101
|
Dubey AK, Mohbey KK. Enabling CT-Scans for covid detection using transfer learning-based neural networks. J Biomol Struct Dyn 2022; 41:2528-2539. [PMID: 35129088 DOI: 10.1080/07391102.2022.2034668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Today, we are coping with the pandemic, and the novel virus is covertly evolving day by day. Therefore, a precautionary system to deal with the issue is required as early as possible. The last few years were very challenging for doctors, vaccine makers, hospitals, and medical authorities to deal with the massive crowd to provide results for all patients and newcomers in the past months. Thus, these issues should be handled with a robust system that can accord with many people and deliver the results in a fraction of time without visiting public places and help reduce crowd gathering. So, to deal with these issues, we developed an AI model using transfer learning that can aid doctors and other people to get to know whether they were suffering from covid or not. In this paper, we have used VGG-19 (CNN-based) model with open-sourced COVID-CT (CTSI) dataset. The dataset consists of 349 images of COVID-19 of 216 patients and 463 images of NON-COVID-19. We have achieved an accuracy of 95%, precision of 96%, recall of 94%, and F1-Score of 96% from the experiments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ankit Kumar Dubey
- Department of Computer Science, Central University of Rajasthan, Ajmer, India
| | | |
Collapse
|
102
|
Mousavi Z, Shahini N, Sheykhivand S, Mojtahedi S, Arshadi A. COVID-19 detection using chest X-ray images based on a developed deep neural network. SLAS Technol 2022; 27:63-75. [PMID: 35058196 PMCID: PMC8545610 DOI: 10.1016/j.slast.2021.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIM Currently, a new coronavirus called COVID-19 is the biggest challenge of the human at 21st century. Now, the spread of this virus is such that mortality has risen strongly in all cities of countries. Therefore, it is necessary to think of a solution to handle the disease by fast and timely diagnosis. This paper proposes a method that uses chest X-ray imagery to divide 2-4 classes into 7 different Scenarios, including Bacterial, Viral, Healthy, and COVID-19 classes. The aim of this study is to propose a method that uses chest X-ray imagery to divide 2-4 classes into 7 different Scenarios, including Bacterial, Viral, Healthy, and COVID-19 classes. METHODS 6 different databases from chest X-ray imagery that have been widely used in recent studies have been gathered for this aim. A Convolutional Neural Network-Long Short Time Memory model is designed and developed to extract features from raw data hierarchically. In order to make more realistic assumptions and use the Proposed Method in the practical field, white Gaussian noise is added to the raw chest X-ray imagery. Additionally, the proposed network is tested and investigated not only on 6 expressed databases but also on two additional databases. RESULTS On the test set, the proposed network achieved an accuracy of more than 90% for all Scenarios excluding Scenario V, i.e. Healthy against the COVID-19 against the Viral, and also achieved 99% accuracy for separating the COVID-19 from the Healthy group. The results showed that the proposed network is robust to noise up to 1 dB. It is worth noting that the proposed network for two additional databases, which were only used as test databases, also achieved more than 90% accuracy. In addition, in comparison to the state-of-the-art pneumonia detection approaches, the final results obtained from the proposed network is so promising. CONCLUSIONS The proposed network is effective in detecting COVID-19 and other lung infectious diseases using chest X-ray imagery and can thus assist radiologists in making rapid and accurate detections.
Collapse
Affiliation(s)
- Zohreh Mousavi
- Department of Mechanical Engineering, Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran.
| | - Nahal Shahini
- Deparment of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran.
| | - Sobhan Sheykhivand
- Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
| | - Sina Mojtahedi
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Okan University, Istanbul, Turkey
| | - Afrooz Arshadi
- Department of statiatics, Faculty of Mathematical sciences and computer, University of Allameh Tabataba'i, Tehran, Iran
| |
Collapse
|
103
|
Lu S, Zhu Z, Gorriz JM, Wang S, Zhang Y. NAGNN: Classification of COVID-19 based on neighboring aware representation from deep graph neural network. INT J INTELL SYST 2022; 37:1572-1598. [PMID: 38607823 PMCID: PMC8652936 DOI: 10.1002/int.22686] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022]
Abstract
COVID-19 pneumonia started in December 2019 and caused large casualties and huge economic losses. In this study, we intended to develop a computer-aided diagnosis system based on artificial intelligence to automatically identify the COVID-19 in chest computed tomography images. We utilized transfer learning to obtain the image-level representation (ILR) based on the backbone deep convolutional neural network. Then, a novel neighboring aware representation (NAR) was proposed to exploit the neighboring relationships between the ILR vectors. To obtain the neighboring information in the feature space of the ILRs, an ILR graph was generated based on the k-nearest neighbors algorithm, in which the ILRs were linked with their k-nearest neighboring ILRs. Afterward, the NARs were computed by the fusion of the ILRs and the graph. On the basis of this representation, a novel end-to-end COVID-19 classification architecture called neighboring aware graph neural network (NAGNN) was proposed. The private and public data sets were used for evaluation in the experiments. Results revealed that our NAGNN outperformed all the 10 state-of-the-art methods in terms of generalization ability. Therefore, the proposed NAGNN is effective in detecting COVID-19, which can be used in clinical diagnosis.
Collapse
Affiliation(s)
- Siyuan Lu
- School of InformaticsUniversity of LeicesterLeicesterUK
| | - Ziquan Zhu
- Science in Civil EngineeringUniversity of FloridaGainesvilleFLUSA
| | - Juan Manuel Gorriz
- Department of Signal Theory, Networking and CommunicationsUniversity of GranadaGranadaSpain
| | - Shui‐Hua Wang
- School of Mathematics and Actuarial ScienceUniversity of LeicesterLeicesterUK
| | - Yu‐Dong Zhang
- School of InformaticsUniversity of LeicesterLeicesterUK
| |
Collapse
|
104
|
Malhotra A, Mittal S, Majumdar P, Chhabra S, Thakral K, Vatsa M, Singh R, Chaudhury S, Pudrod A, Agrawal A. Multi-task driven explainable diagnosis of COVID-19 using chest X-ray images. PATTERN RECOGNITION 2022; 122:108243. [PMID: 34456368 PMCID: PMC8379001 DOI: 10.1016/j.patcog.2021.108243] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/06/2021] [Accepted: 08/08/2021] [Indexed: 05/07/2023]
Abstract
With increasing number of COVID-19 cases globally, all the countries are ramping up the testing numbers. While the RT-PCR kits are available in sufficient quantity in several countries, others are facing challenges with limited availability of testing kits and processing centers in remote areas. This has motivated researchers to find alternate methods of testing which are reliable, easily accessible and faster. Chest X-Ray is one of the modalities that is gaining acceptance as a screening modality. Towards this direction, the paper has two primary contributions. Firstly, we present the COVID-19 Multi-Task Network (COMiT-Net) which is an automated end-to-end network for COVID-19 screening. The proposed network not only predicts whether the CXR has COVID-19 features present or not, it also performs semantic segmentation of the regions of interest to make the model explainable. Secondly, with the help of medical professionals, we manually annotate the lung regions and semantic segmentation of COVID19 symptoms in CXRs taken from the ChestXray-14, CheXpert, and a consolidated COVID-19 dataset. These annotations will be released to the research community. Experiments performed with more than 2500 frontal CXR images show that at 90% specificity, the proposed COMiT-Net yields 96.80% sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ashwin Pudrod
- Ashwini Hospital and Ramakant Heart Care Centre, 431602, India
| | | |
Collapse
|
105
|
Balaha HM, El-Gendy EM, Saafan MM. A complete framework for accurate recognition and prognosis of COVID-19 patients based on deep transfer learning and feature classification approach. Artif Intell Rev 2022; 55:5063-5108. [PMID: 35125606 PMCID: PMC8799451 DOI: 10.1007/s10462-021-10127-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sudden appearance of COVID-19 has put the world in a serious situation. Due to the rapid spread of the virus and the increase in the number of infected patients and deaths, COVID-19 was declared a pandemic. This pandemic has its destructive effect not only on humans but also on the economy. Despite the development and availability of different vaccines for COVID-19, scientists still warn the citizens of new severe waves of the virus, and as a result, fast diagnosis of COVID-19 is a critical issue. Chest imaging proved to be a powerful tool in the early detection of COVID-19. This study introduces an entire framework for the early detection and early prognosis of COVID-19 severity in the diagnosed patients using laboratory test results. It consists of two phases (1) Early Diagnostic Phase (EDP) and (2) Early Prognostic Phase (EPP). In EDP, COVID-19 patients are diagnosed using CT chest images. In the current study, 5, 159 COVID-19 and 10, 376 normal computed tomography (CT) images of Egyptians were used as a dataset to train 7 different convolutional neural networks using transfer learning. Data augmentation normal techniques and generative adversarial networks (GANs), CycleGAN and CCGAN, were used to increase the images in the dataset to avoid overfitting issues. 28 experiments were applied and multiple performance metrics were captured. Classification with no augmentation yielded \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$99.61\%$$\end{document}99.61% accuracy by EfficientNetB7 architecture. By applying CycleGAN and CC-GAN Augmentation, the maximum reported accuracies were \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$99.57\%$$\end{document}99.57% and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$99.14\%$$\end{document}99.14% by MobileNetV1 and VGG-16 architectures respectively. In EPP, the prognosis of the severity of COVID-19 in patients is early determined using laboratory test results. In this study, 25 different classification techniques were applied and from the different results, the highest accuracies were \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$98.70\%$$\end{document}98.70% and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$97.40\%$$\end{document}97.40% reported by the Ensemble Bagged Trees and Tree (Fine, Medium, and Coarse) techniques respectively.
Collapse
Affiliation(s)
- Hossam Magdy Balaha
- Computers and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| | - Eman M. El-Gendy
- Computers and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| | - Mahmoud M. Saafan
- Computers and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| |
Collapse
|
106
|
Yaşar H, Ceylan M. A novel study for automatic two-class COVID-19 diagnosis (between COVID-19 and Healthy, Pneumonia) on X-ray images using texture analysis and 2-D/3-D convolutional neural networks. MULTIMEDIA SYSTEMS 2022; 29:1-19. [PMID: 35125671 PMCID: PMC8799982 DOI: 10.1007/s00530-022-00892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The pandemic caused by the COVID-19 virus affects the world widely and heavily. When examining the CT, X-ray, and ultrasound images, radiologists must first determine whether there are signs of COVID-19 in the images. That is, COVID-19/Healthy detection is made. The second determination is the separation of pneumonia caused by the COVID-19 virus and pneumonia caused by a bacteria or virus other than COVID-19. This distinction is key in determining the treatment and isolation procedure to be applied to the patient. In this study, which aims to diagnose COVID-19 early using X-ray images, automatic two-class classification was carried out in four different titles: COVID-19/Healthy, COVID-19 Pneumonia/Bacterial Pneumonia, COVID-19 Pneumonia/Viral Pneumonia, and COVID-19 Pneumonia/Other Pneumonia. For this study, 3405 COVID-19, 2780 Bacterial Pneumonia, 1493 Viral Pneumonia, and 1989 Healthy images obtained by combining eight different data sets with open access were used. In the study, besides using the original X-ray images alone, classification results were obtained by accessing the images obtained using Local Binary Pattern (LBP) and Local Entropy (LE). The classification procedures were repeated for the images that were combined with the original images, LBP, and LE images in various combinations. 2-D CNN (Two-Dimensional Convolutional Neural Networks) and 3-D CNN (Three-Dimensional Convolutional Neural Networks) architectures were used as classifiers within the scope of the study. Mobilenetv2, Resnet101, and Googlenet architectures were used in the study as a 2-D CNN. A 24-layer 3-D CNN architecture has also been designed and used. Our study is the first to analyze the effect of diversification of input data type on classification results of 2-D/3-D CNN architectures. The results obtained within the scope of the study indicate that diversifying X-ray images with tissue analysis methods in the diagnosis of COVID-19 and including CNN input provides significant improvements in the results. Also, it is understood that the 3-D CNN architecture can be an important alternative to achieve a high classification result.
Collapse
Affiliation(s)
- Huseyin Yaşar
- Ministry of Health of Republic of Turkey, Ankara, Turkey
| | - Murat Ceylan
- Department of Electrical and Electronics Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, Turkey
| |
Collapse
|
107
|
Tangudu VSK, Kakarla J, Venkateswarlu IB. COVID-19 detection from chest x-ray using MobileNet and residual separable convolution block. Soft comput 2022; 26:2197-2208. [PMID: 35106060 PMCID: PMC8794607 DOI: 10.1007/s00500-021-06579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 10/27/2022]
Abstract
A newly emerged coronavirus disease affects the social and economical life of the world. This virus mainly infects the respiratory system and spreads with airborne communication. Several countries witness the serious consequences of the COVID-19 pandemic. Early detection of COVID-19 infection is the critical step to survive a patient from death. The chest radiography examination is the fast and cost-effective way for COVID-19 detection. Several researchers have been motivated to automate COVID-19 detection and diagnosis process using chest x-ray images. However, existing models employ deep networks and are suffering from high training time. This work presents transfer learning and residual separable convolution block for COVID-19 detection. The proposed model utilizes pre-trained MobileNet for binary image classification. The proposed residual separable convolution block has improved the performance of basic MobileNet. Two publicly available datasets COVID5K, and COVIDRD have considered for the evaluation of the proposed model. Our proposed model exhibits superior performance than existing state-of-art and pre-trained models with 99% accuracy on both datasets. We have achieved similar performance on noisy datasets. Moreover, the proposed model outperforms existing pre-trained models with less training time and competitive performance than basic MobileNet. Further, our model is suitable for mobile applications as it uses fewer parameters and lesser training time.
Collapse
Affiliation(s)
| | - Jagadeesh Kakarla
- Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai, India
| | | |
Collapse
|
108
|
Irene D S, Beulah JR, K. A, K. K. An efficient COVID-19 detection from CT images using ensemble support vector machine with Ludo game-based swarm optimisation. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2022. [DOI: 10.1080/21681163.2021.2024088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shiny Irene D
- Department of Computing Technologies, School of Computing, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, TN, India
| | - J. Rene Beulah
- Department of Computing Technologies, School of Computing, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, TN, India
| | - Anitha K.
- Department of Computer Science and Engineering Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Saveetha nagar, Thandalam, Chennai, Tamil Nadu, India
| | - Kannan K.
- Department of Electronics and Communication Engineering, R.M.K College of Engineering And Technology, R.S.M. Nagar, Puduvoyal, Gummidipoondi (TK), Thiruvallur (DT), Tamilnadu, India
| |
Collapse
|
109
|
Diagnostic Performance of a Deep Learning Model Deployed at a National COVID-19 Screening Facility for Detection of Pneumonia on Frontal Chest Radiographs. Healthcare (Basel) 2022; 10:healthcare10010175. [PMID: 35052339 PMCID: PMC8775598 DOI: 10.3390/healthcare10010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 11/25/2022] Open
Abstract
(1) Background: Chest radiographs are the mainstay of initial radiological investigation in this COVID-19 pandemic. A reliable and readily deployable artificial intelligence (AI) algorithm that detects pneumonia in COVID-19 suspects can be useful for screening or triage in a hospital setting. This study has a few objectives: first, to develop a model that accurately detects pneumonia in COVID-19 suspects; second, to assess its performance in a real-world clinical setting; and third, by integrating the model with the daily clinical workflow, to measure its impact on report turn-around time. (2) Methods: The model was developed from the NIH Chest-14 open-source dataset and fine-tuned using an internal dataset comprising more than 4000 CXRs acquired in our institution. Input from two senior radiologists provided the reference standard. The model was integrated into daily clinical workflow, prioritising abnormal CXRs for expedited reporting. Area under the receiver operating characteristic curve (AUC), F1 score, sensitivity, and specificity were calculated to characterise diagnostic performance. The average time taken by radiologists in reporting the CXRs was compared against the mean baseline time taken prior to implementation of the AI model. (3) Results: 9431 unique CXRs were included in the datasets, of which 1232 were ground truth-labelled positive for pneumonia. On the “live” dataset, the model achieved an AUC of 0.95 (95% confidence interval (CI): 0.92, 0.96) corresponding to a specificity of 97% (95% CI: 0.97, 0.98) and sensitivity of 79% (95% CI: 0.72, 0.84). No statistically significant degradation of diagnostic performance was encountered during clinical deployment, and report turn-around time was reduced by 22%. (4) Conclusion: In real-world clinical deployment, our model expedites reporting of pneumonia in COVID-19 suspects while preserving diagnostic performance without significant model drift.
Collapse
|
110
|
Abou-Kreisha MT, Yaseen HK, Fathy KA, Ebeid EA, ElDahshan KA. Multisource Smart Computer-Aided System for Mining COVID-19 Infection Data. Healthcare (Basel) 2022; 10:109. [PMID: 35052273 PMCID: PMC8775247 DOI: 10.3390/healthcare10010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, we approach the problem of detecting and diagnosing COVID-19 infections using multisource scan images including CT and X-ray scans to assist the healthcare system during the COVID-19 pandemic. Here, a computer-aided diagnosis (CAD) system is proposed that utilizes analysis of the CT or X-ray to diagnose the impact of damage in the respiratory system per infected case. The CAD was utilized and optimized by hyper-parameters for shallow learning, e.g., SVM and deep learning. For the deep learning, mini-batch stochastic gradient descent was used to overcome fitting problems during transfer learning. The optimal parameter list values were found using the naïve Bayes technique. Our contributions are (i) a comparison among the detection rates of pre-trained CNN models, (ii) a suggested hybrid deep learning with shallow machine learning, (iii) an extensive analysis of the results of COVID-19 transition and informative conclusions through developing various transfer techniques, and (iv) a comparison of the accuracy of the previous models with the systems of the present study. The effectiveness of the proposed CAD is demonstrated using three datasets, either using an intense learning model as a fully end-to-end solution or using a hybrid deep learning model. Six experiments were designed to illustrate the superior performance of our suggested CAD when compared to other similar approaches. Our system achieves 99.94, 99.6, 100, 97.41, 99.23, and 98.94 accuracy for binary and three-class labels for the CT and two CXR datasets.
Collapse
Affiliation(s)
| | - Humam K. Yaseen
- Mathematics Department, Faculty of Science, Al-Azhar University, Cairo 11651, Egypt; (M.T.A.-K.); (K.A.F.); (E.A.E.); (K.A.E.)
| | | | | | | |
Collapse
|
111
|
Abumalloh RA, Nilashi M, Yousoof Ismail M, Alhargan A, Alghamdi A, Alzahrani AO, Saraireh L, Osman R, Asadi S. Medical image processing and COVID-19: A literature review and bibliometric analysis. J Infect Public Health 2022; 15:75-93. [PMID: 34836799 PMCID: PMC8596659 DOI: 10.1016/j.jiph.2021.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
COVID-19 crisis has placed medical systems over the world under unprecedented and growing pressure. Medical imaging processing can help in the diagnosis, treatment, and early detection of diseases. It has been considered as one of the modern technologies applied to fight against the COVID-19 crisis. Although several artificial intelligence, machine learning, and deep learning techniques have been deployed in medical image processing in the context of COVID-19 disease, there is a lack of research considering systematic literature review and categorization of published studies in this field. A systematic review locates, assesses, and interprets research outcomes to address a predetermined research goal to present evidence-based practical and theoretical insights. The main goal of this study is to present a literature review of the deployed methods of medical image processing in the context of the COVID-19 crisis. With this in mind, the studies available in reliable databases were retrieved, studied, evaluated, and synthesized. Based on the in-depth review of literature, this study structured a conceptual map that outlined three multi-layered folds: data gathering and description, main steps of image processing, and evaluation metrics. The main research themes were elaborated in each fold, allowing the authors to recommend upcoming research paths for scholars. The outcomes of this review highlighted that several methods have been adopted to classify the images related to the diagnosis and detection of COVID-19. The adopted methods have presented promising outcomes in terms of accuracy, cost, and detection speed.
Collapse
Affiliation(s)
- Rabab Ali Abumalloh
- Computer Department, Applied College, Imam Abdulrahman Bin Faisal University, P.O. Box. 1982, Dammam, Saudi Arabia
| | - Mehrbakhsh Nilashi
- Centre for Global Sustainability Studies (CGSS), Universiti Sains Malaysia, 11800, USM Penang, Malaysia.
| | | | - Ashwaq Alhargan
- Computer Science Department, College of Computing and Informatics, Saudi Electronic University, Saudi Arabia
| | - Abdullah Alghamdi
- Information Systems Dept., College of Computer Science and Information Systems, Najran University, Najran, Saudi Arabia
| | - Ahmed Omar Alzahrani
- College of Computer Science and Engineering, University of Jeddah, 21959 Jeddah, Saudi Arabia
| | - Linah Saraireh
- Management Information System Department, College of Business, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| | - Reem Osman
- Computer Department, Applied College, Imam Abdulrahman Bin Faisal University, P.O. Box. 1982, Dammam, Saudi Arabia
| | - Shahla Asadi
- Centre of Software Technology and Management, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
112
|
Zhao L, Lediju Bell MA. A Review of Deep Learning Applications in Lung Ultrasound Imaging of COVID-19 Patients. BME FRONTIERS 2022; 2022:9780173. [PMID: 36714302 PMCID: PMC9880989 DOI: 10.34133/2022/9780173] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The massive and continuous spread of COVID-19 has motivated researchers around the world to intensely explore, understand, and develop new techniques for diagnosis and treatment. Although lung ultrasound imaging is a less established approach when compared to other medical imaging modalities such as X-ray and CT, multiple studies have demonstrated its promise to diagnose COVID-19 patients. At the same time, many deep learning models have been built to improve the diagnostic efficiency of medical imaging. The integration of these initially parallel efforts has led multiple researchers to report deep learning applications in medical imaging of COVID-19 patients, most of which demonstrate the outstanding potential of deep learning to aid in the diagnosis of COVID-19. This invited review is focused on deep learning applications in lung ultrasound imaging of COVID-19 and provides a comprehensive overview of ultrasound systems utilized for data acquisition, associated datasets, deep learning models, and comparative performance.
Collapse
Affiliation(s)
- Lingyi Zhao
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, USA
| | - Muyinatu A. Lediju Bell
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, USA,Department of Computer Science, Johns Hopkins University, Baltimore, USA,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
113
|
Rahmani AM, Azhir E, Naserbakht M, Mohammadi M, Aldalwie AHM, Majeed MK, Taher Karim SH, Hosseinzadeh M. Automatic COVID-19 detection mechanisms and approaches from medical images: a systematic review. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 81:28779-28798. [PMID: 35382107 PMCID: PMC8970643 DOI: 10.1007/s11042-022-12952-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/09/2021] [Accepted: 03/10/2022] [Indexed: 05/04/2023]
Abstract
Since early 2020, Coronavirus Disease 2019 (COVID-19) has spread widely around the world. COVID-19 infects the lungs, leading to breathing difficulties. Early detection of COVID-19 is important for the prevention and treatment of pandemic. Numerous sources of medical images (e.g., Chest X-Rays (CXR), Computed Tomography (CT), and Magnetic Resonance Imaging (MRI)) are regarded as a desirable technique for diagnosing COVID-19 cases. Medical images of coronavirus patients show that the lungs are filled with sticky mucus that prevents them from inhaling. Today, Artificial Intelligence (AI) based algorithms have made a significant shift in the computer aided diagnosis due to their effective feature extraction capabilities. In this survey, a complete and systematic review of the application of Machine Learning (ML) methods for the detection of COVID-19 is presented, focused on works that used medical images. We aimed to evaluate various ML-based techniques in detecting COVID-19 using medical imaging. A total of 26 papers were extracted from ACM, ScienceDirect, Springerlink, Tech Science Press, and IEEExplore. Five different ML categories to review these mechanisms are considered, which are supervised learning-based, deep learning-based, active learning-based, transfer learning-based, and evolutionary learning-based mechanisms. A number of articles are investigated in each group. Also, some directions for further research are discussed to improve the detection of COVID-19 using ML techniques in the future. In most articles, deep learning is used as the ML method. Also, most of the researchers used CXR images to diagnose COVID-19. Most articles reported accuracy of the models to evaluate model performance. The accuracy of the studied models ranged from 0.84 to 0.99. The studies demonstrated the current status of AI techniques in using AI potentials in the fight against COVID-19.
Collapse
Affiliation(s)
- Amir Masoud Rahmani
- Future Technology Research Center, National Yunlin University of Science and Technology, Douliu, Yunlin Taiwan
| | - Elham Azhir
- Research and Development Center, Mobile Telecommunication Company of Iran, Tehran, Iran
| | - Morteza Naserbakht
- Mental Health Research Center, Psychosocial Health Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Mokhtar Mohammadi
- Department of Information Technology, College of Engineering and Computer Science, Lebanese French University, Kurdistan Region, Iraq
| | - Adil Hussein Mohammed Aldalwie
- Department of Communication and Computer Engineering, Faculty of Engineering, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Mohammed Kamal Majeed
- Information Technology Department, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Sarkhel H. Taher Karim
- Computer Department, College of Science, University of Halabja, Halabja, Iraq
- Computer Networks Department, Sulaimani Polytechnic University, Technical College of Informatics, Sulaymaniyah, Iraq
| | | |
Collapse
|
114
|
Appasami G, Nickolas S. A deep learning-based COVID-19 classification from chest X-ray image: case study. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2022; 231:3767-3777. [PMID: 35996535 PMCID: PMC9386662 DOI: 10.1140/epjs/s11734-022-00647-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/26/2022] [Indexed: 05/02/2023]
Abstract
The novel corona virus disease (COVID-19) is a pandemic disease that is currently affecting over 200 countries around the world and more than 6 millions of people died in last 2 years. Early detection of COVID-19 can mitigate and control its spread. Reverse transcription polymerase chain reaction (RT-CPR), Chest X-ray (CXR) scan, and Computerized Tomography (CT) scan are used to identify the COVID-19. Chest X-ray image analysis is relatively time efficient than compared with RT-CPR and CT scan. Its cost-effectiveness make it a good choice for COVID-19 Classification. We propose a deep learning based Convolutional Neural Network model for detection of COVID-19 from CXR. Chest X-ray images are collected from various sources dataset for training with augmentation and evaluating our model, which is widely used for COVID-19 detection and diagnosis. A Deep Convolutional neural network (CNN) based model for analysis of COVID-19 with data augmentation is proposed, which uses the patient's chest X-ray images for the diagnosis of COVID-19 with an aim to help the physicians to assist the diagnostic process among high workload conditions. The overall accuracy of 93 percent for COVID-19 Classification is achieved by choosing best optimizer.
Collapse
Affiliation(s)
- G. Appasami
- National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamilnadu India
| | - S. Nickolas
- National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamilnadu India
| |
Collapse
|
115
|
Mohbey KK, Sharma S, Kumar S, Sharma M. COVID-19 identification and analysis using CT scan images: Deep transfer learning-based approach. BLOCKCHAIN APPLICATIONS FOR HEALTHCARE INFORMATICS 2022. [PMCID: PMC9212254 DOI: 10.1016/b978-0-323-90615-9.00011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Due to this epidemic of COVID-19, the everyday lives, welfare, and wealth of a country are affected. Inefficiency, a lack of medical diagnostics, and inadequately trained healthcare professionals are among the most significant barriers to arresting the development of this disease. Blockchain offers enormous promise for providing consistent and reliable real time and smart health facilities offsite. The infected patients with COVID-19 have shown they often have a lung infection upon arrival. It can be detected and analyzed using CT scan images. Unfortunately, though, it is time-consuming and liable to error. Thus, the assessment of chest CT scans must be automated. The proposed method uses transfer deep learning techniques to analyze CT scan images automatically. Transfer deep learning can improve the parameters of networks on huge databases, and pretrained networks can be used effectively on small datasets. We proposed a model built on VGGNet19, a convolutional neural network to classify individuals infected with coronavirus utilizing images of CT radiographs. We have used a globally accessible CT scan database that included 2500 CT pictures with COVID-19 infection and 2500 CT images without COVID-19 infection. An extensive experiment has been conducted using three deep learning methods such as VGG19, Xception Net, and CNN. Experiment findings indicate that the proposed model outperforms the other Xception Net and CNN models considerably. The results demonstrate that the proposed models have an accuracy of up to 95% and area under the receiver operating characteristic curve up to 95%.
Collapse
|
116
|
Das A. Adaptive UNet-based Lung Segmentation and Ensemble Learning with CNN-based Deep Features for Automated COVID-19 Diagnosis. MULTIMEDIA TOOLS AND APPLICATIONS 2021; 81:5407-5441. [PMID: 34955679 PMCID: PMC8693146 DOI: 10.1007/s11042-021-11787-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/23/2021] [Accepted: 12/02/2021] [Indexed: 06/01/2023]
Abstract
COVID-19 disease is a major health calamity in twentieth century, in which the infection is spreading at the global level. Developing countries like Bangladesh, India, and others are still facing a delay in recognizing COVID-19 cases. Hence, there is a need for immediate recognition with perfect identification of infection. This clear visualization helps to save the life of suspected COVID-19 patients. With the help of traditional RT-PCR testing, the combination of medical images and deep learning classifiers delivers more hopeful results with high accuracy in the prediction and recognition of COVID-19 cases. COVID-19 disease is recently researched through sample chest X-ray images, which have already proven its efficiency in lung diseases. To emphasize corona virus testing methods and to control the community spreading, the automatic detection process of COVID-19 is processed through the detailed medication reports from medical images. Although there are numerous challenges in the manual understanding of traces in COVID-19 infection from X-ray, the subtle differences among normal and infected X-rays can be traced by the data patterns of Convolutional Neural Network (CNN). To improve the detection performance of CNN, this paper plans to develop an Ensemble Learning with CNN-based Deep Features (EL-CNN-DF). In the initial phase, image scaling and median filtering perform the pre-processing of the chest X-ray images gathered from the benchmark source. The second phase is lung segmentation, which is the significant step for COVID detection. It is accomplished by the Adaptive Activation Function-based U-Net (AAF-U-Net). Once the lungs are segmented, it is subjected to novel EL-CNN-DF, in which the deep features are extracted from the pooling layer of CNN, and the fully connected layer of CNN are replaced with the three classifiers termed "Support Vector Machine (SVM), Autoencoder, Naive Bayes (NB)". The final detection of COVID-19 is done by these classifiers, in which high ranking strategy is utilized. As a modification, a Self Adaptive-Tunicate Swarm Algorithm (SA-TSA) is adopted as a boosting algorithm to enhance the performance of segmentation and detection. The overall analysis has shown that the precision of the enhanced CNN by using SA-TSA was 1.02%, 4.63%, 3.38%, 1.62%, 1.51% and 1.04% better than SVM, autoencoder, NB, Ensemble, RNN and LSTM respectively. The comparative performance analysis on existing model proves that the proposed algorithm is better than other algorithms in terms of segmentation and classification of COVID-19 detection.
Collapse
Affiliation(s)
- Anupam Das
- Royal Global University, Guwahati, Assam 781033 India
| |
Collapse
|
117
|
Dey A, Chattopadhyay S, Singh PK, Ahmadian A, Ferrara M, Senu N, Sarkar R. MRFGRO: a hybrid meta-heuristic feature selection method for screening COVID-19 using deep features. Sci Rep 2021; 11:24065. [PMID: 34911977 PMCID: PMC8674247 DOI: 10.1038/s41598-021-02731-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
COVID-19 is a respiratory disease that causes infection in both lungs and the upper respiratory tract. The World Health Organization (WHO) has declared it a global pandemic because of its rapid spread across the globe. The most common way for COVID-19 diagnosis is real-time reverse transcription-polymerase chain reaction (RT-PCR) which takes a significant amount of time to get the result. Computer based medical image analysis is more beneficial for the diagnosis of such disease as it can give better results in less time. Computed Tomography (CT) scans are used to monitor lung diseases including COVID-19. In this work, a hybrid model for COVID-19 detection has developed which has two key stages. In the first stage, we have fine-tuned the parameters of the pre-trained convolutional neural networks (CNNs) to extract some features from the COVID-19 affected lungs. As pre-trained CNNs, we have used two standard CNNs namely, GoogleNet and ResNet18. Then, we have proposed a hybrid meta-heuristic feature selection (FS) algorithm, named as Manta Ray Foraging based Golden Ratio Optimizer (MRFGRO) to select the most significant feature subset. The proposed model is implemented over three publicly available datasets, namely, COVID-CT dataset, SARS-COV-2 dataset, and MOSMED dataset, and attains state-of-the-art classification accuracies of 99.15%, 99.42% and 95.57% respectively. Obtained results confirm that the proposed approach is quite efficient when compared to the local texture descriptors used for COVID-19 detection from chest CT-scan images.
Collapse
Affiliation(s)
- Arijit Dey
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, 700064, India
| | - Soham Chattopadhyay
- Department of Electrical Engineering, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, West Bengal, 700032, India
| | - Pawan Kumar Singh
- Department of Information Technology, Jadavpur University, Jadavpur University Second Campus, Plot No. 8, Salt Lake Bypass, LB Block, Sector III, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Ali Ahmadian
- Institute of IR 4.0, The National University of Malaysia, 43600, Bangi, Malaysia.
- Department of Mathematics, Near East University, Nicosia, TRNC, Mersin 10, Turkey.
- Institute for Mathematical Research, Universiti Putra Malaysia (UPM), 43400, Selangor, Malaysia.
| | - Massimiliano Ferrara
- Department of Management and Technology, ICRIOS - The Invernizzi Centre for Research in Innovation, Organization, Strategy and Entrepreneurship, Bocconi University, Via Sarfatti, 25, Milan, MI, 20136, Italy.
| | - Norazak Senu
- Institute for Mathematical Research, Universiti Putra Malaysia (UPM), 43400, Selangor, Malaysia
| | - Ram Sarkar
- Department of Computer Science and Engineering, Jadavpur University, 188, Raja S.C. Mallick Road, Kolkata, West Bengal, 700032, India
| |
Collapse
|
118
|
J L G, Abraham B, M S S, Nair MS. A computer-aided diagnosis system for the classification of COVID-19 and non-COVID-19 pneumonia on chest X-ray images by integrating CNN with sparse autoencoder and feed forward neural network. Comput Biol Med 2021; 141:105134. [PMID: 34971978 PMCID: PMC8668604 DOI: 10.1016/j.compbiomed.2021.105134] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022]
Abstract
Several infectious diseases have affected the lives of many people and have caused great dilemmas all over the world. COVID-19 was declared a pandemic caused by a newly discovered virus named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by the World Health Organisation in 2019. RT-PCR is considered the golden standard for COVID-19 detection. Due to the limited RT-PCR resources, early diagnosis of the disease has become a challenge. Radiographic images such as Ultrasound, CT scans, X-rays can be used for the detection of the deathly disease. Developing deep learning models using radiographic images for detecting COVID-19 can assist in countering the outbreak of the virus. This paper presents a computer-aided detection model utilizing chest X-ray images for combating the pandemic. Several pre-trained networks and their combinations have been used for developing the model. The method uses features extracted from pre-trained networks along with Sparse autoencoder for dimensionality reduction and a Feed Forward Neural Network (FFNN) for the detection of COVID-19. Two publicly available chest X-ray image datasets, consisting of 504 COVID-19 images and 542 non-COVID-19 images, have been combined to train the model. The method was able to achieve an accuracy of 0.9578 and an AUC of 0.9821, using the combination of InceptionResnetV2 and Xception. Experiments have proved that the accuracy of the model improves with the usage of sparse autoencoder as the dimensionality reduction technique.
Collapse
Affiliation(s)
- Gayathri J L
- Department of Computer Science and Engineering, College of Engineering Perumon, Kollam, 691 601, Kerala, India.
| | - Bejoy Abraham
- Department of Computer Science and Engineering, College of Engineering Perumon, Kollam, 691 601, Kerala, India.
| | - Sujarani M S
- Department of Computer Science and Engineering, College of Engineering Perumon, Kollam, 691 601, Kerala, India
| | - Madhu S Nair
- Artificial Intelligence & Computer Vision Lab, Department of Computer Science, Cochin University of Science and Technology, Kochi, 682 022, Kerala, India
| |
Collapse
|
119
|
Sadik F, Dastider AG, Fattah SA. SpecMEn-DL: spectral mask enhancement with deep learning models to predict COVID-19 from lung ultrasound videos. Health Inf Sci Syst 2021; 9:28. [PMID: 34257953 PMCID: PMC8269407 DOI: 10.1007/s13755-021-00154-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Lung Ultrasound (LUS) images are considered to be effective for detecting Coronavirus Disease (COVID-19) as an alternative to the existing reverse transcription-polymerase chain reaction (RT-PCR)-based detection scheme. However, the recent literature exhibits a shortage of works dealing with LUS image-based COVID-19 detection. In this paper, a spectral mask enhancement (SpecMEn) scheme is introduced along with a histogram equalization pre-processing stage to reduce the noise effect in LUS images prior to utilizing them for feature extraction. In order to detect the COVID-19 cases, we propose to utilize the SpecMEn pre-processed LUS images in the deep learning (DL) models (namely the SpecMEn-DL method), which offers a better representation of some characteristics features in LUS images and results in very satisfactory classification performance. The performance of the proposed SpecMEn-DL technique is appraised by implementing some state-of-the-art DL models and comparing the results with related studies. It is found that the use of the SpecMEn scheme in DL techniques offers an average increase in accuracy and F 1 score of 11 % and 11.75 % , respectively, at the video-level. Comprehensive analysis and visualization of the intermediate steps manifest a very satisfactory detection performance creating a flexible and safe alternative option for the clinicians to get assistance while obtaining the immediate evaluation of the patients.
Collapse
Affiliation(s)
- Farhan Sadik
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205 Bangladesh
| | - Ankan Ghosh Dastider
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205 Bangladesh
| | - Shaikh Anowarul Fattah
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205 Bangladesh
| |
Collapse
|
120
|
Gudigar A, Raghavendra U, Nayak S, Ooi CP, Chan WY, Gangavarapu MR, Dharmik C, Samanth J, Kadri NA, Hasikin K, Barua PD, Chakraborty S, Ciaccio EJ, Acharya UR. Role of Artificial Intelligence in COVID-19 Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:8045. [PMID: 34884045 PMCID: PMC8659534 DOI: 10.3390/s21238045] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022]
Abstract
The global pandemic of coronavirus disease (COVID-19) has caused millions of deaths and affected the livelihood of many more people. Early and rapid detection of COVID-19 is a challenging task for the medical community, but it is also crucial in stopping the spread of the SARS-CoV-2 virus. Prior substantiation of artificial intelligence (AI) in various fields of science has encouraged researchers to further address this problem. Various medical imaging modalities including X-ray, computed tomography (CT) and ultrasound (US) using AI techniques have greatly helped to curb the COVID-19 outbreak by assisting with early diagnosis. We carried out a systematic review on state-of-the-art AI techniques applied with X-ray, CT, and US images to detect COVID-19. In this paper, we discuss approaches used by various authors and the significance of these research efforts, the potential challenges, and future trends related to the implementation of an AI system for disease detection during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anjan Gudigar
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - U Raghavendra
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Sneha Nayak
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Chui Ping Ooi
- School of Science and Technology, Singapore University of Social Sciences, Singapore 599494, Singapore;
| | - Wai Yee Chan
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Mokshagna Rohit Gangavarapu
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Chinmay Dharmik
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Jyothi Samanth
- Department of Cardiovascular Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.A.K.); (K.H.)
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.A.K.); (K.H.)
| | - Prabal Datta Barua
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW 2010, Australia;
- School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Subrata Chakraborty
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia;
- Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia
| | - Edward J. Ciaccio
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA;
| | - U. Rajendra Acharya
- School of Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore;
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
121
|
Saif AFM, Imtiaz T, Rifat S, Shahnaz C, Zhu WP, Ahmad MO. CapsCovNet: A Modified Capsule Network to Diagnose COVID-19 From Multimodal Medical Imaging. IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE 2021; 2:608-617. [PMID: 35582431 PMCID: PMC8851432 DOI: 10.1109/tai.2021.3104791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022]
Abstract
Since the end of 2019, novel coronavirus disease (COVID-19) has brought about a plethora of unforeseen changes to the world as we know it. Despite our ceaseless fight against it, COVID-19 has claimed millions of lives, and the death toll exacerbated due to its extremely contagious and fast-spreading nature. To control the spread of this highly contagious disease, a rapid and accurate diagnosis can play a very crucial part. Motivated by this context, a parallelly concatenated convolutional block-based capsule network is proposed in this article as an efficient tool to diagnose the COVID-19 patients from multimodal medical images. Concatenation of deep convolutional blocks of different filter sizes allows us to integrate discriminative spatial features by simultaneously changing the receptive field and enhances the scalability of the model. Moreover, concatenation of capsule layers strengthens the model to learn more complex representation by presenting the information in a fine to coarser manner. The proposed model is evaluated on three benchmark datasets, in which two of them are chest radiograph datasets and the rest is an ultrasound imaging dataset. The architecture that we have proposed through extensive analysis and reasoning achieved outstanding performance in COVID-19 detection task, which signifies the potentiality of the proposed model.
Collapse
Affiliation(s)
- A F M Saif
- Department of Electrical and Electronic EngineeringBangladesh University of Engineering and Technology Dhaka 1000 Bangladesh
| | - Tamjid Imtiaz
- Department of Electrical and Electronic EngineeringBangladesh University of Engineering and Technology Dhaka 1000 Bangladesh
| | - Shahriar Rifat
- Department of Electrical and Electronic EngineeringBangladesh University of Engineering and Technology Dhaka 1000 Bangladesh
| | - Celia Shahnaz
- Department of Electrical and Electronic EngineeringBangladesh University of Engineering and Technology Dhaka 1000 Bangladesh
| | - Wei-Ping Zhu
- Department of Electrical and Computer EngineeringConcordia University Montreal QC H3G 2W1 Canada
| | - M Omair Ahmad
- Department of Electrical and Computer EngineeringConcordia University Montreal QC H3G 2W1 Canada
| |
Collapse
|
122
|
Mousavi Mojab SZ, Shams S, Fotouhi F, Soltanian-Zadeh H. EpistoNet: an ensemble of Epistocracy-optimized mixture of experts for detecting COVID-19 on chest X-ray images. Sci Rep 2021; 11:21564. [PMID: 34732741 PMCID: PMC8566470 DOI: 10.1038/s41598-021-00524-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/24/2021] [Indexed: 01/29/2023] Open
Abstract
The Coronavirus has spread across the world and infected millions of people, causing devastating damage to the public health and global economies. To mitigate the impact of the coronavirus a reliable, fast, and accurate diagnostic system should be promptly implemented. In this study, we propose EpistoNet, a decision tree-based ensemble model using two mixtures of discriminative experts to classify COVID-19 lung infection from chest X-ray images. To optimize the architecture and hyper-parameters of the designed neural networks, we employed Epistocracy algorithm, a recently proposed hyper-heuristic evolutionary method. Using 2500 chest X-ray images consisting of 1250 COVID-19 and 1250 non-COVID-19 cases, we left out 500 images for testing and partitioned the remaining 2000 images into 5 different clusters using K-means clustering algorithm. We trained multiple deep convolutional neural networks on each cluster to help build a mixture of strong discriminative experts from the top-performing models supervised by a gating network. The final ensemble model obtained 95% accuracy on COVID-19 images and 93% accuracy on non-COVID-19. The experimental results show that EpistoNet can accurately, and reliably be used to detect COVID-19 infection in the chest X-ray images, and Epistocracy algorithm can be effectively used to optimize the hyper-parameters of the proposed models.
Collapse
Affiliation(s)
- Seyed Ziae Mousavi Mojab
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI, USA.
| | - Seyedmohammad Shams
- Medical Image Analysis Lab, Department of Radiology, Henry Ford Health System, Detroit, MI, USA
| | - Farshad Fotouhi
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI, USA
| | - Hamid Soltanian-Zadeh
- Medical Image Analysis Lab, Department of Radiology, Henry Ford Health System, Detroit, MI, USA
- CIPCE, Department of ECE, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
123
|
Khan MA, Alhaisoni M, Tariq U, Hussain N, Majid A, Damaševičius R, Maskeliūnas R. COVID-19 Case Recognition from Chest CT Images by Deep Learning, Entropy-Controlled Firefly Optimization, and Parallel Feature Fusion. SENSORS (BASEL, SWITZERLAND) 2021; 21:7286. [PMID: 34770595 PMCID: PMC8588229 DOI: 10.3390/s21217286] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
In healthcare, a multitude of data is collected from medical sensors and devices, such as X-ray machines, magnetic resonance imaging, computed tomography (CT), and so on, that can be analyzed by artificial intelligence methods for early diagnosis of diseases. Recently, the outbreak of the COVID-19 disease caused many deaths. Computer vision researchers support medical doctors by employing deep learning techniques on medical images to diagnose COVID-19 patients. Various methods were proposed for COVID-19 case classification. A new automated technique is proposed using parallel fusion and optimization of deep learning models. The proposed technique starts with a contrast enhancement using a combination of top-hat and Wiener filters. Two pre-trained deep learning models (AlexNet and VGG16) are employed and fine-tuned according to target classes (COVID-19 and healthy). Features are extracted and fused using a parallel fusion approach-parallel positive correlation. Optimal features are selected using the entropy-controlled firefly optimization method. The selected features are classified using machine learning classifiers such as multiclass support vector machine (MC-SVM). Experiments were carried out using the Radiopaedia database and achieved an accuracy of 98%. Moreover, a detailed analysis is conducted and shows the improved performance of the proposed scheme.
Collapse
Affiliation(s)
- Muhammad Attique Khan
- Department of Computer Science, HITEC University, Taxila 47080, Pakistan; (M.A.K.); (N.H.); (A.M.)
| | - Majed Alhaisoni
- College of Computer Science and Engineering, University of Ha’il, Ha’il 55211, Saudi Arabia;
| | - Usman Tariq
- Information Systems Department, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al Khraj 11942, Saudi Arabia;
| | - Nazar Hussain
- Department of Computer Science, HITEC University, Taxila 47080, Pakistan; (M.A.K.); (N.H.); (A.M.)
| | - Abdul Majid
- Department of Computer Science, HITEC University, Taxila 47080, Pakistan; (M.A.K.); (N.H.); (A.M.)
| | - Robertas Damaševičius
- Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Rytis Maskeliūnas
- Department of Multimedia Engineering, Kaunas University of Technology, 51368 Kaunas, Lithuania;
| |
Collapse
|
124
|
Horry MJ, Chakraborty S, Pradhan B, Fallahpoor M, Chegeni H, Paul M. Factors determining generalization in deep learning models for scoring COVID-CT images. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:9264-9293. [PMID: 34814345 DOI: 10.3934/mbe.2021456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The COVID-19 pandemic has inspired unprecedented data collection and computer vision modelling efforts worldwide, focused on the diagnosis of COVID-19 from medical images. However, these models have found limited, if any, clinical application due in part to unproven generalization to data sets beyond their source training corpus. This study investigates the generalizability of deep learning models using publicly available COVID-19 Computed Tomography data through cross dataset validation. The predictive ability of these models for COVID-19 severity is assessed using an independent dataset that is stratified for COVID-19 lung involvement. Each inter-dataset study is performed using histogram equalization, and contrast limited adaptive histogram equalization with and without a learning Gabor filter. We show that under certain conditions, deep learning models can generalize well to an external dataset with F1 scores up to 86%. The best performing model shows predictive accuracy of between 75% and 96% for lung involvement scoring against an external expertly stratified dataset. From these results we identify key factors promoting deep learning generalization, being primarily the uniform acquisition of training images, and secondly diversity in CT slice position.
Collapse
Affiliation(s)
- Michael James Horry
- Center for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and Information Technology, University of Technology Sydney, Australia
| | - Subrata Chakraborty
- Center for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and Information Technology, University of Technology Sydney, Australia
| | - Biswajeet Pradhan
- Center for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and Information Technology, University of Technology Sydney, Australia
- Center of Excellence for Climate Change Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Earth Observation Center, Institute of Climate Change, Universiti Kebangsaan Malaysia, Selangor 43600, Malaysia
| | - Maryam Fallahpoor
- Center for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and Information Technology, University of Technology Sydney, Australia
| | - Hossein Chegeni
- Fellowship of Interventional Radiology Imaging Center, IranMehr General Hospital, Iran
| | - Manoranjan Paul
- Machine Vision and Digital Health (MaViDH), School of Computing, Mathematics, and Engineering, Charles Sturt University, Australia
| |
Collapse
|
125
|
Kobat MA, Kivrak T, Barua PD, Tuncer T, Dogan S, Tan RS, Ciaccio EJ, Acharya UR. Automated COVID-19 and Heart Failure Detection Using DNA Pattern Technique with Cough Sounds. Diagnostics (Basel) 2021; 11:1962. [PMID: 34829308 PMCID: PMC8620352 DOI: 10.3390/diagnostics11111962] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 01/22/2023] Open
Abstract
COVID-19 and heart failure (HF) are common disorders and although they share some similar symptoms, they require different treatments. Accurate diagnosis of these disorders is crucial for disease management, including patient isolation to curb infection spread of COVID-19. In this work, we aim to develop a computer-aided diagnostic system that can accurately differentiate these three classes (normal, COVID-19 and HF) using cough sounds. A novel handcrafted model was used to classify COVID-19 vs. healthy (Case 1), HF vs. healthy (Case 2) and COVID-19 vs. HF vs. healthy (Case 3) automatically using deoxyribonucleic acid (DNA) patterns. The model was developed using the cough sounds collected from 241 COVID-19 patients, 244 HF patients, and 247 healthy subjects using a hand phone. To the best our knowledge, this is the first work to automatically classify healthy subjects, HF and COVID-19 patients using cough sounds signals. Our proposed model comprises a graph-based local feature generator (DNA pattern), an iterative maximum relevance minimum redundancy (ImRMR) iterative feature selector, with classification using the k-nearest neighbor classifier. Our proposed model attained an accuracy of 100.0%, 99.38%, and 99.49% for Case 1, Case 2, and Case 3, respectively. The developed system is completely automated and economical, and can be utilized to accurately detect COVID-19 versus HF using cough sounds.
Collapse
Affiliation(s)
- Mehmet Ali Kobat
- Department of Cardiology, Firat University Hospital, Firat University, Elazig 23119, Turkey; (M.A.K.); (T.K.)
| | - Tarik Kivrak
- Department of Cardiology, Firat University Hospital, Firat University, Elazig 23119, Turkey; (M.A.K.); (T.K.)
| | - Prabal Datta Barua
- School of Management & Enterprise, University of Southern Queensland, Toowoomba, QLD 4350, Australia;
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW 2010, Australia
| | - Turker Tuncer
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig 23119, Turkey; (T.T.); (S.D.)
| | - Sengul Dogan
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig 23119, Turkey; (T.T.); (S.D.)
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore 169609, Singapore;
- Department of Cardiology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Edward J. Ciaccio
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - U. Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
- Department of Biomedical Engineering, School of Science and Technology, SUSS University, Clementi 599494, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
126
|
Farki A, Salekshahrezaee Z, Tofigh AM, Ghanavati R, Arandian B, Chapnevis A. COVID-19 Diagnosis Using Capsule Network and Fuzzy C-Means and Mayfly Optimization Algorithm. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2295920. [PMID: 34676259 PMCID: PMC8526241 DOI: 10.1155/2021/2295920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022]
Abstract
The COVID-19 epidemic is spreading day by day. Early diagnosis of this disease is essential to provide effective preventive and therapeutic measures. This process can be used by a computer-aided methodology to improve accuracy. In this study, a new and optimal method has been utilized for the diagnosis of COVID-19. Here, a method based on fuzzy C-ordered means (FCOM) along with an improved version of the enhanced capsule network (ECN) has been proposed for this purpose. The proposed ECN method is improved based on mayfly optimization (MFO) algorithm. The suggested technique is then implemented on the chest X-ray COVID-19 images from publicly available datasets. Simulation results are assessed by considering a comparison with some state-of-the-art methods, including FOMPA, MID, and 4S-DT. The results show that the proposed method with 97.08% accuracy and 97.29% precision provides the highest accuracy and reliability compared with the other studied methods. Moreover, the results show that the proposed method with a 97.1% sensitivity rate has the highest ratio. And finally, the proposed method with a 97.47% F1-score rate gives the uppermost value compared to the others.
Collapse
Affiliation(s)
- Ali Farki
- Department of Information Technology Engineering, Industrial and Systems Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Zahra Salekshahrezaee
- Florida Atlantic University, College of Engineering and Computer Science, Boca Raton, Florida 33431, USA
| | - Arash Mohammadi Tofigh
- Department of General Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Ghanavati
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Behdad Arandian
- Department of Electrical Engineering, Dolatabad Branch, Islamic Azad University, Isfahan, Iran
| | - Amirahmad Chapnevis
- Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
127
|
Jia H, Zhao J, Arshaghi A. COVID-19 Diagnosis from CT Images with Convolutional Neural Network Optimized by Marine Predator Optimization Algorithm. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5122962. [PMID: 34651046 PMCID: PMC8510794 DOI: 10.1155/2021/5122962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 11/26/2022]
Abstract
In recent years, almost every country in the world has struggled against the spread of Coronavirus Disease 2019. If governments and public health systems do not take action against the spread of the disease, it will have a severe impact on human life. A noteworthy technique to stop this pandemic is diagnosing COVID-19 infected patients and isolating them instantly. The present study proposes a method for the diagnosis of COVID-19 from CT images. The method is a hybrid method based on convolutional neural network which is optimized by a newly introduced metaheuristic, called marine predator optimization algorithm. This optimization method is performed to improve the system accuracy. The method is then implemented on the chest CT scans with the COVID-19-related findings (MosMedData) dataset, and the results are compared with three other methods from the literature to indicate the method's performance. The final results indicate that the proposed method with 98.11% accuracy, 98.13% precision, 98.66% sensitivity, and 97.26% F1 score has the highest performance in all indicators than the compared methods which shows its higher accuracy and reliability.
Collapse
Affiliation(s)
- Huaping Jia
- College of Computer, Weinan Normal University, Weinan, Shaanxi, China
| | - Junlong Zhao
- Rehabilitation Medicine Department, Weinan Central Hospital, Shaanxi, China
| | - Ali Arshaghi
- Department of Electrical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
128
|
Taresh MM, Zhu N, Ali TAA, Alghaili M, Hameed AS, Mutar ML. KL-MOB: automated COVID-19 recognition using a novel approach based on image enhancement and a modified MobileNet CNN. PeerJ Comput Sci 2021; 7:e694. [PMID: 34616885 PMCID: PMC8459788 DOI: 10.7717/peerj-cs.694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The emergence of the novel coronavirus pneumonia (COVID-19) pandemic at the end of 2019 led to worldwide chaos. However, the world breathed a sigh of relief when a few countries announced the development of a vaccine and gradually began to distribute it. Nevertheless, the emergence of another wave of this pandemic returned us to the starting point. At present, early detection of infected people is the paramount concern of both specialists and health researchers. This paper proposes a method to detect infected patients through chest x-ray images by using the large dataset available online for COVID-19 (COVIDx), which consists of 2128 X-ray images of COVID-19 cases, 8,066 normal cases, and 5,575 cases of pneumonia. A hybrid algorithm is applied to improve image quality before undertaking neural network training. This algorithm combines two different noise-reduction filters in the image, followed by a contrast enhancement algorithm. To detect COVID-19, we propose a novel convolution neural network (CNN) architecture called KL-MOB (COVID-19 detection network based on the MobileNet structure). The performance of KL-MOB is boosted by adding the Kullback-Leibler (KL) divergence loss function when trained from scratch. The KL divergence loss function is adopted for content-based image retrieval and fine-grained classification to improve the quality of image representation. The results are impressive: the overall benchmark accuracy, sensitivity, specificity, and precision are 98.7%, 98.32%, 98.82% and 98.37%, respectively. These promising results should help other researchers develop innovative methods to aid specialists. The tremendous potential of the method proposed herein can also be used to detect COVID-19 quickly and safely in patients throughout the world.
Collapse
Affiliation(s)
| | - Ningbo Zhu
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, China
| | - Talal Ahmed Ali Ali
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, China
| | - Mohammed Alghaili
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, China
| | - Asaad Shakir Hameed
- Department of Mathematics, General Directorate of Thi-Qar Education, Ministry of Education, Thi-Qar, Iraq
| | - Modhi Lafta Mutar
- Department of Mathematics, General Directorate of Thi-Qar Education, Ministry of Education, Thi-Qar, Iraq
| |
Collapse
|
129
|
Abstract
In the past years, deep neural networks (DNN) have become popular in many disciplines such as computer vision (CV), natural language processing (NLP), etc. The evolution of hardware has helped researchers to develop many powerful Deep Learning (DL) models to face numerous challenging problems. One of the most important challenges in the CV area is Medical Image Analysis in which DL models process medical images—such as magnetic resonance imaging (MRI), X-ray, computed tomography (CT), etc.—using convolutional neural networks (CNN) for diagnosis or detection of several diseases. The proper function of these models can significantly upgrade the health systems. However, recent studies have shown that CNN models are vulnerable under adversarial attacks with imperceptible perturbations. In this paper, we summarize existing methods for adversarial attacks, detections and defenses on medical imaging. Finally, we show that many attacks, which are undetectable by the human eye, can degrade the performance of the models, significantly. Nevertheless, some effective defense and attack detection methods keep the models safe to an extent. We end with a discussion on the current state-of-the-art and future challenges.
Collapse
|
130
|
JavadiMoghaddam S, Gholamalinejad H. A novel deep learning based method for COVID-19 detection from CT image. Biomed Signal Process Control 2021; 70:102987. [PMID: 34345248 PMCID: PMC8318781 DOI: 10.1016/j.bspc.2021.102987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/13/2021] [Accepted: 07/17/2021] [Indexed: 12/28/2022]
Abstract
The novel Coronavirus named COVID-19 that World Health Organization (WHO) announced as a pandemic rapidly spread worldwide. Fast diagnosis of the virus infection is critical to prevent further spread of the virus, help identify the infected population, and cure the patients. Due to the increasing rate of infection and the limitations of the diagnosis kit, auxiliary detection tools are needed. Recent studies show that a deep learning model that comes up with the salient information of CT images can aid in the COVID-19 diagnosis. This study proposes a novel deep learning structure that the pooling layer of this model is a combination of pooling and the Squeeze Excitation Block (SE-block) layer. The proposed model uses Batch Normalization and Mish Function to optimize convergence time and performance of COVID-19 diagnosis. A dataset of two public hospitals was used to evaluate the proposed model. Moreover, it was compared to some different popular deep neural networks (DNN). The results expressed an accuracy of 99.03 with a recognition time of test mode of 0.069 ms in graphics processing unit (GPU). Furthermore, the best network results in classification metrics parameters and real-time applications belong to the proposed model.
Collapse
|
131
|
Rehouma R, Buchert M, Chen YP. Machine learning for medical imaging-based COVID-19 detection and diagnosis. INT J INTELL SYST 2021; 36:5085-5115. [PMID: 38607786 PMCID: PMC8242401 DOI: 10.1002/int.22504] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/15/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
The novel coronavirus disease 2019 (COVID-19) is considered to be a significant health challenge worldwide because of its rapid human-to-human transmission, leading to a rise in the number of infected people and deaths. The detection of COVID-19 at the earliest stage is therefore of paramount importance for controlling the pandemic spread and reducing the mortality rate. The real-time reverse transcription-polymerase chain reaction, the primary method of diagnosis for coronavirus infection, has a relatively high false negative rate while detecting early stage disease. Meanwhile, the manifestations of COVID-19, as seen through medical imaging methods such as computed tomography (CT), radiograph (X-ray), and ultrasound imaging, show individual characteristics that differ from those of healthy cases or other types of pneumonia. Machine learning (ML) applications for COVID-19 diagnosis, detection, and the assessment of disease severity based on medical imaging have gained considerable attention. Herein, we review the recent progress of ML in COVID-19 detection with a particular focus on ML models using CT and X-ray images published in high-ranking journals, including a discussion of the predominant features of medical imaging in patients with COVID-19. Deep Learning algorithms, particularly convolutional neural networks, have been utilized widely for image segmentation and classification to identify patients with COVID-19 and many ML modules have achieved remarkable predictive results using datasets with limited sample sizes.
Collapse
Affiliation(s)
- Rokaya Rehouma
- School of Cancer MedicineLa Trobe UniversityMelbourneVictoriaAustralia
| | - Michael Buchert
- School of Cancer MedicineLa Trobe UniversityMelbourneVictoriaAustralia
- Tumour Microenvironment and Cancer Signaling GroupOlivia Newton‐John Cancer Research InstituteMelbourneVictoriaAustralia
| | - Yi‐Ping Phoebe Chen
- Department of Computer Science and Information TechnologyLa Trobe UniversityMelbourneVictoriaAustralia
| |
Collapse
|
132
|
Hasan MK, Jawad MT, Hasan KNI, Partha SB, Masba MMA, Saha S, Moni MA. COVID-19 identification from volumetric chest CT scans using a progressively resized 3D-CNN incorporating segmentation, augmentation, and class-rebalancing. INFORMATICS IN MEDICINE UNLOCKED 2021; 26:100709. [PMID: 34642640 PMCID: PMC8494187 DOI: 10.1016/j.imu.2021.100709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022] Open
Abstract
The novel COVID-19 is a global pandemic disease overgrowing worldwide. Computer-aided screening tools with greater sensitivity are imperative for disease diagnosis and prognosis as early as possible. It also can be a helpful tool in triage for testing and clinical supervision of COVID-19 patients. However, designing such an automated tool from non-invasive radiographic images is challenging as many manually annotated datasets are not publicly available yet, which is the essential core requirement of supervised learning schemes. This article proposes a 3D Convolutional Neural Network (CNN)-based classification approach considering both the inter-and intra-slice spatial voxel information. The proposed system is trained end-to-end on the 3D patches from the whole volumetric Computed Tomography (CT) images to enlarge the number of training samples, performing the ablation studies on patch size determination. We integrate progressive resizing, segmentation, augmentations, and class-rebalancing into our 3D network. The segmentation is a critical prerequisite step for COVID-19 diagnosis enabling the classifier to learn prominent lung features while excluding the outer lung regions of the CT scans. We evaluate all the extensive experiments on a publicly available dataset named MosMed, having binary- and multi-class chest CT image partitions. Our experimental results are very encouraging, yielding areas under the Receiver Operating Characteristics (ROC) curve of 0 . 914 ± 0 . 049 and 0 . 893 ± 0 . 035 for the binary- and multi-class tasks, respectively, applying 5-fold cross-validations. Our method's promising results delegate it as a favorable aiding tool for clinical practitioners and radiologists to assess COVID-19.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
| | - Md Tasnim Jawad
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
| | - Kazi Nasim Imtiaz Hasan
- Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
| | - Sajal Basak Partha
- Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
| | - Md Masum Al Masba
- Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
| | - Shumit Saha
- Department of Electronics and Communication Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
| | - Mohammad Ali Moni
- Department of Computer Science & Engineering, Pabna University of Science and Technology, Pabna-6600, Bangladesh
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
133
|
Ghaderzadeh M, Aria M, Asadi F. X-Ray Equipped with Artificial Intelligence: Changing the COVID-19 Diagnostic Paradigm during the Pandemic. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9942873. [PMID: 34458373 PMCID: PMC8390162 DOI: 10.1155/2021/9942873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/16/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Due to the excessive use of raw materials in diagnostic tools and equipment during the COVID-19 pandemic, there is a dire need for cheaper and more effective methods in the healthcare system. With the development of artificial intelligence (AI) methods in medical sciences as low-cost and safer diagnostic methods, researchers have turned their attention to the use of imaging tools with AI that have fewer complications for patients and reduce the consumption of healthcare resources. Despite its limitations, X-ray is suggested as the first-line diagnostic modality for detecting and screening COVID-19 cases. METHOD This systematic review assessed the current state of AI applications and the performance of algorithms in X-ray image analysis. The search strategy yielded 322 results from four databases and google scholar, 60 of which met the inclusion criteria. The performance statistics included the area under the receiver operating characteristics (AUC) curve, accuracy, sensitivity, and specificity. RESULT The average sensitivity and specificity of CXR equipped with AI algorithms for COVID-19 diagnosis were >96% (83%-100%) and 92% (80%-100%), respectively. For common X-ray methods in COVID-19 detection, these values were 0.56 (95% CI 0.51-0.60) and 0.60 (95% CI 0.54-0.65), respectively. AI has substantially improved the diagnostic performance of X-rays in COVID-19. CONCLUSION X-rays equipped with AI can serve as a tool to screen the cases requiring CT scans. The use of this tool does not waste time or impose extra costs, has minimal complications, and can thus decrease or remove unnecessary CT slices and other healthcare resources.
Collapse
Affiliation(s)
- Mustafa Ghaderzadeh
- Student Research Committee, Department and Faculty of Health Information Technology and Ma School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrad Aria
- Department of Computer Engineering, Faculty of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
| | - Farkhondeh Asadi
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
134
|
Amin J, Sharif M, Gul N, Kadry S, Chakraborty C. Quantum Machine Learning Architecture for COVID-19 Classification Based on Synthetic Data Generation Using Conditional Adversarial Neural Network. Cognit Comput 2021; 14:1677-1688. [PMID: 34394762 PMCID: PMC8353617 DOI: 10.1007/s12559-021-09926-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
Background COVID-19 is a novel virus that affects the upper respiratory tract, as well as the lungs. The scale of the global COVID-19 pandemic, its spreading rate, and deaths are increasing regularly. Computed tomography (CT) scans can be used carefully to detect and analyze COVID-19 cases. In CT images/scans, ground-glass opacity (GGO) is found in the early stages of infection. While in later stages, there is a superimposed pulmonary consolidation. Methods This research investigates the quantum machine learning (QML) and classical machine learning (CML) approaches for the analysis of COVID-19 images. The recent developments in quantum computing have led researchers to explore new ideas and approaches using QML. The proposed approach consists of two phases: in phase I, synthetic CT images are generated through the conditional adversarial network (CGAN) to increase the size of the dataset for accurate training and testing. In phase II, the classification of COVID-19/healthy images is performed, in which two models are proposed: CML and QML. Result The proposed model achieved 0.94 precision (Pn), 0.94 accuracy (Ac), 0.94 recall (Rl), and 0.94 F1-score (Fe) on POF Hospital dataset while 0.96 Pn, 0.96 Ac, 0.95 Rl, and 0.96 Fe on UCSD-AI4H dataset. Conclusion The proposed method achieved better results when compared to the latest published work in this domain.
Collapse
Affiliation(s)
- Javaria Amin
- Department of Computer Science, University of Wah, 47040, Wah Cantt, Pakistan
| | - Muhammad Sharif
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, 47040, Wah Cantt, Pakistan
| | - Nadia Gul
- MBBS, FCPS Diagnostic Radiology, Consultant Radiologist POF Hospital and Associate Professor Radiology Wah Medical College, Wah Cantt, Pakistan
| | - Seifedine Kadry
- Faculty of Applied Computing and Technology, Noroff University College, Kristiansand, Norway
| | | |
Collapse
|
135
|
Nayak SR, Nayak J, Sinha U, Arora V, Ghosh U, Satapathy SC. An Automated Lightweight Deep Neural Network for Diagnosis of COVID-19 from Chest X-ray Images. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021; 48:1-18. [PMID: 34395157 PMCID: PMC8352151 DOI: 10.1007/s13369-021-05956-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/24/2021] [Indexed: 12/24/2022]
Abstract
Coronavirus (COVID-19) is an epidemic that is rapidly spreading and causing a severe healthcare crisis resulting in more than 40 million confirmed cases across the globe. There are many intensive studies on AI-based technique, which is time consuming and troublesome by considering heavyweight models in terms of more training parameters and memory cost, which leads to higher time complexity. To improve diagnosis, this paper is aimed to design and establish a unique lightweight deep learning-based approach to perform multi-class classification (normal, COVID-19, and pneumonia) and binary class classification (normal and COVID-19) on X-ray radiographs of chest. This proposed CNN scheme includes the combination of three CBR blocks (convolutional batch normalization ReLu) with learnable parameters and one global average pooling (GP) layer and fully connected layer. The overall accuracy of the proposed model achieved 98.33% and finally compared with the pre-trained transfer learning model (DenseNet-121, ResNet-101, VGG-19, and XceptionNet) and recent state-of-the-art model. For validation of the proposed model, several parameters are considered such as learning rate, batch size, number of epochs, and different optimizers. Apart from this, several other performance measures like tenfold cross-validation, confusion matrix, evaluation metrics, sarea under the receiver operating characteristics, kappa score and Mathew's correlation, and Grad-CAM heat map have been used to assess the efficacy of the proposed model. The outcome of this proposed model is more robust, and it may be useful for radiologists for faster diagnostics of COVID-19.
Collapse
Affiliation(s)
- Soumya Ranjan Nayak
- Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida, India
| | - Janmenjoy Nayak
- Department of Computer Science and Engineering, Aditya Institute of Technology and Management (AITAM), Tekkali, K Kotturu, AP 532201 India
| | - Utkarsh Sinha
- Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida, India
| | - Vaibhav Arora
- Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida, India
| | - Uttam Ghosh
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville Nashville, TN 37235-1679 USA
| | | |
Collapse
|
136
|
La Salvia M, Secco G, Torti E, Florimbi G, Guido L, Lago P, Salinaro F, Perlini S, Leporati F. Deep learning and lung ultrasound for Covid-19 pneumonia detection and severity classification. Comput Biol Med 2021; 136:104742. [PMID: 34388462 PMCID: PMC8349313 DOI: 10.1016/j.compbiomed.2021.104742] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 02/03/2023]
Abstract
The Covid-19 European outbreak in February 2020 has challenged the world's health systems, eliciting an urgent need for effective and highly reliable diagnostic instruments to help medical personnel. Deep learning (DL) has been demonstrated to be useful for diagnosis using both computed tomography (CT) scans and chest X-rays (CXR), whereby the former typically yields more accurate results. However, the pivoting function of a CT scan during the pandemic presents several drawbacks, including high cost and cross-contamination problems. Radiation-free lung ultrasound (LUS) imaging, which requires high expertise and is thus being underutilised, has demonstrated a strong correlation with CT scan results and a high reliability in pneumonia detection even in the early stages. In this study, we developed a system based on modern DL methodologies in close collaboration with Fondazione IRCCS Policlinico San Matteo's Emergency Department (ED) of Pavia. Using a reliable dataset comprising ultrasound clips originating from linear and convex probes in 2908 frames from 450 hospitalised patients, we conducted an investigation into detecting Covid-19 patterns and ranking them considering two severity scales. This study differs from other research projects by its novel approach involving four and seven classes. Patients admitted to the ED underwent 12 LUS examinations in different chest parts, each evaluated according to standardised severity scales. We adopted residual convolutional neural networks (CNNs), transfer learning, and data augmentation techniques. Hence, employing methodological hyperparameter tuning, we produced state-of-the-art results meeting F1 score levels, averaged over the number of classes considered, exceeding 98%, and thereby manifesting stable measurements over precision and recall.
Collapse
Affiliation(s)
- Marco La Salvia
- University of Pavia, Department of Electrical, Computer and Biomedical Engineering, Via Ferrata 5, Pavia I, 27100, Italy.
| | - Gianmarco Secco
- Fondazione IRCCS Policlinico San Matteo, Emergency Department, Viale Camillo Golgi 19, Pavia I, 27100, Italy
| | - Emanuele Torti
- University of Pavia, Department of Electrical, Computer and Biomedical Engineering, Via Ferrata 5, Pavia I, 27100, Italy
| | - Giordana Florimbi
- University of Pavia, Department of Electrical, Computer and Biomedical Engineering, Via Ferrata 5, Pavia I, 27100, Italy
| | - Luca Guido
- University of Pavia, Department of Electrical, Computer and Biomedical Engineering, Via Ferrata 5, Pavia I, 27100, Italy
| | - Paolo Lago
- Fondazione IRCCS Policlinico San Matteo, Emergency Department, Viale Camillo Golgi 19, Pavia I, 27100, Italy
| | - Francesco Salinaro
- Fondazione IRCCS Policlinico San Matteo, Emergency Department, Viale Camillo Golgi 19, Pavia I, 27100, Italy
| | - Stefano Perlini
- Fondazione IRCCS Policlinico San Matteo, Emergency Department, Viale Camillo Golgi 19, Pavia I, 27100, Italy
| | - Francesco Leporati
- University of Pavia, Department of Electrical, Computer and Biomedical Engineering, Via Ferrata 5, Pavia I, 27100, Italy
| |
Collapse
|
137
|
Fouladi S, Ebadi MJ, Safaei AA, Bajuri MY, Ahmadian A. Efficient deep neural networks for classification of COVID-19 based on CT images: Virtualization via software defined radio. COMPUTER COMMUNICATIONS 2021; 176:234-248. [PMID: 34149118 PMCID: PMC8205564 DOI: 10.1016/j.comcom.2021.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 06/01/2023]
Abstract
The novel 2019 coronavirus disease (COVID-19) has infected over 141 million people worldwide since April 20, 2021. More than 200 countries around the world have been affected by the coronavirus pandemic. Screening for COVID-19, we use fast and inexpensive images from computed tomography (CT) scans. In this paper, ResNet-50, VGG-16, convolutional neural network (CNN), convolutional auto-encoder neural network (CAENN), and machine learning (ML) methods are proposed for classifying Chest CT Images of COVID-19. The dataset consists of 1252 CT scans that are positive and 1230 CT scans that are negative for COVID-19 virus. The proposed models have priority over the other models that there is no need of pre-trained networks and data augmentation for them. The classification accuracies of ResNet-50, VGG-16, CNN, and CAENN were obtained 92.24%, 94.07%, 93.84%, and 93.04% respectively. Among ML classifiers, the nearest neighbor (NN) had the highest performance with an accuracy of 94%.
Collapse
Affiliation(s)
- Saman Fouladi
- Department of Medical Informatics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - M J Ebadi
- Department of Mathematics, Chabahar Maritime Universitya, Chabahar, Iran
| | - Ali A Safaei
- Department of Medical Informatics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohd Yazid Bajuri
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Ali Ahmadian
- Institute of IR 4.0, The National University of Malaysia, 43600 Bangi, Malaysia
| |
Collapse
|
138
|
Alzubaidi M, Zubaydi HD, Bin-Salem AA, Abd-Alrazaq AA, Ahmed A, Househ M. Role of deep learning in early detection of COVID-19: Scoping review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE UPDATE 2021; 1:100025. [PMID: 34345877 PMCID: PMC8321699 DOI: 10.1016/j.cmpbup.2021.100025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Since the onset of the COVID-19 pandemic, the world witnessed disruption on an unprecedented scale affecting our daily lives including but not limited to healthcare, business, education, and transportation. Deep Learning (DL) is a branch of Artificial intelligence (AI) applications, the recent growth of DL includes features that could be helpful in fighting the COVID-19 pandemic. Utilizing such features could support public health efforts. OBJECTIVE Investigate the literature available in the use of DL technology to support dealing with the COVID-19 crisis. We summarize the literature that uses DL features to analyze datasets for the purpose of a quick COVID-19 detection. METHODS This review follows PRISMA Extension for Scoping Reviews (PRISMA-ScR). We have scanned the most two commonly used databases (IEEE, ACM). Search terms were identified based on the target intervention (DL) and the target population (COVID-19). Two authors independently handled study selection and one author assigned for data extraction. A narrative approach is used to synthesize the extracted data. RESULTS We retrieved 53 studies and after passing through PRISMA excluding criteria, only 17 studies are considered in this review. All studies used deep learning for detection of COVID-19 cases in early stage based on different diagnostic modalities. Convolutional Neural Network (CNN) and Transfer Learning (TL) were the most commonly used techniques. CONCLUSION The included studies showed that DL techniques has significant impact on early detection of COVID-19 with high accuracy rate. However, most of the proposed methods are still in development and not tested in a clinical setting. Further investigation and collaboration are required from the research community and healthcare professionals in order to develop and standardize guidelines for use of DL in the healthcare domain.
Collapse
Key Words
- AI, Artificial intelligence
- CNN, Convolutional Neural Network
- COVID-19
- COVID-19, Corona Virus 2019
- CT, Computed Tomography
- CXR, Chest X-Ray Radiography
- Coronavirus
- DL, Deep Learning
- Deep learning
- Machine learning
- RNN, Recurrent Neural Network
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- ULS, Ultrasonography
- WHO, World Health Organization
Collapse
Affiliation(s)
- Mahmood Alzubaidi
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Haider Dhia Zubaydi
- National Advanced IPv6 Centre, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | | | - Alaa A Abd-Alrazaq
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Arfan Ahmed
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Mowafa Househ
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
139
|
Yasar H, Ceylan M. Deep Learning-Based Approaches to Improve Classification Parameters for Diagnosing COVID-19 from CT Images. Cognit Comput 2021:1-28. [PMID: 34306240 PMCID: PMC8280590 DOI: 10.1007/s12559-021-09915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/07/2021] [Indexed: 11/10/2022]
Abstract
Patients infected with the COVID-19 virus develop severe pneumonia, which generally leads to death. Radiological evidence has demonstrated that the disease causes interstitial involvement in the lungs and lung opacities, as well as bilateral ground-glass opacities and patchy opacities. In this study, new pipeline suggestions are presented, and their performance is tested to decrease the number of false-negative (FN), false-positive (FP), and total misclassified images (FN + FP) in the diagnosis of COVID-19 (COVID-19/non-COVID-19 and COVID-19 pneumonia/other pneumonia) from CT lung images. A total of 4320 CT lung images, of which 2554 were related to COVID-19 and 1766 to non-COVID-19, were used for the test procedures in COVID-19 and non-COVID-19 classifications. Similarly, a total of 3801 CT lung images, of which 2554 were related to COVID-19 pneumonia and 1247 to other pneumonia, were used for the test procedures in COVID-19 pneumonia and other pneumonia classifications. A 24-layer convolutional neural network (CNN) architecture was used for the classification processes. Within the scope of this study, the results of two experiments were obtained by using CT lung images with and without local binary pattern (LBP) application, and sub-band images were obtained by applying dual-tree complex wavelet transform (DT-CWT) to these images. Next, new classification results were calculated from these two results by using the five pipeline approaches presented in this study. For COVID-19 and non-COVID-19 classification, the highest sensitivity, specificity, accuracy, F-1, and AUC values obtained without using pipeline approaches were 0.9676, 0.9181, 0.9456, 0.9545, and 0.9890, respectively; using pipeline approaches, the values were 0.9832, 0.9622, 0.9577, 0.9642, and 0.9923, respectively. For COVID-19 pneumonia/other pneumonia classification, the highest sensitivity, specificity, accuracy, F-1, and AUC values obtained without using pipeline approaches were 0.9615, 0.7270, 0.8846, 0.9180, and 0.9370, respectively; using pipeline approaches, the values were 0.9915, 0.8140, 0.9071, 0.9327, and 0.9615, respectively. The results of this study show that classification success can be increased by reducing the time to obtain per-image results through using the proposed pipeline approaches.
Collapse
Affiliation(s)
- Huseyin Yasar
- Ministry of Health of Republic of Turkey, Ankara, Turkey
| | - Murat Ceylan
- Department of Electrical and Electronics Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, Turkey
| |
Collapse
|
140
|
Ahsan R, Tahsili MR, Ebrahimi F, Ebrahimie E, Ebrahimi M. Image processing unravels the evolutionary pattern of SARS-CoV-2 against SARS and MERS through position-based pattern recognition. Comput Biol Med 2021; 134:104471. [PMID: 34004573 PMCID: PMC8106241 DOI: 10.1016/j.compbiomed.2021.104471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/16/2022]
Abstract
SARS-COV-2, Severe Acute Respiratory Syndrome (SARS), and the Middle East respiratory syndrome-related coronavirus (MERS) viruses are from the coronaviridae family; the former became a global pandemic (with low mortality rate) while the latter were confined to a limited region (with high mortality rates). To investigate the possible structural differences at basic levels for the three viruses, genomic and proteomic sequences were downloaded and converted to polynomial datasets. Seven attribute weighting (feature selection) models were employed to find the key differences in their genome's nucleotide sequence. Most attribute weighting models selected the final nucleotide sequences (from 29,000th nucleotide positions to the end of the genome) as significantly different among the three virus classes. The genome and proteome sequences of this hot zone area (which corresponds to the 3'UTR region and encodes for nucleoprotein (N)) and Spike (S) protein sequences (as the most important viral protein) were converted into binary images and were analyzed by image processing techniques and Convolutional deep Neural Network (CNN). Although the predictive accuracy of CNN for Spike (S) proteins was low (0.48%), the machine-based learning algorithms were able to classify the three members of coronaviridae viruses with 100% accuracy based on 3'UTR region. For the first time ever, the relationship between the possible structural differences of coronaviruses at the sequential levels and their pathogenesis are being reported, which paves the road to deciphering the high pathogenicity of the SARS-COV-2 virus.
Collapse
Affiliation(s)
- Reza Ahsan
- Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Faezeh Ebrahimi
- Faculty of Life Sciences and Biotechnology, Department of Microbiology and Microbial Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, Victoria, 3086, Australia,School of Animal and Veterinary Sciences, The University of Adelaide, South Australia, 5371, Australia
| | - Mansour Ebrahimi
- Department of Biology, School of Basic Sciences, University of Qom, Qom, Iran,School of Animal and Veterinary Sciences, The University of Adelaide, South Australia, 5371, Australia,Corresponding author. Department of Biology, School of Basic Sciences, University of Qom, Qom, Iran
| |
Collapse
|
141
|
El-Rashidy N, Abdelrazik S, Abuhmed T, Amer E, Ali F, Hu JW, El-Sappagh S. Comprehensive Survey of Using Machine Learning in the COVID-19 Pandemic. Diagnostics (Basel) 2021; 11:1155. [PMID: 34202587 PMCID: PMC8303306 DOI: 10.3390/diagnostics11071155] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Since December 2019, the global health population has faced the rapid spreading of coronavirus disease (COVID-19). With the incremental acceleration of the number of infected cases, the World Health Organization (WHO) has reported COVID-19 as an epidemic that puts a heavy burden on healthcare sectors in almost every country. The potential of artificial intelligence (AI) in this context is difficult to ignore. AI companies have been racing to develop innovative tools that contribute to arm the world against this pandemic and minimize the disruption that it may cause. The main objective of this study is to survey the decisive role of AI as a technology used to fight against the COVID-19 pandemic. Five significant applications of AI for COVID-19 were found, including (1) COVID-19 diagnosis using various data types (e.g., images, sound, and text); (2) estimation of the possible future spread of the disease based on the current confirmed cases; (3) association between COVID-19 infection and patient characteristics; (4) vaccine development and drug interaction; and (5) development of supporting applications. This study also introduces a comparison between current COVID-19 datasets. Based on the limitations of the current literature, this review highlights the open research challenges that could inspire the future application of AI in COVID-19.
Collapse
Affiliation(s)
- Nora El-Rashidy
- Machine Learning and Information Retrieval Department, Faculty of Artificial Intelligence, Kafrelsheiksh University, Kafrelsheiksh 13518, Egypt
| | - Samir Abdelrazik
- Information System Department, Faculty of Computer Science and Information Systems, Mansoura University, Mansoura 13518, Egypt;
| | - Tamer Abuhmed
- College of Computing and Informatics, Sungkyunkwan University, Seoul 03063, Korea
| | - Eslam Amer
- Faculty of Computer Science, Misr International University, Cairo 11828, Egypt;
| | - Farman Ali
- Department of Software, Sejong University, Seoul 05006, Korea;
| | - Jong-Wan Hu
- Department of Civil and Environmental Engineering, Incheon National University, Incheon 22012, Korea
| | - Shaker El-Sappagh
- Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Information Systems Department, Faculty of Computers and Artificial Intelligence, Benha University, Banha 13518, Egypt
| |
Collapse
|
142
|
Bayoudh K, Knani R, Hamdaoui F, Mtibaa A. A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets. THE VISUAL COMPUTER 2021; 38:2939-2970. [PMID: 34131356 PMCID: PMC8192112 DOI: 10.1007/s00371-021-02166-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
The research progress in multimodal learning has grown rapidly over the last decade in several areas, especially in computer vision. The growing potential of multimodal data streams and deep learning algorithms has contributed to the increasing universality of deep multimodal learning. This involves the development of models capable of processing and analyzing the multimodal information uniformly. Unstructured real-world data can inherently take many forms, also known as modalities, often including visual and textual content. Extracting relevant patterns from this kind of data is still a motivating goal for researchers in deep learning. In this paper, we seek to improve the understanding of key concepts and algorithms of deep multimodal learning for the computer vision community by exploring how to generate deep models that consider the integration and combination of heterogeneous visual cues across sensory modalities. In particular, we summarize six perspectives from the current literature on deep multimodal learning, namely: multimodal data representation, multimodal fusion (i.e., both traditional and deep learning-based schemes), multitask learning, multimodal alignment, multimodal transfer learning, and zero-shot learning. We also survey current multimodal applications and present a collection of benchmark datasets for solving problems in various vision domains. Finally, we highlight the limitations and challenges of deep multimodal learning and provide insights and directions for future research.
Collapse
Affiliation(s)
- Khaled Bayoudh
- Electrical Department, National Engineering School of Monastir (ENIM), Laboratory of Electronics and Micro-electronics (LR99ES30), Faculty of Sciences of Monastir (FSM), University of Monastir, Monastir, Tunisia
| | - Raja Knani
- Physics Department, Laboratory of Electronics and Micro-electronics (LR99ES30), Faculty of Sciences of Monastir (FSM), University of Monastir, Monastir, Tunisia
| | - Fayçal Hamdaoui
- Electrical Department, National Engineering School of Monastir (ENIM), Laboratory of Control, Electrical Systems and Environment (LASEE), National Engineering School of Monastir, University of Monastir, Monastir, Tunisia
| | - Abdellatif Mtibaa
- Electrical Department, National Engineering School of Monastir (ENIM), Laboratory of Electronics and Micro-electronics (LR99ES30), Faculty of Sciences of Monastir (FSM), University of Monastir, Monastir, Tunisia
| |
Collapse
|
143
|
Zhou C, Song J, Zhou S, Zhang Z, Xing J. COVID-19 Detection Based on Image Regrouping and Resnet-SVM Using Chest X-Ray Images. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:81902-81912. [PMID: 34812395 PMCID: PMC8545189 DOI: 10.1109/access.2021.3086229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 06/01/2023]
Abstract
As the COVID-19 spread worldwide, countries around the world are actively taking measures to fight against the epidemic. To prevent the spread of it, a high sensitivity and efficient method for COVID-19 detection is necessary. By analyzing the COVID-19 chest X-ray images, a combination method of image regrouping and ResNet-SVM was proposed in this study. The lung region was segmented from the original chest X-ray images and divided into small pieces, and then the small pieces of lung region were regrouped into a regular image randomly. Furthermore the regrouped images were fed into the deep residual encoder block for feature extraction. Finally the extracted features were as input into support vector machine for recognition. The visual attention was introduced in the novel method, which paid more attention to the features of COVID-19 without the interference of shapes, rib and other related noises. The experimental results showed that the proposed method achieved 93% accuracy without large number of training data, outperformed the existing COVID-19 detection models.
Collapse
Affiliation(s)
- Changjian Zhou
- Key Laboratory of Agricultural Microbiology of Heilongjiang ProvinceNortheast Agricultural UniversityHarbin150030China
- Department of Modern Educational TechnologyNortheast Agricultural UniversityHarbin150030China
| | - Jia Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang ProvinceNortheast Agricultural UniversityHarbin150030China
| | - Sihan Zhou
- College of Electrical and InformationNortheast Agricultural UniversityHarbin150030China
| | - Zhiyao Zhang
- College of Electrical and InformationNortheast Agricultural UniversityHarbin150030China
| | - Jinge Xing
- Department of Modern Educational TechnologyNortheast Agricultural UniversityHarbin150030China
| |
Collapse
|
144
|
Awasthi N, Dayal A, Cenkeramaddi LR, Yalavarthy PK. Mini-COVIDNet: Efficient Lightweight Deep Neural Network for Ultrasound Based Point-of-Care Detection of COVID-19. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2023-2037. [PMID: 33755565 PMCID: PMC8544932 DOI: 10.1109/tuffc.2021.3068190] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/19/2021] [Indexed: 05/15/2023]
Abstract
Lung ultrasound (US) imaging has the potential to be an effective point-of-care test for detection of COVID-19, due to its ease of operation with minimal personal protection equipment along with easy disinfection. The current state-of-the-art deep learning models for detection of COVID-19 are heavy models that may not be easy to deploy in commonly utilized mobile platforms in point-of-care testing. In this work, we develop a lightweight mobile friendly efficient deep learning model for detection of COVID-19 using lung US images. Three different classes including COVID-19, pneumonia, and healthy were included in this task. The developed network, named as Mini-COVIDNet, was bench-marked with other lightweight neural network models along with state-of-the-art heavy model. It was shown that the proposed network can achieve the highest accuracy of 83.2% and requires a training time of only 24 min. The proposed Mini-COVIDNet has 4.39 times less number of parameters in the network compared to its next best performing network and requires a memory of only 51.29 MB, making the point-of-care detection of COVID-19 using lung US imaging plausible on a mobile platform. Deployment of these lightweight networks on embedded platforms shows that the proposed Mini-COVIDNet is highly versatile and provides optimal performance in terms of being accurate as well as having latency in the same order as other lightweight networks. The developed lightweight models are available at https://github.com/navchetan-awasthi/Mini-COVIDNet.
Collapse
Affiliation(s)
- Navchetan Awasthi
- Massachusetts General HospitalBostonMA02114USA
- Department of MedicineHarvard UniversityCambridgeMA02138USA
| | - Aveen Dayal
- Department of Information and Communication TechnologyUniversity of Agder4879GrimstadNorway
| | | | | |
Collapse
|
145
|
Developing an efficient deep neural network for automatic detection of COVID-19 using chest X-ray images. ALEXANDRIA ENGINEERING JOURNAL 2021; 60. [PMCID: PMC7825895 DOI: 10.1016/j.aej.2021.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The novel coronavirus (COVID-19) could be described as the greatest human challenge of the 21st century. The development and transmission of the disease have increased mortality in all countries. Therefore, a rapid diagnosis of COVID-19 is necessary to treat and control the disease. In this paper, a new method for the automatic identification of pneumonia (including COVID-19) is presented using a proposed deep neural network. In the proposed method, the chest X-ray images are used to separate 2–4 classes in 7 different and functional scenarios according to healthy, viral, bacterial, and COVID-19 classes. In the proposed architecture, Generative Adversarial Networks (GANs) are used together with a fusion of the deep transfer learning and LSTM networks, without involving feature extraction/selection for classification of pneumonia. We have achieved more than 90% accuracy for all scenarios except one and also achieved 99% accuracy for separating COVID-19 from healthy group. We also compared our deep proposed network with other deep transfer learning networks (including Inception-ResNet V2, Inception V4, VGG16 and MobileNet) that have been recently widely used in pneumonia detection studies. The results based on the proposed network were very promising in terms of accuracy, precision, sensitivity, and specificity compared to the other deep transfer learning approaches. Depending on the high performance of the proposed method, it can be used during the treatment of patients.
Collapse
|
146
|
Iskanderani AI, Mehedi IM, Aljohani AJ, Shorfuzzaman M, Akther F, Palaniswamy T, Latif SA, Latif A, Alam A. Artificial Intelligence and Medical Internet of Things Framework for Diagnosis of Coronavirus Suspected Cases. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:3277988. [PMID: 34150188 PMCID: PMC8197673 DOI: 10.1155/2021/3277988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 11/25/2022]
Abstract
The world has been facing the COVID-19 pandemic since December 2019. Timely and efficient diagnosis of COVID-19 suspected patients plays a significant role in medical treatment. The deep transfer learning-based automated COVID-19 diagnosis on chest X-ray is required to counter the COVID-19 outbreak. This work proposes a real-time Internet of Things (IoT) framework for early diagnosis of suspected COVID-19 patients by using ensemble deep transfer learning. The proposed framework offers real-time communication and diagnosis of COVID-19 suspected cases. The proposed IoT framework ensembles four deep learning models such as InceptionResNetV2, ResNet152V2, VGG16, and DenseNet201. The medical sensors are utilized to obtain the chest X-ray modalities and diagnose the infection by using the deep ensemble model stored on the cloud server. The proposed deep ensemble model is compared with six well-known transfer learning models over the chest X-ray dataset. Comparative analysis revealed that the proposed model can help radiologists to efficiently and timely diagnose the COVID-19 suspected patients.
Collapse
Affiliation(s)
- Ahmed I. Iskanderani
- Department of Electrical and Computer Engineering (ECE), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibrahim M. Mehedi
- Department of Electrical and Computer Engineering (ECE), King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Intelligent Engineering Systems (CEIES), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulah Jeza Aljohani
- Department of Electrical and Computer Engineering (ECE), King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Intelligent Engineering Systems (CEIES), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Shorfuzzaman
- Department of Computer Science, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | | | - Thangam Palaniswamy
- Department of Electrical and Computer Engineering (ECE), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaikh Abdul Latif
- Department of Nuclear Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdul Latif
- Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aftab Alam
- CIT Department, Faculty of Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
147
|
Sait U, K V GL, Shivakumar S, Kumar T, Bhaumik R, Prajapati S, Bhalla K, Chakrapani A. A deep-learning based multimodal system for Covid-19 diagnosis using breathing sounds and chest X-ray images. Appl Soft Comput 2021; 109:107522. [PMID: 34054379 PMCID: PMC8149173 DOI: 10.1016/j.asoc.2021.107522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/20/2021] [Accepted: 05/21/2021] [Indexed: 12/23/2022]
Abstract
Covid-19 has become a deadly pandemic claiming more than three million lives worldwide. SARS-CoV-2 causes distinct pathomorphological alterations in the respiratory system, thereby acting as a biomarker to aid its diagnosis. A multimodal framework (Ai-CovScan) for Covid-19 detection using breathing sounds, chest X-ray (CXR) images, and rapid antigen test (RAnT) is proposed. Transfer Learning approach using existing deep-learning Convolutional Neural Network (CNN) based on Inception-v3 is combined with Multi-Layered Perceptron (MLP) to develop the CovScanNet model for reducing false-negatives. This model reports a preliminary accuracy of 80% for the breathing sound analysis, and 99.66% Covid-19 detection accuracy for the curated CXR image dataset. Based on Ai-CovScan, a smartphone app is conceptualised as a mass-deployable screening tool, which could alter the course of this pandemic. This app’s deployment could minimise the number of people accessing the limited and expensive confirmatory tests, thereby reducing the burden on the severely stressed healthcare infrastructure.
Collapse
Affiliation(s)
- Unais Sait
- Faculty of Architecture and Design, PES University, Bengaluru, India
| | - Gokul Lal K V
- East Point College of Engineering and Technology, Bengaluru, India
| | - Sanjana Shivakumar
- Department of Design and Computation Arts, Concordia University, Qc, Canada
| | - Tarun Kumar
- Centre for Product Design and Manufacturing, Indian Institute of Science, Bengaluru, India
| | - Rahul Bhaumik
- Faculty of Architecture and Design, PES University, Bengaluru, India
| | - Sunny Prajapati
- Faculty of Architecture and Design, PES University, Bengaluru, India
| | - Kriti Bhalla
- School of Architecture, Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | | |
Collapse
|
148
|
Amin J, Anjum MA, Sharif M, Saba T, Tariq U. An intelligence design for detection and classification of COVID19 using fusion of classical and convolutional neural network and improved microscopic features selection approach. Microsc Res Tech 2021; 84:2254-2267. [PMID: 33964096 PMCID: PMC8237066 DOI: 10.1002/jemt.23779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/15/2021] [Accepted: 04/03/2021] [Indexed: 12/31/2022]
Abstract
Coronavirus19 is caused due to infection in the respiratory system. It is the type of RNA virus that might infect animal and human species. In the severe stage, it causes pneumonia in human beings. In this research, hand‐crafted and deep microscopic features are used to classify lung infection. The proposed work consists of two phases; in phase I, infected lung region is segmented using proposed U‐Net deep learning model. The hand‐crafted features are extracted such as histogram orientation gradient (HOG), noise to the harmonic ratio (NHr), and segmentation based fractal texture analysis (SFTA) from the segmented image, and optimum features are selected from each feature vector using entropy. In phase II, local binary patterns (LBPs), speeded up robust feature (Surf), and deep learning features are extracted using a pretrained network such as inceptionv3, ResNet101 from the input CT images, and select optimum features based on entropy. Finally, the optimum selected features using entropy are fused in two ways, (i) The hand‐crafted features (HOG, NHr, SFTA, LBP, SURF) are horizontally concatenated/fused (ii) The hand‐crafted features (HOG, NHr, SFTA, LBP, SURF) are combined/fused with deep features. The fused optimum features vector is passed to the ensemble models (Boosted tree, bagged tree, and RUSBoosted tree) in two ways for the COVID19 classification, (i) classification using fused hand‐crafted features (ii) classification using fusion of hand‐crafted features and deep features. The proposed methodology is tested /evaluated on three benchmark datasets. Two datasets employed for experiments and results show that hand‐crafted & deep microscopic feature's fusion provide better results compared to only hand‐crafted fused features.
Collapse
Affiliation(s)
- Javaria Amin
- Department of Computer Science, University of Wah, Wah, Pakistan
| | | | - Muhammad Sharif
- Department of Computer Science, COMSATS University Islamabad - Wah Campus, Wah Cantt, Pakistan, 4740, Pakistan
| | - Tanzila Saba
- Artificial Intelligence and Data Analytics (AIDA) Lab CCIS Prince Sultan University, Riyadh, Saudi Arabia
| | - Usman Tariq
- College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| |
Collapse
|
149
|
Dastider AG, Sadik F, Fattah SA. An integrated autoencoder-based hybrid CNN-LSTM model for COVID-19 severity prediction from lung ultrasound. Comput Biol Med 2021; 132:104296. [PMID: 33684688 PMCID: PMC7914375 DOI: 10.1016/j.compbiomed.2021.104296] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022]
Abstract
The COVID-19 pandemic has become one of the biggest threats to the global healthcare system, creating an unprecedented condition worldwide. The necessity of rapid diagnosis calls for alternative methods to predict the condition of the patient, for which disease severity estimation on the basis of Lung Ultrasound (LUS) can be a safe, radiation-free, flexible, and favorable option. In this paper, a frame-based 4-score disease severity prediction architecture is proposed with the integration of deep convolutional and recurrent neural networks to consider both spatial and temporal features of the LUS frames. The proposed convolutional neural network (CNN) architecture implements an autoencoder network and separable convolutional branches fused with a modified DenseNet-201 network to build a vigorous, noise-free classification model. A five-fold cross-validation scheme is performed to affirm the efficacy of the proposed network. In-depth result analysis shows a promising improvement in the classification performance by introducing the Long Short-Term Memory (LSTM) layers after the proposed CNN architecture by an average of 7-12%, which is approximately 17% more than the traditional DenseNet architecture alone. From an extensive analysis, it is found that the proposed end-to-end scheme is very effective in detecting COVID-19 severity scores from LUS images.
Collapse
|
150
|
Su Y, Venkat A, Yadav Y, Puglisi LB, Fodeh SJ. Twitter-based analysis reveals differential COVID-19 concerns across areas with socioeconomic disparities. Comput Biol Med 2021; 132:104336. [PMID: 33761419 PMCID: PMC9159205 DOI: 10.1016/j.compbiomed.2021.104336] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE We sought to understand spatial-temporal factors and socioeconomic disparities that shaped U.S. residents' response to COVID-19 as it emerged. METHODS We mined coronavirus-related tweets from January 23rd to March 25th, 2020. We classified tweets by the socioeconomic status of the county from which they originated with the Area Deprivation Index (ADI). We applied topic modeling to identify and monitor topics of concern over time. We investigated how topics varied by ADI and between hotspots and non-hotspots. RESULTS We identified 45 topics in 269,556 unique tweets. Topics shifted from early-outbreak-related content in January, to the presidential election and governmental response in February, to lifestyle impacts in March. High-resourced areas (low ADI) were concerned with stocks and social distancing, while under-resourced areas shared negative expression and discussion of the CARES Act relief package. These differences were consistent within hotspots, with increased discussion regarding employment in high ADI hotspots. DISCUSSION Topic modeling captures major concerns on Twitter in the early months of COVID-19. Our study extends previous Twitter-based research as it assesses how topics differ based on a marker of socioeconomic status. Comparisons between low and high-resourced areas indicate more focus on personal economic hardship in less-resourced communities and less focus on general public health messaging. CONCLUSION Real-time social media analysis of community-based pandemic responses can uncover differential conversations correlating to local impact and income, education, and housing disparities. In future public health crises, such insights can inform messaging campaigns, which should partly focus on the interests of those most disproportionately impacted.
Collapse
Affiliation(s)
- Yihua Su
- Health Informatics Program, Yale School of Public Health, 60 College St, New Haven, CT, 06510, USA
| | - Aarthi Venkat
- Computational Biology and Bioinformatics Program, Yale University, 300 George Street, Suite 501, New Haven, CT, 06511, USA
| | - Yadush Yadav
- Health Informatics Program, Yale School of Public Health, 60 College St, New Haven, CT, 06510, USA
| | - Lisa B. Puglisi
- SEICHE Center for Health and Justice, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA,Pain Research, Informatics, Multimorbidities and Education Center, VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT, 06516, USA
| | - Samah J. Fodeh
- Health Informatics Program, Yale School of Public Health, 60 College St, New Haven, CT, 06510, USA,Computational Biology and Bioinformatics Program, Yale University, 300 George Street, Suite 501, New Haven, CT, 06511, USA,Department of Emergency Medicine, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA,Corresponding author. 300 George Street, PO Box 208009, New Haven, CT, 06520, USA
| |
Collapse
|