101
|
Zhu Y, Li L. Multi-layered Regulation of Plant Cell Wall Thickening. PLANT & CELL PHYSIOLOGY 2021; 62:1867-1873. [PMID: 34698856 DOI: 10.1093/pcp/pcab152] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Plants need to develop thickened cell walls with appropriate localization through precise regulation during the process of growth and development in order to support their body weight and to build long distance transportation systems. Wall thickening is achieved through a multitude of regulatory networks in various tissues under changeable environments. In this mini-review, we summarize current understanding of the regulatory pathways and mechanisms involved in cell wall thickening. Regulation of cell wall thickening is not only mechanistically essential to understand the plant structure accretion but also has applicable significance to plant cell wall biomass utilization.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
102
|
Kamon E, Ohtani M. Xylem vessel cell differentiation: A best model for new integrative cell biology? CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102135. [PMID: 34768235 DOI: 10.1016/j.pbi.2021.102135] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 05/22/2023]
Abstract
Xylem vessels transport water and essential low-molecular-weight compounds throughout vascular plants. To achieve maximum performance as conductive tissues, xylem vessel cells undergo secondary cell wall deposition and programmed cell death to produce a hollow tube-like structure with a rigid outer shell. This unique process has been explored in detail from a cell biology and molecular biology perspective, culminating in the identification of the master transcriptional switches of xylem vessel cell differentiation, the VASCULAR-RELATED NAC-DOMAIN (VND) proteins. High-resolution analyses of xylem vessel cell differentiation have since accelerated and are now moving toward single cell-level dissection from a variety of directions. In this review, we introduce the current model of xylem vessel cell differentiation and discuss possible future directions in this field.
Collapse
Affiliation(s)
- Eri Kamon
- Department of Integrated Sciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Misato Ohtani
- Department of Integrated Sciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| |
Collapse
|
103
|
Huang J, Chen F, Guo Y, Gan X, Yang M, Zeng W, Persson S, Li J, Xu W. GhMYB7 promotes secondary wall cellulose deposition in cotton fibres by regulating GhCesA gene expression through three distinct cis-elements. THE NEW PHYTOLOGIST 2021; 232:1718-1737. [PMID: 34245570 DOI: 10.1111/nph.17612] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Cotton fibre is the most important source for natural textiles. The secondary cell walls (SCWs) of mature cotton fibres contain the highest proportion of cellulose content (> 90%) in any plant. The onset and progression of SCW cellulose synthesis need to be tightly controlled to balance fibre elongation and cell wall deposition. However, regulatory mechanisms that control cellulose synthesis during cotton fibre growth remain elusive. Here, we conducted genetic and functional analyses demonstrating that the R2R3-MYB GhMYB7 controls cotton fibre cellulose synthesis. Overexpression of GhMYB7 in cotton sped up SCW cellulose biosynthesis in fibre cells, and led to shorter fibres with thicker walls. By contrast, RNA interference (RNAi) silencing of GhMYB7 delayed fibre SCW cellulose synthesis and resulted in elongated fibres with thinner walls. Furthermore, we demonstrated that GhMYB7 regulated cotton fibre SCW cellulose synthases by directly binding to three distinct cis-elements in the respective GhCesA4, GhCesA7 and GhCesA8 promoters. We found that this regulatory mechanism of cellulose synthesis was 'hi-jacked' also by other GhMYBs. Together, our findings uncover a hitherto-unknown mechanism that cotton fibre employs to regulate SCW cellulose synthesis. Our results also provide a strategy for genetic improvement of SCW thickness of cotton fibre.
Collapse
Affiliation(s)
- Junfeng Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Feng Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yanjun Guo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xinli Gan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Mingming Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wei Zeng
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Staffan Persson
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg C, 1871, Denmark
| | - Juan Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wenliang Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
104
|
Domozych DS, Kozel L, Palacio-Lopez K. The effects of osmotic stress on the cell wall-plasma membrane domains of the unicellular streptophyte, Penium margaritaceum. PROTOPLASMA 2021; 258:1231-1249. [PMID: 33928433 DOI: 10.1007/s00709-021-01644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Penium margaritaceum is a unicellular zygnematophyte (basal Streptophyteor Charophyte) that has been used as a model organism for the study of cell walls of Streptophytes and for elucidating organismal adaptations that were key in the evolution of land plants.. When Penium is incubated in sorbitol-enhance medium, i.e., hyperosmotic medium, 1000-1500 Hechtian strands form within minutes and connect the plasma membrane to the cell wall. As cells acclimate to this osmotic stress over time, further significant changes occur at the cell wall and plasma membrane domains. The homogalacturonan lattice of the outer cell wall layer is significantly reduced and is accompanied by the formation of a highly elongate, "filamentous" phenotype. Distinct peripheral thickenings appear between the CW and plasma membrane and contain membranous components and a branched granular matrix. Monoclonal antibody labeling of these thickenings indicates the presence of rhamnogalacturonan-I epitopes. Acclimatization also results in the proliferation of the cell's vacuolar networks and macroautophagy. Penium's ability to acclimatize to osmotic stress offers insight into the transition of ancient zygnematophytes from an aquatic to terrestrial existence.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY, 12866, USA.
| | - Li Kozel
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY, 12866, USA
| | - Kattia Palacio-Lopez
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
105
|
Karas BJ, Ross L, Novero M, Amyot L, Shrestha A, Inada S, Nakano M, Sakai T, Bonetta D, Sato S, Murray JD, Bonfante P, Szczyglowski K. Intragenic complementation at the Lotus japonicus CELLULOSE SYNTHASE-LIKE D1 locus rescues root hair defects. PLANT PHYSIOLOGY 2021; 186:2037-2050. [PMID: 34618101 PMCID: PMC8331140 DOI: 10.1093/plphys/kiab204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 06/13/2023]
Abstract
Root hair cells form the primary interface of plants with the soil environment, playing key roles in nutrient uptake and plant defense. In legumes, they are typically the first cells to become infected by nitrogen-fixing soil bacteria during root nodule symbiosis. Here, we report a role for the CELLULOSE SYNTHASE-LIKE D1 (CSLD1) gene in root hair development in the legume species Lotus japonicus. CSLD1 belongs to the cellulose synthase protein family that includes cellulose synthases and cellulose synthase-like proteins, the latter thought to be involved in the biosynthesis of hemicellulose. We describe 11 Ljcsld1 mutant alleles that impose either short (Ljcsld1-1) or variable (Ljcsld1-2 to 11) root hair length phenotypes. Examination of Ljcsld1-1 and one variable-length root hair mutant, Ljcsld1-6, revealed increased root hair cell wall thickness, which in Ljcsld1-1 was significantly more pronounced and also associated with a strong defect in root nodule symbiosis. Lotus japonicus plants heterozygous for Ljcsld1-1 exhibited intermediate root hair lengths, suggesting incomplete dominance. Intragenic complementation was observed between alleles with mutations in different CSLD1 domains, suggesting CSLD1 function is modular and that the protein may operate as a homodimer or multimer during root hair development.
Collapse
Affiliation(s)
- Bogumil J Karas
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada, N5V 4T3
| | - Loretta Ross
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada, N5V 4T3
| | - Mara Novero
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Lisa Amyot
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada, N5V 4T3
| | - Arina Shrestha
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Sayaka Inada
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Michiharu Nakano
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-nino-cho, Nishiku, Niigata 950-2181, Japan
| | - Dario Bonetta
- Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
| | - Sushei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Jeremy D Murray
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada, N5V 4T3
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada, N5V 4T3
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 Canada
| |
Collapse
|
106
|
Zhang X, Xue Y, Guan Z, Zhou C, Nie Y, Men S, Wang Q, Shen C, Zhang D, Jin S, Tu L, Yin P, Zhang X. Structural insights into homotrimeric assembly of cellulose synthase CesA7 from Gossypium hirsutum. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1579-1587. [PMID: 33638282 PMCID: PMC8384604 DOI: 10.1111/pbi.13571] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 05/06/2023]
Abstract
Cellulose is one of the most abundant organic polymers in nature. It contains multiple β-1,4-glucan chains synthesized by cellulose synthases (CesAs) on the plasma membrane of higher plants. CesA subunits assemble into a pseudo-sixfold symmetric cellulose synthase complex (CSC), known as a 'rosette complex'. The structure of CesA remains enigmatic. Here, we report the cryo-EM structure of the homotrimeric CesA7 from Gossypium hirsutum at 3.5-angstrom resolution. The GhCesA7 homotrimer shows a C3 symmetrical assembly. Each protomer contains seven transmembrane helices (TMs) which form a channel potentially facilitating the release of newly synthesized glucans. The cytoplasmic glycosyltransferase domain (GT domain) of GhCesA7 protrudes from the membrane, and its catalytic pocket is directed towards the TM pore. The homotrimer GhCesA7 is stabilized by the transmembrane helix 7 (TM7) and the plant-conserved region (PCR) domains. It represents the building block of CSCs and facilitates microfibril formation. This structure provides insight into how eukaryotic cellulose synthase assembles and provides a mechanistic basis for the improvement of cotton fibre quality in the future.
Collapse
Affiliation(s)
- Xiangnan Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Yuan Xue
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Chen Zhou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Yangfan Nie
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - She Men
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Qiang Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Cuicui Shen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
107
|
TRANVIA (TVA) facilitates cellulose synthase trafficking and delivery to the plasma membrane. Proc Natl Acad Sci U S A 2021; 118:2021790118. [PMID: 34290139 DOI: 10.1073/pnas.2021790118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cellulose is synthesized at the plasma membrane by cellulose synthase (CESA) complexes (CSCs), which are assembled in the Golgi and secreted to the plasma membrane through the trans-Golgi network (TGN) compartment. However, the molecular mechanisms that guide CSCs through the secretory system and deliver them to the plasma membrane are poorly understood. Here, we identified an uncharacterized gene, TRANVIA (TVA), that is transcriptionally coregulated with the CESA genes required for primary cell wall synthesis. The tva mutant exhibits enhanced sensitivity to cellulose synthesis inhibitors; reduced cellulose content; and defective dynamics, density, and secretion of CSCs to the plasma membrane as compared to wild type. TVA is a plant-specific protein of unknown function that is detected in at least two different intracellular compartments: organelles labeled by markers for the TGN and smaller compartments that deliver CSCs to the plasma membrane. Together, our data suggest that TVA promotes trafficking of CSCs to the plasma membrane by facilitating exit from the TGN and/or interaction of CSC secretory vesicles with the plasma membrane.
Collapse
|
108
|
Bednarek PT, Pachota KA, Dynkowska WM, Machczyńska J, Orłowska R. Understanding In Vitro Tissue Culture-Induced Variation Phenomenon in Microspore System. Int J Mol Sci 2021; 22:7546. [PMID: 34299165 PMCID: PMC8304781 DOI: 10.3390/ijms22147546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
In vitro tissue culture plant regeneration is a complicated process that requires stressful conditions affecting the cell functioning at multiple levels, including signaling pathways, transcriptome functioning, the interaction between cellular organelles (retro-, anterograde), compounds methylation, biochemical cycles, and DNA mutations. Unfortunately, the network linking all these aspects is not well understood, and the available knowledge is not systemized. Moreover, some aspects of the phenomenon are poorly studied. The present review attempts to present a broad range of aspects involved in the tissue culture-induced variation and hopefully would stimulate further investigations allowing a better understanding of the phenomenon and the cell functioning.
Collapse
Affiliation(s)
- Piotr Tomasz Bednarek
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland; (K.A.P.); (W.M.D.); (J.M.); (R.O.)
| | | | | | | | | |
Collapse
|
109
|
Kim MH, Tran TNA, Cho JS, Park EJ, Lee H, Kim DG, Hwang S, Ko JH. Wood transcriptome analysis of Pinus densiflora identifies genes critical for secondary cell wall formation and NAC transcription factors involved in tracheid formation. TREE PHYSIOLOGY 2021; 41:1289-1305. [PMID: 33440425 DOI: 10.1093/treephys/tpab001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 05/27/2023]
Abstract
Although conifers have significant ecological and economic value, information on transcriptional regulation of wood formation in conifers is still limited. Here, to gain insight into secondary cell wall (SCW) biosynthesis and tracheid formation in conifers, we performed wood tissue-specific transcriptome analyses of Pinus densiflora (Korean red pine) using RNA sequencing. In addition, to obtain full-length transcriptome information, PacBio single molecule real-time iso-sequencing was carried out using RNAs from 28 tissues of P. densiflora. Subsequent comparative tissue-specific transcriptome analysis successfully pinpointed critical genes encoding key proteins involved in biosynthesis of the major secondary wall components (cellulose, galactoglucomannan, xylan and lignin). Furthermore, we predicted a total of 62 NAC (NAM, ATAF1/2 and CUC2) family transcription factor members and identified seven PdeNAC genes preferentially expressed in developing xylem tissues in P. densiflora. Protoplast-based transcriptional activation analysis found that four PdeNAC genes, homologous to VND, NST and SND/ANAC075, upregulated GUS activity driven by an SCW-specific cellulose synthase promoter. Consistently, transient overexpression of the four PdeNACs induced xylem vessel cell-like SCW deposition in both tobacco (Nicotiana benthamiana) and Arabidopsis leaves. Taken together, our data provide a foundation for further research to unravel transcriptional regulation of wood formation in conifers, especially SCW formation and tracheid differentiation.
Collapse
Affiliation(s)
- Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Thi Ngoc Anh Tran
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Jin-Seong Cho
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Eung-Jun Park
- Division of Forest Biotechnology, National Institute of Forest Science, 39 Onjeong-ro, Suwon 16631, Republic of Korea
| | - Hyoshin Lee
- Division of Forest Biotechnology, National Institute of Forest Science, 39 Onjeong-ro, Suwon 16631, Republic of Korea
| | - Dong-Gwan Kim
- Department of Bioindustry and Bioresource Engineering, Department of Molecular Biology and Plant Engineering Research Institute, Sejong University, 209 Neungdong-ro, Seoul 05006, Republic of Korea
| | - Seongbin Hwang
- Department of Bioindustry and Bioresource Engineering, Department of Molecular Biology and Plant Engineering Research Institute, Sejong University, 209 Neungdong-ro, Seoul 05006, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| |
Collapse
|
110
|
Su J, Zhang C, Zhu L, Yang N, Yang J, Ma B, Ma F, Li M. MdFRK2-mediated sugar metabolism accelerates cellulose accumulation in apple and poplar. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:137. [PMID: 34130710 PMCID: PMC8204578 DOI: 10.1186/s13068-021-01989-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cellulose is not only a common component in vascular plants, but also has great economic benefits for paper, wood, and industrial products. In addition, its biosynthesis is highly regulated by carbohydrate metabolism and allocation in plant. MdFRK2, which encodes a key fructokinase (FRK) in apple, showed especially high affinity to fructose and regulated carbohydrate metabolism. RESULTS It was observed that overexpression of MdFRK2 in apple decreased sucrose (Suc) and fructose (Fru) with augmented FRK activity in stems, and caused the alterations of many phenotypic traits that include increased cellulose content and an increase in thickness of the phloem region. To further investigate the involved mechanisms, we generated FRK2-OE poplar lines OE#1, OE#4 and OE#9 and discovered (1) that overexpression of MdFRK2 resulted in the huge increased cellulose level by shifting the fructose 6-phosphate or glucose 6-phsophate towards UDPG formation, (2) a direct metabolic pathway for the biosynthesis of cellulose is that increased cleavage of Suc into UDP-glucose (UDPG) for cellulose synthesis via the increased sucrose synthase (SUSY) activity and transcript levels of PtrSUSY1, (3) that the increased FRK activity increases the sink strength overall so there is more carbohydrate available to fuel increased cambial activity and that resulted in more secondary phloem. These results demonstrated that MdFRK2 overexpression would significantly changes the photosynthetic carbon flux from sucrose and hexose to UDPG for increased cellulose synthesis. CONCLUSIONS The present data indicated that MdFRK2 overexpression in apple and poplar changes the photosynthetic carbon flux from sucrose and hexose to UDPG for stem cellulose synthesis. A strategy is proposed to increase cellulose production by regulating sugar metabolism as a whole.
Collapse
Affiliation(s)
- Jing Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chunxia Zhang
- College of Forestry, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Lingcheng Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Nanxiang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Jingjing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
111
|
Huang L, Li X, Zhang C. Endosidin20-1 is more potent than endosidin20 in inhibiting plant cellulose biosynthesis and molecular docking analysis of cellulose biosynthesis inhibitors on modeled cellulose synthase structure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1605-1624. [PMID: 33793980 DOI: 10.1111/tpj.15258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Endosidin20 (ES20) is a recently identified cellulose biosynthesis inhibitor (CBI) that targets the catalytic site of plant cellulose synthase (CESA). Here, we screened over 600 ES20 analogs and identified nine active analogs named ES20-1 to ES20-9. Among these, endosidin20-1 (ES20-1) had stronger inhibitory effects on plant growth and cellulose biosynthesis than ES20. At the biochemical level, we demonstrated that ES20-1, like ES20, directly interacts with CESA6. At the cellular level, this molecule, like ES20, induced the accumulation of cellulose synthase complexes at the Golgi apparatus and inhibited their secretion to the plasma membrane. Like ES20, ES20-1 likely targets the catalytic site of CESA. However, through molecular docking analysis using a modeled structure of full-length CESA6, we found that both ES20 and ES20-1 might have another target site at the transmembrane regions of CESA6. Besides ES20, other CBIs such as isoxaben, C17, and flupoxam are widely used tools to dissect the mechanism of cellulose biosynthesis and are also valuable resources for the development of herbicides. Here, based on mutant genetic analysis and molecular docking analysis, we have identified the potential target sites of these CBIs on a modeled CESA structure. Some bacteria also produce cellulose, and both ES20 and ES20-1 inhibited bacterial cellulose biosynthesis. Therefore, we conclude that ES20-1 is a more potent analog of ES20 that inhibits intrinsic cellulose biosynthesis in plants, and both ES20 and ES20-1 show an inhibitory effect on bacterial growth and cellulose synthesis, making them excellent tools for exploring the mechanisms of cellulose biosynthesis across kingdoms.
Collapse
Affiliation(s)
- Lei Huang
- Department of Botany and Plant Pathology, Purdue University, 915 W. State St., West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, 610 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Xiaohui Li
- Department of Botany and Plant Pathology, Purdue University, 915 W. State St., West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, 610 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, 915 W. State St., West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, 610 Purdue Mall, West Lafayette, IN, 47907, USA
| |
Collapse
|
112
|
Luo L, Zhu Y, Gui J, Yin T, Luo W, Liu J, Li L. A Comparative Analysis of Transcription Networks Active in Juvenile and Mature Wood in Populus. FRONTIERS IN PLANT SCIENCE 2021; 12:675075. [PMID: 34122491 PMCID: PMC8193101 DOI: 10.3389/fpls.2021.675075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Juvenile wood (JW) and mature wood (MW) have distinct physical and chemical characters, resulting from wood formation at different development phases over tree lifespan. However, the regulatory mechanisms that distinguish or modulate the characteristics of JW and MW in relation to each other have not been mapped. In this study, by employing the Populus trees with an identical genetic background, we carried out RNA sequencing (RNA-seq) and whole genome bisulfite sequencing (WGBS) in JW and MW forming tissue and analyzed the transcriptional programs in association with the wood formation in different phrases. JW and MW of Populus displayed different wood properties, including higher content of cellulose and hemicelluloses, less lignin, and longer and larger fiber cells and vessel elements in MW as compared with JW. Significant differences in transcriptional programs and patterns of DNA methylation were detected between JW and MW. The differences were concentrated in gene networks involved in regulating hormonal signaling pathways responsible for auxin distribution and brassinosteroids biosynthesis as well as genes active in regulating cell expansion and secondary cell wall biosynthesis. An observed correlation between gene expression profiling and DNA methylation indicated that DNA methylation affected expression of the genes related to auxin distribution and brassinosteroids signal transduction, cell expansion in JW, and MW formation. The results suggest that auxin distribution, brassinosteroids biosynthesis, and signaling be the critical molecular modules in formation of JW and MW. DNA methylation plays a role in formatting the molecular modules which contribute to the transcriptional programs of wood formation in different development phases. The study sheds light into better understanding of the molecular networks underlying regulation of wood properties which would be informative for genetic manipulation for improvement of wood formation.
Collapse
Affiliation(s)
- Laifu Luo
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yingying Zhu
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jinshan Gui
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tongmin Yin
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Wenchun Luo
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
113
|
Ahmad S, Palvasha BA, Abbasi BBK, Nazir MS, Akhtar MN, Tahir Z, Abdullah MA. Preparation and Applications of Polysaccharide‐Based Composites. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
114
|
Costa EC, Oliveira DC, Ferreira DKL, Isaias RMS. Structural and Nutritional Peculiarities Related to Lifespan Differences on Four Lopesia Induced Bivalve-Shaped Galls on the Single Super-Host Mimosa gemmulata. FRONTIERS IN PLANT SCIENCE 2021; 12:660557. [PMID: 34079570 PMCID: PMC8166249 DOI: 10.3389/fpls.2021.660557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Super-host plants are elegant models to evaluate the peculiarities of gall structural and nutritional profiles due to the stimuli of distinct gall inducers in temporal and spatial perspectives. Galls induced by congeneric insects, Lopesia spp. (Diptera, Cecidomyiidae) on the same host plant, Mimosa gemmulata Barneby (Fabaceae) were analyzed to estimate if variations of 1 or 2 months in gall lifespans may result in differences over the accumulation of nutritional resources, and their compartmentalization both in cell walls and protoplasm. Mimosa gemmulata hosts four Lopesia-induced galls: the lenticular bivalve-shaped gall (LG) with a 2-month life cycle, the brown lanceolate bivalve-shaped gall (BLG) and the green lanceolate bivalve-shaped gall (GLG) with 3 month-life cycles, and the globoid bivalve-shaped gall (GG) with a 4 month-life cycle. The comparisons among the four Lopesia galls, using anatomical, histometric, histochemical, and immunocytochemical tools, have demonstrated that the longest lifespan of the GG related to its highest increment in structural and nutritional traits compared with the LG, GLG, and BLG. The differences among the tissue stratification and cell wall thickness of the galls with the 2-month and the 3-month lifespans were subtle. However, the GG had thicker cell walls and higher stratification of the common storage tissue, schlerenchymatic layers and typical nutritive tissue than the other three gall morphospecies. The higher tissue thickness of the GG was followed by the formation of a bidirectional gradient of carbohydrates in the protoplasm, and the detection of xyloglucans in cell walls. Current data supported the presumption that the longest the lifespan, the highest the impact over the structural and nutritional metabolism of the Lopesia galls associated to M. gemmulata.
Collapse
Affiliation(s)
- Elaine C. Costa
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Denis C. Oliveira
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Dayse K. L. Ferreira
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rosy M. S. Isaias
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
115
|
Zhang G, Ge C, Xu P, Wang S, Cheng S, Han Y, Wang Y, Zhuang Y, Hou X, Yu T, Xu X, Deng S, Li Q, Yang Y, Yin X, Wang W, Liu W, Zheng C, Sun X, Wang Z, Ming R, Dong S, Ma J, Zhang X, Chen C. The reference genome of Miscanthus floridulus illuminates the evolution of Saccharinae. NATURE PLANTS 2021; 7:608-618. [PMID: 33958777 PMCID: PMC8238680 DOI: 10.1038/s41477-021-00908-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/29/2021] [Indexed: 05/05/2023]
Abstract
Miscanthus, a member of the Saccharinae subtribe that includes sorghum and sugarcane, has been widely studied as a feedstock for cellulosic biofuel production. Here, we report the sequencing and assembly of the Miscanthus floridulus genome by the integration of PacBio sequencing and Hi-C mapping, resulting in a chromosome-scale, high-quality reference genome of the genus Miscanthus. Comparisons among Saccharinae genomes suggest that Sorghum split first from the common ancestor of Saccharum and Miscanthus, which subsequently diverged from each other, with two successive whole-genome duplication events occurring independently in the Saccharum genus and one whole-genome duplication occurring in the Miscanthus genus. Fusion of two chromosomes occurred during rediploidization in M. floridulus and no significant subgenome dominance was observed. A survey of cellulose synthases (CesA) in M. floridulus revealed quite high expression of most CesA genes in growing stems, which is in agreement with the high cellulose content of this species. Resequencing and comparisons of 75 Miscanthus accessions suggest that M. lutarioriparius is genetically close to M. sacchariflorus and that M. floridulus is more distantly related to other species and is more genetically diverse. This study provides a valuable genomic resource for molecular breeding and improvement of Miscanthus and Saccharinae crops.
Collapse
Affiliation(s)
- Guobin Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Chunxia Ge
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Pingping Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Shukai Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Senan Cheng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Yanbin Han
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Yancui Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Yongbin Zhuang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Xinwei Hou
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Ting Yu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Xitong Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Shuhan Deng
- Novogene Bioinformatics Institute, Beijing, China
| | - Quanquan Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Yinqing Yang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Xiaoru Yin
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Weidong Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Wenxue Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Chunxiao Zheng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Xuezhen Sun
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Zhenlin Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shuting Dong
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Cuixia Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China.
- College of Agronomy, Shandong Agricultural University, Taian, China.
| |
Collapse
|
116
|
Siadjeu C, Mayland-Quellhorst E, Pande S, Laubinger S, Albach DC. Transcriptome Sequence Reveals Candidate Genes Involving in the Post-Harvest Hardening of Trifoliate Yam Dioscorea dumetorum. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10040787. [PMID: 33923758 PMCID: PMC8074181 DOI: 10.3390/plants10040787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Storage ability of trifoliate yam (Dioscorea dumetorum) is restricted by a severe post-harvest hardening (PHH) phenomenon, which starts within the first 24 h after harvest and renders tubers inedible. Previous work has only focused on the biochemical changes affecting PHH in D. dumetorum. To the best of our knowledge, the candidate genes responsible for the hardening of D. dumetorum have not been identified. Here, transcriptome analyses of D. dumetorum tubers were performed in yam tubers of four developmental stages: 4 months after emergence (4MAE), immediately after harvest (AH), 3 days after harvest (3DAH) and 14 days after harvest (14DAH) of four accessions (Bangou 1, Bayangam 2, Fonkouankem 1, and Ibo sweet 3) using RNA-Seq. In total, between AH and 3DAH, 165, 199, 128 and 61 differentially expressed genes (DEGs) were detected in Bayangam 2, Fonkouankem 1, Bangou 1 and Ibo sweet 3, respectively. Functional analysis of DEGs revealed that genes encoding for CELLULOSE SYNTHASE A (CESA), XYLAN O-ACETYLTRANSFERASE (XOAT), CHLOROPHYLL A/B BINDING PROTEIN1, 2, 3, 4 (LHCB1, LHCB2, LHCB3, and LCH4) and an MYB transcription factor were predominantly and significantly up-regulated 3DAH, implying that these genes were potentially involved in the PHH as confirmed by qRT-PCR. A hypothetical mechanism of this phenomenon and its regulation has been proposed. These findings provide the first comprehensive insights into gene expression in yam tubers after harvest and valuable information for molecular breeding against the PHH.
Collapse
|
117
|
Structure, Assembly and Function of Cuticle from Mechanical Perspective with Special Focus on Perianth. Int J Mol Sci 2021; 22:ijms22084160. [PMID: 33923850 PMCID: PMC8072621 DOI: 10.3390/ijms22084160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/05/2023] Open
Abstract
This review is devoted to the structure, assembly and function of cuticle. The topics are discussed from the mechanical perspective and whenever the data are available a special attention is paid to the cuticle of perianth organs, i.e., sepals, petals or tepals. The cuticle covering these organs is special in both its structure and function and some of these peculiarities are related to the cuticle mechanics. In particular, strengthening of the perianth surface is often provided by a folded cuticle that functionally resembles profiled plates, while on the surface of the petal epidermis of some plants, the cuticle is the only integral continuous layer. The perianth cuticle is distinguished also by those aspects of its mechanics and development that need further studies. In particular, more investigations are needed to explain the formation and maintenance of cuticle folding, which is typical for the perianth epidermis, and also to elucidate the mechanical properties and behavior of the perianth cuticle in situ. Gaps in our knowledge are partly due to technical problems caused by very small thicknesses of the perianth cuticle but modern tools may help to overcome these obstacles.
Collapse
|
118
|
The molecular basis of plant cellulose synthase complex organisation and assembly. Biochem Soc Trans 2021; 49:379-391. [PMID: 33616627 DOI: 10.1042/bst20200697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/02/2023]
Abstract
The material properties of cellulose are heavily influenced by the organisation of β-1,4-glucan chains into a microfibril. It is likely that the structure of this microfibril is determined by the spatial arrangement of catalytic cellulose synthase (CESA) proteins within the cellulose synthase complex (CSC). In land plants, CESA proteins form a large complex composed of a hexamer of trimeric lobes termed the rosette. Each rosette synthesises a single microfibril likely composed of 18 glucan chains. In this review, the biochemical events leading to plant CESA protein assembly into the rosette are explored. The protein interfaces responsible for CESA trimerization are formed by regions that define rosette-forming CESA proteins. As a consequence, these regions are absent from the ancestral bacterial cellulose synthases (BcsAs) that do not form rosettes. CSC assembly occurs within the context of the endomembrane system, however the site of CESA assembly into trimers and rosettes is not determined. Both the N-Terminal Domain and Class Specific Region of CESA proteins are intrinsically disordered and contain all of the identified phosphorylation sites, making both regions candidates as sites for protein-protein interactions and inter-lobe interface formation. We propose a sequential assembly model, whereby CESA proteins form stable trimers shortly after native folding, followed by sequential recruitment of lobes into a rosette, possibly assisted by Golgi-localised STELLO proteins. A comprehensive understanding of CESA assembly into the CSC will enable directed engineering of CESA protein spatial arrangements, allowing changes in cellulose crystal packing that alter its material properties.
Collapse
|
119
|
Wang X, Li F, Chen Z, Yang B, Komatsu S, Zhou S. Proteomic analysis reveals the effects of melatonin on soybean root tips under flooding stress. J Proteomics 2021; 232:104064. [PMID: 33276190 DOI: 10.1016/j.jprot.2020.104064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/14/2020] [Accepted: 11/22/2020] [Indexed: 11/30/2022]
Abstract
Flooding constrains soybean growth, while melatonin enhances the ability of plants to tolerate abiotic stresses. To interpret the melatonin-mediated flooding response in soybeans, proteomic analysis was performed in root tips. Retarded growth and severe cell death were observed in flooded soybeans, but these phenotypes were ameliorated by melatonin treatment. A total of 634, 1401, and 1205 proteins were identified under control, flood, and flood plus melatonin conditions, respectively; and these proteins were predominantly associated with metabolism of protein, RNA, and the cell wall. Among these melatonin-induced proteins, eukaryotic aspartyl protease family protein was increased after flood compared with melatonin treatment group, in accordance with its upregulated transcript levels during stress. Eukaryotic translation initiation factor 5A was decreased after flood compared with melatonin. When stress was prolonged, its transcript levels were upregulated by flood, while they were not changed by melatonin. Furthermore, 13-hydroxylupanine O-tigloyltransferase was decreased by flood compared with melatonin; however, its transcription was upregulated by melatonin. In addition, reduced lignification in root tips of flooded soybeans was restored by melatonin. These results suggest that factors related to protein degradation and functional states of RNA play critical roles in promoting the effects of melatonin on soybean plants under flooding. SIGNIFICANCE: Flooding stress threatens soybean growth, while melatonin treatment enhances plant tolerance to stress stimuli. To examine the effects of melatonin on flooded soybeans, morphological analysis was performed. Melatonin promoted soybean growth as judged from greater fresh weight of plant, longer seedling length, and less evident cell death in flooding-stressed soybeans treated with melatonin than those plants exposed to flood alone. Proteomic analysis was conducted to explore the promoting effects of melatonin on soybeans under flooding stress. As a result, metabolism of protein metabolism, RNA regulation, and cell wall was enriched by proteins identified under control, flood, and flood plus melatonin conditions. Among these melatonin-induced proteins, abundance of eukaryotic aspartyl protease family protein, eukaryotic translation initiation factor 5A, and 13-hydroxylupanine O-tigloyltransferase displayed similar change patterns between the control and melatonin compared with flood; and transcript levels of genes encoding these proteins responded to flooding stress and melatonin treatment. In addition, activated cell degradation, expanded intercellular spaces, and reduced lignification in root tips of flooded soybeans were ameliorated by melatonin treatment.
Collapse
Affiliation(s)
- Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Fang Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhenyuan Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| | - Shunli Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
120
|
Mielke S, Zimmer M, Meena MK, Dreos R, Stellmach H, Hause B, Voiniciuc C, Gasperini D. Jasmonate biosynthesis arising from altered cell walls is prompted by turgor-driven mechanical compression. SCIENCE ADVANCES 2021; 7:7/7/eabf0356. [PMID: 33568489 PMCID: PMC7875531 DOI: 10.1126/sciadv.abf0356] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/22/2020] [Indexed: 05/15/2023]
Abstract
Despite the vital roles of jasmonoyl-isoleucine (JA-Ile) in governing plant growth and environmental acclimation, it remains unclear what intracellular processes lead to its induction. Here, we provide compelling genetic evidence that mechanical and osmotic regulation of turgor pressure represents a key elicitor of JA-Ile biosynthesis. After identifying cell wall mutant alleles in KORRIGAN1 (KOR1) with elevated JA-Ile in seedling roots, we found that ectopic JA-Ile resulted from cell nonautonomous signals deriving from enlarged cortex cells compressing inner tissues and stimulating JA-Ile production. Restoring cortex cell size by cell type-specific KOR1 complementation, by isolating a genetic kor1 suppressor, and by lowering turgor pressure with hyperosmotic treatments abolished JA-Ile signaling. Conversely, hypoosmotic treatment activated JA-Ile signaling in wild-type plants. Furthermore, constitutive JA-Ile levels guided mutant roots toward greater water availability. Collectively, these findings enhance our understanding on JA-Ile biosynthesis initiation and reveal a previously undescribed role of JA-Ile in orchestrating environmental resilience.
Collapse
Affiliation(s)
- Stefan Mielke
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Marlene Zimmer
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Mukesh Kumar Meena
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - René Dreos
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Hagen Stellmach
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Cătălin Voiniciuc
- Independent Junior Research Group-Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany.
| |
Collapse
|
121
|
A Pipeline towards the Biochemical Characterization of the Arabidopsis GT14 Family. Int J Mol Sci 2021; 22:ijms22031360. [PMID: 33572987 PMCID: PMC7866395 DOI: 10.3390/ijms22031360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Glycosyltransferases (GTs) catalyze the synthesis of glycosidic linkages and are essential in the biosynthesis of glycans, glycoconjugates (glycolipids and glycoproteins), and glycosides. Plant genomes generally encode many more GTs than animal genomes due to the synthesis of a cell wall and a wide variety of glycosylated secondary metabolites. The Arabidopsis thaliana genome is predicted to encode over 573 GTs that are currently classified into 42 diverse families. The biochemical functions of most of these GTs are still unknown. In this study, we updated the JBEI Arabidopsis GT clone collection by cloning an additional 105 GT cDNAs, 508 in total (89%), into Gateway-compatible vectors for downstream characterization. We further established a functional analysis pipeline using transient expression in tobacco (Nicotiana benthamiana) followed by enzymatic assays, fractionation of enzymatic products by reversed-phase HPLC (RP-HPLC) and characterization by mass spectrometry (MS). Using the GT14 family as an exemplar, we outline a strategy for identifying effective substrates of GT enzymes. By addition of UDP-GlcA as donor and the synthetic acceptors galactose-nitrobenzodiazole (Gal-NBD), β-1,6-galactotetraose (β-1,6-Gal4) and β-1,3-galactopentose (β-1,3-Gal5) to microsomes expressing individual GT14 enzymes, we verified the β-glucuronosyltransferase (GlcAT) activity of three members of this family (AtGlcAT14A, B, and E). In addition, a new family member (AT4G27480, 248) was shown to possess significantly higher activity than other GT14 enzymes. Our data indicate a likely role in arabinogalactan-protein (AGP) biosynthesis for these GT14 members. Together, the updated Arabidopsis GT clone collection and the biochemical analysis pipeline present an efficient means to identify and characterize novel GT catalytic activities.
Collapse
|
122
|
Ramírez-Rodríguez EA, McFarlane HE. Insights from the Structure of a Plant Cellulose Synthase Trimer. TRENDS IN PLANT SCIENCE 2021; 26:4-7. [PMID: 33008741 DOI: 10.1016/j.tplants.2020.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 05/27/2023]
Abstract
Cellulose is an essential component of plant cell walls and the most abundant biopolymer on Earth. Despite its chemical simplicity, questions remain regarding the mechanisms of cellulose synthesis. A cryo-electron microscopy structure of a simplified plant cellulose synthase enzyme complex provides new insights into assembly, localization, and regulation of this complex.
Collapse
Affiliation(s)
| | - Heather E McFarlane
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada.
| |
Collapse
|
123
|
Guo X, Luo J, Du Y, Li J, Liu Y, Liang Y, Li T. Coordination between root cell wall thickening and pectin modification is involved in cadmium accumulation in Sedum alfredii. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115665. [PMID: 33010543 DOI: 10.1016/j.envpol.2020.115665] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/17/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Root cell wall (RCW) modification is a widespread important defense strategy of plant to cope with trace metals. However, mechanisms underlying its remolding in cadmium (Cd) accumulation are still lacking in hyperaccumulators. In this study, changes of RCW structures and components between nonhyperaccumulating ecotype (NHE) and hyperaccumulating ecotype (HE) of Sedum alfredii were investigated simultaneously. Under 25 μM Cd treatment, RCW thickness of NHE is nearly 2 folds than that of HE and the thickened cell wall of NHE was enriched in low-methylated pectin, leading to more Cd trapped in roots tightly. In the opposite, large amounts of high-methylated pectin were assembled around RCW of HE with Cd supply, in this way, HE S. alfredii decreased its root fixation of Cd and enhanced Cd migration into xylem. TEM and AFM results further confirmed that thickened cell wall was caused by the increased amounts of cellulose and lignin while root tip lignification was resulted from variations of sinapyl (S) and guaiacyl (G) monomers. Overall, thickened cell wall and methylated pectin have synchronicity in spatial location of roots, and their coordination contributed to Cd accumulation in S. alfredii.
Collapse
Affiliation(s)
- Xinyu Guo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yilin Du
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinxing Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuankun Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou, 310058, China; National Demonstration Center for Experimental Environment and Resources Education, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
124
|
Zhang B, Gao Y, Zhang L, Zhou Y. The plant cell wall: Biosynthesis, construction, and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:251-272. [PMID: 33325153 DOI: 10.1111/jipb.13055] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 05/19/2023]
Abstract
The plant cell wall is composed of multiple biopolymers, representing one of the most complex structural networks in nature. Hundreds of genes are involved in building such a natural masterpiece. However, the plant cell wall is the least understood cellular structure in plants. Due to great progress in plant functional genomics, many achievements have been made in uncovering cell wall biosynthesis, assembly, and architecture, as well as cell wall regulation and signaling. Such information has significantly advanced our understanding of the roles of the cell wall in many biological and physiological processes and has enhanced our utilization of cell wall materials. The use of cutting-edge technologies such as single-molecule imaging, nuclear magnetic resonance spectroscopy, and atomic force microscopy has provided much insight into the plant cell wall as an intricate nanoscale network, opening up unprecedented possibilities for cell wall research. In this review, we summarize the major advances made in understanding the cell wall in this era of functional genomics, including the latest findings on the biosynthesis, construction, and functions of the cell wall.
Collapse
Affiliation(s)
- Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihong Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
125
|
Zhang J, Barros-Rios J, Lu M. Editorial: Biofuels and Bioenergy. FRONTIERS IN PLANT SCIENCE 2020; 11:621380. [PMID: 33329685 PMCID: PMC7733962 DOI: 10.3389/fpls.2020.621380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jaime Barros-Rios
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Mengzhu Lu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
126
|
Wang L, Hart BE, Khan GA, Cruz ER, Persson S, Wallace IS. Associations between phytohormones and cellulose biosynthesis in land plants. ANNALS OF BOTANY 2020; 126:807-824. [PMID: 32619216 PMCID: PMC7539351 DOI: 10.1093/aob/mcaa121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/01/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Phytohormones are small molecules that regulate virtually every aspect of plant growth and development, from basic cellular processes, such as cell expansion and division, to whole plant environmental responses. While the phytohormone levels and distribution thus tell the plant how to adjust itself, the corresponding growth alterations are actuated by cell wall modification/synthesis and internal turgor. Plant cell walls are complex polysaccharide-rich extracellular matrixes that surround all plant cells. Among the cell wall components, cellulose is typically the major polysaccharide, and is the load-bearing structure of the walls. Hence, the cell wall distribution of cellulose, which is synthesized by large Cellulose Synthase protein complexes at the cell surface, directs plant growth. SCOPE Here, we review the relationships between key phytohormone classes and cellulose deposition in plant systems. We present the core signalling pathways associated with each phytohormone and discuss the current understanding of how these signalling pathways impact cellulose biosynthesis with a particular focus on transcriptional and post-translational regulation. Because cortical microtubules underlying the plasma membrane significantly impact the trajectories of Cellulose Synthase Complexes, we also discuss the current understanding of how phytohormone signalling impacts the cortical microtubule array. CONCLUSION Given the importance of cellulose deposition and phytohormone signalling in plant growth and development, one would expect that there is substantial cross-talk between these processes; however, mechanisms for many of these relationships remain unclear and should be considered as the target of future studies.
Collapse
Affiliation(s)
- Liu Wang
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Bret E Hart
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
| | | | - Edward R Cruz
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, USA
- Department of Chemistry, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
127
|
Pylkkänen R, Mohammadi P, Arola S, de Ruijter JC, Sunagawa N, Igarashi K, Penttilä M. In Vitro Synthesis and Self-Assembly of Cellulose II Nanofibrils Catalyzed by the Reverse Reaction of Clostridium thermocellum Cellodextrin Phosphorylase. Biomacromolecules 2020; 21:4355-4364. [PMID: 32960595 DOI: 10.1021/acs.biomac.0c01162] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In nature, various organisms produce cellulose as microfibrils, which are processed into their nano- and microfibrillar and/or crystalline components by humans in order to obtain desired material properties. Interestingly, the natural synthesis machinery can be circumvented by enzymatically synthesizing cellulose from precursor molecules in vitro. This approach is appealing for producing tailor-made cellulosic particles and materials because it enables optimization of the reaction conditions for cellulose synthesis in order to generate particles with a desired morphology in their pure form. Here, we present enzymatic cellulose synthesis catalyzed by the reverse reaction of Clostridium thermocellum cellodextrin phosphorylase in vitro. We were able to produce cellulose II nanofibril networks in all conditions tested, using varying concentrations of the glycosyl acceptors d-glucose or d-cellobiose (0.5, 5, and 50 mM). We show that shorter cellulose chains assemble into flat ribbon-like fibrils with greater diameter, while longer chains assemble into cylindrical fibrils with smaller diameter.
Collapse
Affiliation(s)
- Robert Pylkkänen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Espoo, Finland.,VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| | - Pezhman Mohammadi
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| | - Suvi Arola
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| | - Jorg C de Ruijter
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, 113-8657 Tokyo, Japan
| | - Kiyohiko Igarashi
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland.,Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, 113-8657 Tokyo, Japan
| | - Merja Penttilä
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Espoo, Finland.,VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Finland
| |
Collapse
|
128
|
Offler CE, Patrick JW. Transfer cells: what regulates the development of their intricate wall labyrinths? THE NEW PHYTOLOGIST 2020; 228:427-444. [PMID: 32463520 DOI: 10.1111/nph.16707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/14/2020] [Indexed: 05/26/2023]
Abstract
Transfer cells (TCs) support high nutrient rates into, or at symplasmic discontinuities within, the plant body. Their transport capacity is conferred by an amplified plasma membrane surface area, enriched in nutrient transporters, supported on an intricately invaginated wall labyrinth (WL). Thus, development of the WL is at the heart of TC function. Enquiry has shifted from describing WL architecture and formation to discovering mechanisms regulating WL assembly. Experimental systems used to examine these phenomena are critiqued. Considerable progress has been made in identifying master regulators that commit stem cells to a TC fate (e.g. the maize Myeloblastosis (MYB)-related R1-type transcription factor) and signals that induce differentiated cells to undergo trans-differentiation to a TC phenotype (e.g. sugar, auxin and ethylene). In addition, signals that provide positional information for assembly of the WL include apoplasmic hydrogen peroxide and cytosolic Ca2+ plumes. The former switches on, and specifies the intracellular site for WL construction, while the latter creates subdomains to direct assembly of WL invaginations. Less is known about macromolecule species and their spatial organization essential for WL assembly. Emerging evidence points to a dependency on methyl-esterified homogalacturonan accumulation, unique patterns of cellulose and callose deposition and spatial positioning of arabinogalactan proteins.
Collapse
Affiliation(s)
- Christina E Offler
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - John W Patrick
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
129
|
Coomey JH, Sibout R, Hazen SP. Grass secondary cell walls, Brachypodium distachyon as a model for discovery. THE NEW PHYTOLOGIST 2020; 227:1649-1667. [PMID: 32285456 DOI: 10.1111/nph.16603] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/05/2020] [Indexed: 05/20/2023]
Abstract
A key aspect of plant growth is the synthesis and deposition of cell walls. In specific tissues and cell types including xylem and fibre, a thick secondary wall comprised of cellulose, hemicellulose and lignin is deposited. Secondary cell walls provide a physical barrier that protects plants from pathogens, promotes tolerance to abiotic stresses and fortifies cells to withstand the forces associated with water transport and the physical weight of plant structures. Grasses have numerous cell wall features that are distinct from eudicots and other plants. Study of the model species Brachypodium distachyon as well as other grasses has revealed numerous features of the grass cell wall. These include the characterisation of xylosyl and arabinosyltransferases, a mixed-linkage glucan synthase and hydroxycinnamate acyltransferases. Perhaps the most fertile area for discovery has been the formation of lignins, including the identification of novel substrates and enzyme activities towards the synthesis of monolignols. Other enzymes function as polymerising agents or transferases that modify lignins and facilitate interactions with polysaccharides. The regulatory aspects of cell wall biosynthesis are largely overlapping with those of eudicots, but salient differences among species have been resolved that begin to identify the determinants that define grass cell walls.
Collapse
Affiliation(s)
- Joshua H Coomey
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
| | - Richard Sibout
- Biopolymères Interactions Assemblages, INRAE, UR BIA, F-44316, Nantes, France
| | - Samuel P Hazen
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
130
|
Huang L, Zhang C. Perturbation and imaging of exocytosis in plant cells. Methods Cell Biol 2020; 160:3-20. [PMID: 32896324 DOI: 10.1016/bs.mcb.2020.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
The exocytosis process delivers proteins, lipids, and carbohydrates to the plasma membrane or the extracellular space to sustain plant cell growth, development, and response to environmental stimuli. Plant exocytosis is highly dynamic and requires the coordinated functions of multiple cellular components such as tethering complexes, GTPase signaling, and vesicle fusion machinery. Accurate spatio-temporal control of plant exocytosis is critical for the proper functions of plant cells. Live-cell imaging of fluorescence-tagged cargo proteins allows for quantitative analysis of exocytosis dynamics in plant cells. Small molecule inhibitors that target important components in the exocytosis machinery allow for transient manipulation of the exocytosis process. In this chapter, we describe procedures that use Endosidin2 (ES2) and Brefeldin A (BFA) as small molecule inhibitors to disrupt plant exocytic processes and use fluorescent protein-tagged PIN-formed 2 (PIN2) and Cellulose Synthase (CESA) as cargo proteins to quantify exocytosis dynamics in plant cells.
Collapse
Affiliation(s)
- Lei Huang
- Department of Botany and Pathology, Purdue University, West Lafayette, IN, United States; Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Chunhua Zhang
- Department of Botany and Pathology, Purdue University, West Lafayette, IN, United States; Center for Plant Biology, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
131
|
Huang L, Li X, Zhang W, Ung N, Liu N, Yin X, Li Y, Mcewan RE, Dilkes B, Dai M, Hicks GR, Raikhel NV, Staiger CJ, Zhang C. Endosidin20 Targets the Cellulose Synthase Catalytic Domain to Inhibit Cellulose Biosynthesis. THE PLANT CELL 2020; 32:2141-2157. [PMID: 32327535 PMCID: PMC7346566 DOI: 10.1105/tpc.20.00202] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 05/02/2023]
Abstract
Plant cellulose is synthesized by rosette-structured cellulose synthase (CESA) complexes (CSCs). Each CSC is composed of multiple subunits of CESAs representing three different isoforms. Individual CESA proteins contain conserved catalytic domains for catalyzing cellulose synthesis, other domains such as plant-conserved sequences, and class-specific regions that are thought to facilitate complex assembly and CSC trafficking. Because of the current lack of atomic-resolution structures for plant CSCs or CESAs, the molecular mechanism through which CESA catalyzes cellulose synthesis and whether its catalytic activity influences efficient CSC transport at the subcellular level remain unknown. Here, by performing chemical genetic analyses, biochemical assays, structural modeling, and molecular docking, we demonstrate that Endosidin20 (ES20) targets the catalytic site of CESA6 in Arabidopsis (Arabidopsis thaliana). Chemical genetic analysis revealed important amino acids that potentially participate in the catalytic activity of plant CESA6, in addition to previously identified conserved motifs across kingdoms. Using high spatiotemporal resolution live cell imaging, we found that inhibiting the catalytic activity of CESA6 by ES20 treatment reduced the efficiency of CSC transport to the plasma membrane. Our results demonstrate that ES20 is a chemical inhibitor of CESA activity and trafficking that represents a powerful tool for studying cellulose synthesis in plants.
Collapse
Affiliation(s)
- Lei Huang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| | - Xiaohui Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| | - Weiwei Zhang
- Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Nolan Ung
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Nana Liu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| | - Xianglin Yin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
- Center for Cancer Research, Purdue University, West Lafayette, Indiana 47906
| | - Yong Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
- Center for Cancer Research, Purdue University, West Lafayette, Indiana 47906
| | - Robert E Mcewan
- Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Brian Dilkes
- Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Mingji Dai
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
- Center for Cancer Research, Purdue University, West Lafayette, Indiana 47906
| | - Glenn R Hicks
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521
- Uppsala Bio Center, Swedish University of Agricultural Sciences, Uppsala SE-75007, 19 Sweden
| | - Natasha V Raikhel
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Christopher J Staiger
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
132
|
Lockhart J. Endosidin20: A Key to Unlock the Secrets of Cellulose Biosynthesis. THE PLANT CELL 2020; 32:2061-2062. [PMID: 32409322 PMCID: PMC7346550 DOI: 10.1105/tpc.20.00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
133
|
Yang J, Bak G, Burgin T, Barnes WJ, Mayes HB, Peña MJ, Urbanowicz BR, Nielsen E. Biochemical and Genetic Analysis Identify CSLD3 as a beta-1,4-Glucan Synthase That Functions during Plant Cell Wall Synthesis. THE PLANT CELL 2020; 32:1749-1767. [PMID: 32169960 PMCID: PMC7203914 DOI: 10.1105/tpc.19.00637] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/11/2020] [Accepted: 03/10/2020] [Indexed: 05/24/2023]
Abstract
In plants, changes in cell size and shape during development fundamentally depend on the ability to synthesize and modify cell wall polysaccharides. The main classes of cell wall polysaccharides produced by terrestrial plants are cellulose, hemicelluloses, and pectins. Members of the cellulose synthase (CESA) and cellulose synthase-like (CSL) families encode glycosyltransferases that synthesize the β-1,4-linked glycan backbones of cellulose and most hemicellulosic polysaccharides that comprise plant cell walls. Cellulose microfibrils are the major load-bearing component in plant cell walls and are assembled from individual β-1,4-glucan polymers synthesized by CESA proteins that are organized into multimeric complexes called CESA complexes, in the plant plasma membrane. During distinct modes of polarized cell wall deposition, such as in the tip growth that occurs during the formation of root hairs and pollen tubes or de novo formation of cell plates during plant cytokinesis, newly synthesized cell wall polysaccharides are deposited in a restricted region of the cell. These processes require the activity of members of the CESA-like D subfamily. However, while these CSLD polysaccharide synthases are essential, the nature of the polysaccharides they synthesize has remained elusive. Here, we use a combination of genetic rescue experiments with CSLD-CESA chimeric proteins, in vitro biochemical reconstitution, and supporting computational modeling and simulation, to demonstrate that Arabidopsis (Arabidopsis thaliana) CSLD3 is a UDP-glucose-dependent β-1,4-glucan synthase that forms protein complexes displaying similar ultrastructural features to those formed by CESA6.
Collapse
Affiliation(s)
- Jiyuan Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Gwangbae Bak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Tucker Burgin
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109
| | - William J Barnes
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Heather B Mayes
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109
| | - Maria J Peña
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Breeanna R Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
134
|
Hurný A, Cuesta C, Cavallari N, Ötvös K, Duclercq J, Dokládal L, Montesinos JC, Gallemí M, Semerádová H, Rauter T, Stenzel I, Persiau G, Benade F, Bhalearo R, Sýkorová E, Gorzsás A, Sechet J, Mouille G, Heilmann I, De Jaeger G, Ludwig-Müller J, Benková E. SYNERGISTIC ON AUXIN AND CYTOKININ 1 positively regulates growth and attenuates soil pathogen resistance. Nat Commun 2020; 11:2170. [PMID: 32358503 PMCID: PMC7195429 DOI: 10.1038/s41467-020-15895-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/27/2020] [Indexed: 01/11/2023] Open
Abstract
Plants as non-mobile organisms constantly integrate varying environmental signals to flexibly adapt their growth and development. Local fluctuations in water and nutrient availability, sudden changes in temperature or other abiotic and biotic stresses can trigger changes in the growth of plant organs. Multiple mutually interconnected hormonal signaling cascades act as essential endogenous translators of these exogenous signals in the adaptive responses of plants. Although the molecular backbones of hormone transduction pathways have been identified, the mechanisms underlying their interactions are largely unknown. Here, using genome wide transcriptome profiling we identify an auxin and cytokinin cross-talk component; SYNERGISTIC ON AUXIN AND CYTOKININ 1 (SYAC1), whose expression in roots is strictly dependent on both of these hormonal pathways. We show that SYAC1 is a regulator of secretory pathway, whose enhanced activity interferes with deposition of cell wall components and can fine-tune organ growth and sensitivity to soil pathogens.
Collapse
Affiliation(s)
- Andrej Hurný
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Candela Cuesta
- Institute of Science and Technology, Klosterneuburg, Austria
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Oviedo, Spain
| | | | - Krisztina Ötvös
- Institute of Science and Technology, Klosterneuburg, Austria
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Jerome Duclercq
- Unité 'Ecologie et Dynamique des Systèmes Anthropisés' (EDYSAN UMR CNRS 7058 CNRS), Université du Picardie Jules Verne, UFR des Sciences, Amiens, France
| | - Ladislav Dokládal
- Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno, Czech Republic
| | | | - Marçal Gallemí
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Hana Semerádová
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Thomas Rauter
- Institute of Science and Technology, Klosterneuburg, Austria
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Irene Stenzel
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Freia Benade
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Rishikesh Bhalearo
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83, Umeå, Sweden
| | - Eva Sýkorová
- Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| | - András Gorzsás
- Department of Chemistry, Umeå University, Linnaeus väg 6, SE-901 87, Umeå, Sweden
| | - Julien Sechet
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Gregory Mouille
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | | | - Eva Benková
- Institute of Science and Technology, Klosterneuburg, Austria.
| |
Collapse
|
135
|
Anderson CT, Kieber JJ. Dynamic Construction, Perception, and Remodeling of Plant Cell Walls. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:39-69. [PMID: 32084323 DOI: 10.1146/annurev-arplant-081519-035846] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant cell walls are dynamic structures that are synthesized by plants to provide durable coverings for the delicate cells they encase. They are made of polysaccharides, proteins, and other biomolecules and have evolved to withstand large amounts of physical force and to resist external attack by herbivores and pathogens but can in many cases expand, contract, and undergo controlled degradation and reconstruction to facilitate developmental transitions and regulate plant physiology and reproduction. Recent advances in genetics, microscopy, biochemistry, structural biology, and physical characterization methods have revealed a diverse set of mechanisms by which plant cells dynamically monitor and regulate the composition and architecture of their cell walls, but much remains to be discovered about how the nanoscale assembly of these remarkable structures underpins the majestic forms and vital ecological functions achieved by plants.
Collapse
Affiliation(s)
- Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
136
|
The Plasma Membrane-An Integrating Compartment for Mechano-Signaling. PLANTS 2020; 9:plants9040505. [PMID: 32295309 PMCID: PMC7238056 DOI: 10.3390/plants9040505] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 12/30/2022]
Abstract
Plants are able to sense their mechanical environment. This mechanical signal is used by the plant to determine its phenotypic features. This is true also at a smaller scale. Morphogenesis, both at the cell and tissue level, involves mechanical signals that influence specific patterns of gene expression and trigger signaling pathways. How a mechanical stress is perceived and how this signal is transduced into the cell remains a challenging question in the plant community. Among the structural components of plant cells, the plasma membrane has received very little attention. Yet, its position at the interface between the cell wall and the interior of the cell makes it a key factor at the nexus between biochemical and mechanical cues. So far, most of the key players that are described to perceive and maintain mechanical cell status and to respond to a mechanical stress are localized at or close to the plasma membrane. In this review, we will focus on the importance of the plasma membrane in mechano-sensing and try to illustrate how the composition of this dynamic compartment is involved in the regulatory processes of a cell to respond to mechanical stress.
Collapse
|
137
|
Ganguly K, Patel DK, Dutta SD, Shin WC, Lim KT. Stimuli-responsive self-assembly of cellulose nanocrystals (CNCs): Structures, functions, and biomedical applications. Int J Biol Macromol 2020; 155:456-469. [PMID: 32222290 DOI: 10.1016/j.ijbiomac.2020.03.171] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/05/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Cellulose nanocrystals (CNCs) have received a significant amount of attention from the researchers. It is used as a nanomaterial for various applications due to its excellent physiochemical properties for the last few decades. Self-assembly is a phenomenon where autonomous reorganization of randomly oriented species occurs elegantly. Self-assembly is responsible for the formation of the hierarchical cholesteric structure of CNCs. This process is highly influenced by several factors, such as the surface chemistry of the nanoparticles, intermolecular forces, and the fundamental laws of thermodynamics. Various conventional experimental designs and molecular dynamics (MD) studies have been applied to determine the possible mechanism of self-assembly in CNCs. Different external factors, like pH, temperature, magnetic/electric fields, vacuum, also influence the self-assembly process in CNCs. Notably, better responses have been observed in CNCs-grafted polymer nanocomposites. These functionalized CNCs with stimuli-responsive self-assembly have immense practical applications in modern biotechnology and medicine. Herein, we have concisely discussed the mechanism of the self-assembled CNCs in the presence of different external factors such as pH, temperature, electric/magnetic fields, and their biomedical applications.
Collapse
Affiliation(s)
- Keya Ganguly
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dinesh K Patel
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Woo-Chul Shin
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
138
|
Elliott L, Moore I, Kirchhelle C. Spatio-temporal control of post-Golgi exocytic trafficking in plants. J Cell Sci 2020; 133:133/4/jcs237065. [PMID: 32102937 DOI: 10.1242/jcs.237065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A complex and dynamic endomembrane system is a hallmark of eukaryotic cells and underpins the evolution of specialised cell types in multicellular organisms. Endomembrane system function critically depends on the ability of the cell to (1) define compartment and pathway identity, and (2) organise compartments and pathways dynamically in space and time. Eukaryotes possess a complex molecular machinery to control these processes, including small GTPases and their regulators, SNAREs, tethering factors, motor proteins, and cytoskeletal elements. Whereas many of the core components of the eukaryotic endomembrane system are broadly conserved, there have been substantial diversifications within different lineages, possibly reflecting lineage-specific requirements of endomembrane trafficking. This Review focusses on the spatio-temporal regulation of post-Golgi exocytic transport in plants. It highlights recent advances in our understanding of the elaborate network of pathways transporting different cargoes to different domains of the cell surface, and the molecular machinery underpinning them (with a focus on Rab GTPases, their interactors and the cytoskeleton). We primarily focus on transport in the context of growth, but also highlight how these pathways are co-opted during plant immunity responses and at the plant-pathogen interface.
Collapse
Affiliation(s)
- Liam Elliott
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Ian Moore
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Charlotte Kirchhelle
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
139
|
Nagashima Y, Ma Z, Liu X, Qian X, Zhang X, von Schaewen A, Koiwa H. Multiple Quality Control Mechanisms in the ER and TGN Determine Subcellular Dynamics and Salt-Stress Tolerance Function of KORRIGAN1. THE PLANT CELL 2020; 32:470-485. [PMID: 31852774 PMCID: PMC7008481 DOI: 10.1105/tpc.19.00714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/18/2019] [Accepted: 12/17/2019] [Indexed: 05/03/2023]
Abstract
Among many glycoproteins within the plant secretory system, KORRIGAN1 (KOR1), a membrane-anchored endo-β-1,4-glucanase involved in cellulose biosynthesis, provides a link between N-glycosylation, cell wall biosynthesis, and abiotic stress tolerance. After insertion into the endoplasmic reticulum, KOR1 cycles between the trans-Golgi network (TGN) and the plasma membrane (PM). From the TGN, the protein is targeted to growing cell plates during cell division. These processes are governed by multiple sequence motifs and also host genotypes. Here, we investigated the interaction and hierarchy of known and newly identified sorting signals in KOR1 and how they affect KOR1 transport at various stages in the secretory pathway. Conventional steady-state localization showed that structurally compromised KOR1 variants were directed to tonoplasts. In addition, a tandem fluorescent timer technology allowed for differential visualization of young versus aged KOR1 proteins, enabling the analysis of single-pass transport through the secretory pathway. Observations suggest the presence of multiple checkpoints/branches during KOR1 trafficking, where the destination is determined based on KOR1's sequence motifs and folding status. Moreover, growth analyses of dominant PM-confined KOR1-L48L49→A48A49 variants revealed the importance of active removal of KOR1 from the PM during salt stress, which otherwise interfered with stress acclimation.
Collapse
Affiliation(s)
- Yukihiro Nagashima
- Vegetable and Fruit Improvement Center and Department of Horticultural Sciences, Texas A&M University, College Station, Texas 77843
| | - Zeyang Ma
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Xueting Liu
- Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas 77843
| | - Xiaoning Qian
- Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas 77843
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, Texas 77843
| | - Antje von Schaewen
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Hisashi Koiwa
- Vegetable and Fruit Improvement Center and Department of Horticultural Sciences, Texas A&M University, College Station, Texas 77843
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
140
|
Rui Y, Dinneny JR. A wall with integrity: surveillance and maintenance of the plant cell wall under stress. THE NEW PHYTOLOGIST 2020; 225:1428-1439. [PMID: 31486535 DOI: 10.1111/nph.16166] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/16/2019] [Indexed: 05/21/2023]
Abstract
The structural and functional integrity of the cell wall needs to be constantly monitored and fine-tuned to allow for growth while preventing mechanical failure. Many studies have advanced our understanding of the pathways that contribute to cell wall biosynthesis and how these pathways are regulated by external and internal cues. Recent evidence also supports a model in which certain aspects of the wall itself may act as growth-regulating signals. Molecular components of the signaling pathways that sense and maintain cell wall integrity have begun to be revealed, including signals arising in the wall, sensors that detect changes at the cell surface, and downstream signal transduction modules. Abiotic and biotic stress conditions provide new contexts for the study of cell wall integrity, but the nature and consequences of wall disruptions due to various stressors require further investigation. A deeper understanding of cell wall signaling will provide insights into the growth regulatory mechanisms that allow plants to survive in changing environments.
Collapse
Affiliation(s)
- Yue Rui
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA, 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| |
Collapse
|
141
|
Kunieda T, Hara-Nishimura I, Demura T, Haughn GW. Arabidopsis FLYING SAUCER 2 Functions Redundantly with FLY1 to Establish Normal Seed Coat Mucilage. PLANT & CELL PHYSIOLOGY 2020; 61:308-317. [PMID: 31626281 DOI: 10.1093/pcp/pcz195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Following exposure to water, mature Arabidopsis seeds are surrounded by a gelatinous capsule, termed mucilage. The mucilage consists of pectin-rich polysaccharides, which are produced in epidermal cells of the seed coat. Although pectin is a major component of plant cell walls, its biosynthesis and biological functions are not fully understood. Previously, we reported that a transmembrane RING E3 ubiquitin ligase, FLYING SAUCER 1 (FLY1) regulates the degree of pectin methyl esterification for mucilage capsule formation. The Arabidopsis thaliana genome has a single FLY1 homolog, FLY2. In this study, we show that the FLY2 protein functions in mucilage modification together with FLY1. FLY2 was expressed in seed coat epidermal cells during mucilage synthesis, but its expression level was much lower than that of FLY1. While fly2 showed no obvious difference in mucilage capsule formation from wild type, the fly1 fly2 double mutants showed more severe defects in mucilage than fly1 alone. FLY2-EYFP that was expressed under the control of the FLY1 promoter rescued fly1 mucilage, showing that FLY2 has the same molecular function as FLY1. FLY2-EYFP colocalized with marker proteins of Golgi apparatus (sialyltransferase-mRFP) and late endosome (mRFP-ARA7), indicating that as FLY1, FLY2 controls pectin modification by functioning in these endomembrane organelles. Furthermore, phylogenetic analysis suggests that FLY1 and FLY2 originated from a common ancestral gene by gene duplication prior to the emergence of Brassicaceae. Taken together, our findings suggest that FLY2 functions in the Golgi apparatus and/or the late endosome of seed coat epidermal cells in a manner similar to FLY1.
Collapse
Affiliation(s)
- Tadashi Kunieda
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Faculty of Science and Engineering, Konan University, Kobe, 658-8501 Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | | | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - George W Haughn
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
142
|
Xu D, Dhiman R, Garibay A, Mock HP, Leister D, Kleine T. Cellulose defects in the Arabidopsis secondary cell wall promote early chloroplast development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:156-170. [PMID: 31498930 DOI: 10.1111/tpj.14527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/12/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Lincomycin (LIN)-mediated inhibition of protein synthesis in chloroplasts prevents the greening of seedlings, represses the activity of photosynthesis-related genes in the nucleus, including LHCB1.2, and induces the phenylpropanoid pathway, resulting in the production of anthocyanins. In genomes uncoupled (gun) mutants, LHCB1.2 expression is maintained in the presence of LIN or other inhibitors of early chloroplast development. In a screen using concentrations of LIN lower than those employed to isolate gun mutants, we have identified happy on lincomycin (holi) mutants. Several holi mutants show an increased tolerance to LIN, exhibiting de-repressed LHCB1.2 expression and chlorophyll synthesis in seedlings. The mutations responsible were identified by whole-genome single-nucleotide polymorphism (SNP) mapping, and most were found to affect the phenylpropanoid pathway; however, LHCB1.2 expression does not appear to be directly regulated by phenylpropanoids, as indicated by the metabolic profiling of mutants. The most potent holi mutant is defective in a subunit of cellulose synthase encoded by IRREGULAR XYLEM 3, and comparative analysis of this and other cell-wall mutants establishes a link between secondary cell-wall integrity and early chloroplast development, possibly involving altered ABA metabolism or sensing.
Collapse
Affiliation(s)
- Duorong Xu
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Ravi Dhiman
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Adriana Garibay
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben), Corrensstraße 3, 06466, Stadt Seeland, OT Gatersleben, Germany
| | - Hans-Peter Mock
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK-Gatersleben), Corrensstraße 3, 06466, Stadt Seeland, OT Gatersleben, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
143
|
De Caroli M, Manno E, Perrotta C, De Lorenzo G, Di Sansebastiano GP, Piro G. CesA6 and PGIP2 Endocytosis Involves Different Subpopulations of TGN-Related Endosomes. FRONTIERS IN PLANT SCIENCE 2020; 11:350. [PMID: 32292410 PMCID: PMC7118220 DOI: 10.3389/fpls.2020.00350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/10/2020] [Indexed: 05/04/2023]
Abstract
Endocytosis is an essential process for the internalization of plasma membrane proteins, lipids and extracellular molecules into the cells. The mechanisms underlying endocytosis in plant cells involve several endosomal organelles whose origins and specific role needs still to be clarified. In this study we compare the internalization events of a GFP-tagged polygalacturonase-inhibiting protein of Phaseolus vulgaris (PGIP2-GFP) to that of a GFP-tagged subunit of cellulose synthase complex of Arabidopsis thaliana (secGFP-CesA6). Through the use of endocytic traffic chemical inhibitors (tyrphostin A23, salicylic acid, wortmannin, concanamycin A, Sortin 2, Endosidin 5 and BFA) it was evidenced that the two protein fusions were endocytosed through distinct endosomes with different mechanisms. PGIP2-GFP endocytosis is specifically sensitive to tyrphostin A23, salicylic acid and Sortin 2; furthermore, SYP51, a tSNARE with interfering effect on late steps of vacuolar traffic, affects its arrival in the central vacuole. SecGFP-CesA6, specifically sensitive to Endosidin 5, likely reaches the plasma membrane passing through the trans Golgi network (TGN), since the BFA treatment leads to the formation of BFA bodies, compatible with the aggregation of TGNs. BFA treatments determine the accumulation and tethering of the intracellular compartments labeled by both proteins, but PGIP2-GFP aggregated compartments overlap with those labeled by the endocytic dye FM4-64 while secGFP-CesA6 fills different compartments. Furthermore, secGFP-CesA6 co-localization with RFP-NIP1.1, marker of the direct ER-to-Vacuole traffic, in small compartments separated from ER suggests that secGFP-CesA6 is sorted through TGNs in which the direct contribution from the ER plays an important role. All together the data indicate the existence of a heterogeneous population of Golgi-independent TGNs.
Collapse
Affiliation(s)
- Monica De Caroli
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Elisa Manno
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Carla Perrotta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Giulia De Lorenzo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome, Italy
| | - Gian-Pietro Di Sansebastiano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
- *Correspondence: Gian-Pietro Di Sansebastiano,
| | - Gabriella Piro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| |
Collapse
|
144
|
Ovečka M, Luptovčiak I, Komis G, Šamajová O, Samakovli D, Šamaj J. Spatiotemporal Pattern of Ectopic Cell Divisions Contribute to Mis-Shaped Phenotype of Primary and Lateral Roots of katanin1 Mutant. FRONTIERS IN PLANT SCIENCE 2020; 11:734. [PMID: 32582258 PMCID: PMC7296145 DOI: 10.3389/fpls.2020.00734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/07/2020] [Indexed: 05/04/2023]
Abstract
Pattern formation, cell proliferation, and directional cell growth, are driving factors of plant organ shape, size, and overall vegetative development. The establishment of vegetative morphogenesis strongly depends on spatiotemporal control and synchronization of formative and proliferative cell division patterns. In this context, the progression of cell division and the regulation of cell division plane orientation are defined by molecular mechanisms converging to the proper positioning and temporal reorganization of microtubule arrays such as the preprophase microtubule band, the mitotic spindle and the cytokinetic phragmoplast. By focusing on the tractable example of primary root development and lateral root emergence in Arabidopsis thaliana, genetic studies have highlighted the importance of mechanisms underlying microtubule reorganization in the establishment of the root system. In this regard, severe alterations of root growth, and development found in extensively studied katanin1 mutants of A. thaliana (fra2, lue1, and ktn1-2), were previously attributed to defective rearrangements of cortical microtubules and aberrant cell division plane reorientation. How KATANIN1-mediated microtubule severing contributes to tissue patterning and organ morphogenesis, ultimately leading to anisotropy in microtubule organization is a trending topic under vigorous investigation. Here we addressed this issue during root development, using advanced light-sheet fluorescence microscopy (LSFM) and long-term imaging of ktn1-2 mutant expressing the GFP-TUA6 microtubule marker. This method allowed spatial and temporal monitoring of cell division patterns in growing roots. Analysis of acquired multidimensional data sets revealed the occurrence of ectopic cell divisions in various tissues including the calyptrogen and the protoxylem of the main root, as well as in lateral root primordia. Notably the ktn1-2 mutant exhibited excessive longitudinal cell divisions (parallel to the root axis) at ectopic positions. This suggested that changes in the cell division pattern and the occurrence of ectopic cell divisions contributed significantly to pleiotropic root phenotypes of ktn1-2 mutant. LSFM provided evidence that KATANIN1 is required for the spatiotemporal control of cell divisions and establishment of tissue patterns in living A. thaliana roots.
Collapse
|
145
|
Mielke S, Gasperini D. Interplay between Plant Cell Walls and Jasmonate Production. PLANT & CELL PHYSIOLOGY 2019; 60:2629-2637. [PMID: 31241137 DOI: 10.1093/pcp/pcz119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/04/2019] [Indexed: 05/23/2023]
Abstract
Plant cell walls are sophisticated carbohydrate-rich structures representing the immediate contact surface with the extracellular environment, often serving as the first barrier against biotic and abiotic stresses. Notably, a variety of perturbations in plant cell walls result in upregulated jasmonate (JA) production, a phytohormone with essential roles in defense and growth responses. Hence, cell wall-derived signals can initiate intracellular JA-mediated responses and the elucidation of the underlying signaling pathways could provide novel insights into cell wall maintenance and remodeling, as well as advance our understanding on how is JA biosynthesis initiated. This Mini Review will describe current knowledge about cell wall-derived damage signals and their effects on JA biosynthesis, as well as provide future perspectives.
Collapse
Affiliation(s)
- Stefan Mielke
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) 06120, Germany
| | - Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) 06120, Germany
| |
Collapse
|
146
|
McCahill IW, Hazen SP. Regulation of Cell Wall Thickening by a Medley of Mechanisms. TRENDS IN PLANT SCIENCE 2019; 24:853-866. [PMID: 31255545 DOI: 10.1016/j.tplants.2019.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 05/08/2023]
Abstract
To provide physical support for developing structures and to withstand the pressures associated with water and nutrient transport, some cells deposit a secondary cell wall, a rigid matrix of polysaccharide and phenolic biopolymers. The biosynthesis and deposition of these materials and the patterning of secondary wall-forming cells is controlled by a network of transcription factors. However, recent work suggests that this network forms the core of a more complex, multilevel regulatory system. This expanded system includes epigenetic, post-transcriptional, and post-translational regulation, and is coordinated with other pathways controlling primary growth and responses to environmental stimuli. New findings expand the set of transcription factors identified as secondary cell wall regulators and reveal novel regulatory processes that further govern secondary wall biogenesis.
Collapse
Affiliation(s)
- Ian W McCahill
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA; Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Samuel P Hazen
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
147
|
Ijaz B, Zhao N, Kong J, Hua J. Fiber Quality Improvement in Upland Cotton ( Gossypium hirsutum L.): Quantitative Trait Loci Mapping and Marker Assisted Selection Application. FRONTIERS IN PLANT SCIENCE 2019; 10:1585. [PMID: 31921240 PMCID: PMC6917639 DOI: 10.3389/fpls.2019.01585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/12/2019] [Indexed: 05/17/2023]
Abstract
Genetic improvement in fiber quality is one of the main challenges for cotton breeders. Fiber quality traits are controlled by multiple genes and are classified as complex quantitative traits, with a negative relationship with yield potential, so the genetic gain is low in traditional genetic improvement by phenotypic selection. The availability of Gossypium genomic sequences facilitates the development of high-throughput molecular markers, quantitative trait loci (QTL) fine mapping and gene identification, which helps us to validate candidate genes and to use marker assisted selection (MAS) on fiber quality in breeding programs. Based on developments of high density linkage maps, QTLs fine mapping, marker selection and omics, we have performed trait dissection on fiber quality traits in diverse populations of upland cotton. QTL mapping combined with multi-omics approaches such as, RNA sequencing datasets to identify differentially expressed genes have benefited the improvement of fiber quality. In this review, we discuss the application of molecular markers, QTL mapping and MAS for fiber quality improvement in upland cotton.
Collapse
Affiliation(s)
- Babar Ijaz
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- *Correspondence: Jinping Hua,
| |
Collapse
|
148
|
Chang P, Zhu L, Zhao M, Li C, Zhang Y, Li L. The first transcriptome sequencing and analysis of the endangered plant species Picea neoveitchii Mast. and potential EST-SSR markers development. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1632739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Pan Chang
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
- Shaanxi Province Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, PR China
| | - Ling Zhu
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
| | - Mengran Zhao
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
- Shaanxi Province Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, PR China
| | - Chao Li
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
| | - Yi Zhang
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
| | - Lingli Li
- Department of Forestry, College of Forestry, Northwest A&F University, Yangling, PR China
- Shaanxi Province Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, PR China
| |
Collapse
|