101
|
Yan M, Zhang C, Li H, Zhang L, Ren Y, Chen Y, Cai H, Zhang S. Root pruning improves maize water-use efficiency by root water absorption. FRONTIERS IN PLANT SCIENCE 2023; 13:1023088. [PMID: 36684736 PMCID: PMC9845614 DOI: 10.3389/fpls.2022.1023088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Root systems are an important component of plants that impact crop water-use efficiency (WUE) and yield. This study examined the effects of root pruning on maize yield, WUE, and water uptake under pot and hydroponic conditions. The pot experiment showed that root pruning significantly decreased root/shoot ratio. Both small root pruning (cut off about 1/5 of the root system, RP1) and large root pruning (cut off about 1/3 of the root system, RP2) improved WUE and root hydraulic conductivity (Lpr) in the residual root system. Compared with that in the un-cut control, at the jointing stage, RP1 and RP2 increased Lpr by 43.9% and 31.5% under well-watered conditions and 27.4% and 19.8% under drought stress, respectively. RP1 increased grain yield by 12.9% compared with that in the control under well-watered conditions, whereas both pruning treatments did not exhibit a significant effect on yield under drought stress. The hydroponic experiment demonstrated that root pruning did not reduce leaf water potential but increased residual root hydraulic conductivity by 26.2% at 48 h after root pruning under well-watered conditions. The foregoing responses may be explained by the upregulation of plasma membrane intrinsic protein gene and increases in abscisic acid and jasmonic acid in roots. Increased auxin and salicylic acid contributed to the compensated lateral root growth. In conclusion, root pruning improved WUE in maize by root water uptake.
Collapse
Affiliation(s)
- Minfei Yan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Cong Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- College of Forestry, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Hongbing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Li Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Yuanyuan Ren
- Geography and Environmental Engineering Department, Baoji University of Arts and Sciences, Baoji, China
| | - Yinglong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
- The University of Western Australia Institute of Agriculture, and University of Western Australia School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Huanjie Cai
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest Agriculture and Forestry University, Yangling, China
| | - Suiqi Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
102
|
Manosalva Pérez N, Vandepoele K. Prediction of Transcription Factor Regulators and Gene Regulatory Networks in Tomato Using Binding Site Information. Methods Mol Biol 2023; 2698:323-349. [PMID: 37682483 DOI: 10.1007/978-1-0716-3354-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Gene regulatory networks (GRNs) represent the regulatory links between transcription factors (TF) and their target genes. In plants, they are essential to understand transcriptional programs that control important agricultural traits such as yield or (a)biotic stress response. Although several high- and low-throughput experimental methods have been developed to map GRNs in plants, these are sometimes expensive, come with laborious protocols, and are not always optimized for tomato, one of the most important horticultural crops worldwide. In this chapter, we present a computational method that covers two protocols: one protocol to map gene identifiers between two different tomato genome assemblies, and another protocol to predict putative regulators and delineate GRNs given a set of functionally related or coregulated genes by exploiting publicly available TF-binding information. As an example, we applied the motif enrichment protocol on tomato using upregulated genes in response to jasmonate, as well as upregulated and downregulated genes in plants with genotypes OENAM1 and nam1, respectively. We found that our protocol accurately infers the expected TFs as top enriched regulators and identifies GRNs functionally enriched in biological processes related with the experimental context under study.
Collapse
Affiliation(s)
- Nicolás Manosalva Pérez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|
103
|
Liu X, Du C, Yue C, Tan Y, Fan H. Exogenously applied melatonin alleviates the damage in cucumber plants caused by Aphis goosypii through altering the insect behavior and inducing host plant resistance. PEST MANAGEMENT SCIENCE 2023; 79:140-151. [PMID: 36107970 DOI: 10.1002/ps.7183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Aphis gossypii Glover is the main pest found in most cucumber-producing areas. Melatonin (MT) has been widely studied in protecting plants from environmental stresses and pathogens. However, little knowledge is available on the impact of MT on insect resistance. RESULTS The fecundity of aphids on MT-treated cucumber leaves was inhibited. Interestingly, MT-treated plants were more attractive to aphids, which would prevent the large-scale transmission of viruses caused by the random movement of aphids. Meanwhile, MT caused varying degrees of change in enzyme activities related to methylesterified HG degradation, antioxidants, defense systems and membrane lipid peroxidation. Furthermore, transcriptomic analysis showed that MT induced 2360 differentially expressed genes (DEGs) compared with the control before aphid infection. These DEGs mainly were enriched in hormone signal transduction, MAPK signaling pathway, and plant-pathogen interaction, revealing that MT can help plants acquire inducible resistance and enhance plant immunity. Subsequently, 2397 DEGs were identified after aphid infection. Further analysis showed that MT-treated plants possessed stronger JA signal, reactive oxygen species stability, and the ability of flavonoid synthesis under aphid infection, while mediating plant growth and sucrose metabolism. CONCLUSION In summary, MT as an environmentally friendly substance mitigated aphid damage to cucumbers by affecting the aphids themselves and enhancing plant resistance. This will facilitate exploring sustainable MT-based strategies for cucumber aphid control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xingchen Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou, China
| | - Changxia Du
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou, China
| | - Cong Yue
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou, China
| | - Yinqing Tan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou, China
| | - Huaifu Fan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
104
|
Sun K, Zhang X, Wei Z, Wang Z, Liu J, Liu J, Gao J, Guo J, Zhao X. Analysis of metabolic and transcription levels provides insights into the interactions of plant hormones and crosstalk with MAPKs in the early signaling response of cherry tomato fruit induced by the yeast cell wall. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 6:100160. [PMID: 36619895 PMCID: PMC9816665 DOI: 10.1016/j.fochms.2022.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
Yeast cell walls (YCW) are promising bio-based elicitors for controlling post-harvest fruit decay. In this study, 1% YCW induction increased the resistance of cherry tomato fruits, reducing disease incidence by 66%. This study aimed to explore the interaction of hormones and crosstalk with MAPKs (mitogen-activated protein kinases) in the early response of resistance regulation in cherry tomato fruits treated with YCW and U0126. We analyzed the temporal changes in hormone content, the expression of critical genes involved in phytohormone biosynthesis, and signal transduction in cherry tomato fruits response to the induction. Results revealed that jasmonic acid (JA) and brassinosteroids (BR) significantly regulated early resistance response in fruit induced by 1% YCW. The salicylic acid (SA) pathway is inhibited by the activation of the JA pathway. JA and SA signaling pathway crosstalk with the MAPK3 pathway. BR plays an essential role in the regulation of fruit resistance. The BR pathway may function independently when JA/SA and MAPK3 pathways are inhibited.
Collapse
Affiliation(s)
- Keyu Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xue Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ze Wei
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ziwuzhen Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jian Liu
- Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China,Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Urumqi, Xinjiang 830011, China
| | - Jianhua Gao
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Jun Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science & Technology, Tianjin 300457, China,Corresponding authors.
| | - Xin Zhao
- Institute of Health Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China,Corresponding authors.
| |
Collapse
|
105
|
Zhu J, Wang WS, Yan DW, Hong LW, Li TT, Gao X, Yang YH, Ren F, Lu YT, Yuan TT. CK2 promotes jasmonic acid signaling response by phosphorylating MYC2 in Arabidopsis. Nucleic Acids Res 2022; 51:619-630. [PMID: 36546827 PMCID: PMC9881174 DOI: 10.1093/nar/gkac1213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/19/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Jasmonic acid (JA) signaling plays a pivotal role in plant development and defense. MYC2 is a master transcription factor in JA signaling, and was found to be phosphorylated and negatively regulated by MAP kinase and receptor-like kinase. However, the kinases that positively regulate MYC2 through phosphorylation and promote MYC2-mediated activation of JA response have not been identified. Here, we identified CK2 as a kinase that phosphorylates MYC2 and thus regulates the JA signaling. CK2 holoenzyme can interact with MYC2 using its regulatory subunits and phosphorylate MYC2 at multiple sites with its catalytic subunits. Inhibition of CK2 activity in a dominant-negative plant line, CK2mut, repressed JA response. On the other hand, increasing CK2 activity by overexpression of CKB4, a regulatory subunit gene of CK2, enhanced JA response in a MYC2-dependent manner. Substitution of the Ser and Thr residues at phosphorylation sites of MYC2 by CK2 with Ala impaired MYC2 function in activating JA response. Further investigations evidenced that CK2 facilitated the JA-induced increase of MYC2 binding to the promoters of JA-responsive genes in vivo. Our study demonstrated that CK2 plays a positive role in JA signaling, and reveals a previously undiscovered mechanism that regulates MYC2 function.
Collapse
Affiliation(s)
| | | | - Da-Wei Yan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Li-Wei Hong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Yun-Huang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ying-Tang Lu
- Correspondence may also be addressed to Ying-Tang Lu. Tel: +86 27 68752619; Fax: +86 27 68753551;
| | - Ting-Ting Yuan
- To whom correspondence should be addressed. Tel: +86 27 68752619; Fax: +86 27 68753551;
| |
Collapse
|
106
|
Ding LN, Li YT, Wu YZ, Li T, Geng R, Cao J, Zhang W, Tan XL. Plant Disease Resistance-Related Signaling Pathways: Recent Progress and Future Prospects. Int J Mol Sci 2022; 23:ijms232416200. [PMID: 36555841 PMCID: PMC9785534 DOI: 10.3390/ijms232416200] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Plant-pathogen interactions induce a signal transmission series that stimulates the plant's host defense system against pathogens and this, in turn, leads to disease resistance responses. Plant innate immunity mainly includes two lines of the defense system, called pathogen-associated molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). There is extensive signal exchange and recognition in the process of triggering the plant immune signaling network. Plant messenger signaling molecules, such as calcium ions, reactive oxygen species, and nitric oxide, and plant hormone signaling molecules, such as salicylic acid, jasmonic acid, and ethylene, play key roles in inducing plant defense responses. In addition, heterotrimeric G proteins, the mitogen-activated protein kinase cascade, and non-coding RNAs (ncRNAs) play important roles in regulating disease resistance and the defense signal transduction network. This paper summarizes the status and progress in plant disease resistance and disease resistance signal transduction pathway research in recent years; discusses the complexities of, and interactions among, defense signal pathways; and forecasts future research prospects to provide new ideas for the prevention and control of plant diseases.
Collapse
|
107
|
Li S, Xiao L, Chen M, Cao Q, Luo Z, Kang N, Jia M, Chen J, Xiang M. The involvement of the phenylpropanoid and jasmonate pathways in methyl jasmonate-induced soft rot resistance in kiwifruit ( Actinidia chinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:1097733. [PMID: 36589109 PMCID: PMC9800925 DOI: 10.3389/fpls.2022.1097733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Botryosphaeria dothidea is a major postharvest causal agent of soft rot in kiwifruit. Methyl jasmonate (MeJA) is an important plant hormone that participates as a plant defense against pathogens from a signal molecule. However, the impact and regulatory mechanism of MeJA on the attenuation of kiwifruit fungal decay remains unknown. This work investigated the effects of exogenous MeJA on the enzyme activity, metabolite content and gene expression of the phenylpropanoid and jasmonate pathways in kiwifruit. The results revealed that MeJA inhibited the expansion of B. dothidea lesion diameter in kiwifruit (Actinidia chinensis cv. 'Hongyang'), enhanced the activity of enzymes (phenylalanine ammonia lyase, cinnamate 4-hydroxylase, 4-coumarate: coenzyme A ligase, cinnamyl alcohol dehydrogenase, peroxidase and polyphenol oxidase), and upregulated the expression of related genes (AcPAL, AcC4H, Ac4CL, and AcCAD). The accumulation of metabolites (total phenolics, flavonoids, chlorogenic acid, caffeic acid and lignin) with inhibitory effects on pathogens was promoted. Moreover, MeJA enhanced the expression of AcLOX, AcAOS, AcAOC, AcOPR3, AcJAR1, AcCOI1 and AcMYC2 and reduced the expression of AcJAZ. These results suggest that MeJA could display a better performance in enhancing the resistance of disease in kiwifruit by regulating the phenylpropanoid pathway and jasmonate pathway.
Collapse
Affiliation(s)
- Shucheng Li
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, China
| | - Liuhua Xiao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, China
| | - Ming Chen
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, China
| | - Qing Cao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, China
- Scientific Research Division, Nanchang Institute of Technology, Nanchang, China
| | - Zhenyu Luo
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, China
| | - Naihui Kang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, China
| | - Mingshu Jia
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, China
| | - Jinyin Chen
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, China
| | - Miaolian Xiang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
108
|
Tan J, Wang Y, Dymerski R, Wu Z, Weng Y. Sigma factor binding protein 1 (CsSIB1) is a putative candidate of the major-effect QTL dm5.3 for downy mildew resistance in cucumber (Cucumis sativus). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4197-4215. [PMID: 36094614 DOI: 10.1007/s00122-022-04212-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The dm5.3 major-effect QTL in cucumber encodes a homolog of Arabidopsis sigma factor binding protein 1 (CsSIB1). CsSIB1 positively regulates defense responses against downy mildew in cucumber through the salicylic acid (SA) biosynthesis/signaling pathway. Downy mildew (DM) caused by the oomycete pathogen Pseudoperonospora cubensis is an important disease of cucumber and other cucurbits. Our knowledge on molecular mechanisms of DM resistance is still limited. In this study, we reported identification and functional characterization of the candidate gene for the major-effect QTL, dm5.3 for DM resistance originated from PI 197088. The dm5.3 QTL was Modelized through marker-assisted development of near isogenic lines (NILs). NIL-derived segregating populations were used for fine mapping which narrowed the dm5.3 locus down to a 144 kb region. Based on multiple lines of evidence, we show that CsSIB1 (CsGy5G027140) that encodes the VQ motif-containing sigma factor binding protein 1 as the most likely candidate for dm5.3. Local association analysis identified a haplotype consisting of 7 SNPs inside the coding and promoter region of CsSIB1 that was associated with DM resistance. Expression of CsSIB1 was up-regulated with P. cubensis infection. Transcriptome profiling of NILs in response to P. cubensis inoculation revealed key players and associated gene networks in which increased expression of CsSIB1 antagonistically promoted salicylic acid (SA) but suppressed jasmonic acid (JA) biosynthesis/signaling pathways. Our work provides novel insights into the function of CsSIB1/dm5.3 as a disease resistance (R) gene. The roles of sigma factor binding protein genes in pathogen defense in cucumber were also discussed.
Collapse
Affiliation(s)
- Junyi Tan
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Yuhui Wang
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Ronald Dymerski
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Zhiming Wu
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
- Institute of Cash Crops, Hebei Academy of Agriculture & Forestry Sciences, Shijiazhuang, 050051, Hebei, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, Madison, WI, 53706, USA.
| |
Collapse
|
109
|
Hu Y, Zhang H, Gu B, Zhang J. The transcription factor VaMYC2 from Chinese wild Vitis amurensis enhances cold tolerance of grape (V. vinifera) by up-regulating VaCBF1 and VaP5CS. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:218-229. [PMID: 36272189 DOI: 10.1016/j.plaphy.2022.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/26/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Cultivated grapes, one of the most important fruit crops in the world, are sensitive to low temperature. Since Chinese wild grape Vitis amurensis is highly tolerant to cold, it is imperative to study and utilize its cold-tolerance genes for molecular breeding. Here, a VaMYC2 gene from V. amurensis was cloned, and its function was investigated by expressing VaMYC2 in the cold-sensitive V. vinifera cultivar 'Thompson Seedless'. The expression of VaMYC2 could be induced by cold stress, methyl jasmonate and ethylene treatment, but was inhibited by abscisic acid in leaves of V. amurensis. When transgenic grape lines expressing VaMYC2 were subjected to cold stress (-1 °C) for 41 h, the transgenic lines showed less freezing injury and lower electrolyte leakage and malondialdehyde content, but higher contents of soluble sugars, soluble proteins and proline, and antioxidant enzyme activities compared with wild-type. Moreover, the expression of some cold-tolerance related genes increased in transgenic lines. Besides, the interactions of VaMYC2 with VaJAZ1 and VaJAZ7B were confirmed by yeast two-hybrid and bimolecular fluorescence complementation assays. Yeast one-hybrid and dual luciferase assays showed that VaMYC2 can bind to the promoters of VaCBF1 and VaP5CS and activate their expressions. In conclusion, expression of VaMYC2 in V. vinifera enhances cold tolerance of transgenic grapes which is attributed to enhanced accumulation of osmotic regulatory substances, cell membrane stability, antioxidant enzyme activity, and expression of cold tolerance-related genes. Also, VaMYC2 interacts with VaJAZ1 and VaJAZ7, and activates the expression of VaCBF1 and VaP5CS to mediate cold tolerance in grapes.
Collapse
Affiliation(s)
- Yafan Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Hongjuan Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Bao Gu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
110
|
Rice OsPUB16 modulates the 'SAPK9-OsMADS23-OsAOC' pathway to reduce plant water-deficit tolerance by repressing ABA and JA biosynthesis. PLoS Genet 2022; 18:e1010520. [PMID: 36441771 PMCID: PMC9731423 DOI: 10.1371/journal.pgen.1010520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/08/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
Ubiquitin-mediated proteolysis plays crucial roles in plant responses to environmental stress. However, the mechanism by which E3 ubiquitin ligases modulate plant stress response still needs to be elucidated. In this study, we found that rice PLANT U-BOX PROTEIN 16 (OsPUB16), a U-box E3 ubiquitin ligase, negatively regulates rice drought response. Loss-of-function mutants of OsPUB16 generated through CRISPR/Cas9 system exhibited the markedly enhanced water-deficit tolerance, while OsPUB16 overexpression lines were hypersensitive to water deficit stress. Moreover, OsPUB16 negatively regulated ABA and JA response, and ospub16 mutants produced more endogenous ABA and JA than wild type when exposed to water deficit. Mechanistic investigations revealed that OsPUB16 mediated the ubiquitination and degradation of OsMADS23, which is the substrate of OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 9 (SAPK9) and increases rice drought tolerance by promoting ABA biosynthesis. Further, the ChIP-qPCR analysis and transient transactivation activity assays demonstrated that OsMADS23 activated the expression of JA-biosynthetic gene OsAOC by binding to its promoter. Interestingly, SAPK9-mediated phosphorylation on OsMADS23 reduced its ubiquitination level by interfering with the OsPUB16-OsMADS23 interaction, which thus enhanced OsMADS23 stability and promoted OsAOC expression. Collectively, our findings establish that OsPUB16 reduces plant water-deficit tolerance by modulating the 'SAPK9-OsMADS23-OsAOC' pathway to repress ABA and JA biosynthesis.
Collapse
|
111
|
Zhang J, Wang X, Dong X, Wang F, Cao L, Li S, Liu Z, Zhang X, Guo YD, Zhao B, Zhang N. Expression analysis and functional characterization of tomato Tubby-like protein family. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111454. [PMID: 36089197 DOI: 10.1016/j.plantsci.2022.111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Tubby-like protein (TLP) plays an important role in plant growth and development. In this investigation, the characteristics of 11 members in the SlTLP family were studied. SlTLP genes were classified into two subgroups, and the members containing the F-box domain were renamed SlTLFPs. Subcellular localization indicated that most of the SlTLPs were localized in the nucleus. Expression pattern analysis revealed that eight genes (SlTLFP1, 3, 5, 7-10, and SlTLP11) showed differential expression across various tissues, while SlTLFP2, 4, and 6 were widely expressed in all the organs tested. Most SlTLP genes were induced by biotic and abiotic stress treatments such as Botrytis cinerea, temperature, MeJA, and ABA. TLP proteins in tomato have no transcriptional activation activity, and most members with an F-box domain could interact with SUPPRESSOR OF KINETOCHORE PROTEIN 1 (SlSkp1) or Cullin1 (Cul1) or both. Experiments on CRISPR edited SlTLFP8 showed that the N-terminal F-box domain was necessary for its function such as DNA ploidy and stomata size regulation. Our findings suggested that the F-box domain interacts with Skp1 and Cul1 to form the SCF complex, suggesting that SlTLFPs, at least SlTLFP8, function mainly through the F-box domain as an E3 ligase.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xinman Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaonan Dong
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Fei Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lingling Cao
- Beijing Agricultural Technology Extension Station, Beijing 100029, China
| | - Shuangtao Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
| | - Ziji Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xichun Zhang
- School of Plant Science and Technology, Beijing Agricultural University, Beijing 102206, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572000, China.
| |
Collapse
|
112
|
Swinnen G, De Meyer M, Pollier J, Molina-Hidalgo FJ, Ceulemans E, Venegas-Molina J, De Milde L, Fernández-Calvo P, Ron M, Pauwels L, Goossens A. The basic helix-loop-helix transcription factors MYC1 and MYC2 have a dual role in the regulation of constitutive and stress-inducible specialized metabolism in tomato. THE NEW PHYTOLOGIST 2022; 236:911-928. [PMID: 35838067 DOI: 10.1111/nph.18379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Plants produce specialized metabolites to protect themselves from biotic enemies. Members of the Solanaceae family accumulate phenylpropanoid-polyamine conjugates (PPCs) in response to attackers while also maintaining a chemical barrier of steroidal glycoalkaloids (SGAs). Across the plant kingdom, biosynthesis of such defense compounds is promoted by jasmonate signaling in which clade IIIe basic helix-loop-helix (bHLH) transcription factors play a central role. By characterizing hairy root mutants obtained through Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated protein 9 (CRISPR-Cas9) genome editing, we show that the tomato clade IIIe bHLH transcription factors, MYC1 and MYC2, redundantly control jasmonate-inducible PPC and SGA production, and are also essential for constitutive SGA biosynthesis. Double myc1 myc2 loss-of-function tomato hairy roots displayed suppressed constitutive expression of SGA biosynthesis genes, and severely reduced levels of the main tomato SGAs α-tomatine and dehydrotomatine. In contrast, basal expression of genes involved in PPC biosynthesis was not affected. CRISPR-Cas9(VQR) genome editing of a specific cis-regulatory element, targeted by MYC1/2, in the promoter of a SGA precursor biosynthesis gene led to decreased constitutive expression of this gene, but did not affect its jasmonate inducibility. Our results demonstrate that clade IIIe bHLH transcriptional regulators have evolved under the control of distinct regulatory cues to specifically steer constitutive and stress-inducible specialized metabolism.
Collapse
Affiliation(s)
- Gwen Swinnen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Margaux De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- VIB Metabolomics Core, 9052, Ghent, Belgium
| | - Francisco Javier Molina-Hidalgo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Evi Ceulemans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Jhon Venegas-Molina
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Liesbeth De Milde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Patricia Fernández-Calvo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Mily Ron
- Department of Plant Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| |
Collapse
|
113
|
Zhang Y, Xing H, Wang H, Yu L, Yang Z, Meng X, Hu P, Fan H, Yu Y, Cui N. SlMYC2 interacted with the SlTOR promoter and mediated JA signaling to regulate growth and fruit quality in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1013445. [PMID: 36388521 PMCID: PMC9647163 DOI: 10.3389/fpls.2022.1013445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Tomato (Solanum lycopersicum) is a major vegetable crop cultivated worldwide. The regulation of tomato growth and fruit quality has long been a popular research topic. MYC2 is a key regulator of the interaction between jasmonic acid (JA) signaling and other signaling pathways, and MYC2 can integrate the interaction between JA signaling and other hormone signals to regulate plant growth and development. TOR signaling is also an essential regulator of plant growth and development. However, it is unclear whether MYC2 can integrate JA signaling and TOR signaling during growth and development in tomato. Here, MeJA treatment and SlMYC2 overexpression inhibited the growth and development of tomato seedlings and photosynthesis, but increased the sugar-acid ratio and the contents of lycopene, carotenoid, soluble sugar, total phenol and flavonoids, indicating that JA signaling inhibited the growth of tomato seedlings and altered fruit quality. When TOR signaling was inhibited by RAP, the JA content increased, and the growth and photosynthesis of tomato seedlings decreased, indicating that TOR signaling positively regulated the growth and development of tomato seedlings. Further yeast one-hybrid assays showed that SlMYC2 could bind directly to the SlTOR promoter. Based on GUS staining analysis, SlMYC2 regulated the transcription of SlTOR, indicating that SlMYC2 mediated the interaction between JA and TOR signaling by acting on the promoter of SlTOR. This study provides a new strategy and some theoretical basis for tomato breeding.
Collapse
Affiliation(s)
- Yujiao Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hongyun Xing
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Haoran Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lan Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Zhi Yang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Pengpeng Hu
- Department of Foreign Language Teaching, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
114
|
Wang Z, Gao M, Li Y, Zhang J, Su H, Cao M, Liu Z, Zhang X, Zhao B, Guo YD, Zhang N. The transcription factor SlWRKY37 positively regulates jasmonic acid- and dark-induced leaf senescence in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6207-6225. [PMID: 35696674 DOI: 10.1093/jxb/erac258] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Initiation and progression of leaf senescence are triggered by various environmental stressors and phytohormones. Jasmonic acid (JA) and darkness accelerate leaf senescence in plants. However, the mechanisms that integrate these two factors to initiate and regulate leaf senescence have not been identified. Here, we report a transcriptional regulatory module centred on a novel tomato WRKY transcription factor, SlWRKY37, responsible for both JA- and dark-induced leaf senescence. The expression of SlWRKY37, together with SlMYC2, encoding a master transcription factor in JA signalling, was significantly induced by both methyl jasmonate (MeJA) and dark treatments. SlMYC2 binds directly to the promoter of SlWRKY37 to activate its expression. Knock out of SlWRKY37 inhibited JA- and dark-induced leaf senescence. Transcriptome analysis and biochemical experiments revealed SlWRKY53 and SlSGR1 (S. lycopersicum senescence-inducible chloroplast stay-green protein 1) as direct transcriptional targets of SlWRKY37 to control leaf senescence. Moreover, SlWRKY37 interacted with a VQ motif-containing protein SlVQ7, and the interaction improved the stability of SlWRKY37 and the transcriptional activation of downstream target genes. Our results reveal the physiological and molecular functions of SlWRKY37 in leaf senescence, and offer a target gene to retard leaf yellowing by reducing sensitivity to external senescence signals, such as JA and darkness.
Collapse
Affiliation(s)
- Zhirong Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ming Gao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yafei Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jialong Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Hui Su
- College of Horticulture, China Agricultural University, Beijing, China
| | - Meng Cao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ziji Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xichun Zhang
- School of Plant Science and Technology, Beijing Agricultural University, Beijing, China
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| |
Collapse
|
115
|
Ahmad M, Varela Alonso A, Koletti AE, Rodić N, Reichelt M, Rödel P, Assimopoulou AN, Paun O, Declerck S, Schneider C, Molin EM. Dynamics of alkannin/shikonin biosynthesis in response to jasmonate and salicylic acid in Lithospermum officinale. Sci Rep 2022; 12:17093. [PMID: 36224205 PMCID: PMC9554848 DOI: 10.1038/s41598-022-21322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/26/2022] [Indexed: 01/04/2023] Open
Abstract
Alkannin/shikonin and their derivatives are specialised metabolites of high pharmaceutical and ecological importance exclusively produced in the periderm of members of the plant family Boraginaceae. Previous studies have shown that their biosynthesis is induced in response to methyl jasmonate but not salicylic acid, two phytohormones that play important roles in plant defence. However, mechanistic understanding of induction and non-induction remains largely unknown. In the present study, we generated the first comprehensive transcriptomic dataset and metabolite profiles of Lithospermum officinale plants treated with methyl jasmonate and salicylic acid to shed light on the underlying mechanisms. Our results highlight the diverse biological processes activated by both phytohormones and reveal the important regulatory role of the mevalonate pathway in alkannin/shikonin biosynthesis in L. officinale. Furthermore, by modelling a coexpression network, we uncovered structural and novel regulatory candidate genes connected to alkannin/shikonin biosynthesis. Besides providing new mechanistic insights into alkannin/shikonin biosynthesis, the generated methyl jasmonate and salicylic acid elicited expression profiles together with the coexpression networks serve as important functional genomic resources for the scientific community aiming at deepening the understanding of alkannin/shikonin biosynthesis.
Collapse
Affiliation(s)
- Muhammad Ahmad
- grid.4332.60000 0000 9799 7097Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria ,grid.10420.370000 0001 2286 1424Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Alicia Varela Alonso
- grid.506382.aInstitut für Pflanzenkultur GmbH & Co. KG., Schnega, Germany ,grid.7942.80000 0001 2294 713XEarth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Antigoni E. Koletti
- grid.4793.90000000109457005Department of Chemical Engineering, Laboratory of Organic Chemistry and Center of Interdisciplinary Research and Innovation, Natural Products Research Centre of Excellence (NatPro-AUTh), Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Nebojša Rodić
- grid.4793.90000000109457005Department of Chemical Engineering, Laboratory of Organic Chemistry and Center of Interdisciplinary Research and Innovation, Natural Products Research Centre of Excellence (NatPro-AUTh), Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Michael Reichelt
- grid.418160.a0000 0004 0491 7131Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Philipp Rödel
- grid.506382.aInstitut für Pflanzenkultur GmbH & Co. KG., Schnega, Germany
| | - Andreana N. Assimopoulou
- grid.4793.90000000109457005Department of Chemical Engineering, Laboratory of Organic Chemistry and Center of Interdisciplinary Research and Innovation, Natural Products Research Centre of Excellence (NatPro-AUTh), Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Ovidiu Paun
- grid.10420.370000 0001 2286 1424Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Stéphane Declerck
- grid.7942.80000 0001 2294 713XEarth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Carolin Schneider
- grid.506382.aInstitut für Pflanzenkultur GmbH & Co. KG., Schnega, Germany
| | - Eva M. Molin
- grid.4332.60000 0000 9799 7097Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
116
|
Wang L, Wu B, Chen G, Chen H, Peng Y, Sohail H, Geng S, Luo G, Xu D, Ouyang B, Bie Z. The essential role of jasmonate signaling in Solanum habrochaites rootstock-mediated cold tolerance in tomato grafts. HORTICULTURE RESEARCH 2022; 10:uhac227. [PMID: 36643752 PMCID: PMC9832872 DOI: 10.1093/hr/uhac227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
Tomato (Solanum lycopersicum) is among the most important vegetables across the world, but cold stress usually affects its yield and quality. The wild tomato species Solanum habrochaites is commonly utilized as rootstock for enhancing resistance against abiotic stresses in cultivated tomato, especially cold resistance. However, the underlying molecular mechanism remains unclear. In this research, we confirmed that S. habrochaites rootstock can improve the cold tolerance of cultivated tomato scions, as revealed by growth, physiological, and biochemical indicators. Furthermore, transcriptome profiling indicated significant differences in the scion of homo- and heterografted seedlings, including substantial changes in jasmonic acid (JA) biosynthesis and signaling, which were validated by RT-qPCR analysis. S. habrochaites plants had a high basal level of jasmonate, and cold stress caused a greater amount of active JA-isoleucine in S. habrochaites heterografts. Moreover, exogenous JA enhanced while JA inhibitor decreased the cold tolerance of tomato grafts. The JA biosynthesis-defective mutant spr8 also showed increased sensitivity to cold stress. All of these results demonstrated the significance of JA in the cold tolerance of grafted tomato seedlings with S. habrochaites rootstock, suggesting a future direction for the characterization of the natural variation involved in S. habrochaites rootstock-mediated cold tolerance.
Collapse
Affiliation(s)
- Lihui Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Bo Wu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Guoyu Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hui Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Yuquan Peng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hamza Sohail
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Shouyu Geng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Guangbao Luo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Dandi Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | | | | |
Collapse
|
117
|
Liao CJ, Hailemariam S, Sharon A, Mengiste T. Pathogenic strategies and immune mechanisms to necrotrophs: Differences and similarities to biotrophs and hemibiotrophs. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102291. [PMID: 36063637 DOI: 10.1016/j.pbi.2022.102291] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Pathogenesis in plant diseases is complex comprising diverse pathogen virulence and plant immune mechanisms. These pathogens cause damaging plant diseases by deploying specialized and generic virulence strategies that are countered by intricate resistance mechanisms. The significant challenges that necrotrophs pose to crop production are predicted to increase with climate change. Immunity to biotrophs and hemibiotrophs is dominated by intracellular receptors that recognize specific effectors and activate resistance. These mechanisms play only minor roles in resistance to necrotrophs. Pathogen- or host-derived conserved pattern molecules trigger immune responses that broadly contribute to plant immunity. However, certain pathogen or host-derived immune elicitors are enriched by the virulence activities of necrotrophs. Different plant hormones modulate systemic resistance and cell death that have differential impacts on resistance to pathogens of different lifestyles. Knowledge of mechanisms that contribute to resistance to necrotrophs has expanded. Besides toxins and cell wall degrading enzymes that dominate the pathogenesis of necrotrophs, other effectors with subtle contributions are being identified.
Collapse
Affiliation(s)
- Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Sara Hailemariam
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
118
|
Huang Y, Ma H, Wang X, Cui T, Han G, Zhang Y, Wang C. Expression patterns of the poplar NF-Y gene family in response to Alternaria alternata and hormone treatment and the role of PdbNF-YA11 in disease resistance. Front Bioeng Biotechnol 2022; 10:956271. [PMID: 36185440 PMCID: PMC9523018 DOI: 10.3389/fbioe.2022.956271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Plant nuclear factor-Y (NF-Y) transcription factors (TFs) are key regulators of growth and stress resistance. However, the role of NF-Y TFs in poplar in response to biotic stress is still unclear. In this study, we cloned 26 PdbNF-Y encoding genes in the hybrid poplar P. davidiana × P. bollena, including 12 PdbNF-YAs, six PdbNF-YBs, and eight PdbNF-YCs. Their physical and chemical parameters, conserved domains, and phylogeny were subsequently analyzed. The protein–protein interaction (PPI) network showed that the three PdbNF-Y subunits may interact with NF-Y proteins belonging to two other subfamilies and other TFs. Tissue expression analysis revealed that PdbNF-Ys exhibited three distinct expression patterns in three tissues. Cis-elements related to stress-responsiveness were found in the promoters of PdbNF-Ys, and most PdbNF-Ys were shown to be differentially expressed under Alternaria alternata and hormone treatments. Compared with the PdbNF-YB and PdbNF-YC subfamilies, more PdbNF-YAs were significantly induced under the two treatments. Moreover, loss- and gain-of-function analyses showed that PdbNF-YA11 plays a positive role in poplar resistance to A. alternata. Additionally, RT‒qPCR analyses showed that overexpression and silencing PdbNF-YA11 altered the transcript levels of JA-related genes, including LOX, AOS, AOC, COI, JAZ, ORCA, and MYC, suggesting that PdbNF-YA11-mediated disease resistance is related to activation of the JA pathway. Our findings will contribute to functional analysis of NF-Y genes in woody plants, especially their roles in response to biotic stress.
Collapse
|
119
|
Wang F, Tan WF, Song W, Yang ST, Qiao S. Transcriptome analysis of sweet potato responses to potassium deficiency. BMC Genomics 2022; 23:655. [PMID: 36109727 PMCID: PMC9479357 DOI: 10.1186/s12864-022-08870-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Background As one of three essential nutrients, potassium is regarded as a main limiting factor for growth and development in plant. Sweet potato (Ipomoea batatas L.) is one of seven major food crops grown worldwide, and is both a nutrient-rich food and a bioenergy crop. It is a typical ‘K-favoring’ crop, and the level of potassium ion (K+) supplementation directly influences its production. However, little is known about the transcriptional changes in sweet potato genes under low-K+ conditions. Here, we analyzed the transcriptomic profiles of sweet potato roots in response to K+ deficiency to determine the effect of low-K+ stress on this economically important crop. Results The roots of sweet potato seedlings with or without K+ treatment were harvested and used for transcriptome analyses. The results showed 559 differently expressed genes (DEGs) in low and high K+ groups. Among the DEGs, 336 were upregulated and 223 were downregulated. These DEGs were involved in transcriptional regulation, calcium binding, redox-signaling, biosynthesis, transport, and metabolic process. Further analysis revealed previously unknow genes involved in low-K+ stress, which could be investigated further to improve low K+ tolerance in plants. Confirmation of RNA-sequencing results using qRT-PCR displayed a high level of consistency between the two experiments. Analysis showed that many auxin-, ethylene- and jasmonic acid-related genes respond to K+ deficiency, suggesting that these hormones have important roles in K+ nutrient signaling in sweet potato. Conclusions According to the transcriptome data of sweet potato, various DEGs showed transcriptional changes in response to low-K+ stress. However, the expression level of some kinases, transporters, transcription factors (TFs), hormone-related genes, and plant defense-related genes changed significantly, suggesting that they have important roles during K+ deficiency. Thus, this study identifies potential genes for genetic improvement of responses to low-K+ stress and provides valuable insight into the molecular mechanisms regulating low K+ tolerance in sweet potato. Further research is required to clarify the function of these DEGs under low-K+ stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08870-5.
Collapse
|
120
|
Wang P, Sun S, Liu K, Peng R, Li N, Hu B, Wang L, Wang H, Afzal AJ, Geng X. Physiological and transcriptomic analyses revealed gene networks involved in heightened resistance against tomato yellow leaf curl virus infection in salicylic acid and jasmonic acid treated tomato plants. Front Microbiol 2022; 13:970139. [PMID: 36187991 PMCID: PMC9515787 DOI: 10.3389/fmicb.2022.970139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus of the Geminiviridae family, causes leaf curl disease of tomato that significantly affects tomato production worldwide. SA (salicylic acid), JA (jasmonic acid) or the JA mimetic, COR (coronatine) applied exogenously resulted in improved tomato resistance against TYLCV infection. When compared to mock treated tomato leaves, pretreatment with the three compounds followed by TYCLV stem infiltration also caused a greater accumulation of H2O2. We employed RNA-Seq (RNA sequencing) to identify DEGs (differentially expressed genes) induced by SA, JA, COR pre-treatments after Agro-inoculation of TYLCV in tomato. To obtain functional information on these DEGs, we annotated genes using gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) databases. Based on our comparative analysis, differentially expressed genes related to cell wall metabolism, hormone signaling and secondary metabolism pathways were analyzed in compound treated samples. We also found that TYLCV levels were affected in SlNPR1 and SlCOI1 silenced plants. Interestingly, compared to the mock treated samples, SA signaling was hyper-activated in SlCOI1 silenced plants which resulted in a significant reduction in viral titer, whereas in SINPR1 silencing tomato plants, there was a 19-fold increase in viral load. Our results indicated that SA, JA, and COR had multiple impacts on defense modulation at the early stage of TYLCV infection. These results will help us better understand SA and JA induced defenses against viral invasion and provide a theoretical basis for breeding viral resistance into commercial tomato accessions.
Collapse
Affiliation(s)
- Peng Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Sheng Sun
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
- *Correspondence: Sheng Sun,
| | - Kerang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Peng
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Na Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Bo Hu
- Institute of Quality and Safety Testing Center for Agro-Products, Xining, Qinghai, China
| | - Lumei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hehe Wang
- Edisto Research and Education Center, Clemson University, Blackville, SC, United States
| | - Ahmed Jawaad Afzal
- Division of Science, New York University, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Xueqing Geng,
| |
Collapse
|
121
|
Sun T, Zhang J, Zhang Q, Li X, Li M, Yang Y, Zhou J, Wei Q, Zhou B. Exogenous application of acetic acid enhances drought tolerance by influencing the MAPK signaling pathway induced by ABA and JA in apple plants. TREE PHYSIOLOGY 2022; 42:1827-1840. [PMID: 35323984 DOI: 10.1093/treephys/tpac034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
The external application of acetic acid (AA) has been shown to improve drought survival in plants, such as Arabidopsis, rice, maize, wheat, rapeseed and cassava, and the application of AA also increased drought tolerance in perennial woody apple (Malus domestica) plants. An understanding of AA-induced drought tolerance in apple plants at the molecular level will contribute to the development of technology that can be used to enhance drought tolerance. In this study, the morphological, physiological and transcriptomic responses to drought stress were analyzed in apple plants after watering without AA (CK), watering with AA (AA), drought treatment (D) and drought treatment with AA (DA). The results suggested that the AA-treated apple plants had a higher tolerance to drought than water-treated plants. Higher levels of chlorophyll and carotenoids were found under the DA conditions than under D stress. The levels of abscisic acid (ABA), jasmonic acid (JA) and methyl jasmonate were increased in AA-treated apple plants. Transcriptomic profiling indicated the key biological pathways involved in metabolic processes, mitogen-activated protein kinase (MAPK) signaling, plant hormone signal transduction and the biosynthesis of secondary metabolites in response to different drought conditions. The 9-cis-epoxycarotenoid dioxygenase, (9S,13S)-cis-oxophytodienoic acid reductase, allene oxide synthase, allene oxide cyclase and lipoxygenase genes participate in the synthase of ABA and JA under drought and AA treatments. Collectively, the results showed that external application of AA enhanced drought tolerance in apple plants by influencing the ABA- and JA-induced MAPK signaling pathways. These data indicated that the application of AA in plants is beneficial for enhancing drought tolerance and decreasing growth inhibition in agricultural fields.
Collapse
Affiliation(s)
- Tingting Sun
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Junke Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Qiang Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Xingliang Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Minji Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Yuzhang Yang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Jia Zhou
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Qinping Wei
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Beibei Zhou
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| |
Collapse
|
122
|
Huang H, Zhao W, Qiao H, Li C, Sun L, Yang R, Ma X, Ma J, Song S, Wang S. SlWRKY45 interacts with jasmonate-ZIM domain proteins to negatively regulate defense against the root-knot nematode Meloidogyne incognita in tomato. HORTICULTURE RESEARCH 2022; 9:uhac197. [PMID: 36338841 PMCID: PMC9630973 DOI: 10.1093/hr/uhac197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Parasitic root-knot nematodes (RKNs) cause a severe reduction in crop yield and seriously threaten agricultural production. The phytohormones jasmonates (JAs) are important signals regulating resistance to multiple biotic and abiotic stresses. However, the molecular mechanism for JAs-regulated defense against RKNs in tomato remains largely unclear. In this study, we found that the transcription factor SlWRKY45 interacted with most JA-ZIM domain family proteins (JAZs), key repressors of the JA signaling. After infection by the RKN Meloidogyne incognita, the slwrky45 mutants exhibited lower gall numbers and egg numbers per gram of roots than wild type, whereas overexpression of SlWRKY45 attenuated resistance to Meloidogyne incognita. Under M. incognita infection, the contents of jasmonic acid (JA) and JA-isoleucine (JA-Ile) in roots were repressed by SlWRKY45-overexpression. Furthermore, SlWRKY45 bound to and inhibited the promoter of the JA biosynthesis gene ALLENE OXIDE CYCLASE (AOC), and repressed its expression. Overall, our findings revealed that the SlJAZ-interaction protein SlWRKY45 attenuated RKN-regulated JA biosynthesis and repressed defense against the RKN M. incognita in tomato.
Collapse
Affiliation(s)
| | | | - Hui Qiao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Chonghua Li
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Lulu Sun
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Xuechun Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Jilin Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | | | | |
Collapse
|
123
|
Liu Z, Li Z, Wu S, Yu C, Wang X, Wang Y, Peng Z, Gao Y, Li R, Shen Y, Duan L. Coronatine Enhances Chilling Tolerance of Tomato Plants by Inducing Chilling-Related Epigenetic Adaptations and Transcriptional Reprogramming. Int J Mol Sci 2022; 23:10049. [PMID: 36077443 PMCID: PMC9456409 DOI: 10.3390/ijms231710049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Low temperature is an important environmental factor limiting the widespread planting of tropical and subtropical crops. The application of plant regulator coronatine, which is an analog of Jasmonic acid (JA), is an effective approach to enhancing crop's resistance to chilling stress and other abiotic stresses. However, the function and mechanism of coronatine in promoting chilling resistance of tomato is unknown. In this study, coronatine treatment was demonstrated to significantly increase tomato chilling tolerance. Coronatine increases H3K4me3 modifications to make greater chromatin accessibility in multiple chilling-activated genes. Corresponding to that, the expression of CBFs, other chilling-responsive transcription factor (TF) genes, and JA-responsive genes is significantly induced by coronatine to trigger an extensive transcriptional reprogramming, thus resulting in a comprehensive chilling adaptation. These results indicate that coronatine enhances the chilling tolerance of tomato plants by inducing epigenetic adaptations and transcriptional reprogramming.
Collapse
Affiliation(s)
- Ziyan Liu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhuoyang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shifeng Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chunxin Yu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ye Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhen Peng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yuerong Gao
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Runzhi Li
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yuanyue Shen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Liusheng Duan
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
124
|
Xiang L, He P, Shu G, Yuan M, Wen M, Lan X, Liao Z, Tang Y. AabHLH112, a bHLH transcription factor, positively regulates sesquiterpenes biosynthesis in Artemisia annua. FRONTIERS IN PLANT SCIENCE 2022; 13:973591. [PMID: 36119570 PMCID: PMC9478121 DOI: 10.3389/fpls.2022.973591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The bHLH transcription factors play important roles in the regulation of plant growth, development, and secondary metabolism. β-Caryophyllene, epi-cedrol, and β-farnesene, three kinds of sesquiterpenes mainly found in plants, are widely used as spice in the food industry and biological pesticides in agricultural production. Furthermore, they also have a significant value in the pharmaceutical industry. However, there is currently a lack of knowledge on the function of bHLH family TFs in β-caryophyllene, epi-cedrol, and β-farnesene biosynthesis. Here, we found that AabHLH112 transcription factor had a novel function to positively regulate β-carophyllene, epi-cedrol, and β-farnesene biosynthesis in Artemisia annua. Exogenous MeJA enhanced the expression of AabHLH112 and genes of β-caryophyllene synthase (CPS), epi-cedrol synthase (ECS), and β-farnesene synthase (BFS), as well as sesquiterpenes content. Dual-LUC assay showed the activation of AaCPS, AaECS, and AaBFS promoters were enhanced by AabHLH112. Yeast one-hybrid assay showed AabHLH112 could bind to the G-box (CANNTG) cis-element in promoters of both AaCPS and AaECS. In addition, overexpression of AabHLH112 in A. annua significantly elevated the expression levels of AaCPS, AaECS, and AaBFS as well as the contents of β-caryophyllene, epi-cedrol, and β-farnesene, while suppressing AabHLH112 expression by RNAi reduced the expression of the three genes and the contents of the three sesquiterpenes. These results suggested that AabHLH112 is a positive regulator of β-caryophyllene, epi-cedrol, and β-farnesene biosynthesis in A. annua.
Collapse
Affiliation(s)
- Lien Xiang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Tibet Agriculture and Animal Husbandry College and Southwest University (TAAHC-SWU) Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Ping He
- Chongqing Academy of Science and Technology, Chongqing, China
| | - Guoping Shu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Tibet Agriculture and Animal Husbandry College and Southwest University (TAAHC-SWU) Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Mingyuan Yuan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Tibet Agriculture and Animal Husbandry College and Southwest University (TAAHC-SWU) Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Mengling Wen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Tibet Agriculture and Animal Husbandry College and Southwest University (TAAHC-SWU) Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaozhong Lan
- The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
| | - Zhihua Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Tibet Agriculture and Animal Husbandry College and Southwest University (TAAHC-SWU) Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Academy of Science and Technology, Chongqing, China
| | - Yueli Tang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Tibet Agriculture and Animal Husbandry College and Southwest University (TAAHC-SWU) Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
125
|
Huang H, Zhao W, Li C, Qiao H, Song S, Yang R, Sun L, Ma J, Ma X, Wang S. SlVQ15 interacts with jasmonate-ZIM domain proteins and SlWRKY31 to regulate defense response in tomato. PLANT PHYSIOLOGY 2022; 190:828-842. [PMID: 35689622 PMCID: PMC9434178 DOI: 10.1093/plphys/kiac275] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/06/2022] [Indexed: 06/01/2023]
Abstract
Botrytis cinerea is one of the most widely distributed and harmful pathogens worldwide. Both the phytohormone jasmonate (JA) and the VQ motif-containing proteins play crucial roles in plant resistance to B. cinerea. However, their crosstalk in resistance to B. cinerea is unclear, especially in tomato (Solanum lycopersicum). In this study, we found that the tomato VQ15 was highly induced upon B. cinerea infection and localized in the nucleus. Silencing SlVQ15 using virus-induced gene silencing reduced resistance to B. cinerea. Overexpression of SlVQ15 enhanced resistance to B. cinerea, while disruption of SlVQ15 using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9 (Cas9) technology increased susceptibility to B. cinerea. Furthermore, SlVQ15 formed homodimers. Additionally, SlVQ15 interacted with JA-ZIM domain proteins, repressors of the JA signaling pathway, and SlWRKY31. SlJAZ11 interfered with the interaction between SlVQ15 and SlWRKY31 and repressed the SlVQ15-increased transcriptional activation activity of SlWRKY31. SlVQ15 and SlWRKY31 synergistically regulated tomato resistance to B. cinerea, as silencing SlVQ15 enhanced the sensitivity of slwrky31 to B. cinerea. Taken together, our findings showed that the SlJAZ-interacting protein SlVQ15 physically interacts with SlWRKY31 to cooperatively control JA-mediated plant defense against B. cinerea.
Collapse
Affiliation(s)
| | | | | | - Hui Qiao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Susheng Song
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing 102206, China
| | - Lulu Sun
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing 102206, China
| | - Jilin Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xuechun Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | | |
Collapse
|
126
|
Huang Y, Ma H, Yue Y, Zhou T, Zhu Z, Wang C. Integrated transcriptomic and transgenic analyses reveal potential mechanisms of poplar resistance to Alternaria alternata infection. BMC PLANT BIOLOGY 2022; 22:413. [PMID: 36008749 PMCID: PMC9404672 DOI: 10.1186/s12870-022-03793-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Populus davidiana × P. bollena is a species of poplar from northeastern China that is characterized by cold resistance and fast growth but now suffers from pathogen infections. Leaf blight caused by Alternaria alternata has become a common poplar disease that causes serious economic impacts, but the molecular mechanisms of resistance to A. alternata in P. davidiana × P. bollena are still unclear. RESULTS In this study, the transcriptomic response of P. davidiana × P. bollena to A. alternata infection was determined via RNA-Seq. Twelve cDNA libraries were generated from RNA isolated from three biological replicates at four time points (0, 2, 3, and 4 d post inoculation), and a total of 5,930 differentially expressed genes (DEGs) were detected (| log2 fold change |≥ 1 and FDR values < 0.05). Functional analysis revealed that the DEGs were mainly enriched for the "plant hormone signal transduction" pathway, followed by the "phenylpropanoid biosynthesis" pathway. In addition, DEGs that encode defense-related proteins and are related to ROS metabolism were also identified. Numerous transcription factors, such as the bHLH, WRKY and MYB families, were also induced by A. alternata infection. Among these DEGs, those related to JA biosynthesis and JA signal transduction were consistently activated. Therefore, the lipoxygenase gene PdbLOX2, which is involved in JA biosynthesis, was selected for functional characterization. Overexpression of PdbLOX2 enhanced the resistance of P. davidiana × P. bollena to A. alternata, whereas silencing this gene enhanced susceptibility to A. alternata infection. CONCLUSIONS These results provide new insight into the molecular mechanisms of poplar resistance to A. alternata infection and provide candidate genes for breeding resistant cultivars using genetic engineering.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| | - Huijun Ma
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| | - Yuanzhi Yue
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| | - Tianchang Zhou
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| | - Zhenyu Zhu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| |
Collapse
|
127
|
Li S, Wu P, Yu X, Cao J, Chen X, Gao L, Chen K, Grierson D. Contrasting Roles of Ethylene Response Factors in Pathogen Response and Ripening in Fleshy Fruit. Cells 2022; 11:cells11162484. [PMID: 36010560 PMCID: PMC9406635 DOI: 10.3390/cells11162484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fleshy fruits are generally hard and unpalatable when unripe; however, as they mature, their quality is transformed by the complex and dynamic genetic and biochemical process of ripening, which affects all cell compartments. Ripening fruits are enriched with nutrients such as acids, sugars, vitamins, attractive volatiles and pigments and develop a pleasant taste and texture and become attractive to eat. Ripening also increases sensitivity to pathogens, and this presents a crucial problem for fruit postharvest transport and storage: how to enhance pathogen resistance while maintaining ripening quality. Fruit development and ripening involve many changes in gene expression regulated by transcription factors (TFs), some of which respond to hormones such as auxin, abscisic acid (ABA) and ethylene. Ethylene response factor (ERF) TFs regulate both fruit ripening and resistance to pathogen stresses. Different ERFs regulate fruit ripening and/or pathogen responses in both fleshy climacteric and non-climacteric fruits and function cooperatively or independently of other TFs. In this review, we summarize the current status of studies on ERFs that regulate fruit ripening and responses to infection by several fungal pathogens, including a systematic ERF transcriptome analysis of fungal grey mould infection of tomato caused by Botrytis cinerea. This deepening understanding of the function of ERFs in fruit ripening and pathogen responses may identify novel approaches for engineering transcriptional regulation to improve fruit quality and pathogen resistance.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (S.L.); (D.G.)
| | - Pan Wu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiaofen Yu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jinping Cao
- College of Agriculture and Biotechnology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
| | - Xia Chen
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lei Gao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
| | - Donald Grierson
- College of Agriculture and Biotechnology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
- Correspondence: (S.L.); (D.G.)
| |
Collapse
|
128
|
Liu W, Liu K, Chen D, Zhang Z, Li B, El-Mogy MM, Tian S, Chen T. Solanum lycopersicum, a Model Plant for the Studies in Developmental Biology, Stress Biology and Food Science. Foods 2022; 11:2402. [PMID: 36010400 PMCID: PMC9407197 DOI: 10.3390/foods11162402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022] Open
Abstract
Fruits, vegetables and other plant-derived foods contribute important ingredients for human diets, and are thus favored by consumers worldwide. Among these horticultural crops, tomato belongs to the Solanaceae family, ranks only secondary to potato (S. tuberosum L.) in yields and is widely cultivated for fresh fruit and processed foods owing to its abundant nutritional constituents (including vitamins, dietary fibers, antioxidants and pigments). Aside from its important economic and nutritional values, tomato is also well received as a model species for the studies on many fundamental biological events, including regulations on flowering, shoot apical meristem maintenance, fruit ripening, as well as responses to abiotic and biotic stresses (such as light, salinity, temperature and various pathogens). Moreover, tomato also provides abundant health-promoting secondary metabolites (flavonoids, phenolics, alkaloids, etc.), making it an excellent source and experimental system for investigating nutrient biosynthesis and availability in food science. Here, we summarize some latest results on these aspects, which may provide some references for further investigations on developmental biology, stress signaling and food science.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoguo Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mohamed M. El-Mogy
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
129
|
Li C, Cai X, Shen Q, Chen X, Xu M, Ye T, Si D, Wu L, Chen D, Han Z, Si J. Genome-wide analysis of basic helix-loop-helix genes in Dendrobium catenatum and functional characterization of DcMYC2 in jasmonate-mediated immunity to Sclerotium delphinii. FRONTIERS IN PLANT SCIENCE 2022; 13:956210. [PMID: 35982703 PMCID: PMC9378844 DOI: 10.3389/fpls.2022.956210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Dendrobium catenatum, belonging to the Orchidaceae, is a precious Chinese herbal medicine. Sclerotium delphinii (P1) is a broad-spectrum fungal disease, which causes widespread loss in the near-wild cultivation of D. catenatum. Thus, resistance breeding of D. catenatum has become the key to solve this problem. The basic helix-loop-helix (bHLH) gene family is closely related to plant resistance to external stresses, but the related research in D. catenatum is not deep enough yet. Phylogenetic analysis showed that 108 DcbHLH genes could be divided into 23 subgroups. Promoter cis-acting elements revealed that DcbHLHs contain a large number of stress-related cis-acting elements. Transcriptome analysis of MeJA and P1 treatment manifested that exogenous MeJA can change the expression pattern of most bHLH genes, especially the IIIe subgroup, including inhibiting the expression of DcbHLH026 (MYC2a) and promoting the expression of DcbHLH027 (MYC2b). Subcellular localization indicated that they were located in the nucleus. Furthermore, exogenous MeJA treatment significantly delayed disease time and reduced lesion size after infection with P1. DcMYC2b-overexpression Arabidopsis lines showed significantly smaller lesions after being infected with P1 than the wild type, indicating that DcMYC2b functions as an important positive regulator in D. catenatum defense against P1. Our findings shed more insights into the critical role of the DcbHLH family in plants and the resistance breeding of D. catenatum.
Collapse
|
130
|
Grau J, Franco‐Zorrilla JM. TDTHub, a web server tool for the analysis of transcription factor binding sites in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1203-1215. [PMID: 35713985 PMCID: PMC9541588 DOI: 10.1111/tpj.15873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 05/31/2023]
Abstract
Transcriptional regulation underlies most developmental programs and physiological responses to environmental changes in plants. Transcription factors (TFs) play a key role in the regulation of gene expression by binding specifically to short DNA sequences in the regulatory regions of genes: the TF binding sites (TFBSs). In recent years, several bioinformatic tools have been developed to detect TFBSs in candidate genes, either by de novo prediction or by directly mapping experimentally known TFBSs. However, most of these tools contain information for only a few species or require multi-step procedures, and are not always intuitive for non-experienced researchers. Here we present TFBS-Discovery Tool Hub (TDTHub), a web server for quick and intuitive studies of transcriptional regulation in plants. TDTHub uses pre-computed TFBSs in 40 plant species and allows the choice of two mapping algorithms, providing a higher versatility. Besides the main TFBS enrichment tool, TDTHub includes additional tools to assist in the analysis and visualization of data. In order to demonstrate the effectiveness of TDTHub, we analyzed the transcriptional regulation of the anthocyanin biosynthesis pathway. We also analyzed the transcriptional cascades in response to jasmonate and wounding in Arabidopsis and tomato (Solanum lycopersicum), respectively. In these studies, TDTHub helped to verify the most relevant TF nodes and to propose new ones with a prominent role in these pathways. TDTHub is available at http://acrab.cnb.csic.es/TDTHub/, and it will be periodically upgraded and expanded for new species and gene annotations.
Collapse
Affiliation(s)
- Joaquín Grau
- Department of Plant Molecular GeneticsCentro Nacional de BiotecnologíaCNB‐CSIC, C/Darwin 328049MadridSpain
| | - José M. Franco‐Zorrilla
- Department of Plant Molecular GeneticsCentro Nacional de BiotecnologíaCNB‐CSIC, C/Darwin 328049MadridSpain
| |
Collapse
|
131
|
An C, Deng L, Zhai H, You Y, Wu F, Zhai Q, Goossens A, Li C. Regulation of jasmonate signaling by reversible acetylation of TOPLESS in Arabidopsis. MOLECULAR PLANT 2022; 15:1329-1346. [PMID: 35780296 DOI: 10.1016/j.molp.2022.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The plant hormone jasmonate (JA) regulates plant immunity and adaptive growth by orchestrating a genome-wide transcriptional program. Key regulators of JA-responsive gene expression include the master transcription factor MYC2, which is repressed by the conserved Groucho/Tup1-like corepressor TOPLESS (TPL) in the resting state. However, the mechanisms underlying TPL-mediated transcriptional repression of MYC2 activity and hormone-dependent switching between repression and de-repression remain enigmatic. Here, we report the regulation of TPL activity and JA signaling by reversible acetylation of TPL. We found that the histone acetyltransferase GCN5 could mediate TPL acetylation, which enhances its interaction with the NOVEL-INTERACTOR-OF-JAZ (NINJA) adaptor and promotes its recruitment to MYC2 target promoters, facilitating transcriptional repression. Conversely, TPL deacetylation by the histone deacetylase HDA6 weakens TPL-NINJA interaction and inhibits TPL recruitment to MYC2 target promoters, facilitating transcriptional activation. In the resting state, the opposing activities of GCN5 and HDA6 maintain TPL acetylation homeostasis, promoting transcriptional repression activity of TPL. In response to JA elicitation, HDA6 expression is transiently induced, resulted in decreased TPL acetylation and repressor activity, thereby transcriptional activation of MYC2 target genes. Thus, the GCN5-TPL-HDA6 module maintains the homeostasis of acetylated TPL, thereby determining the transcriptional state of JA-responsive genes. Our findings uncovered a mechanism by which the TPL corepressor activity in JA signaling is actively tuned in a rapid and reversible manner.
Collapse
Affiliation(s)
- Chunpeng An
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huawei Zhai
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yanrong You
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangming Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
132
|
Xu BQ, Wang JJ, Peng Y, Huang H, Sun LL, Yang R, Suo LN, Wang SH, Zhao WC. SlMYC2 mediates stomatal movement in response to drought stress by repressing SlCHS1 expression. FRONTIERS IN PLANT SCIENCE 2022; 13:952758. [PMID: 35937339 PMCID: PMC9354244 DOI: 10.3389/fpls.2022.952758] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/04/2022] [Indexed: 05/27/2023]
Abstract
Drought stress limits plant development and reproduction. Multiple mechanisms in plants are activated to respond to stress. The MYC2 transcription factor is a core regulator of the jasmonate (JA) pathway and plays a vital role in the crosstalk between abscisic acid (ABA) and JA. In this study, we found that SlMYC2 responded to drought stress and regulated stomatal aperture in tomato (Solanum lycopersicum). Overexpression of SlMYC2 repressed SlCHS1 expression and decreased the flavonol content, increased the reactive oxygen species (ROS) content in guard cells and promoted the accumulation of JA and ABA in leaves. Additionally, silencing the SlCHS1 gene produced a phenotype that was similar to that of the MYC2-overexpressing (MYC2-OE) strain, especially in terms of stomatal dynamics and ROS levels. Finally, we confirmed that SlMYC2 directly repressed the expression of SlCHS1. Our study revealed that SlMYC2 drove stomatal closure by modulating the accumulation of flavonol and the JA and ABA contents, helping us decipher the mechanism of stomatal movement under drought stress.
Collapse
Affiliation(s)
- Bing-Qin Xu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Bei Jing Bei Nong Enterprise Management Co., Ltd., Beijing, China
| | - Jing-Jing Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yi Peng
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Huang Huang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Lu-Lu Sun
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Rui Yang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Lin-Na Suo
- Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Shao-Hui Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Wen-Chao Zhao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
133
|
Gliotoxin, an Immunosuppressive Fungal Metabolite, Primes Plant Immunity: Evidence from Trichoderma virens-Tomato Interaction. mBio 2022; 13:e0038922. [PMID: 35862794 PMCID: PMC9426506 DOI: 10.1128/mbio.00389-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Beneficial interaction of members of the fungal genus Trichoderma with plant roots primes the plant immune system, promoting systemic resistance to pathogen infection. Some strains of Trichoderma virens produce gliotoxin, a fungal epidithiodioxopiperazine (ETP)-type secondary metabolite that is toxic to animal cells. It induces apoptosis, prevents NF-κB activation via the inhibition of the proteasome, and has immunosuppressive properties. Gliotoxin is known to be involved in the antagonism of rhizosphere microorganisms. To investigate whether this metabolite has a role in the interaction of Trichoderma with plant roots, we compared gliotoxin-producing and nonproducing T. virens strains. Both colonize the root surface and outer layers, but they have differential effects on root growth and architecture. The responses of tomato plants to a pathogen challenge were followed at several levels: lesion development, levels of ethylene, and reactive oxygen species. The transcriptomic signature of the shoot tissue in response to root interaction with producing and nonproducing T. virens strains was monitored. Gliotoxin producers provided stronger protection against foliar pathogens, compared to nonproducing strains. This was reflected in the transcriptomic signature, which showed the induction of defense-related genes. Two markers of plant defense response, PR1 and Pti-5, were differentially induced in response to pure gliotoxin. Gliotoxin thus acts as a microbial signal, which the plant immune system recognizes, directly or indirectly, to promote a defense response. IMPORTANCE A single fungal metabolite induces far-reaching transcriptomic reprogramming in the plant, priming immune responses and defense, in contrast to its immunosuppressive effect on animal cells. While the negative effects of gliotoxin-producing Trichoderma strains on growth may be observed only under a particular set of laboratory conditions, gliotoxin-linked molecular patterns, including the potential for limited cell death, could strongly prime plant defense, even in mature soil-grown plants in which the same Trichoderma strain promotes growth.
Collapse
|
134
|
Trujillo-Moya C, Ganthaler A, Stöggl W, Arc E, Kranner I, Schueler S, Ertl R, Espinosa-Ruiz A, Martínez-Godoy MÁ, George JP, Mayr S. Advances in understanding Norway spruce natural resistance to needle bladder rust infection: transcriptional and secondary metabolites profiling. BMC Genomics 2022; 23:435. [PMID: 35692040 PMCID: PMC9190139 DOI: 10.1186/s12864-022-08661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Needle rust caused by the fungus Chrysomyxa rhododendri causes significant growth decline and increased mortality of young Norway spruce trees in subalpine forests. Extremely rare trees with enhanced resistance represent promising candidates for practice-oriented reproduction approaches. They also enable the investigation of tree molecular defence and resistance mechanisms against this fungal disease. Here, we combined RNA-Seq, RT-qPCR and secondary metabolite analyses during a period of 38 days following natural infection to investigate differences in constitutive and infection-induced defence between the resistant genotype PRA-R and three susceptible genotypes. RESULTS Gene expression and secondary metabolites significantly differed among genotypes from day 7 on and revealed already known, but also novel candidate genes involved in spruce molecular defence against this pathogen. Several key genes related to (here and previously identified) spruce defence pathways to needle rust were differentially expressed in PRA-R compared to susceptible genotypes, both constitutively (in non-symptomatic needles) and infection-induced (in symptomatic needles). These genes encoded both new and well-known antifungal proteins such as endochitinases and chitinases. Specific genetic characteristics concurred with varying phenolic, terpene, and hormone needle contents in the resistant genotype, among them higher accumulation of several flavonoids (mainly kaempferol and taxifolin), stilbenes, geranyl acetone, α-ionone, abscisic acid and salicylic acid. CONCLUSIONS Combined transcriptional and metabolic profiling of the Norway spruce defence response to infection by C. rhododendri in adult trees under subalpine conditions confirmed the results previously gained on artificially infected young clones in the greenhouse, both regarding timing and development of infection, and providing new insights into genes and metabolic pathways involved. The comparison of genotypes with different degrees of susceptibility proved that several of the identified key genes are differently regulated in PRA-R, and that the resistant genotype combines a strong constitutive defence with an induced response in infected symptomatic needles following fungal invasion. Genetic and metabolic differences between the resistant and susceptible genotypes indicated a more effective hypersensitive response (HR) in needles of PRA-R that prevents penetration and spread of the rust fungus and leads to a lower proportion of symptomatic needles as well as reduced symptom development on the few affected needles.
Collapse
Affiliation(s)
- Carlos Trujillo-Moya
- Department of Forest Growth, Silviculture & Genetics, Austrian Research Centre for Forests BFW, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| | - Andrea Ganthaler
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Wolfgang Stöggl
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Erwann Arc
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Ilse Kranner
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Silvio Schueler
- Department of Forest Growth, Silviculture & Genetics, Austrian Research Centre for Forests BFW, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| | - Reinhard Ertl
- University of Veterinary Medicine, VetCore Facility for Research, Veterinärplatz 1, 1210 Vienna, Austria
| | - Ana Espinosa-Ruiz
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Maria Ángeles Martínez-Godoy
- Institute for Plant Molecular and Cell Biology (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Jan-Peter George
- Department of Forest Growth, Silviculture & Genetics, Austrian Research Centre for Forests BFW, Seckendorff-Gudent-Weg 8, 1131 Vienna, Austria
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| |
Collapse
|
135
|
Ding F, Wang C, Xu N, Zhang S, Wang M. SlMYC2 mediates jasmonate-induced tomato leaf senescence by promoting chlorophyll degradation and repressing carbon fixation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 180:27-34. [PMID: 35378389 DOI: 10.1016/j.plaphy.2022.03.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Leaf senescence occurs as the last developmental phase of leaf. The initiation and progression of leaf senescence is highly regulated by a plethora of internal developmental signals and environmental stimuli. Being an important class of phytohormones, jasmonates (JAs) are shown to induce premature leaf senescence in tomato (Solanum lycopersicum), nevertheless, the underlying mechanisms remain enigmatic. Here, we report that tomato MYC2, a key factor in the JA signal transduction, functions in JA-induced tomato leaf senescence by promoting chlorophyll degradation and inhibiting photosynthetic carbon fixation. We found that exogenous application of MeJA reduced chlorophyll content, decreased carbon assimilation rates and disrupted membrane integrity. We further demonstrated using SlMYC2-RNAi tomato plants that SlMYC2 enhanced the expression of SlPAO, which encodes a chlorophyll degradation enzyme, but suppressed the expression of SlRCA and SlSBPASE, both of which are required for photosynthesis and growth in plants. Dual-luciferase assay confirmed that SlMYC2 activated the transcription of SlPAO, but inhibited the transcription of SlRCA and SlSBPASE. Furthermore, repression of SlRCA led to typical features associated with leaf senescence in tomato. Taken together, these results favor that tomato MYC2 acts positively in the regulation of JA-dependent tomato leaf senescence. The results extend our mechanistic understanding of JA-induced senescence in an important horticultural crop.
Collapse
Affiliation(s)
- Fei Ding
- School of Life Sciences, Liaocheng University, Liaocheng, Shandong, 252000, China.
| | - Chuang Wang
- Department of Agriculture and Animal Husbandry, Liaocheng Vocational & Technical College, Liaocheng, 252000, China
| | - Ning Xu
- Department of Agriculture and Animal Husbandry, Liaocheng Vocational & Technical College, Liaocheng, 252000, China
| | - Shuoxin Zhang
- College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Meiling Wang
- School of Life Sciences, Liaocheng University, Liaocheng, Shandong, 252000, China.
| |
Collapse
|
136
|
Chen J, Yang S, Fan B, Zhu C, Chen Z. The Mediator Complex: A Central Coordinator of Plant Adaptive Responses to Environmental Stresses. Int J Mol Sci 2022; 23:ijms23116170. [PMID: 35682844 PMCID: PMC9181133 DOI: 10.3390/ijms23116170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 01/25/2023] Open
Abstract
As sessile organisms, plants are constantly exposed to a variety of environmental stresses and have evolved adaptive mechanisms, including transcriptional reprogramming, in order to survive or acclimate under adverse conditions. Over the past several decades, a large number of gene-specific transcription factors have been identified in the transcriptional regulation of plant adaptive responses. The Mediator complex plays a key role in transducing signals from gene-specific transcription factors to the transcription machinery to activate or repress target gene expression. Since its first purification about 15 years ago, plant Mediator complex has been extensively analyzed for its composition and biological functions. Mutants of many plant Mediator subunits are not lethal but are compromised in growth, development and response to biotic and abiotic stress, underscoring a particularly important role in plant adaptive responses. Plant Mediator subunits also interact with partners other than transcription factors and components of the transcription machinery, indicating the complexity of the regulation of gene expression by plant Mediator complex. Here, we present a comprehensive discussion of recent analyses of the structure and function of plant Mediator complex, with a particular focus on its roles in plant adaptive responses to a wide spectrum of environmental stresses and associated biological processes.
Collapse
Affiliation(s)
- Jialuo Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
| | - Su Yang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
| | - Baofang Fan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-8683-6090 (C.Z.); +1-765-494-4657 (Z.C.)
| | - Zhixiang Chen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.C.); (S.Y.)
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
- Correspondence: (C.Z.); (Z.C.); Tel.: +86-571-8683-6090 (C.Z.); +1-765-494-4657 (Z.C.)
| |
Collapse
|
137
|
Lian J, Han H, Chen X, Chen Q, Zhao J, Li C. Stemphylium lycopersici Nep1-like Protein (NLP) Is a Key Virulence Factor in Tomato Gray Leaf Spot Disease. J Fungi (Basel) 2022; 8:jof8050518. [PMID: 35628773 PMCID: PMC9144795 DOI: 10.3390/jof8050518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
The fungus Stemphylium lycopersici (S. lycopersici) is an economically important plant pathogen that causes grey leaf spot disease in tomato. However, functional genomic studies in S. lycopersici are lacking, and the factors influencing its pathogenicity remain largely unknown. Here, we present the first example of genetic transformation and targeted gene replacement in S. lycopersici. We functionally analyzed the NLP gene, which encodes a necrosis- and ethylene-inducing peptide 1 (Nep1)-like protein (NLP). We found that targeted disruption of the NLP gene in S. lycopersici significantly compromised its virulence on tomato. Moreover, our data suggest that NLP affects S. lycopersici conidiospore production and weakly affects its adaptation to osmotic and oxidative stress. Interestingly, we found that NLP suppressed the production of reactive oxygen species (ROS) in tomato leaves during S. lycopersici infection. Further, expressing the fungal NLP in tomato resulted in constitutive transcription of immune-responsive genes and inhibited plant growth. Through gene manipulation, we demonstrated the function of NLP in S. lycopersici virulence and development. Our work provides a paradigm for functional genomics studies in a non-model fungal pathogen system.
Collapse
Affiliation(s)
- Jiajie Lian
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai’an 271018, China; (J.L.); (H.H.); (X.C.); (Q.C.)
| | - Hongyu Han
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai’an 271018, China; (J.L.); (H.H.); (X.C.); (Q.C.)
| | - Xizhan Chen
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai’an 271018, China; (J.L.); (H.H.); (X.C.); (Q.C.)
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai’an 271018, China; (J.L.); (H.H.); (X.C.); (Q.C.)
| | - Jiuhai Zhao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100864, China
- Correspondence: (J.Z.); (C.L.)
| | - Chuanyou Li
- University of Chinese Academy of Sciences, Beijing 100864, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (J.Z.); (C.L.)
| |
Collapse
|
138
|
Cao Y, Liu L, Ma K, Wang W, Lv H, Gao M, Wang X, Zhang X, Ren S, Zhang N, Guo YD. The jasmonate-induced bHLH gene SlJIG functions in terpene biosynthesis and resistance to insects and fungus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1102-1115. [PMID: 35293128 DOI: 10.1111/jipb.13248] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 05/27/2023]
Abstract
Jasmonic acid (JA) is a key regulator of plant defense responses. Although the transcription factor MYC2, the master regulator of the JA signaling pathway, orchestrates a hierarchical transcriptional cascade that regulates the JA responses, only a few transcriptional regulators involved in this cascade have been described. Here, we identified the basic helix-loop-helix (bHLH) transcription factor gene in tomato (Solanum lycopersicum), METHYL JASMONATE (MeJA)-INDUCED GENE (SlJIG), the expression of which was strongly induced by MeJA treatment. Genetic and molecular biology experiments revealed that SlJIG is a direct target of MYC2. SlJIG knockout plants generated by gene editing had lower terpene contents than the wild type from the lower expression of TERPENE SYNTHASE (TPS) genes, rendering them more appealing to cotton bollworm (Helicoverpa armigera). Moreover, SlJIG knockouts exhibited weaker JA-mediated induction of TPSs, suggesting that SlJIG may participate in JA-induced terpene biosynthesis. Knocking out SlJIG also resulted in attenuated expression of JA-responsive defense genes, which may contribute to the observed lower resistance to cotton bollworm and to the fungus Botrytis cinerea. We conclude that SlJIG is a direct target of MYC2, forms a MYC2-SlJIG module, and functions in terpene biosynthesis and resistance against cotton bollworm and B. cinerea.
Collapse
Affiliation(s)
- Yunyun Cao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Lun Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kangsheng Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjing Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hongmei Lv
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ming Gao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinman Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xichun Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Shuxin Ren
- School of Agriculture, Virginia State University, Petersburg, 23806, VA, USA
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572000, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572000, China
| |
Collapse
|
139
|
Kalsi HS, Karkhanis AA, Natarajan B, Bhide AJ, Banerjee AK. AUXIN RESPONSE FACTOR 16 (StARF16) regulates defense gene StNPR1 upon infection with necrotrophic pathogen in potato. PLANT MOLECULAR BIOLOGY 2022; 109:13-28. [PMID: 35380408 DOI: 10.1007/s11103-022-01261-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
We demonstrate a new regulatory mechanism in the jasmonic acid (JA) and salicylic acid (SA) mediated crosstalk in potato defense response, wherein, miR160 target StARF16 (a gene involved in growth and development) binds to the promoter of StNPR1 (a defense gene) and negatively regulates its expression to suppress the SA pathway. Overall, our study establishes the importance of StARF16 in regulation of StNPR1 during JA mediated defense response upon necrotrophic pathogen interaction. Plants employ antagonistic crosstalk between salicylic acid (SA) and jasmonic acid (JA) to effectively defend them from pathogens. During biotrophic pathogen attack, SA pathway activates and suppresses the JA pathway via NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1). However, upon necrotrophic pathogen attack, how JA-mediated defense response suppresses the SA pathway, is still not well-understood. Recently StARF10 (AUXIN RESPONSE FACTOR), a miR160 target, has been shown to regulate SA and binds to the promoter of StGH3.6 (GRETCHEN HAGEN3), a gene proposed to maintain the balance between the free SA and auxin in plants. In the current study, we investigated the role of StARF16 (a miR160 target) in the regulation of the defense gene StNPR1 in potato upon activation of the JA pathway. We observed that a negative correlation exists between StNPR1 and StARF16 upon infection with the pathogen. The results were further confirmed through the exogenous application of SA and JA. Using yeast one-hybrid assay, we demonstrated that StARF16 binds to the StNPR1 promoter through putative ARF binding sites. Additionally, through protoplast transfection and chromatin immunoprecipitation experiments, we showed that StARF16 could bind to the StNPR1 promoter and regulate its expression. Co-transfection assays using promoter deletion constructs established that ARF binding sites are present in the 2.6 kb sequence upstream to the StNPR1 gene and play a key role in its regulation during infection. In summary, we demonstrate the importance of StARF16 in the regulation of StNPR1, and thus SA pathway, during JA-mediated defense response upon necrotrophic pathogen interaction.
Collapse
Affiliation(s)
- Harpreet Singh Kalsi
- Biology Division, Molecular Plant Biology Lab, Indian Institute of Science Education and Research (IISER Pune), Pune, 411008, Maharashtra, India
| | - Anindita A Karkhanis
- Biology Division, Molecular Plant Biology Lab, Indian Institute of Science Education and Research (IISER Pune), Pune, 411008, Maharashtra, India
| | - Bhavani Natarajan
- Biology Division, Molecular Plant Biology Lab, Indian Institute of Science Education and Research (IISER Pune), Pune, 411008, Maharashtra, India
- Department of Crop Genetics, John Innes Centre, Norwich, UK
| | - Amey J Bhide
- Biology Division, Molecular Plant Biology Lab, Indian Institute of Science Education and Research (IISER Pune), Pune, 411008, Maharashtra, India
| | - Anjan K Banerjee
- Biology Division, Molecular Plant Biology Lab, Indian Institute of Science Education and Research (IISER Pune), Pune, 411008, Maharashtra, India.
| |
Collapse
|
140
|
Wan S, Xin XF. Regulation and integration of plant jasmonate signaling: a comparative view of monocot and dicot. J Genet Genomics 2022; 49:704-714. [PMID: 35452856 DOI: 10.1016/j.jgg.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
The phytohormone jasmonate plays a pivotal role in various aspects of plant life, including developmental programs and defense against pests and pathogens. A large body of knowledge on jasmonate biosynthesis, signal transduction as well as its functions in diverse plant processes has been gained in the past two decades. In addition, there exists extensive crosstalk between jasmonate pathway and other phytohormone pathways, such as salicylic acid (SA) and gibberellin (GA), in co-regulation of plant immune status, fine-tuning the balance of plant growth and defense, and so on, which were mostly learned from studies in the dicotyledonous model plants Arabidopsis thaliana and tomato but much less in monocot. Interestingly, existing evidence suggests both conservation and functional divergence in terms of core components of jasmonate pathway, its biological functions and signal integration with other phytohormones, between monocot and dicot. In this review, we summarize the current understanding on JA signal initiation, perception and regulation, and highlight the distinctive characteristics in different lineages of plants.
Collapse
Affiliation(s)
- Shiwei Wan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
141
|
Chen C, Liu F, Zhang K, Niu X, Zhao H, Liu Q, Georgiev MI, Xu X, Zhang X, Zhou M. MeJA-responsive bHLH transcription factor LjbHLH7 regulates cyanogenic glucoside biosynthesis in Lotus japonicus. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2650-2665. [PMID: 35083483 DOI: 10.1093/jxb/erac026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/25/2022] [Indexed: 05/27/2023]
Abstract
Cyanogenic glucosides (CNglcs) play an important role in plant defense response; however, the mechanism of regulation of CNglc synthesis by the external environment and endogenous hormones is largely unclear. In this study, we found that jasmonates (JAs) promoted the synthesis of CNglcs by activating the expression of CNglc biosynthesis genes in Lotus japonicus. Several differentially expressed basic helix-loop-helix (bHLH) family genes related to the synthesis of CNglcs were identified by RNA-seq. LjbHLH7 can directly activate the expression of CYP79D3 gene, the first step of CNglc synthesis, by binding to the G-box sequence of its promoter. Transgenic plants overexpressing LjbHLH7 exhibited higher relative CNglc content and enhanced insect resistance compared with the wild type. Furthermore, the transcriptional activity of LjbHLH7 was suppressed by the interaction with the L. japonicus JASMONATE-ZIM DOMAIN protein LjJAZ4. Based on these results, we propose that LjbHLH7 acts as an activator and LjJAZ4 acts as a repressor of JA-induced regulation of CNglc biosynthesis in L. japonicus.
Collapse
Affiliation(s)
- Cheng Chen
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fu Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaolei Niu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Hui Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiuxu Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Milen I Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Xiaoheng Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
142
|
Vincent SA, Kim JM, Pérez-Salamó I, To TK, Torii C, Ishida J, Tanaka M, Endo TA, Bhat P, Devlin PF, Seki M, Devoto A. Jasmonates and Histone deacetylase 6 activate Arabidopsis genome-wide histone acetylation and methylation during the early acute stress response. BMC Biol 2022; 20:83. [PMID: 35399062 PMCID: PMC8996529 DOI: 10.1186/s12915-022-01273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Jasmonates (JAs) mediate trade-off between responses to both biotic and abiotic stress and growth in plants. The Arabidopsis thaliana HISTONE DEACETYLASE 6 is part of the CORONATINE INSENSITIVE1 receptor complex, co-repressing the HDA6/COI1-dependent acetic acid-JA pathway that confers plant drought tolerance. The decrease in HDA6 binding to target DNA mirrors histone H4 acetylation (H4Ac) changes during JA-mediated drought response, and mutations in HDA6 also cause depletion in the constitutive repressive marker H3 lysine 27 trimethylation (H3K27me3). However, the genome-wide effect of HDA6 on H4Ac and much of the impact of JAs on histone modifications and chromatin remodelling remain elusive. RESULTS We performed high-throughput ChIP-Seq on the HDA6 mutant, axe1-5, and wild-type plants with or without methyl jasmonate (MeJA) treatment to assess changes in active H4ac and repressive H3K27me3 histone markers. Transcriptional regulation was investigated in parallel by microarray analysis in the same conditions. MeJA- and HDA6-dependent histone modifications on genes for specialized metabolism; linolenic acid and phenylpropanoid pathways; and abiotic and biotic stress responses were identified. H4ac and H3K27me3 enrichment also differentially affects JAs and HDA6-mediated genome integrity and gene regulatory networks, substantiating the role of HDA6 interacting with specific families of transposable elements in planta and highlighting further specificity of action as well as novel targets of HDA6 in the context of JA signalling for abiotic and biotic stress responses. CONCLUSIONS The findings demonstrate functional overlap for MeJA and HDA6 in tuning plant developmental plasticity and response to stress at the histone modification level. MeJA and HDA6, nonetheless, maintain distinct activities on histone modifications to modulate genetic variability and to allow adaptation to environmental challenges.
Collapse
Affiliation(s)
- Stacey A Vincent
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Jong-Myong Kim
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Present address: Ac-Planta Inc., 2-16-9 Yushima, Bunkyo-ku, Tokyo, 113-0034, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Imma Pérez-Salamó
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Taiko Kim To
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Present address: Department of Biological Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Chieko Torii
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Junko Ishida
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Maho Tanaka
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takaho A Endo
- Bioinformatics and Systems Engineering Division, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Present address: Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Prajwal Bhat
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Paul F Devlin
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Motoaki Seki
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
- Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
143
|
Li C, Xu M, Cai X, Han Z, Si J, Chen D. Jasmonate Signaling Pathway Modulates Plant Defense, Growth, and Their Trade-Offs. Int J Mol Sci 2022; 23:ijms23073945. [PMID: 35409303 PMCID: PMC8999811 DOI: 10.3390/ijms23073945] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Lipid-derived jasmonates (JAs) play a crucial role in a variety of plant development and defense mechanisms. In recent years, significant progress has been made toward understanding the JA signaling pathway. In this review, we discuss JA biosynthesis, as well as its core signaling pathway, termination mechanisms, and the evolutionary origin of JA signaling. JA regulates not only plant regeneration, reproductive growth, and vegetative growth but also the responses of plants to stresses, including pathogen as well as virus infection, herbivore attack, and abiotic stresses. We also focus on the JA signaling pathway, considering its crosstalk with the gibberellin (GA), auxin, and phytochrome signaling pathways for mediation of the trade-offs between growth and defense. In summary, JA signals regulate multiple outputs of plant defense and growth and act to balance growth and defense in order to adapt to complex environments.
Collapse
Affiliation(s)
- Cong Li
- Correspondence: (C.L.); (D.C.)
| | | | | | | | | | | |
Collapse
|
144
|
Zhu J, Yan X, Liu S, Xia X, An Y, Xu Q, Zhao S, Liu L, Guo R, Zhang Z, Xie DY, Wei C. Alternative splicing of CsJAZ1 negatively regulates flavan-3-ol biosynthesis in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:243-261. [PMID: 35043493 DOI: 10.1111/tpj.15670] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/19/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Flavan-3-ols are abundant in the tea plant (Camellia sinensis) and confer tea with flavor and health benefits. We recently found that alternative splicing of genes is likely involved in the regulation of flavan-3-ol biosynthesis; however, the underlying regulatory mechanisms remain unknown. Here, we integrated metabolomics and transcriptomics to construct metabolite-gene networks in tea leaves, collected over five different months and from five spatial positions, and found positive correlations between endogenous jasmonic acid (JA), flavan-3-ols, and numerous transcripts. Transcriptome mining further identified CsJAZ1, which is negatively associated with flavan-3-ols formation and has three CsJAZ1 transcripts, one full-length (CsJAZ1-1), and two splice variants (CsJAZ1-2 and -3) that lacked 3' coding sequences, with CsJAZ1-3 also lacking the coding region for the Jas domain. Confocal microscopy showed that CsJAZ1-1 was localized to the nucleus, while CsJAZ1-2 and CsJAZ1-3 were present in both the nucleus and the cytosol. In the absence of JA, CsJAZ1-1 was bound to CsMYC2, a positive regulator of flavan-3-ol biosynthesis; CsJAZ1-2 functioned as an alternative enhancer of CsJAZ1-1 and an antagonist of CsJAZ1-1 in binding to CsMYC2; and CsJAZ1-3 did not interact with CsMYC2. In the presence of JA, CsJAZ1-3 interacted with CsJAZ1-1 and CsJAZ1-2 to form heterodimers that stabilized the CsJAZ1-1-CsMYC2 and CsJAZ1-2-CsMYC2 complexes, thereby repressing the transcription of four genes that act late in the flavan-3-ol biosynthetic pathway. These data indicate that the alternative splicing variants of CsJAZ1 coordinately regulate flavan-3-ol biosynthesis in the tea plant and improve our understanding of JA-mediated flavan-3-ol biosynthesis.
Collapse
Affiliation(s)
- Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Xiaomei Yan
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Xiaobo Xia
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Yanlin An
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Qingshan Xu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Shiqi Zhao
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Lu Liu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Rui Guo
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei, 230036, Anhui, People's Republic of China
| |
Collapse
|
145
|
Lee HM, Park JS, Kim SJ, Kim SG, Park YD. Using Transcriptome Analysis to Explore Gray Mold Resistance-Related Genes in Onion (Allium cepa L.). Genes (Basel) 2022; 13:genes13030542. [PMID: 35328095 PMCID: PMC8955018 DOI: 10.3390/genes13030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022] Open
Abstract
Gray mold disease caused by Botrytis in onions (Allium cepa L.) during growth and storage negatively affects their yield and quality. Exploring the genes related to gray mold resistance in onion and their application to the breeding of resistant onion lines will support effective and ecological control methods of the disease. Here, the genetic relationship of 54 onion lines based on random amplified polymorphic DNA (RAPD) and in vitro-cultured onion lines infected with gray mold were used for screening resistance and susceptibility traits. Two genetically related onion lines were selected, one with a resistant and one with a susceptible phenotype. In vitro gray mold infection was repeated with these two lines, and leaf samples were collected for gene expression studies in time series. Transcript sequences obtained by RNA sequencing were subjected to DEG analysis, variant analysis, and KEGG mapping. Among the KEGG pathways, ‘α-linoleic acid metabolism’ was selected because the comparison of the time series expression pattern of Jasmonate resistant 1 (JAR1), Coronatine-insensitive protein 1 (COI 1), and transcription factor MYC2 (MYC2) genes between the resistant and susceptible lines revealed its significant relationship with gray-mold-resistant phenotypes. Expression pattern and SNP of the selected genes were verified by quantitative real-time PCR and high-resolution melting (HRM) analysis, respectively. The results of this study will be useful for the development of molecular marker and finally breeding of gray-mold-resistant onions.
Collapse
|
146
|
Xu X, Chen Y, Li B, Zhang Z, Qin G, Chen T, Tian S. Molecular mechanisms underlying multi-level defense responses of horticultural crops to fungal pathogens. HORTICULTURE RESEARCH 2022; 9:uhac066. [PMID: 35591926 PMCID: PMC9113409 DOI: 10.1093/hr/uhac066] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/07/2022] [Indexed: 05/21/2023]
Abstract
The horticultural industry helps to enrich and improve the human diet while contributing to growth of the agricultural economy. However, fungal diseases of horticultural crops frequently occur during pre- and postharvest periods, reducing yields and crop quality and causing huge economic losses and wasted food. Outcomes of fungal diseases depend on both horticultural plant defense responses and fungal pathogenicity. Plant defense responses are highly sophisticated and are generally divided into preformed and induced defense responses. Preformed defense responses include both physical barriers and phytochemicals, which are the first line of protection. Induced defense responses, which include innate immunity (pattern-triggered immunity and effector-triggered immunity), local defense responses, and systemic defense signaling, are triggered to counterstrike fungal pathogens. Therefore, to develop regulatory strategies for horticultural plant resistance, a comprehensive understanding of defense responses and their underlying mechanisms is critical. Recently, integrated multi-omics analyses, CRISPR-Cas9-based gene editing, high-throughput sequencing, and data mining have greatly contributed to identification and functional determination of novel phytochemicals, regulatory factors, and signaling molecules and their signaling pathways in plant resistance. In this review, research progress on defense responses of horticultural crops to fungal pathogens and novel regulatory strategies to regulate induction of plant resistance are summarized, and then the problems, challenges, and future research directions are examined.
Collapse
Affiliation(s)
- Xiaodi Xu
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
147
|
CabZIP23 Integrates in CabZIP63-CaWRKY40 Cascade and Turns CabZIP63 on Mounting Pepper Immunity against Ralstonia solanacearum via Physical Interaction. Int J Mol Sci 2022; 23:ijms23052656. [PMID: 35269798 PMCID: PMC8910381 DOI: 10.3390/ijms23052656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 01/25/2023] Open
Abstract
CabZIP63 and CaWRKY40 were previously found to be shared in the pepper defense response to high temperature stress (HTS) and to Ralstonia solanacearum inoculation (RSI), forming a transcriptional cascade. However, how they activate the two distinct defense responses is not fully understood. Herein, using a revised genetic approach, we functionally characterized CabZIP23 in the CabZIP63-CaWRKY40 cascade and its context specific pepper immunity activation against RSI by interaction with CabZIP63. CabZIP23 was originally found by immunoprecipitation-mass spectrometry to be an interacting protein of CabZIP63-GFP; it was upregulated by RSI and acted positively in pepper immunity against RSI by virus induced gene silencing in pepper plants, and transient overexpression in Nicotiana benthamiana plants. By chromatin immunoprecipitation (ChIP)-qPCR and electrophoresis mobility shift assay (EMSA), CabZIP23 was found to be directly regulated by CaWRKY40, and CabZIP63 was directly regulated by CabZIP23, forming a positive feedback loop. CabZIP23-CabZIP63 interaction was confirmed by co-immunoprecipitation (CoIP) and bimolecular fluorescent complimentary (BiFC) assays, which promoted CabZIP63 binding immunity related target genes, including CaPR1, CaNPR1 and CaWRKY40, thereby enhancing pepper immunity against RSI, but not affecting the expression of thermotolerance related CaHSP24. All these data appear to show that CabZIP23 integrates in the CabZIP63-CaWRKY40 cascade and the context specifically turns it on mounting pepper immunity against RSI.
Collapse
|
148
|
Wang L, Liu H, Yin Z, Li Y, Lu C, Wang Q, Ding X. A Novel Guanine Elicitor Stimulates Immunity in Arabidopsis and Rice by Ethylene and Jasmonic Acid Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:841228. [PMID: 35251109 PMCID: PMC8893958 DOI: 10.3389/fpls.2022.841228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 06/01/2023]
Abstract
Rice sheath blight (ShB) caused by Rhizoctonia solani is one of the most destructive diseases in rice. Fungicides are widely used to control ShB in agriculture. However, decades of excessive traditional fungicide use have led to environmental pollution and increased pathogen resistance. Generally, plant elicitors are regarded as environmentally friendly biological pesticides that enhance plant disease resistance by triggering plant immunity. Previously, we identified that the plant immune inducer ZhiNengCong (ZNC), a crude extract of the endophyte, has high activity and a strong ability to protect plants against pathogens. Here, we further found that guanine, which had a significant effect on inducing plant resistance to pathogens, might be an active component of ZNC. In our study, guanine activated bursts of reactive oxygen species, callose deposition and mitogen-activated protein kinase phosphorylation. Moreover, guanine-induced plant resistance to pathogens depends on ethylene and jasmonic acid but is independent of the salicylic acid signaling pathway. Most importantly, guanine functions as a new plant elicitor with broad-spectrum resistance to activate plant immunity, providing an efficient and environmentally friendly biological elicitor for bacterial and fungal disease biocontrol.
Collapse
Affiliation(s)
- Lulu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Haoqi Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Qingbin Wang
- Shandong Pengbo Biotechnology Co., Ltd., Tai’an, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
149
|
Zhang W, Xu W, Li S, Zhang H, Liu X, Cui X, Song L, Zhu Y, Chen X, Chen H. GmAOC4 modulates seed germination by regulating JA biosynthesis in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:439-447. [PMID: 34674010 DOI: 10.1007/s00122-021-03974-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE An allene oxide cyclase 4, GmAOC4, was determined by GWAS and RT-PCR to be significantly associated with seed germination in soybean, and regulates seed germination by promoting more JA accumulation. The seed germination phase is a critical component of the plant lifecycle, and a better understanding of the mechanism behind seed germination in soybeans is needed. We used a genome-wide association study (GWAS) to detect a GWAS signal on chromosome 18. In this GWAS signal, SNP S18_56189166 was located within the 3'untranslated region of Glyma.18G280900, which encodes allene oxide cyclase 4 (named GmAOC4). Analysis of real-time PCR demonstrated that expression levels of GmAOC4 in the low-germination variety (KF, carrying SNP S18_56189166-T) were higher than in the high-germination variety (NN, carrying SNP S18_56189166-C). In these two varieties, KF showed a higher JA concentration than NN at 0 and 24 h after imbibition. Moreover, the overexpression of GmAOC4 led to an increase in the concentration of jasmonic acid (JA) in soybean hairy roots and Arabidopsis thaliana. Furthermore, it was found that GmAOC4-OE lines showed less seed germination than the wild type (WT) under normal conditions in Arabidopsis. After 7 days of ABA treatment, transgenic lines exhibited lower seed germination and higher expression levels of AtABI5 compared with WT, indicating that the overexpression of GmAOC4 resulted in hypersensitivity to ABA. Our findings demonstrate that GmAOC4, which promotes more JA accumulation, helps to regulate seed germination in soybeans.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wenjing Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Songsong Li
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongmei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiaoqing Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiaoyan Cui
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Li Song
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yuelin Zhu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
150
|
Yang S, Cai W, Shen L, Cao J, Liu C, Hu J, Guan D, He S. A CaCDPK29-CaWRKY27b module promotes CaWRKY40-mediated thermotolerance and immunity to Ralstonia solanacearum in pepper. THE NEW PHYTOLOGIST 2022; 233:1843-1863. [PMID: 34854082 DOI: 10.1111/nph.17891] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
CaWRKY40 in pepper (Capsicum annuum) promotes immune responses to Ralstonia solanacearum infection (RSI) and to high-temperature, high-humidity (HTHH) stress, but how it interacts with upstream signalling components remains poorly understood. Here, using approaches of reverse genetics, biochemical and molecular biology we functionally characterised the relationships among the WRKYGMK-containing WRKY protein CaWRKY27b, the calcium-dependent protein kinase CaCDPK29, and CaWRKY40 during pepper response to RSI or HTHH. Our data indicate that CaWRKY27b is upregulated and translocated from the cytoplasm to the nucleus upon phosphorylation of Ser137 in the nuclear localisation signal by CaCDPK29. Using electrophoretic mobility shift assays and microscale thermophoresis, we observed that, due to the replacement of Q by M in the conserved WRKYGQK, CaWRKY27b in the nucleus failed to bind to W-boxes in the promoters of immunity- and thermotolerance-related marker genes. Instead, CaWRKY27b interacted with CaWRKY40 and promoted its binding and positive regulation of the tested marker genes including CaNPR1, CaDEF1 and CaHSP24. Notably, mutation of the WRKYGMK motif in CaWRKY27b to WRKYGQK restored the W-box binding ability. Our data therefore suggest that CaWRKY27b is phosphorylated by CaCDPK29 and acts as a transcriptional activator of CaWRKY40 during the pepper response to RSI and HTHH.
Collapse
Affiliation(s)
- Sheng Yang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Weiwei Cai
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lei Shen
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jianshen Cao
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Cailing Liu
- Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350002, China
| | - Jiong Hu
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Deyi Guan
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Shuilin He
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| |
Collapse
|