. CONCLUSION Given the importance of cellulose deposition and phytohormone signalling in plant growth and development, one would expect that there is substantial cross-talk between these processes; however, mechanisms for many of these relationships remain unclear and should be considered as the target of future studies.
Collapse
Affiliation(s)
- Liu Wang
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Bret E Hart
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
| | | | - Edward R Cruz
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
- Department of Chemistry, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
103
|
Wang Q, Yu F, Xie Q. Balancing growth and adaptation to stress: Crosstalk between brassinosteroid and abscisic acid signaling. PLANT, CELL & ENVIRONMENT 2020; 43:2325-2335. [PMID: 32671865 DOI: 10.1111/pce.13846] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 05/07/2023]
Abstract
Plant growth and development are plastic and canadapt to environmental changes. In this process different plant hormones coordinate to modulate plant growth and environmental interactions. In this article, we describe the individual brassinosteroid (BR) and abscisic acid (ABA) signaling pathways, emphasize the specific regulatory mechanisms between ABA and BR responses and discuss how both phytohormones coordinate growth, development and stress responses in plants. BR signaling is essential for plant development, while ABA signaling is activated to ensure plants survive stress. The crosstalk between BR and ABA, especially protein phosphorylation, protein stability control and downstream transcription control of key components of both pathways are discussed in terms of modulating plant development and stress adaptation.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feifei Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
104
|
Liu X, Yang H, Wang Y, Zhu Z, Zhang W, Li J. Comparative Transcriptomic Analysis to Identify Brassinosteroid Response Genes. PLANT PHYSIOLOGY 2020; 184:1072-1082. [PMID: 32759270 PMCID: PMC7536709 DOI: 10.1104/pp.20.00386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/25/2020] [Indexed: 05/21/2023]
Abstract
Brassinosteroids (BRs) are plant growth-promoting steroid hormones. BRs affect plant growth by regulating panels of downstream genes. Much effort has been made to establish BR-regulated gene expression networks, but there is little overlap among published expression networks. In this study, we built an optimal BR-regulated gene expression network using the model plant Arabidopisis (Arabidopisis thaliana). Seven- and 24-d-old seedlings of the constitutive photomorphogenesis and dwarfism mutant and brassinosteroid-insensitive 1-701 (bri1-701) BRI1-like receptor genes1 (brl1) brl3 triple mutant seedlings were treated with brassinolide and RNA sequencing (RNA-seq) was used to detect differentially expressed genes. Using this approach, we generated a transcriptomic database of 4,498 differentially expressed genes and identified 110 transcription factors that specifically respond to BR at different stages. We also found that, among the identified BR-responsive transcription factors, ABSCISIC ACID-INSENSlTIVE4 (ABI4), an ethylene response factor transcription factor, inhibits BR-regulated growth. Compared to wild-type plants, the abi4-102 mutant was less sensitive to brassinazole and more sensitive to BR. Next, we performed a chromatin immunoprecipitation followed by high-throughput sequencing assay and established that ABI4 binds directly to the BRI1-associated receptor kinase1 promoter and inhibits transcription. These results provide insight into BR-responsive gene functions in regulating plant growth at different stages and may serve as a basis for predicting gene function, selecting candidate genes, and improving the understanding of BR regulatory pathways.
Collapse
Affiliation(s)
- Xiaolei Liu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Hongxing Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, 201602 Shanghai, China
| | - Yuan Wang
- Department of Botany and Plant Science, University of California Riverside, Riverside, California 92507
| | - Zhaohai Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Wei Zhang
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Jianming Li
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| |
Collapse
|
105
|
Huang SH, Liu YX, Deng R, Lei TT, Tian AJ, Ren HH, Wang SF, Wang XF. Genome-wide identification and expression analysis of the GSK gene family in Solanum tuberosum L. under abiotic stress and phytohormone treatments and functional characterization of StSK21 involvement in salt stress. Gene 2020; 766:145156. [PMID: 32949696 DOI: 10.1016/j.gene.2020.145156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 01/29/2023]
Abstract
Plant Glycogen Synthase Kinase 3 (GSK3)/SHAGGY-like kinase (GSK) proteins play important roles in modulating growth, development, and stress responses in several plant species. However, little is known about the members of the potato GSK (StGSK) family. Here, nine StGSK genes were identified and phylogenetically grouped into four clades. Gene duplication analysis revealed that segmental duplication contributed to the expansion of the StGSK family. Gene structure and motif pattern analyses indicated that similar exon/intron and motif organizations were found in StGSKs from the same clade. Conserved motif and kinase activity analyses indicated that the StGSKs encode active protein kinases, and they were shown to be distributed throughout whole cells. Cis-acting regulatory element analysis revealed the presence of many growth-, hormone-, and stress-responsive elements within the promoter regions of the StGSKs, which is consistent with their expression in different organs, and their altered expression in response to hormone and stress treatments. Association network analysis indicated that various proteins, including two confirmed BES1 family transcription factors, potentially interact with StGSKs. Overexpression of StSK21 provides enhanced sensitivity to salt stress in Arabidopsis thaliana plants. Overall, these results reveal that StGSK proteins are active protein kinases with purported functions in regulating growth, development, and stress responses.
Collapse
Affiliation(s)
- Shu-Hua Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yu-Xiu Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Rui Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Tian-Tian Lei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Ai-Juan Tian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Hai-Hua Ren
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Shu-Fen Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiao-Feng Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
106
|
Jia D, Chen LG, Yin G, Yang X, Gao Z, Guo Y, Sun Y, Tang W. Brassinosteroids regulate outer ovule integument growth in part via the control of INNER NO OUTER by BRASSINOZOLE-RESISTANT family transcription factors. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1093-1111. [PMID: 32009278 DOI: 10.1111/jipb.12915] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 05/14/2023]
Abstract
Brassinosteroids (BRs) play important roles in regulating plant reproductive processes. BR signaling or BR biosynthesis null mutants do not produce seeds under natural conditions, but the molecular mechanism underlying this infertility is poorly understood. In this study, we report that outer integument growth and embryo sac development were impaired in the ovules of the Arabidopsis thaliana BR receptor null mutant bri1-116. Gene expression and RNA-seq analyses showed that the expression of INNER NO OUTER (INO), an essential regulator of outer integument growth, was significantly reduced in the bri1-116 mutant. Increased INO expression due to overexpression or increased transcriptional activity of BRASSINAZOLE-RESISTANT 1 (BZR1) in the mutant alleviated the outer integument growth defect in bri1-116 ovules, suggesting that BRs regulate outer integument growth partially via BZR1-mediated transcriptional regulation of INO. Meanwhile, INO expression in bzr-h, a null mutant for all BZR1 family genes, was barely detectable; and the outer integument of bzr-h ovules had much more severe growth defects than those of the bri1-116 mutant. Together, our findings establish a new role for BRs in regulating ovule development and suggest that BZR1 family transcription factors might regulate outer integument growth through both BRI1-dependent and BRI1-independent pathways.
Collapse
Affiliation(s)
- Dandan Jia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Lian-Ge Chen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Guimin Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaorui Yang
- College of Bioscience & Bioengineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Zhihua Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yi Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yu Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| |
Collapse
|
107
|
Linking Brassinosteroid and ABA Signaling in the Context of Stress Acclimation. Int J Mol Sci 2020; 21:ijms21145108. [PMID: 32698312 PMCID: PMC7404222 DOI: 10.3390/ijms21145108] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
The important regulatory role of brassinosteroids (BRs) in the mechanisms of tolerance to multiple stresses is well known. Growing data indicate that the phenomenon of BR-mediated drought stress tolerance can be explained by the generation of stress memory (the process known as ‘priming’ or ‘acclimation’). In this review, we summarize the data on BR and abscisic acid (ABA) signaling to show the interconnection between the pathways in the stress memory acquisition. Starting from brassinosteroid receptors brassinosteroid insensitive 1 (BRI1) and receptor-like protein kinase BRI1-like 3 (BRL3) and propagating through BR-signaling kinases 1 and 3 (BSK1/3) → BRI1 suppressor 1 (BSU1) ―‖ brassinosteroid insensitive 2 (BIN2) pathway, BR and ABA signaling are linked through BIN2 kinase. Bioinformatics data suggest possible modules by which BRs can affect the memory to drought or cold stresses. These are the BIN2 → SNF1-related protein kinases (SnRK2s) → abscisic acid responsive elements-binding factor 2 (ABF2) module; BRI1-EMS-supressor 1 (BES1) or brassinazole-resistant 1 protein (BZR1)–TOPLESS (TPL)–histone deacetylase 19 (HDA19) repressor complexes, and the BZR1/BES1 → flowering locus C (FLC)/flowering time control protein FCA (FCA) pathway. Acclimation processes can be also regulated by BR signaling associated with stress reactions caused by an accumulation of misfolded proteins in the endoplasmic reticulum.
Collapse
|
108
|
Synergistic Interaction of Phytohormones in Determining Leaf Angle in Crops. Int J Mol Sci 2020; 21:ijms21145052. [PMID: 32709150 PMCID: PMC7404121 DOI: 10.3390/ijms21145052] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Leaf angle (LA), defined as the angle between the plant stem and leaf adaxial side of the blade, generally shapes the plant architecture into a loosen or dense structure, and thus influences the light interception and competition between neighboring plants in natural settings, ultimately contributing to the crop yield and productivity. It has been elucidated that brassinosteroid (BR) plays a dominant role in determining LA, and other phytohormones also positively or negatively participate in regulating LA. Accumulating evidences have revealed that these phytohormones interact with each other in modulating various biological processes. However, the comprehensive discussion of how the phytohormones and their interaction involved in shaping LA is relatively lack. Here, we intend to summarize the advances in the LA regulation mediated by the phytohormones and their crosstalk in different plant species, mainly in rice and maize, hopefully providing further insights into the genetic manipulation of LA trait in crop breeding and improvement in regarding to overcoming the challenge from the continuous demands for food under limited arable land area.
Collapse
|
109
|
Zhang Y, Zeng L. Crosstalk between Ubiquitination and Other Post-translational Protein Modifications in Plant Immunity. PLANT COMMUNICATIONS 2020; 1:100041. [PMID: 33367245 PMCID: PMC7748009 DOI: 10.1016/j.xplc.2020.100041] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 05/05/2023]
Abstract
Post-translational modifications (PTMs) are central to the modulation of protein activity, stability, subcellular localization, and interaction with partners. They greatly expand the diversity and functionality of the proteome and have taken the center stage as key players in regulating numerous cellular and physiological processes. Increasing evidence indicates that in addition to a single regulatory PTM, many proteins are modified by multiple different types of PTMs in an orchestrated manner to collectively modulate the biological outcome. Such PTM crosstalk creates a combinatorial explosion in the number of proteoforms in a cell and greatly improves the ability of plants to rapidly mount and fine-tune responses to different external and internal cues. While PTM crosstalk has been investigated in depth in humans, animals, and yeast, the study of interplay between different PTMs in plants is still at its infant stage. In the past decade, investigations showed that PTMs are widely involved and play critical roles in the regulation of interactions between plants and pathogens. In particular, ubiquitination has emerged as a key regulator of plant immunity. This review discusses recent studies of the crosstalk between ubiquitination and six other PTMs, i.e., phosphorylation, SUMOylation, poly(ADP-ribosyl)ation, acetylation, redox modification, and glycosylation, in the regulation of plant immunity. The two basic ways by which PTMs communicate as well as the underlying mechanisms and diverse outcomes of the PTM crosstalk in plant immunity are highlighted.
Collapse
|
110
|
Yang T, Lian Y, Kang J, Bian Z, Xuan L, Gao Z, Wang X, Deng J, Wang C. The SUPPRESSOR of MAX2 1 (SMAX1)-Like SMXL6, SMXL7 and SMXL8 Act as Negative Regulators in Response to Drought Stress in Arabidopsis. ACTA ACUST UNITED AC 2020; 61:1477-1492. [DOI: 10.1093/pcp/pcaa066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/30/2020] [Indexed: 12/22/2022]
Abstract
Abstract
Drought represents a major threat to crop growth and yields. Strigolactones (SLs) contribute to regulating shoot branching by targeting the SUPPRESSOR OF MORE AXILLARY GROWTH2 (MAX2)-LIKE6 (SMXL6), SMXL7 and SMXL8 for degradation in a MAX2-dependent manner in Arabidopsis. Although SLs are implicated in plant drought response, the functions of the SMXL6, 7 and 8 in the SL-regulated plant response to drought stress have remained unclear. Here, we performed transcriptomic, physiological and biochemical analyses of smxl6, 7, 8 and max2 plants to understand the basis for SMXL6/7/8-regulated drought response. We found that three D53 (DWARF53)-Like SMXL members, SMXL6, 7 and 8, are involved in drought response as the smxl6smxl7smxl8 triple mutants showed markedly enhanced drought tolerance compared to wild type (WT). The smxl6smxl7smxl8 plants exhibited decreased leaf stomatal index, cuticular permeability and water loss, and increased anthocyanin biosynthesis during dehydration. Moreover, smxl6smxl7smxl8 were hypersensitive to ABA-induced stomatal closure and ABA responsiveness during and after germination. In addition, RNA-sequencing analysis of the leaves of the D53-like smxl mutants, SL-response max2 mutant and WT plants under normal and dehydration conditions revealed an SMXL6/7/8-mediated network controlling plant adaptation to drought stress via many stress- and/or ABA-responsive and SL-related genes. These data further provide evidence for crosstalk between ABA- and SL-dependent signaling pathways in regulating plant responses to drought. Our results demonstrate that SMXL6, 7 and 8 are vital components of SL signaling and are negatively involved in drought responses, suggesting that genetic manipulation of SMXL6/7/8-dependent SL signaling may provide novel ways to improve drought resistance.
Collapse
Affiliation(s)
- Tao Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuke Lian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jihong Kang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhiyuan Bian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lijuan Xuan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhensheng Gao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xinyu Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianming Deng
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Chongying Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
111
|
Setsungnern A, Muñoz P, Pérez-Llorca M, Müller M, Thiravetyan P, Munné-Bosch S. A defect in BRI1-EMS-SUPPRESSOR 1 (bes1)-mediated brassinosteroid signaling increases photoinhibition and photo-oxidative stress during heat stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110470. [PMID: 32540000 DOI: 10.1016/j.plantsci.2020.110470] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/24/2020] [Accepted: 03/14/2020] [Indexed: 05/02/2023]
Abstract
Heat stress has negative effects on plant performance, especially in photosynthesis and photoprotection. To withstand heat stress, plants modulate steroid phytohormones, brassinosteroids (BRs). However, their regulation and functions in heat stress acclimation are still poorly understood. Plant growth, photoinhibition, photo-oxidative stress and endogenous contents of hormones (including not only BRs but also abscisic acid, salicylic acid and jasmonic acid) were evaluated during heat stress in Arabidopsis thaliana wild type plants and loss-of-function mutations in either BR biosynthetic or signaling genes. It was found that a defect in BRI1-EMS-SUPPRESSOR 1 (bes1)-mediated BR signaling showed the most sensitive characteristics to heat stress compared to wild type and other BR mutants. Sensitivity was associated with declined PSII photochemistry efficiency (Fv/Fm) together with increased carotenoid, tocopherol and lipid hydroperoxide contents, which evidences higher photoinhibition and photo-oxidative stress in the bes1 mutant under heat stress. Furthermore, the bes1 mutant showed greater contents of abscisic acid (ABA) after one day of exposure to heat stress. However, all heat stress symptoms in the bes1 mutant could be mitigated by the application of 24-epibrassinolide. Therefore, it is concluded that BES1 transcription factor plays a role in plants responses to heat stress, relieving photoinhibition and photo-oxidative stress, but that alternative BR signaling pathways to BES1 may also be effective in heat stress acclimation. Furthermore, this study emphasizes the complex interplay between BR and ABA in the heat acclimation process.
Collapse
Affiliation(s)
- Arnon Setsungnern
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology University of Barcelona, Barcelona, 08028, Spain
| | - Marina Pérez-Llorca
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology University of Barcelona, Barcelona, 08028, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology University of Barcelona, Barcelona, 08028, Spain
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology University of Barcelona, Barcelona, 08028, Spain.
| |
Collapse
|
112
|
Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L. An Updated Overview on the Regulation of Seed Germination. PLANTS 2020; 9:plants9060703. [PMID: 32492790 PMCID: PMC7356954 DOI: 10.3390/plants9060703] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
The ability of a seed to germinate and establish a plant at the right time of year is of vital importance from an ecological and economical point of view. Due to the fragility of these early growth stages, their swiftness and robustness will impact later developmental stages and crop yield. These traits are modulated by a continuous interaction between the genetic makeup of the plant and the environment from seed production to germination stages. In this review, we have summarized the established knowledge on the control of seed germination from a molecular and a genetic perspective. This serves as a “backbone” to integrate the latest developments in the field. These include the link of germination to events occurring in the mother plant influenced by the environment, the impact of changes in the chromatin landscape, the discovery of new players and new insights related to well-known master regulators. Finally, results from recent studies on hormone transport, signaling, and biophysical and mechanical tissue properties are underscoring the relevance of tissue-specific regulation and the interplay of signals in this crucial developmental process.
Collapse
|
113
|
Romanenko KO, Babenko LM, Vasheka OV, Romanenko PO, Kosakivska IV. In vitro Phytohormonal Regulation of Fern Gametophytes Growth and Development. Russ J Dev Biol 2020. [DOI: 10.1134/s106236042002006x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
114
|
Li L, Deng M, Lyu C, Zhang J, Peng J, Cai C, Yang S, Lu L, Ni S, Liu F, Zheng S, Yu L, Wang X. Quantitative phosphoproteomics analysis reveals that protein modification and sugar metabolism contribute to sprouting in potato after BR treatment. Food Chem 2020; 325:126875. [PMID: 32387993 DOI: 10.1016/j.foodchem.2020.126875] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/02/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022]
Abstract
Brassinosteroids (BRs), a new class of steroid hormones, are involved in the regulation of plant cell elongation and seed germination. Nevertheless, the molecular mechanism of the effect of BRs on tuber sprouting remains largely unknown. In this study, quantitative phosphoproteomics was employed to investigate the protein phosphorylation changes in sprouting induced by BRs. Our results showed that BRs accelerated the conversion of starch into soluble sugar in tubers. A functional enrichment cluster analysis suggested that the "amino acid metabolism pathway" was upregulated and that "plant hormone signal transduction and protein export" were downregulated. BR treatment also changed the phosphorylation of proteins involved in the BR, ABA, starch and sugar signal transduction pathways, such as serine/threonine-protein kinase (BSK), 14-3-3, alpha-glucan water dikinase (GWD), sucrose-phosphate synthase (SPS), sucrose synthase (SS) and alkaline/neutral invertase (A/N-INV). These results shed more light on the pattern of protein phosphorylation in BR promoting potato sprouting.
Collapse
Key Words
- 1,3-DPG, PubChem CID: 683
- 2-DPG, PubChem CID: 59
- 3-DPG, PubChem CID: 724
- Amylopectin, PubChem CID: 439207
- Amylose, PubChem CID: 53477771
- Brassinosteroids
- Glucose, PubChem CID: 107526
- PGAL, PubChem CID: 729
- Phosphoproteomics
- Potato
- Sprouting
- Sucrose, PubChem CID: 5988
- α-D-Glucose, PubChem CID: 79025
- α-D-Glucose-1P, PubChem CID: 65533
Collapse
Affiliation(s)
- Liqin Li
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Mengsheng Deng
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Chengcheng Lyu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Jie Zhang
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Jie Peng
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Chengcheng Cai
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Shimin Yang
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Liming Lu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Su Ni
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Fan Liu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Shunlin Zheng
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Liping Yu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Xiyao Wang
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| |
Collapse
|
115
|
Lv M, Li J. Molecular Mechanisms of Brassinosteroid-Mediated Responses to Changing Environments in Arabidopsis. Int J Mol Sci 2020; 21:ijms21082737. [PMID: 32326491 PMCID: PMC7215551 DOI: 10.3390/ijms21082737] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Plant adaptations to changing environments rely on integrating external stimuli into internal responses. Brassinosteroids (BRs), a group of growth-promoting phytohormones, have been reported to act as signal molecules mediating these processes. BRs are perceived by cell surface receptor complex including receptor BRI1 and coreceptor BAK1, which subsequently triggers a signaling cascade that leads to inhibition of BIN2 and activation of BES1/BZR1 transcription factors. BES1/BZR1 can directly regulate the expression of thousands of downstream responsive genes. Recent studies in the model plant Arabidopsis demonstrated that BR biosynthesis and signal transduction, especially the regulatory components BIN2 and BES1/BZR1, are finely tuned by various environmental cues. Here, we summarize these research updates and give a comprehensive review of how BR biosynthesis and signaling are modulated by changing environments and how these changes regulate plant adaptive growth or stress tolerance.
Collapse
|
116
|
Cadavid IC, Guzman F, de Oliveira-Busatto L, de Almeida RMC, Margis R. Transcriptional analyses of two soybean cultivars under salt stress. Mol Biol Rep 2020; 47:2871-2888. [PMID: 32227253 DOI: 10.1007/s11033-020-05398-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/25/2020] [Indexed: 01/12/2023]
Abstract
Soybean is an economically important plant, and its production is affected in soils with high salinity levels. It is important to understand the adaptive mechanisms through which plants overcome this kind of stress and to identify potential genes for improving abiotic stress tolerance. RNA-Seq data of two Glycine max cultivars, a drought-sensitive (C08) and a tolerant (Conquista), subjected to different periods of salt stress were analyzed. The transcript expression profile was obtained using a transcriptogram approach, comparing both cultivars and different times of treatment. After 4 h of salt stress, Conquista cultivar had 1400 differentially expressed genes, 647 induced and 753 repressed. Comparative expression revealed that 719 genes share the same pattern of induction or repression between both cultivars. Among them, 393 genes were up- and 326 down-regulated. Salt stress also modified the expression of 54 isoforms of miRNAs in Conquista, by the maturation of 39 different pre-miRNAs. The predicted targets for 12 of those mature miRNAs also have matches with 15 differentially expressed genes from our analyses. We found genes involved in important pathways related to stress adaptation. Genes from both ABA and BR signaling pathways were modulated, with possible crosstalk between them, and with a likely post-transcriptional regulation by miRNAs. Genes related to ethylene biosynthesis, DNA repair, and plastid translation process were those that could be regulated by miRNA.
Collapse
Affiliation(s)
- Isabel Cristina Cadavid
- Progama de Pos-gradação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Frank Guzman
- Progama de Pos-gradação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Dirección de Recursos Genéticos y Biotecnología, Instituto Nacional de Innovación Agraria, Av. La Molina, 1981, Lima 12, Perú
| | - Luisa de Oliveira-Busatto
- Progama de Pos-gradação em Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rita M C de Almeida
- Instituto de Física, Sistemas Complexos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Instituto Nacional de Ciência E Tecnologia: Sistemas Complexos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós Graduação Em Bioinformática, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Rogerio Margis
- Progama de Pos-gradação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Progama de Pos-gradação em Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Centro de Biotecnologia, Laboratório de Genomas e Populações de Plantas (LGPP), Universidade Federal Do Rio Grande Do Sul, Av. Bento Gonçalves, 9500 - Prédio 43422, Laboratório 206, Porto Alegre, Brazil.
| |
Collapse
|
117
|
Li QF, Zhou Y, Xiong M, Ren XY, Han L, Wang JD, Zhang CQ, Fan XL, Liu QQ. Gibberellin recovers seed germination in rice with impaired brassinosteroid signalling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110435. [PMID: 32081273 DOI: 10.1016/j.plantsci.2020.110435] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/26/2020] [Accepted: 02/01/2020] [Indexed: 05/25/2023]
Abstract
Seed germination is essential for ensuring grain yield and quality. Germination rate, uniformity, and post-germination growth all contribute to cultivation. Although the phytohormones gibberellin (GA) and brassinosteroid (BR) are known to regulate germination, the underlying mechanism of their crosstalk in co-regulating rice seed germination remains unclear. In this study, the isobaric tags for relative and absolute quantitation (iTRAQ) proteomic approach was employed to identify target proteins responsive to GA during recovery of germination in BR-deficient and BR-insensitive rice. A total of 42 differentially abundant proteins were identified in both BR-deficient and BR-insensitive plants, and most were altered consistently in the two groups. Gene Ontology (GO) analysis revealed enrichment in proteins with binding and catalytic activity. A potential protein-protein interaction network was constructed using STRING analysis, and five Late Embryogenesis Abundant (LEA) family members were markedly down-regulated at both mRNA transcript and protein levels. These LEA genes were specifically expressed in rice seeds, especially during the latter stages of seed development. Mutation of LEA33 affected rice grain size and seed germination, possibly by reducing BR accumulation and enhancing GA biosynthesis. The findings improve our knowledge of the mechanisms by which GA and BR coordinate seed germination.
Collapse
Affiliation(s)
- Qian-Feng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Yu Zhou
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Min Xiong
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Xin-Yu Ren
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Li Han
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Jin-Dong Wang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Chang-Quan Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Xiao-Lei Fan
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Qiao-Quan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
118
|
Li J, Terzaghi W, Gong Y, Li C, Ling JJ, Fan Y, Qin N, Gong X, Zhu D, Deng XW. Modulation of BIN2 kinase activity by HY5 controls hypocotyl elongation in the light. Nat Commun 2020; 11:1592. [PMID: 32221308 PMCID: PMC7101348 DOI: 10.1038/s41467-020-15394-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
ELONGATED HYPOCOTYL 5 (HY5), a basic domain/leucine zipper (bZIP) transcription factor, acts as a master regulator of transcription to promote photomorphogenesis. At present, it's unclear whether HY5 uses additional mechanisms to inhibit hypocotyl elongation. Here, we demonstrate that HY5 enhances the activity of GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 (BIN2), a key repressor of brassinosteroid signaling, to repress hypocotyl elongation. We show that HY5 physically interacts with and genetically acts through BIN2 to inhibit hypocotyl elongation. The interaction of HY5 with BIN2 enhances its kinase activity possibly by the promotion of BIN2 Tyr200 autophosphorylation, and subsequently represses the accumulation of the transcription factor BRASSINAZOLE-RESISTANT 1 (BZR1). Leu137 of HY5 is found to be important for the HY5-BIN2 interaction and HY5-mediated regulation of BIN2 activity, without affecting the transcriptional activity of HY5. HY5 levels increase with light intensity, which gradually enhances BIN2 activity. Thus, our work reveals an additional way in which HY5 promotes photomorphogenesis, and provides an insight into the regulation of GSK3 activity.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, PA, 18766, USA
| | - Yanyan Gong
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Congran Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Jun-Jie Ling
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Yangyang Fan
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Nanxun Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Xinqi Gong
- Institute for Mathematical Sciences, Renmin University of China, 100872, Beijing, China.
| | - Danmeng Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
119
|
Zhu H, Zhou Y, Zhai H, He S, Zhao N, Liu Q. A Novel Sweetpotato WRKY Transcription Factor, IbWRKY2, Positively Regulates Drought and Salt Tolerance in Transgenic Arabidopsis. Biomolecules 2020; 10:biom10040506. [PMID: 32230780 PMCID: PMC7226164 DOI: 10.3390/biom10040506] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 01/17/2023] Open
Abstract
WRKYs play important roles in plant growth, defense regulation, and stress response. However, the mechanisms through which WRKYs are involved in drought and salt tolerance have been rarely characterized in sweetpotato [Ipomoea batatas (L.) Lam.]. In this study, we cloned a WRKY gene, IbWRKY2, from sweetpotato and its expression was induced with PEG6000, NaCl, and abscisic acid (ABA). The IbWRKY2 was localized in the nucleus. The full-length protein exhibited transactivation activity, and its active domain was located in the N-terminal region. IbWRKY2-overexpressing Arabidopsis showed enhanced drought and salt tolerance. After drought and salt treatments, the contents of ABA and proline as well as the activity of superoxide dismutase (SOD) were higher in transgenic plants, while the malondialdehyde (MDA) and H2O2 contents were lower. In addition, several genes related to the ABA signaling pathway, proline biosynthesis, and the reactive oxygen species (ROS)-scavenging system, were significantly up-regulated in transgenic lines. These results demonstrate that IbWRKY2 confers drought and salt tolerance in Arabidopsis. Furthermore, IbWRKY2 was able to interact with IbVQ4, and the expression of IbVQ4 was induced by drought and salt treatments. These results provide clues regarding the mechanism by which IbWRKY2 contributes to the regulation of abiotic stress tolerance.
Collapse
Affiliation(s)
- Hong Zhu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (H.Z.); (Y.Z.); (H.Z.); (S.H.); (N.Z.)
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuanyuan Zhou
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (H.Z.); (Y.Z.); (H.Z.); (S.H.); (N.Z.)
| | - Hong Zhai
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (H.Z.); (Y.Z.); (H.Z.); (S.H.); (N.Z.)
| | - Shaozhen He
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (H.Z.); (Y.Z.); (H.Z.); (S.H.); (N.Z.)
| | - Ning Zhao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (H.Z.); (Y.Z.); (H.Z.); (S.H.); (N.Z.)
| | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China; (H.Z.); (Y.Z.); (H.Z.); (S.H.); (N.Z.)
- Correspondence: ; Tel.: +86-010-6273-3710
| |
Collapse
|
120
|
Wolf S. Deviating from the Beaten Track: New Twists in Brassinosteroid Receptor Function. Int J Mol Sci 2020; 21:ijms21051561. [PMID: 32106564 PMCID: PMC7084826 DOI: 10.3390/ijms21051561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 12/15/2022] Open
Abstract
A key feature of plants is their plastic development tailored to the environmental conditions. To integrate environmental signals with genetic growth regulatory programs, plants rely on a number of hormonal pathways, which are intimately connected at multiple levels. Brassinosteroids (BRs), a class of plant sterol hormones, are perceived by cell surface receptors and trigger responses instrumental in tailoring developmental programs to environmental cues. Arguably, BR signalling is one of the best-characterized plant signalling pathways, and the molecular composition of the core signal transduction cascade seems clear. However, BR research continues to reveal new twists to re-shape our view on this key signalling circuit. Here, exciting novel findings pointing to the plasma membrane as a key site for BR signalling modulation and integration with other pathways are reviewed and new inputs into the BR signalling pathway and emerging “non-canonical” functions of the BR receptor complex are highlighted. Together, this new evidence underscores the complexity of plant signalling integration and serves as a reminder that highly-interconnected signalling pathways frequently comprise non-linear aspects which are difficult to convey in classical conceptual models.
Collapse
Affiliation(s)
- Sebastian Wolf
- Centre for Organismal Studies (COS) Heidelberg, INF230, 69120 Heidelberg, Germany
| |
Collapse
|
121
|
StABI5 Involved in the Regulation of Chloroplast Development and Photosynthesis in Potato. Int J Mol Sci 2020; 21:ijms21031068. [PMID: 32041112 PMCID: PMC7036812 DOI: 10.3390/ijms21031068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 01/04/2023] Open
Abstract
Abscisic acid (ABA) insensitive 5 (ABI5)—a core transcription factor of the ABA signaling pathway—is a basic leucine zipper transcription factor that plays a key role in the regulation of seed germination and early seedling growth. ABI5 interacts with other phytohormone signals to regulate plant growth and development, and stress responses in Arabidopsis, but little is known about the functions of ABI5 in potatoes. Here, we find that StABI5 is involved in the regulation of chloroplast development and photosynthesis. Genetic analysis indicates that StABI5 overexpression transgenic potato lines accelerate dark-induced leaf yellowing and senescence. The chlorophyll contents of overexpressed StABI5 transgenic potato lines were significantly decreased in comparison to those of wild-type Desiree potatoes under dark conditions. Additionally, the RNA-sequencing (RNA-seq) analysis shows that many metabolic processes are changed in overexpressed StABI5 transgenic potatoes. Most of the genes involved in photosynthesis and carbon fixation are significantly down-regulated, especially the chlorophyll a-b binding protein, photosystem I, and photosystem II. These observations indicate that StABI5 negatively regulates chloroplast development and photosynthesis, and provides some insights into the functions of StABI5 in regard to potato growth.
Collapse
|
122
|
Nolan TM, Vukašinović N, Liu D, Russinova E, Yin Y. Brassinosteroids: Multidimensional Regulators of Plant Growth, Development, and Stress Responses. THE PLANT CELL 2020; 32:295-318. [PMID: 31776234 PMCID: PMC7008487 DOI: 10.1105/tpc.19.00335] [Citation(s) in RCA: 491] [Impact Index Per Article: 98.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/01/2019] [Accepted: 11/26/2019] [Indexed: 05/18/2023]
Abstract
Brassinosteroids (BRs) are a group of polyhydroxylated plant steroid hormones that are crucial for many aspects of a plant's life. BRs were originally characterized for their function in cell elongation, but it is becoming clear that they play major roles in plant growth, development, and responses to several stresses such as extreme temperatures and drought. A BR signaling pathway from cell surface receptors to central transcription factors has been well characterized. Here, we summarize recent progress toward understanding the BR pathway, including BR perception and the molecular mechanisms of BR signaling. Next, we discuss the roles of BRs in development and stress responses. Finally, we show how knowledge of the BR pathway is being applied to manipulate the growth and stress responses of crops. These studies highlight the complex regulation of BR signaling, multiple points of crosstalk between BRs and other hormones or stress responses, and the finely tuned spatiotemporal regulation of BR signaling.
Collapse
Affiliation(s)
- Trevor M Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052, Ghent, Belgium
| | - Derui Liu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052, Ghent, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052, Ghent, Belgium
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
123
|
Xu P, Tang G, Cui W, Chen G, Ma CL, Zhu J, Li P, Shan L, Liu Z, Wan S. Transcriptional Differences in Peanut (Arachis hypogaea L.) Seeds at the Freshly Harvested, After-ripening and Newly Germinated Seed Stages: Insights into the Regulatory Networks of Seed Dormancy Release and Germination. PLoS One 2020; 15:e0219413. [PMID: 31899920 PMCID: PMC6941926 DOI: 10.1371/journal.pone.0219413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/05/2019] [Indexed: 12/27/2022] Open
Abstract
Seed dormancy and germination are the two important traits related to plant survival, reproduction and crop yield. To understand the regulatory mechanisms of these traits, it is crucial to clarify which genes or pathways participate in the regulation of these processes. However, little information is available on seed dormancy and germination in peanut. In this study, seeds of the variety Luhua No.14, which undergoes nondeep dormancy, were selected, and their transcriptional changes at three different developmental stages, the freshly harvested seed (FS), the after-ripening seed (DS) and the newly germinated seed (GS) stages, were investigated by comparative transcriptomic analysis. The results showed that genes with increased transcription in the DS vs FS comparison were overrepresented for oxidative phosphorylation, the glycolysis pathway and the tricarboxylic acid (TCA) cycle, suggesting that after a period of dry storage, the intermediates stored in the dry seeds were rapidly mobilized by glycolysis, the TCA cycle, the glyoxylate cycle, etc.; the electron transport chain accompanied by respiration was reactivated to provide ATP for the mobilization of other reserves and for seed germination. In the GS vs DS pairwise comparison, dozens of the upregulated genes were related to plant hormone biosynthesis and signal transduction, including the majority of components involved in the auxin signal pathway, brassinosteroid biosynthesis and signal transduction as well as some GA and ABA signal transduction genes. During seed germination, the expression of some EXPANSIN and XYLOGLUCAN ENDOTRANSGLYCOSYLASE genes was also significantly enhanced. To investigate the effects of different hormones during seed germination, the contents and differential distribution of ABA, GAs, BRs and IAA in the cotyledons, hypocotyls and radicles, and plumules of three seed sections at different developmental stages were also investigated. Combined with previous data in other species, it was suggested that the coordination of multiple hormone signal transduction nets plays a key role in radicle protrusion and seed germination.
Collapse
Affiliation(s)
- Pingli Xu
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
| | - Guiying Tang
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
| | - Weipei Cui
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | | | - Chang-Le Ma
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | - Jieqiong Zhu
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | - Pengxiang Li
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | - Lei Shan
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
- * E-mail: (LS); (ZL); (SW)
| | - Zhanji Liu
- Shandong Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- * E-mail: (LS); (ZL); (SW)
| | - Shubo Wan
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
- * E-mail: (LS); (ZL); (SW)
| |
Collapse
|
124
|
Dong N, Yin W, Liu D, Zhang X, Yu Z, Huang W, Liu J, Yang Y, Meng W, Niu M, Tong H. Regulation of Brassinosteroid Signaling and Salt Resistance by SERK2 and Potential Utilization for Crop Improvement in Rice. FRONTIERS IN PLANT SCIENCE 2020. [PMID: 33362843 DOI: 10.3389/fpls.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The complex roles of the steroid hormone brassinosteroids (BRs) in many different yield- and stress-related traits make it difficult to utilize the hormones for crop improvement. Here, we show that SERK2 as a BR signaling component is a potentially useful candidate for BR manipulation in rice. We generated multiple mutant alleles of SERK2 by CRISPR/Cas9 editing and show that knockout of SERK2 results in a compact structure accompanied with increased grain size. SERK2 is localized on plasma membrane and can interact with OsBRI1, the BR receptor, suggesting its conserved role as co-receptor in BR signaling. Consistently, the mutant has impaired BR sensitivity compared to wild type. Notably, the mutant is highly sensitive to salt stress as evaluated by plant survival rate as well as transcriptome analysis, whereas has slightly increased sensitivity to ABA, the stress hormone. By contrast, overexpression of SERK2 significantly enhances grain size and salt stress resistance, importantly, without affecting plant architecture. Furthermore, while salt suppresses SERK2 transcription, the protein is greatly induced by salt stress. Taken together, we propose that the adverse condition induces SERK2 accumulation to enhance early BR signaling on plasma membrane in favor of the anti-stress response. Our results illustrate the great potentials of specific BR components such as SERK2 for crop improvement by utilizing flexible strategies.
Collapse
Affiliation(s)
- Nana Dong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenchao Yin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dapu Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoxing Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhikun Yu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Huang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jihong Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanzhao Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenjing Meng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mei Niu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongning Tong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
125
|
Dong N, Yin W, Liu D, Zhang X, Yu Z, Huang W, Liu J, Yang Y, Meng W, Niu M, Tong H. Regulation of Brassinosteroid Signaling and Salt Resistance by SERK2 and Potential Utilization for Crop Improvement in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:621859. [PMID: 33362843 PMCID: PMC7758213 DOI: 10.3389/fpls.2020.621859] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/19/2020] [Indexed: 05/03/2023]
Abstract
The complex roles of the steroid hormone brassinosteroids (BRs) in many different yield- and stress-related traits make it difficult to utilize the hormones for crop improvement. Here, we show that SERK2 as a BR signaling component is a potentially useful candidate for BR manipulation in rice. We generated multiple mutant alleles of SERK2 by CRISPR/Cas9 editing and show that knockout of SERK2 results in a compact structure accompanied with increased grain size. SERK2 is localized on plasma membrane and can interact with OsBRI1, the BR receptor, suggesting its conserved role as co-receptor in BR signaling. Consistently, the mutant has impaired BR sensitivity compared to wild type. Notably, the mutant is highly sensitive to salt stress as evaluated by plant survival rate as well as transcriptome analysis, whereas has slightly increased sensitivity to ABA, the stress hormone. By contrast, overexpression of SERK2 significantly enhances grain size and salt stress resistance, importantly, without affecting plant architecture. Furthermore, while salt suppresses SERK2 transcription, the protein is greatly induced by salt stress. Taken together, we propose that the adverse condition induces SERK2 accumulation to enhance early BR signaling on plasma membrane in favor of the anti-stress response. Our results illustrate the great potentials of specific BR components such as SERK2 for crop improvement by utilizing flexible strategies.
Collapse
|
126
|
Ajadi AA, Tong X, Wang H, Zhao J, Tang L, Li Z, Liu X, Shu Y, Li S, Wang S, Liu W, Tajo SM, Zhang J, Wang Y. Cyclin-Dependent Kinase Inhibitors KRP1 and KRP2 Are Involved in Grain Filling and Seed Germination in Rice ( Oryza sativa L.). Int J Mol Sci 2019; 21:ijms21010245. [PMID: 31905829 PMCID: PMC6981537 DOI: 10.3390/ijms21010245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/26/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
Cyclin-dependent kinase inhibitors known as KRPs (kip-related proteins) control the progression of plant cell cycles and modulate various plant developmental processes. However, the function of KRPs in rice remains largely unknown. In this study, two rice KRPs members, KRP1 and KRP2, were found to be predominantly expressed in developing seeds and were significantly induced by exogenous abscisic acid (ABA) and Brassinosteroid (BR) applications. Sub-cellular localization experiments showed that KRP1 was mainly localized in the nucleus of rice protoplasts. KRP1 overexpression transgenic lines (OxKRP1), krp2 single mutant (crkrp2), and krp1/krp2 double mutant (crkrp1/krp2) all exhibited significantly smaller seed width, seed length, and reduced grain weight, with impaired seed germination and retarded early seedling growth, suggesting that disturbing the normal steady state of KRP1 or KRP2 blocks seed development partly through inhibiting cell proliferation and enlargement during grain filling and seed germination. Furthermore, two cyclin-dependent protein kinases, CDKC;2 and CDKF;3, could interact with KRP1 in a yeast-two-hybrid system, indicating that KRP1 might regulate the mitosis cell cycle and endoreduplication through the two targets. In a word, this study shed novel insights into the regulatory roles of KRPs in rice seed maturation and germination.
Collapse
Affiliation(s)
- Abolore Adijat Ajadi
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
- Biotechnology Unit, National Cereals Research Institute, Badeggi, Bida 912101, Nigeria
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Huimei Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Juan Zhao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Liqun Tang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Zhiyong Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Xixi Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Yazhou Shu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Shufan Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Shuang Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Wanning Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Sani Muhammad Tajo
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
- Correspondence: (J.Z.); (Y.W.); Tel./Fax: +86-571-6337-0277 (J.Z.); +86-571-6337-0206 (Y.W.)
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (A.A.A.); (X.T.); (H.W.); (J.Z.); (L.T.); (Z.L.); (X.L.); (Y.S.); (S.L.); (S.W.); (W.L.); (S.M.T.)
- Correspondence: (J.Z.); (Y.W.); Tel./Fax: +86-571-6337-0277 (J.Z.); +86-571-6337-0206 (Y.W.)
| |
Collapse
|
127
|
Wang C, Zhang H, Xia Q, Yu J, Zhu D, Zhao Q. ZmGLR, a cell membrane localized microtubule-associated protein, mediated leaf morphogenesis in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110248. [PMID: 31623783 DOI: 10.1016/j.plantsci.2019.110248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Microtubule arrays play notable roles in cell division, cell movement, cell morphogenesis and signal transduction. Due to their important regulation of microtubule dynamic instability and array-ordering processes, microtubule-associated proteins have been a cutting-edge issue in research. Here, a new maize microtubule-associated protein, ZmGLR (Zea mays glutamic acid- and lysine-rich), was found. ZmGLR bundles microtubules in vitro and targets the cell membrane through an interaction between 24 conserved N-terminal amino acids and specific phosphatidylinositol phosphates (PtdInsPs). Increased Ca2+ levels in the cytoplasm lead to ZmGLR partially dissociating from the cell membrane and moving into the cytoplasm to associate with microtubule. Overexpression and RNAi of ZmGLR both resulted in misoriented microtubule arrays, which led to dwarf maize plants and curved leaves. In addition, the expression of ZmGLR was regulated by BR and auxin through ZmBES1 and ZmARF9, respectively. This study reveals that the microtubule-associated protein ZmGLR plays a crucial role in cortical microtubule reorientation and maize leaf morphogenesis.
Collapse
Affiliation(s)
- Chenchen Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Hua Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Qi Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Dengyun Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Qian Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
128
|
Jiang H, Tang B, Xie Z, Nolan T, Ye H, Song GY, Walley J, Yin Y. GSK3-like kinase BIN2 phosphorylates RD26 to potentiate drought signaling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:923-937. [PMID: 31357236 DOI: 10.1111/tpj.14484] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 05/28/2023]
Abstract
Plant steroid hormones brassinosteroids (BRs) regulate plant growth and development at many different levels. Recent research has revealed that stress-responsive NAC (petunia NAM and Arabidopsis ATAF1, ATAF2, and CUC2) transcription factor RD26 is regulated by BR signaling and antagonizes BES1 in the interaction between growth and drought stress signaling. However, the upstream signaling transduction components that activate RD26 during drought are still unknown. Here, we demonstrate that the function of RD26 is modulated by GSK3-like kinase BIN2 and protein phosphatase 2C ABI1. We show that ABI1, a negative regulator in abscisic acid (ABA) signaling, dephosphorylates and destabilizes BIN2 to inhibit BIN2 kinase activity. RD26 protein is stabilized by ABA and dehydration in a BIN2-dependent manner. BIN2 directly interacts and phosphorylates RD26 in vitro and in vivo. BIN2 phosphorylation of RD26 is required for RD26 transcriptional activation on drought-responsive genes. RD26 overexpression suppressed the brassinazole (BRZ) insensitivity of BIN2 triple mutant bin2 bil1 bil2, and BIN2 function is required for the drought tolerance of RD26 overexpression plants. Taken together, our data suggest a drought signaling mechanism in which drought stress relieves ABI1 inhibition of BIN2, allowing BIN2 activation. Sequentially, BIN2 phosphorylates and stabilizes RD26 to promote drought stress response.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Buyun Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Zhouli Xie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Trevor Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Huaxun Ye
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Gao-Yuan Song
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, 50011, USA
| | - Justin Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, 50011, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, 50011, USA
| |
Collapse
|
129
|
Lin KH, Sei SC, Su YH, Chiang CM. Overexpression of the Arabidopsis and winter squash superoxide dismutase genes enhances chilling tolerance via ABA-sensitive transcriptional regulation in transgenic Arabidopsis. PLANT SIGNALING & BEHAVIOR 2019; 14:1685728. [PMID: 31680612 PMCID: PMC6866689 DOI: 10.1080/15592324.2019.1685728] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 05/31/2023]
Abstract
The winter squash (Cucurbita moschata, Cm) superoxide dismutase (SOD) CmSOD gene and Arabidopsis thaliana (At)SOD gene were transferred under a ubiquitin promoter into Arabidopsis via Agrobacterium tumefaciens. The expression and amount of SOD and the SOD activities in the AtSOD and CmSOD transgenic lines were significantly higher than those of non-transgenic (NT) plants exposed to 23 or 4°C treatment for 6 ~ 192-h periods. Furthermore, expressions of the cold-inducible gene (AtCBF2) and desiccation-responsible transcription factors (AtRD29A/B) were also activated in all transgenic lines compared to NT plants after chilling treatments. Compared to NT plants under chilling stress, superoxide (•O2-) accumulation was significantly lower, and chlorophyll (Chl) contents were significantly higher in all transgenic lines with higher SOD activity. Moreover, Arabidopsis seedlings overexpressing AtSOD and CmSOD also displayed greater resistance to chilling and less oxidative injury than NT plants under chilled conditions, indicating that the overexpression of AtSOD and CmSOD in Arabidopsis enhanced chilling tolerance by eliminating •O2-. The expression of AtRD29A was strongly up-regulated only in AtSOD transgenic plants treated with abscisic acid (ABA), while it was repressed in other transgenic plants, indicating ABA-sensitive AtCBF2 and AtRD29A/B transcriptional regulation signaling pathways in transgenic Arabidopsis under chilling conditions.
Collapse
MESH Headings
- Abscisic Acid/pharmacology
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/physiology
- Chlorophyll/metabolism
- Cold Temperature
- Cucurbita/enzymology
- Cucurbita/genetics
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant
- Plants, Genetically Modified
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regeneration/drug effects
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Superoxide Dismutase/genetics
- Superoxide Dismutase/metabolism
- Superoxides/metabolism
- Transcription, Genetic/drug effects
- Transformation, Genetic
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Sin-Ci Sei
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| | - Yu-Huei Su
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| | - Chih-Ming Chiang
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| |
Collapse
|
130
|
Elkeilsh A, Awad YM, Soliman MH, Abu-Elsaoud A, Abdelhamid MT, El-Metwally IM. Exogenous application of β-sitosterol mediated growth and yield improvement in water-stressed wheat (Triticum aestivum) involves up-regulated antioxidant system. JOURNAL OF PLANT RESEARCH 2019; 132:881-901. [PMID: 31606785 DOI: 10.1007/s10265-019-01143-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/01/2019] [Indexed: 05/19/2023]
Abstract
Water stress reduces crop production significantly, and climate change has further aggravated the problem mainly in arid and semi-arid regions. This was the first study on the possible effects of β-sitosterol application in ameliorating the deleterious changes in wheat induced by water stress under field condition and drip irrigation regimes. A field experiment with the split-plot design was conducted, and wheat plants were foliar sprayed with four β-sitosterol (BBS) concentrations (0, 25, 75, and 100 mg L-1) and two irrigation regimes [50 and 100% of crop evapotranspiration (ETc)]. Water stress without BBS treatment reduced biological yield, grain yield, harvest index, and photosynthetic efficiency significantly by 28.9%, 42.8%, 19.6%, and 20.5% compared with the well-watered plants, respectively. Proline content increased in water-stressed and BSS-treated plants, owing to a significant role in cellular osmotic adjustment. Application of BSS was effective in reducing the generation of hydrogen peroxide (H2O2) and hence the malondialdehyde content significantly in water-stressed and well-watered wheat plants. Application of BSS up-regulated the activity of antioxidant enzymes (SOD, CAT, POD, and APX) significantly and increased the content of tocopherol, ascorbic acid, and carotene thereby reducing the levels of reactive oxygen species. The increased antioxidant system in BSS treated plants was further supported by the expression level of SOD and dehydrin genes in both water-stressed and well-watered plants. In the present study, the application of BBS at 100 mg L-1 was beneficial and can be recommended for improving the growth and yield of the wheat crop under water stress.
Collapse
Affiliation(s)
- Amr Elkeilsh
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Yasser M Awad
- Agricultural Botany Department, Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt
| | - Mona H Soliman
- Biology Department, Faculty of Science, Taibah University, Yanbu, Kingdom of Saudi Arabia.
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | | | - Magdi T Abdelhamid
- Botany Department, National Research Centre, 33 Al Behoos Street, Dokki, Cairo, Egypt
| | - Ibrahim M El-Metwally
- Botany Department, National Research Centre, 33 Al Behoos Street, Dokki, Cairo, Egypt
| |
Collapse
|
131
|
Transcriptional Analysis of Masson Pine ( Pinus massoniana) under High CO 2 Stress. Genes (Basel) 2019; 10:genes10100804. [PMID: 31614914 PMCID: PMC6826509 DOI: 10.3390/genes10100804] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022] Open
Abstract
To explore the molecular mechanism of the response of Masson pine (Pinus massoniana), the main coniferous tree in southern China, to high CO2 stress, transcriptome sequencing was carried out to analyze the genome-wide responses of annual seedlings under different durations (0 h, 6 h, 12 h and 24 h) of high CO2 stress. The results showed that a total of 3080/1908, 3110/2115 and 2684/1483 genes were up-/down-regulated after 6 h, 12 h and 24 h of treatment, respectively, compared with control check group (CK, 0 h). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that most of these differentially expressed genes (DEGs) were enriched in energy metabolism, carbohydrate synthesis, cell wall precursor synthesis and hormone regulation pathways. For energy metabolism, the expression of most genes involved in photosynthesis (including the light reaction and Calvin cycle) was generally inhibited, while the expression of genes related glycolysis, the tricarboxylic acid (TCA) cycle and PPP pathway was up-regulated. In addition, the increase in the CO2 concentration induced the up-regulation of gene expression in the sucrose synthesis pathway. Among all starch synthesis genes, GBSS (granule-bound starch synthase) had the highest expression level. On the other hand, during the synthesis of hemicellulose and pectin (cell wall precursor substances), the expression levels of GMD (GDP-mannose 4,6-dehydratase), MGP (Mannose-1-phosphate guanylyl transferase) and RHM (Rhamnose biosynthetic enzyme) were the highest, suggesting that the synthesis of the raw materials hemicellulose and pectin in Masson pine under stress were mainly supplied by GDP-Man, GDP-Fuc and UDP-Rha. Finally, stress inhibited gene expression in the ABA (Abscisic Acid) synthesis pathway and induced gene expression in the GA (Gibberellin), SA (Salicylic acid), BR(Brassinolide) and MeJA (Methyl Jasmonate) pathways. Stomatal switches were regulated by hormonal interactions. This experiment elaborated on the response and molecular mechanism of Masson pine to CO2 stress and aided in screening carbon sequestration genes for the corresponding molecular research of Masson pine in the future.
Collapse
|
132
|
Abscisic Acid Represses Rice Lamina Joint Inclination by Antagonizing Brassinosteroid Biosynthesis and Signaling. Int J Mol Sci 2019; 20:ijms20194908. [PMID: 31623350 PMCID: PMC6801706 DOI: 10.3390/ijms20194908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 11/17/2022] Open
Abstract
Leaf angle is a key parameter that determines plant architecture and crop yield. Hormonal crosstalk involving brassinosteroid (BR) plays an essential role in leaf angle regulation in cereals. In this study, we investigated whether abscisic acid (ABA), an important stress-responsive hormone, co-regulates lamina joint inclination together with BR, and, if so, what the underlying mechanism is. Therefore, lamina joint inclination assay and RNA sequencing (RNA-Seq) analysis were performed here. ABA antagonizes the promotive effect of BR on leaf angle. Hundreds of genes responsive to both hormones that are involved in leaf-angle determination were identified by RNA-Seq and the expression of a gene subset was confirmed using quantitative real-time PCR (qRT-PCR). Results from analysis of rice mutants or transgenic lines affected in BR biosynthesis and signaling indicated that ABA antagonizes the effect of BR on lamina joint inclination by targeting the BR biosynthesis gene D11 and BR signaling genes GSK2 and DLT, thus forming a multi-level regulatory module that controls leaf angle in rice. Taken together, our findings demonstrate that BR and ABA antagonistically regulate lamina joint inclination in rice, thus contributing to the elucidation of the complex hormonal interaction network that optimizes leaf angle in rice.
Collapse
|
133
|
Sangi S, Santos MLC, Alexandrino CR, Da Cunha M, Coelho FS, Ribeiro GP, Lenz D, Ballesteros H, Hemerly AS, Venâncio TM, Oliveira AEA, Grativol C. Cell wall dynamics and gene expression on soybean embryonic axes during germination. PLANTA 2019; 250:1325-1337. [PMID: 31273443 DOI: 10.1007/s00425-019-03231-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
MAIN CONCLUSION Identification of the structural changes and cell wall-related genes likely involved in cell wall extension, cellular water balance and cell wall biosynthesis on embryonic axes during germination of soybean seeds. Cell wall is a highly organized and dynamic structure that provides mechanical support for the cell. During seed germination, the cell wall is critical for cell growth and seedling establishment. Although seed germination has been widely studied in several species, key aspects regarding the regulation of cell wall dynamics in germinating embryonic axes remain obscure. Here, we characterize the gene expression patterns of cell wall pathways and investigate their impact on the cell wall dynamics of embryonic axes of germinating soybean seeds. We found 2143 genes involved in cell wall biosynthesis and assembly in the soybean genome. Key cell wall genes were highly expressed at specific germination stages, such as expansins, UDP-Glc epimerases, GT family, cellulose synthases, peroxidases, arabinogalactans, and xyloglucans-related genes. Further, we found that embryonic axes grow through modulation of these specific cell wall genes with no increment in biomass. Cell wall structural analysis revealed a defined pattern of cell expansion and an increase in cellulose content during germination. In addition, we found a clear correlation between these structural changes and expression patterns of cell wall genes during germination. Taken together, our results provide a better understanding of the complex transcriptional regulation of cell wall genes that drive embryonic axes growth and expansion during soybean germination.
Collapse
Affiliation(s)
- Sara Sangi
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, P5, 228, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Maria L C Santos
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, P5, 228, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Camilla R Alexandrino
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Maura Da Cunha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Fernanda S Coelho
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, P5, 228, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Gabrielly P Ribeiro
- Departmento de Ciências Farmacêuticas, Universidade de Vila Velha, Vila Velha, Brazil
| | - Dominik Lenz
- Departmento de Ciências Farmacêuticas, Universidade de Vila Velha, Vila Velha, Brazil
| | - Helkin Ballesteros
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana S Hemerly
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago M Venâncio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, P5, 228, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Antônia E A Oliveira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, P5, 228, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Clícia Grativol
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, P5, 228, Parque Califórnia, Campos dos Goytacazes, Rio de Janeiro, Brazil.
| |
Collapse
|
134
|
Kim SY, Warpeha KM, Huber SC. The brassinosteroid receptor kinase, BRI1, plays a role in seed germination and the release of dormancy by cold stratification. JOURNAL OF PLANT PHYSIOLOGY 2019; 241:153031. [PMID: 31476676 DOI: 10.1016/j.jplph.2019.153031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 05/02/2023]
Abstract
Seed dormancy is a critical mechanism that delays germination until environmental conditions are favorable for growth. Plant hormones gibberellin (GA) and abscisic acid (ABA) have long been recognized as key players in regulating dormancy and germination. Recent data have increased interest in brassinosteroid (BR) hormones that promote germination by activating GA downstream genes and inactivating ABA signaling. Exposure of imbibed seeds to low temperature (cold stratification) is widely used to release seed dormancy and to improve germination frequency. However, the mechanism by which cold stratification overcomes the inhibitory role of ABA is not completely understood. In the present study, we show delayed germination of seeds of the BR insensitive mutant, bri1-5, that was largely reversed by treatment with fluridone, an inhibitor of ABA biosynthesis. In addition, the bri1-5 seeds were markedly less sensitive to the cold stratification release of dormancy. These results suggest that BR locates upstream of ABA signaling and downstream of cold stratification signaling in dormancy and germination pathways. Consistent with this notion, BR biosynthetic genes, DWF4 and DET2, were upregulated by cold stratification. The transcripts of the GA biosynthesis gene, GA3ox1, and cold responsive genes, CBF1 and CBF2, increased in response to cold stratification in wild type seeds but not in bri1-5 seeds. Conversely, transgenic seeds overexpressing BRI1 germinated more rapidly than wild type in the absence of cold stratification. Thus, we propose that BR signaling plays a previously unrecognized role in the cold stratification pathway for seed dormancy and germination.
Collapse
Affiliation(s)
- Sang Yeol Kim
- U.S. Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA; Department of Plant Biology, University of Illinois, Urbana-Champaign, IL, 61801, USA.
| | - Katherine M Warpeha
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Steven C Huber
- U.S. Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA; Department of Plant Biology, University of Illinois, Urbana-Champaign, IL, 61801, USA
| |
Collapse
|
135
|
Xie Z, Nolan T, Jiang H, Tang B, Zhang M, Li Z, Yin Y. The AP2/ERF Transcription Factor TINY Modulates Brassinosteroid-Regulated Plant Growth and Drought Responses in Arabidopsis. THE PLANT CELL 2019; 31:1788-1806. [PMID: 31126980 PMCID: PMC6713308 DOI: 10.1105/tpc.18.00918] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/29/2019] [Accepted: 05/20/2019] [Indexed: 05/04/2023]
Abstract
APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) family transcription factors have well-documented functions in stress responses, but their roles in brassinosteroid (BR)-regulated growth and stress responses have not been established. Here, we show that the Arabidopsis (Arabidopsis thaliana) stress-inducible AP2/ERF transcription factor TINY inhibits BR-regulated growth while promoting drought responses. TINY-overexpressing plants have stunted growth, increased sensitivity to BR biosynthesis inhibitors, and compromised BR-responsive gene expression. By contrast, tiny tiny2 tiny3 triple mutants have increased BR-regulated growth and BR-responsive gene expression. TINY positively regulates drought responses by activating drought-responsive genes and promoting abscisic acid-mediated stomatal closure. Global gene expression studies revealed that TINY and BRs have opposite effects on plant growth and stress response genes. TINY interacts with and antagonizes BRASSINOSTERIOID INSENSITIVE1-ETHYL METHANESULFONATE SUPRESSOR1 (BES1) in the regulation of these genes. Glycogen synthase kinase 3-like protein kinase BR-INSENSITIVE2 (BIN2), a negative regulator in the BR pathway, phosphorylates and stabilizes TINY, providing a mechanism for BR-mediated downregulation of TINY to prevent activation of stress responses under optimal growth conditions. Taken together, our results demonstrate that BR signaling negatively regulates TINY through BIN2 phosphorylation and TINY positively regulates drought responses, as well as inhibiting BR-mediated growth through TINY-BES1 antagonistic interactions. Our results thus provide insight into the coordination of BR-regulated growth and drought responses.
Collapse
Affiliation(s)
- Zhouli Xie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Trevor Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Hao Jiang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Buyun Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
136
|
Hu Y, Han X, Yang M, Zhang M, Pan J, Yu D. The Transcription Factor INDUCER OF CBF EXPRESSION1 Interacts with ABSCISIC ACID INSENSITIVE5 and DELLA Proteins to Fine-Tune Abscisic Acid Signaling during Seed Germination in Arabidopsis. THE PLANT CELL 2019; 31:1520-1538. [PMID: 31123050 PMCID: PMC6635857 DOI: 10.1105/tpc.18.00825] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 05/04/2023]
Abstract
ABSCISIC ACID INSENSITIVE5 (ABI5) is a crucial regulator of abscisic acid (ABA) signaling pathways involved in repressing seed germination and postgerminative growth in Arabidopsis (Arabidopsis thaliana). ABI5 is precisely modulated at the posttranslational level; however, the transcriptional regulatory mechanisms underlying ABI5 and its interacting transcription factors remain largely unknown. Here, we found that INDUCER OF CBF EXPRESSION1 (ICE1) physically associates with ABI5. ICE1 negatively regulates ABA responses during seed germination and directly suppresses ABA-responsive LATE EMBRYOGENESIS ABUNDANT6 (EM6) and EM1 expression. Genetic analysis demonstrated that the ABA-hypersensitive phenotype of the ice1 mutant requires ABI5. ICE1 interferes with the transcriptional activity of ABI5 to mediate downstream regulons. Importantly, ICE1 also interacts with DELLA proteins, which stimulate ABI5 during ABA signaling. Disruption of ICE1 partially restored the ABA-hyposensitive phenotype of the della mutant, gai-t6 rga-t2 rgl1-1 rgl2-1, indicating that ICE1 functions antagonistically with DELLA in ABA signaling. Consistently, DELLA proteins repress ICE1's transcriptional function and the antagonistic effect of ICE1 on ABI5. Collectively, our study demonstrates that ICE1 antagonizes ABI5 and DELLA activity to maintain the appropriate level of ABA signaling during seed germination, providing a mechanistic understanding of how ABA signaling is fine-tuned by a transcriptional complex involving ABI5 and its interacting partners.
Collapse
Affiliation(s)
- Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Milian Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinjing Pan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diqiu Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
137
|
Song S, Wang H, Sun M, Tang J, Zheng B, Wang X, Tan YW. Reactive oxygen species-mediated BIN2 activity revealed by single-molecule analysis. THE NEW PHYTOLOGIST 2019; 223:692-704. [PMID: 30597572 DOI: 10.1111/nph.15669] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/21/2018] [Indexed: 05/28/2023]
Abstract
Much evidence has shown that reactive oxygen species (ROS) regulate several plant hormone signaling cascades, but little is known about the real-time kinetics and the underlying molecular mechanisms of the target proteins in the brassinosteroid (BR) signaling pathway. In this study, we used single-molecule techniques to investigate the true signaling timescales of the major BR signaling components BRI1-EMS-SUPPRESSOR 1 (BES1) and BRASSINOSTEROID INSENSITIVE 2 (BIN2) of Arabidopsis thaliana. The rate constants of BIN2 associating with ATP and phosphorylating BES1 were determined to be 0.7 ± 0.4 mM-1 s-1 and 2.3 ± 1.4 s-1 , respectively. Interestingly, we found that the interaction of BIN2 and BES1 was oxygen-dependent, and oxygen can directly modify BIN2. The activity of BIN2 was switched on via modification of specific cysteine (Cys) residues, including C59, C95, C99 and C162. The mutation of these Cys residues inhibited the BR signaling outputs. These findings demonstrate the power of using single-molecule techniques to study the dynamic interactions of signaling components, which is difficult to be discovered by conventional physiological and biochemical methods.
Collapse
Affiliation(s)
- Song Song
- State Key Laboratory of Surface Physics, Collaborative Innovation Center for Genetics and Development, Department of Physics, Fudan University, Shanghai, 200433, China
| | - Haijiao Wang
- Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengyuan Sun
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jie Tang
- Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xuelu Wang
- Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan-Wen Tan
- State Key Laboratory of Surface Physics, Collaborative Innovation Center for Genetics and Development, Department of Physics, Fudan University, Shanghai, 200433, China
- Multiscale Research Institute for Complex Systems, Fudan University, Shanghai, 200438, China
| |
Collapse
|
138
|
Jiang JL, Tian Y, Li L, Yu M, Hou RP, Ren XM. H 2S Alleviates Salinity Stress in Cucumber by Maintaining the Na +/K + Balance and Regulating H 2S Metabolism and Oxidative Stress Response. FRONTIERS IN PLANT SCIENCE 2019; 10:678. [PMID: 31214215 PMCID: PMC6555442 DOI: 10.3389/fpls.2019.00678] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/06/2019] [Indexed: 05/04/2023]
Abstract
Salinity stress from soil or irrigation water can significantly limit the growth and development of plants. Emerging evidence suggests that hydrogen sulfide (H2S), as a versatile signal molecule, can ameliorate salt stress-induced adverse effects. However, the possible physiological mechanism underlying H2S-alleviated salt stress in cucumber remains unclear. Here, a pot experiment was conducted with an aim to examine the possible mechanism of H2S in enhancement of cucumber salt stress tolerance. The results showed that H2S ameliorated salt-induced growth inhibition and alleviated the reduction in photosynthetic attributes, chlorophyll fluorescence and stomatal parameters. Meanwhile H2S increased the endogenous H2S level concomitant with increased activities of D/L-cysteine desulfhydrase and β-cyanoalanine synthase and decreased activities of O-acetyl-L-serine(thiol)lyase under excess NaCl. Notably, H2S maintained Na+ and K+ homeostasis via regulation of the expression of PM H+-ATPase, SOS1 and SKOR at the transcriptional level under excess NaCl. Moreover, H2S alleviated salt-induced oxidative stress as indicated by lowered lipid peroxidation and reactive oxygen species accumulation through an enhanced antioxidant system. Altogether, these results demonstrated that application of H2S could protect cucumber seedlings against salinity stress, likely by keeping the Na+/K+ balance, controlling the endogenous H2S level by regulating the H2S synthetic and decomposition enzymes, and preventing oxidative stress by enhancing the antioxidant system under salinity stress.
Collapse
Affiliation(s)
- Jing-Long Jiang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Yun Tian
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Li Li
- School of Chemical and Environmental Science, Shaanxi University of Technology, Hanzhong, China
| | - Miao Yu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Ru-Ping Hou
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Xu-Ming Ren
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|
139
|
Jamsheer K M, Jindal S, Laxmi A. Evolution of TOR-SnRK dynamics in green plants and its integration with phytohormone signaling networks. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2239-2259. [PMID: 30870564 DOI: 10.1093/jxb/erz107] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/26/2019] [Indexed: 05/07/2023]
Abstract
The target of rapamycin (TOR)-sucrose non-fermenting 1 (SNF1)-related protein kinase 1 (SnRK1) signaling is an ancient regulatory mechanism that originated in eukaryotes to regulate nutrient-dependent growth. Although the TOR-SnRK1 signaling cascade shows highly conserved functions among eukaryotes, studies in the past two decades have identified many important plant-specific innovations in this pathway. Plants also possess SnRK2 and SnRK3 kinases, which originated from the ancient SnRK1-related kinases and have specialized roles in controlling growth, stress responses and nutrient homeostasis in plants. Recently, an integrative picture has started to emerge in which different SnRKs and TOR kinase are highly interconnected to control nutrient and stress responses of plants. Further, these kinases are intimately involved with phytohormone signaling networks that originated at different stages of plant evolution. In this review, we highlight the evolution and divergence of TOR-SnRK signaling components in plants and their communication with each other as well as phytohormone signaling to fine-tune growth and stress responses in plants.
Collapse
Affiliation(s)
- Muhammed Jamsheer K
- Amity Food & Agriculture Foundation, Amity University Uttar Pradesh, Noida, India
| | - Sunita Jindal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
140
|
Ji H, Wang S, Cheng C, Li R, Wang Z, Jenkins GI, Kong F, Li X. The RCC1 family protein SAB1 negatively regulates ABI5 through multidimensional mechanisms during postgermination in Arabidopsis. THE NEW PHYTOLOGIST 2019; 222:907-922. [PMID: 30570158 DOI: 10.1111/nph.15653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/13/2018] [Indexed: 05/25/2023]
Abstract
Abscisic acid-insensitive 5 (ABI5) is an essential and conserved plant basic leucine zipper transcription factor whose level controls seed germination and postgerminative development. It has been demonstrated that activity of ABI5 is transcriptionally and post-translationally regulated. However, transcriptional regulation of ABI5 is not fully understood. Here, we identified SAB1 (Sensitive to ABA 1) as a novel negative regulator of ABI5 that simultaneously regulates its stability, promoter binding activity and histone methylation-mediated gene silencing of ABI5. SAB1 encodes a Regulator of Chromatin Condensation 1 (RCC1) family protein and is expressed in an opposite pattern to that of ABI5 during early seedling growth in response to abscisic acid (ABA). SAB1 mutation results in enhanced ABA sensitivity and acts upstream of ABI5. SAB1 physically interacts with ABI5 at phosphoamino acid Ser-145, and reduces the phosphorylation of ABI5 and the protein stability. SAB1 reduces ABI5 binding activity to its own promoter, leading to reduced transcriptional level of ABI5. SAB1 inactivates ABI5 transcription by increasing the level of histone H3K27me2 in the ABI5 promoter. Our findings have identified SAB1 as a crucial new component of ABA signaling which modulates early development of plant by precisely controlling ABI5 activity through multiple mechanisms.
Collapse
Affiliation(s)
- Hongtao Ji
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangfeng Wang
- Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei, 050021, China
| | - Chunhong Cheng
- Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei, 050021, China
| | - Ran Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhijuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gareth I Jenkins
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Fanjiang Kong
- The Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
141
|
Planas-Riverola A, Gupta A, Betegón-Putze I, Bosch N, Ibañes M, Caño-Delgado AI. Brassinosteroid signaling in plant development and adaptation to stress. Development 2019; 146:146/5/dev151894. [PMID: 30872266 PMCID: PMC6432667 DOI: 10.1242/dev.151894] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Brassinosteroids (BRs) are steroid hormones that are essential for plant growth and development. These hormones control the division, elongation and differentiation of various cell types throughout the entire plant life cycle. Our current understanding of the BR signaling pathway has mostly been obtained from studies using Arabidopsis thaliana as a model. In this context, the membrane steroid receptor BRI1 (BRASSINOSTEROID INSENSITIVE 1) binds directly to the BR ligand, triggering a signal cascade in the cytoplasm that leads to the transcription of BR-responsive genes that drive cellular growth. However, recent studies of the primary root have revealed distinct BR signaling pathways in different cell types and have highlighted cell-specific roles for BR signaling in controlling adaptation to stress. In this Review, we summarize our current knowledge of the spatiotemporal control of BR action in plant growth and development, focusing on BR functions in primary root development and growth, in stem cell self-renewal and death, and in plant adaption to environmental stress. Summary: This Review summarizes current knowledge of the spatiotemporal control of brassinosteroid function in plants, focusing on primary root development and growth, stem cell self-renewal and death, and adaptation to environmental stress.
Collapse
Affiliation(s)
- Ainoa Planas-Riverola
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona E-08193, Spain
| | - Aditi Gupta
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona E-08193, Spain
| | - Isabel Betegón-Putze
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona E-08193, Spain
| | - Nadja Bosch
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona E-08193, Spain
| | - Marta Ibañes
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain.,Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona 08028, Spain
| | - Ana I Caño-Delgado
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona E-08193, Spain
| |
Collapse
|
142
|
Wang X, Gao Y, Wang Q, Chen M, Ye X, Li D, Chen X, Li L, Gao D. 24-Epibrassinolide-alleviated drought stress damage influences antioxidant enzymes and autophagy changes in peach (Prunus persicae L.) leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:30-40. [PMID: 30500516 DOI: 10.1016/j.plaphy.2018.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 05/01/2023]
Abstract
Drought stress is a serious threat to agriculture and the environment. Brassinosteroids (BRs) increase tolerance to drought stress of plant. Autophagy plays important roles in plant responses to drought stress; however, there are few reports on autophagy in peach (Prunus persica). In total, 23 putative autophagy-related genes (ATGs) in peach were identified using ATGs from the Arabidopsis thaliana genome as query in BLASTx algorithm-based searches. Under drought stress, the photosynthetic abilities of peach leaves decreased, while antioxidant enzyme activities, autophagy and ATG expression increased. A correlation analysis showed that antioxidant enzyme activities are inversely correlated to the expression levels of the PpATGs. During drought, the PpATG8s and some PpATG18s had the strongest responses. To investigate enhanced drought-stress tolerance, peach was treated with water, 100 nM 24-epibrassinolide (EBR), 1 μM EBR, 10 μM EBR and 1 μM voriconazole. Exogenous EBR at 1 μM decreased the malondialdehyde (MDA) content under drought stress when compared with water-, 1 μM voriconazole-, 100 nM EBR- and 10 μM EBR-treated peach leaf. The 1-μM EBR application increased superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX) and glutathione peroxidase (GR) activities during drought stress. In addition, the expression levels of PpATGs were inhibited by EBR. Thus, the 1-μM EBR treatment alleviated drought-stress damage to peach leaves, decreased PpATG expression levels and reduced the number of autophagosomes.
Collapse
Affiliation(s)
- Xuxu Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Crop Biology, Taian, 271018, China
| | - Yangang Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Crop Biology, Taian, 271018, China
| | - Qingjie Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Crop Biology, Taian, 271018, China
| | - Min Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Crop Biology, Taian, 271018, China
| | - Xinlin Ye
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Crop Biology, Taian, 271018, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Crop Biology, Taian, 271018, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Crop Biology, Taian, 271018, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Crop Biology, Taian, 271018, China.
| | - Dongsheng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China; State Key Laboratory of Crop Biology, Taian, 271018, China.
| |
Collapse
|
143
|
Peres ALGL, Soares JS, Tavares RG, Righetto G, Zullo MAT, Mandava NB, Menossi M. Brassinosteroids, the Sixth Class of Phytohormones: A Molecular View from the Discovery to Hormonal Interactions in Plant Development and Stress Adaptation. Int J Mol Sci 2019; 20:ijms20020331. [PMID: 30650539 PMCID: PMC6359644 DOI: 10.3390/ijms20020331] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022] Open
Abstract
Phytohormones are natural chemical messengers that play critical roles in the regulation of plant growth and development as well as responses to biotic and abiotic stress factors, maintaining plant homeostasis, and allowing adaptation to environmental changes. The discovery of a new class of phytohormones, the brassinosteroids (BRs), almost 40 years ago opened a new era for the studies of plant growth and development and introduced new perspectives in the regulation of agronomic traits through their use in agriculture. BRs are a group of hormones with significant growth regulatory activity that act independently and in conjunction with other phytohormones to control different BR-regulated activities. Genetic and molecular research has increased our understanding of how BRs and their cross-talk with other phytohormones control several physiological and developmental processes. The present article provides an overview of BRs' discovery as well as recent findings on their interactions with other phytohormones at the transcriptional and post-transcriptional levels, in addition to clarifying how their network works to modulate plant growth, development, and responses to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Ana Laura G L Peres
- Functional Genome Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas, Campinas 13083-970, Brazil.
| | - José Sérgio Soares
- Functional Genome Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas, Campinas 13083-970, Brazil.
| | - Rafael G Tavares
- Center for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 400, Australia.
| | - Germanna Righetto
- Functional Genome Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas, Campinas 13083-970, Brazil.
| | - Marco A T Zullo
- Laboratory of Phytochemistry, Agronomic Institute, Campinas 13020-902, Brazil.
| | - N Bhushan Mandava
- Mandava Associates, LLC, 1050 Connecticut Avenue, N.W. Suite 500, Washington, DC 20036, USA.
| | - Marcelo Menossi
- Functional Genome Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas, Campinas 13083-970, Brazil.
| |
Collapse
|
144
|
Zhao X, Dou L, Gong Z, Wang X, Mao T. BES1 hinders ABSCISIC ACID INSENSITIVE5 and promotes seed germination in Arabidopsis. THE NEW PHYTOLOGIST 2019; 221:908-918. [PMID: 30230549 DOI: 10.1111/nph.15437] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/03/2018] [Indexed: 05/18/2023]
Abstract
Proper regulation of seed germination is essential for the successful propagation of a plant. The transcription factor ABSCISIC ACID INSENSITIVE5 (ABI5) of the abscisic acid (ABA) signaling pathway plays a central role in the inhibition of seed germination. ABI5 is precisely regulated by the core ABA signaling components and multiple other factors. However, the complex regulatory network of ABI5 remains largely unknown. In this study, we determined the biochemical interaction between ABI5 and the BRINSENSITIVE1 (BRI1)-EMS-SUPPRESSOR1 (BES1) transcription factor of the brassinosteroid (BR) signaling pathway, as well as the function of BES1 regulating ABI5 during seed germination in Arabidopsis. BES1 directly interacts with ABI5 both in vitro and in vivo. The bZIP domain of ABI5, which is responsible for DNA binding, is critical for ABI5 binding to BES1. The interaction of BES1 with ABI5 significantly suppressed the binding of ABI5 to the promoter regions of downstream genes, which resulted in their reduced expression and consequently facilitated seed germination. This study shed new light on the coordination of multiple signaling pathways during seed germination. In particular, BES1 directly binds to ABI5, which interferes with its transcriptional activity and suppresses ABA signaling output.
Collapse
Affiliation(s)
- Xuan Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liru Dou
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
145
|
Lin T, Walworth A, Zong X, Danial GH, Tomaszewski EM, Callow P, Han X, Irina Zaharia L, Edger PP, Zhong GY, Song GQ. VcRR2 regulates chilling-mediated flowering through expression of hormone genes in a transgenic blueberry mutant. HORTICULTURE RESEARCH 2019; 6:96. [PMID: 31645954 PMCID: PMC6804727 DOI: 10.1038/s41438-019-0180-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 05/18/2023]
Abstract
The molecular mechanism underlying dormancy release and the induction of flowering remains poorly understood in woody plants. Mu-legacy is a valuable blueberry mutant, in which a transgene insertion caused increased expression of a RESPONSE REGULATOR 2-like gene (VcRR2). Mu-legacy plants, compared with nontransgenic 'Legacy' plants, show dwarfing, promotion of flower bud formation, and can flower under nonchilling conditions. We conducted transcriptomic comparisons in leaves, chilled and nonchilled flowering buds, and late-pink buds, and analyzed a total of 41 metabolites of six groups of hormones in leaf tissues of both Mu-legacy and 'Legacy' plants. These analyses uncovered that increased VcRR2 expression promotes the expression of a homolog of Arabidopsis thaliana ENT-COPALYL DIPHOSPHATE SYNTHETASE 1 (VcGA1), which induces new homeostasis of hormones, including increased gibberellin 4 (GA4) levels in Mu-legacy leaves. Consequently, increased expression of VcRR2 and VcGA1, which function in cytokinin responses and gibberellin synthesis, respectively, initiated the reduction in plant height and the enhancement of flower bud formation of the Mu-legacy plants through interactions of multiple approaches. In nonchilled flower buds, 29 differentially expressed transcripts of 17 genes of five groups of hormones were identified in transcriptome comparisons between Mu-legacy and 'Legacy' plants, of which 22 were chilling responsive. Thus, these analyses suggest that increased expression of VcRR2 was collectively responsible for promoting flower bud formation in highbush blueberry under nonchilling conditions. We report here for the first time the importance of VcRR2 to induce a suite of downstream hormones that promote flowering in woody plants.
Collapse
Affiliation(s)
- Tianyi Lin
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Aaron Walworth
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Xiaojuan Zong
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Gharbia H. Danial
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Elise M. Tomaszewski
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Pete Callow
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Xiumei Han
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9 Canada
| | - L. Irina Zaharia
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9 Canada
| | - Patrick P. Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Gan-yuan Zhong
- Grape Genetics Research Unit, USDA-ARS, Geneva, NY 14456 USA
| | - Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
146
|
Evolution and Expression Divergence of the CYP78A Subfamily Genes in Soybean. Genes (Basel) 2018; 9:genes9120611. [PMID: 30544641 PMCID: PMC6316016 DOI: 10.3390/genes9120611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 11/16/2022] Open
Abstract
Gene expression divergence is an important evolutionary driving force for the retention of duplicate genes. In this study, we identified three CYP78A subfamily genes in soybean, GmCYP78A70, GmCYP78A57 and GmCYP78A72, which experienced different duplication events. GmCYP78A70 was mainly expressed in leaf tissue and the vegetative phase, whereas GmCYP78A57 was mainly expressed in floral tissue and seed, i.e., the reproductive phase. Expression of GmCYP78A72 could be detected in all the tissues and phases mentioned above. The expression levels of GmCYP78A70 and GmCYP78A57 in different soybean cultivars showed positive correlations with leaf size and 100-seed weight, respectively. The population genetics analysis indicated that the three genes had experienced different selective pressures during domestication and improved breeding of soybean. Deciphering the function of this subfamily of genes may well prove useful to breeders for improving soybean’s agronomic traits.
Collapse
|
147
|
Feng G, Xu L, Wang J, Nie G, Bushman BS, Xie W, Yan H, Yang Z, Guan H, Huang L, Zhang X. Integration of small RNAs and transcriptome sequencing uncovers a complex regulatory network during vernalization and heading stages of orchardgrass (Dactylis glomerata L.). BMC Genomics 2018; 19:727. [PMID: 30285619 PMCID: PMC6171228 DOI: 10.1186/s12864-018-5104-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Flowering is a critical reproductive process in higher plants. Timing of optimal flowering depends upon the coordination among seasonal environmental cues. For cool season grasses, such as Dactylis glomerata, vernalization induced by low temperature provides competence to initiate flowering after prolonged cold. We combined analyses of the transcriptome and microRNAs (miRNAs) to generate a comprehensive resource for regulatory miRNAs and their target circuits during vernalization and heading stages. RESULTS A total of 3,846 differentially expressed genes (DEGs) and 69 differentially expressed miRNAs were identified across five flowering stages. The expression of miR395, miR530, miR167, miR396, miR528, novel_42, novel_72, novel_107, and novel_123 demonstrated significant variations during vernalization. These miRNA targeted genes were involved in phytohormones, transmembrane transport, and plant morphogenesis in response to vernalization. The expression patterns of DEGs related to plant hormones, stress responses, energy metabolism, and signal transduction changed significantly in the transition from vegetative to reproductive phases. CONCLUSIONS Five hub genes, c136110_g1 (BRI1), c131375_g1 (BZR1), c133350_g1 (VRN1), c139830_g1 (VIN3), and c125792_g2 (FT), might play central roles in vernalization response. Our comprehensive analyses have provided a useful platform for investigating consecutive transcriptional and post-transcriptional regulation of critical phases in D. glomerata and provided insights into the genetic engineering of flowering-control in cereal crops.
Collapse
Affiliation(s)
- Guangyan Feng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Lei Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL 32611 USA
| | - Gang Nie
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | | | - Wengang Xie
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020 Gansu Province China
| | - Haidong Yan
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061 USA
| | - Zhongfu Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Hao Guan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Linkai Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| | - Xinquan Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan Province China
| |
Collapse
|
148
|
Chen J, Wang H, Li Y, Pan J, Hu Y, Yu D. Arabidopsis VQ10 interacts with WRKY8 to modulate basal defense against Botrytis cinerea. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:956-969. [PMID: 29727045 DOI: 10.1111/jipb.12664] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/03/2018] [Indexed: 05/11/2023]
Abstract
Recent studies in Arabidopsis have revealed that some VQ motif-containing proteins physically interact with WRKY transcription factors; however, their specific biological functions are still poorly understood. In this study, we confirmed the interaction between VQ10 and WRKY8, and show that VQ10 and WRKY8 formed a complex in the plant cell nucleus. Yeast two-hybrid analysis showed that the middle region of WRKY8 and the VQ motif of VQ10 are critical for their interaction, and that this interaction promotes the DNA-binding activity of WRKY8. Further investigation revealed that the VQ10 protein was exclusively localized in the nucleus, and VQ10 was predominantly expressed in siliques. VQ10 expression was strongly responsive to the necrotrophic fungal pathogen, Botrytis cinerea and defense-related hormones. Phenotypic analysis showed that disruption of VQ10 increased mutant plants susceptibility to the fungal pathogen B. cinerea, whereas constitutive-expression of VQ10 enhanced resistance to B. cinerea. Consistent with these findings, expression of the defense-related PLANT DEFENSIN1.2 (PDF1.2) gene was decreased in vq10 mutant plants, after B. cinerea infection, but increased in VQ10-overexpressing transgenic plants. Taken together, our findings provide evidence that VQ10 physically interacts with WRKY8 and positively regulates plant basal resistance against the necrotrophic fungal pathogen B. cinerea.
Collapse
Affiliation(s)
- Junqiu Chen
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houping Wang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinjing Pan
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanru Hu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| |
Collapse
|
149
|
Wang Q, Qu GP, Kong X, Yan Y, Li J, Jin JB. Arabidopsis small ubiquitin-related modifier protease ASP1 positively regulates abscisic acid signaling during early seedling development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:924-937. [PMID: 29786952 DOI: 10.1111/jipb.12669] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/10/2018] [Indexed: 05/12/2023]
Abstract
The small ubiquitin-related modifier (SUMO) modification plays an important role in the regulation of abscisic acid (ABA) signaling, but the function of the SUMO protease, in ABA signaling, remains largely unknown. Here, we show that the SUMO protease, ASP1 positively regulates ABA signaling. Mutations in ASP1 resulted in an ABA-insensitive phenotype, during early seedling development. Wild-type ASP1 successfully rescued, whereas an ASP1 mutant (C577S), defective in SUMO protease activity, failed to rescue, the ABA-insensitive phenotype of asp1-1. Expression of ABI5 and MYB30 target genes was attenuated in asp1-1 and our genetic analyses revealed that ASP1 may function upstream of ABI5 and MYB30. Interestingly, ASP1 accumulated upon ABA treatment, and ABA-induced accumulation of ABI5 (a positive regulator of ABA signaling) was abolished, whereas ABA-induced accumulation of MYB30 (a negative regulator of ABA signaling) was increased in asp1-1. These findings support the hypothesis that increased levels of ASP1, upon ABA treatment, tilt the balance between ABI5 and MYB30 towards ABI5-mediated ABA signaling.
Collapse
Affiliation(s)
- Qiongli Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Gao-Ping Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangxiong Kong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jing Bo Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
150
|
Qiu A, Wu J, Lei Y, Cai Y, Wang S, Liu Z, Guan D, He S. CaSK23, a Putative GSK3/SHAGGY-Like Kinase of Capsicum annuum, Acts as a Negative Regulator of Pepper's Response to Ralstonia solanacearum Attack. Int J Mol Sci 2018; 19:ijms19092698. [PMID: 30208566 PMCID: PMC6163794 DOI: 10.3390/ijms19092698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022] Open
Abstract
GSK3-like kinases have been mainly implicated in the brassinosteroids (BR) pathway and, therefore, in plant growth, development, and responses to abiotic stresses; however, their roles in plant immunity remain poorly understood. Herein, we present evidence that CaSK23, a putative GSK3/SHAGGY-like kinase in pepper, acts as a negative regulator in pepper’s response to Ralstonia solanacearum (R. solanacearum) inoculation (RSI). Data from quantitative RT-PCR (qRT-PCR) showed that the constitutively-expressed CaSK23 in pepper leaves was down-regulated by RSI, as well as by exogenously-applied salicylic acid (SA) or methyl jasomonate (MeJA). Silencing of CaSK23 by virus-induced gene silencing (VIGS) decreased the susceptibility of pepper plants to RSI, coupled with up-regulation of the tested genes encoding SA-, JA-, and ethylene (ET)-dependent pathogenesis-related (PR) proteins. In contrast, ectopic overexpression (OE) of CaSK23 conferred a compromised resistance of tobacco plants to RSI, accompanied by down-regulation of the tested immunity-associated SA-, JA-, and ET-dependent PR genes. In addition, transient overexpression of CaSK23 in pepper plants consistently led to down-regulation of the tested SA-, JA-, and ET-dependent PR genes. We speculate that CaSK23 acts as a negative regulator in pepper immunity and its constitutive expression represses pepper immunity in the absence of pathogens. On the other hand, its decreased expression derepresses immunity when pepper plants are attacked by pathogens.
Collapse
Affiliation(s)
- Ailian Qiu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/FAFU, Fuzhou 350002, China.
| | - Ji Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/FAFU, Fuzhou 350002, China.
| | - Yufen Lei
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/FAFU, Fuzhou 350002, China.
| | - Yiting Cai
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/FAFU, Fuzhou 350002, China.
| | - Song Wang
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/FAFU, Fuzhou 350002, China.
| | - Zhiqin Liu
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/FAFU, Fuzhou 350002, China.
| | - Deyi Guan
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/FAFU, Fuzhou 350002, China.
| | - Shuilin He
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/FAFU, Fuzhou 350002, China.
| |
Collapse
|