101
|
Abstract
PURPOSE OF REVIEW This review focuses on the management of severe Pseudomonas aeruginosa infections in critically ill patients. RECENT FINDINGS Pseudomonas aeruginosa is the most common pathogen in intensive care; the main related infections are nosocomial pneumonias, then bloodstream infections. Antimicrobial resistance is common; despite new antibiotics, it is associated with increased mortality, and can lead to a therapeutic deadlock. SUMMARY Carbapenem resistance in difficult-to-treat P. aeruginosa (DTR-PA) strains is primarily mediated by loss or reduction of the OprD porin, overexpression of the cephalosporinase AmpC, and/or overexpression of efflux pumps. However, the role of carbapenemases, particularly metallo-β-lactamases, has become more important. Ceftolozane-tazobactam, ceftazidime-avibactam and imipenem-relebactam are useful against DTR phenotypes (noncarbapenemase producers). Other new agents, such as aztreonam-ceftazidime-avibactam or cefiderocol, or colistin, might be effective for carbapenemase producers. Regarding nonantibiotic agents, only phages might be considered, pending further clinical trials. Combination therapy does not reduce mortality, but may be necessary for empirical treatment. Short-term treatment of severe P. aeruginosa infections should be preferred when it is expected that the clinical situation resolves rapidly.
Collapse
Affiliation(s)
- Hermann Do Rego
- AP-HP, Bichat Hospital, Medical and infectious diseases intensive care unit
| | - Jean-François Timsit
- AP-HP, Bichat Hospital, Medical and infectious diseases intensive care unit
- IAME Université Paris Cité, UMR 1137, Paris
- Meta-network PROMISE, Inserm, Limoges Universit, Limoges University hospital (CHU), UMR1092, Limoges, France
| |
Collapse
|
102
|
Han Y, Ge C, Ye J, Li R, Zhang Y. Demethyleneberberine alleviates Pseudomonas aeruginosa-induced acute pneumonia by inhibiting the AIM2 inflammasome and oxidative stress. Pulm Pharmacol Ther 2023; 83:102259. [PMID: 37726074 DOI: 10.1016/j.pupt.2023.102259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/22/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Acute pneumonia induced by Pseudomonas aeruginosa is characterized by massive infiltration of inflammatory cell and the production of reactive oxygen species (ROS), which lead to severe and transient pulmonary inflammation and acute lung injury. However, P.aeruginosa infection is resistant to multiple antibiotics and causes high mortality in clinic, the search for alternative prophylactic and therapeutic strategies is imperative. PURPOSE This study was aimed to investigate the anti-inflammatory and antioxidant effects of DMB, a novel derivative of berberine, and explore the role of AIM2 inflammasome in P. aeruginosa-induced acute pneumonia. METHODS Acute pneumonia mice were established by tracheal injection of P. aeruginosa suspension. Pathological changes of lung tissue were observed by its appearance and H&E staining. The lung coefficient ratio was measured to evaluate pulmonary edema. Inflammatory factors were detected by qRT-PCR, western blotting and immunohistochemistry. ROS and other indicators of oxidative damage were analyzed by flow cytometry and specific kit. Proteins related to AIM2 inflammasome were detected by western blotting. RESULTS Compared with the P. aeruginosa-induced group, DMB ameliorated pulmonary edema, hyperemia, and pathological damage based on its appearance and H&E staining in DMB groups. First, DMB attenuated the inflammatory response induced by P.aeruginosa. Compared with the P. aeruginosa-induced group, the lung coefficient ratio was decreased by 31.5%, the MPO activity of lung tissue was decreased by 44.0%, the mRNA expression levels of TNF-α, IL-1β and IL-6 were decreased by 64.8%, 51.2% and 64.0% respectively, and those protein expression levels were decreased by 40.1%, 42.8% and 47.8% respectively, and the number of white blood cells, neutrophils and monocytes were decreased by 53.5%, 29.4% and 13.7% in high dose (200 mg/kg) DMB group. Second, DMB alleviates oxidative stress in the lung tissue during P. aeruginosa-induced acute pneumonia. Compared with the P. aeruginosa-induced group, the level of GSH was increased by 42.5% and MDA was decreased by 49.5% in high dose DMB group. Moreover, the western blotting results showed that DMB markedly suppressed the expression of AIM2, ASC, Cleaved caspase1 and decreased the secretion of IL-1β. Additionally, these results were also confirmed by in vitro experiments using MH-S and BEAS-2B cell lines. CONCLUSIONS Taken together, these results indicated that DMB ameliorates P. aeruginosa-induced acute pneumonia through anti-inflammatory, antioxidant effects, and inhibition of AIM2 inflammasome activation.
Collapse
Affiliation(s)
- Yanhong Han
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chuang Ge
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Junmei Ye
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ruiyan Li
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yubin Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
103
|
Kretschmer M, Müller J, Henke P, Otto V, Rodriguez AA, Müsken M, Jahn D, Borrero-de Acuña JM, Neumann-Schaal M, Wegner A. Isolation and Quantification of Bacterial Membrane Vesicles for Quantitative Metabolic Studies Using Mammalian Cell Cultures. Cells 2023; 12:2674. [PMID: 38067103 PMCID: PMC10705164 DOI: 10.3390/cells12232674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Bacterial membrane vesicles (BMVs) are produced by most bacteria and participate in various cellular processes, such as intercellular communication, nutrient exchange, and pathogenesis. Notably, these vesicles can contain virulence factors, including toxic proteins, DNA, and RNA. Such factors can contribute to the harmful effects of bacterial pathogens on host cells and tissues. Although the general effects of BMVs on host cellular physiology are well known, the underlying molecular mechanisms are less understood. In this study, we introduce a vesicle quantification method, leveraging the membrane dye FM4-64. We utilize a linear regression model to analyze the fluorescence emitted by stained vesicle membranes to ensure consistent and reproducible vesicle-host interaction studies using cultured cells. This method is particularly valuable for identifying host cellular processes impacted by vesicles and their specific cargo. Moreover, it outcompetes unreliable protein concentration-based methods. We (1) show a linear correlation between the number of vesicles and the fluorescence signal emitted from the FM4-64 dye; (2) introduce the "vesicle load" as a new semi-quantitative unit, facilitating more reproducible vesicle-cell culture interaction experiments; (3) show that a stable vesicle load yields consistent host responses when studying vesicles from Pseudomonas aeruginosa mutants; (4) demonstrate that typical vesicle isolation contaminants, such as flagella, do not significantly skew the metabolic response of lung epithelial cells to P. aeruginosa vesicles; and (5) identify inositol monophosphatase 1 (SuhB) as a pivotal regulator in the vesicle-mediated pathogenesis of P. aeruginosa.
Collapse
Affiliation(s)
- Marcel Kretschmer
- Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Julia Müller
- Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Petra Henke
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7 B, 38124 Braunschweig, Germany
| | - Viktoria Otto
- Institute for Microbiology, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | | | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
- Institute for Microbiology, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - José Manuel Borrero-de Acuña
- Department of Microbiology, Facultad de Biología, University of Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Meina Neumann-Schaal
- Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7 B, 38124 Braunschweig, Germany
| | - Andre Wegner
- Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| |
Collapse
|
104
|
Bao X, Goeteyn E, Crabbé A, Coenye T. Effect of malate on the activity of ciprofloxacin against Pseudomonas aeruginosa in different in vivo and in vivo-like infection models. Antimicrob Agents Chemother 2023; 67:e0068223. [PMID: 37819115 PMCID: PMC10649037 DOI: 10.1128/aac.00682-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 10/13/2023] Open
Abstract
The clinical significance of Pseudomonas aeruginosa infections and the tolerance of this opportunistic pathogen to antibiotic therapy makes the development of novel antimicrobial strategies an urgent need. We previously found that D,L-malic acid potentiates the activity of ciprofloxacin against P. aeruginosa biofilms grown in a synthetic cystic fibrosis sputum medium by increasing metabolic activity and tricarboxylic acid cycle activity. This suggested a potential new strategy to improve antibiotic therapy in P. aeruginosa infections. Considering the importance of the microenvironment on microbial antibiotic susceptibility, the present study aims to further investigate the effect of D,L-malate on ciprofloxacin activity against P. aeruginosa in physiologically relevant infection models, aiming to mimic the infection environment more closely. We used Caenorhabditis elegans nematodes, Galleria mellonella larvae, and a 3-D lung epithelial cell model to assess the effect of D,L-malate on ciprofloxacin activity against P. aeruginosa. D,L-malate was able to significantly enhance ciprofloxacin activity against P. aeruginosa in both G. mellonella larvae and the 3-D lung epithelial cell model. In addition, ciprofloxacin combined with D,L-malate significantly improved the survival of infected 3-D cells compared to ciprofloxacin alone. No significant effect of D,L-malate on ciprofloxacin activity against P. aeruginosa in C. elegans nematodes was observed. Overall, these data indicate that the outcome of the experiment is influenced by the model system used which emphasizes the importance of using models that reflect the in vivo environment as closely as possible. Nevertheless, this study confirms the potential of D,L-malate to enhance ciprofloxacin activity against P. aeruginosa-associated infections.
Collapse
Affiliation(s)
- Xuerui Bao
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Ellen Goeteyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
105
|
Gheorghita AA, Wozniak DJ, Parsek MR, Howell PL. Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation. FEMS Microbiol Rev 2023; 47:fuad060. [PMID: 37884397 PMCID: PMC10644985 DOI: 10.1093/femsre/fuad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023] Open
Abstract
The biofilm matrix is a fortress; sheltering bacteria in a protective and nourishing barrier that allows for growth and adaptation to various surroundings. A variety of different components are found within the matrix including water, lipids, proteins, extracellular DNA, RNA, membrane vesicles, phages, and exopolysaccharides. As part of its biofilm matrix, Pseudomonas aeruginosa is genetically capable of producing three chemically distinct exopolysaccharides - alginate, Pel, and Psl - each of which has a distinct role in biofilm formation and immune evasion during infection. The polymers are produced by highly conserved mechanisms of secretion, involving many proteins that span both the inner and outer bacterial membranes. Experimentally determined structures, predictive modelling of proteins whose structures are yet to be solved, and structural homology comparisons give us insight into the molecular mechanisms of these secretion systems, from polymer synthesis to modification and export. Here, we review recent advances that enhance our understanding of P. aeruginosa multiprotein exopolysaccharide biosynthetic complexes, and how the glycoside hydrolases/lyases within these systems have been commandeered for antimicrobial applications.
Collapse
Affiliation(s)
- Andreea A Gheorghita
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Science Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, 776 Biomedical Research Tower, 460 W 12th Ave, Columbus, OH 43210, United States
- Department of Microbiology, The Ohio State University College, Biological Sciences Bldg, 105, 484 W 12th Ave, Columbus, OH 43210, United States
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Health Sciences Bldg, 1705 NE Pacific St, Seattle, WA 98195-7735, United States
| | - P Lynne Howell
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay St, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Science Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
106
|
Kushwaha A, Agarwal V. Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone mediates Ca +2 dysregulation, mitochondrial dysfunction, and apoptosis in human peripheral blood lymphocytes. Heliyon 2023; 9:e21462. [PMID: 38027911 PMCID: PMC10660034 DOI: 10.1016/j.heliyon.2023.e21462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/01/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
N-(3-oxododecanoyl)-l-homoserine lactone is a Pseudomonas aeruginosa secreted quorum-sensing molecule that mediates the secretion of virulence factors, biofilm formation and plays a pivotal role in proliferation and persistence in the host. Apart from regulating quorum-sensing, the autoinducer signal molecule N-(3-oxododecanoyl)-l-homoserine lactone (3O-C12-HSL or C12) of a LasI-LasR circuit exhibits immunomodulatory effects and induces apoptosis in various host cells. However, the precise pathophysiological impact of C12 on human peripheral blood lymphocytes and its involvement in mitochondrial dysfunction remained largely elusive. In this study, the results suggest that C12 (100 μM) induces upregulation of cytosolic and mitochondrial Ca+2 levels and triggers mitochondrial dysfunction through the generation of mitochondrial ROS (mROS), disruption of mitochondrial transmembrane potential (ΔΨm), and opening of the mitochondrial permeability transition pore (mPTP). Additionally, it was observed that C12 induces phosphatidylserine (PS) exposure and promotes apoptosis in human peripheral blood lymphocytes. However, apoptosis plays a critical role in the homeostasis and development of lymphocytes, whereas enhanced apoptosis can cause immunodeficiency through cell loss. These findings suggest that C12 exerts a detrimental effect on lymphocytes by mediating mitochondrial dysfunction and enhancing apoptosis, which might further impair the effective mounting of immune responses during Pseudomonas aeruginosa-associated infections.
Collapse
Affiliation(s)
- Ankit Kushwaha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| | - Vishnu Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| |
Collapse
|
107
|
Kaur M, Buyck JM, Goormaghtigh F, Decout JL, Mozaheb N, Mingeot-Leclercq MP. Deficient Pseudomonas aeruginosa in MlaA/VacJ outer membrane lipoprotein shows decrease in rhamnolipids secretion, motility, and biofilm formation, and increase in fluoroquinolones susceptibility and innate immune response. Res Microbiol 2023; 174:104132. [PMID: 37660742 DOI: 10.1016/j.resmic.2023.104132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Pseudomonas aeruginosa, a Gram-negative bacterium that causes severe hospital acquired infections poses threat by its ability for adaptation to various growth modes and environmental conditions and by its intrinsic resistance to antibiotics. The latter is mainly due to the outer membrane (OM) asymmetry which is maintained by the Mla pathway resulting in the retrograde transport of glycerophospholipids from the OM to the inner membrane. It comprises six Mla proteins, including MlaA, an OM lipoprotein involved in the removal of glycerophospholipids mislocalized at the outer leaflet of OM. To investigate the role of P. aeruginosa OM asymmetry especially MlaA, this study investigated the effect of mlaA deletion on (i) the susceptibility to antibiotics, (ii) the secretion of virulence factors, the motility, biofilm formation, and (iii) the inflammatory response. mlaA deletion in P. aeruginosa ATCC27853 results in phenotypic changes including, an increase in fluoroquinolones susceptibility and in PQS (Pseudomonas Quinolone Signal) and TNF-α release and a decrease in rhamnolipids secretion, motility and biofilm formation. Investigating how the mlaA knockout impacts on antibiotic susceptibility, bacterial virulence and innate immune response will help to elucidate the biological significance of the Mla system and contribute to the understanding of MlaA in P. aeruginosa OM asymmetry.
Collapse
Affiliation(s)
- M Kaur
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium.
| | - J M Buyck
- University of Poitiers, INSERM U1070, Poitiers, France.
| | - F Goormaghtigh
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium.
| | - J-L Decout
- Université Grenoble Alpes, CNRS, Département de Pharmacochimie Moléculaire, Rue de la Chimie, F-38041 Grenoble, France.
| | - N Mozaheb
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium.
| | - M-P Mingeot-Leclercq
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium.
| |
Collapse
|
108
|
Ali ASBE, Ozler B, Baddal B. Characterization of Virulence Genes Associated with Type III Secretion System and Biofilm Formation in Pseudomonas aeruginosa Clinical Isolates. Curr Microbiol 2023; 80:389. [PMID: 37880467 DOI: 10.1007/s00284-023-03498-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023]
Abstract
Pseudomonas aeruginosa is a common pathogen with an increasing multidrug resistance (MDR) phenotype. Its virulence determinants include many factors such as antimicrobial resistance, biofilm formation, and type III secretion system (T3SS) which correlate with disease severity. There are no reports regarding the virulence features of P. aeruginosa in Cyprus. The aim of this study was to investigate the frequency and distribution of selected virulence-encoding genes and evaluate the biofilm formation potential as well as antibiotic resistance rates of isolates in the region. One hundred clinical P. aeruginosa isolates were obtained from clinical specimens and were identified using standard microbiological techniques. Antimicrobial susceptibility was assessed using the VITEK-2 system and biofilm quantification was performed by the microtiter plate assay with crystal violet staining. The presence of algD, exoU, exoT, and exoS was evaluated using polymerase chain reaction (PCR). Among all isolates, 35% were strong biofilm former, 28% were moderate biofilm former, 19% were weak biofilm former, and 18% were non-biofilm former. The rates of MDR and extensive drug resistance (XDR) were 26% and 1%. PCR analysis indicated that 93% of the isolates were algD positive. T3SS genes exoT, exoS, and exoU were detected in 91%, 63%, and 32% of the isolates, respectively. There was a high frequency of exoT + /exoS + genotype (61%), whereas exoT + /exoU + (32%) and exoS + /exoU + (2%) genotypes were relatively uncommon. This study reports the first dataset on the molecular profile of P. aeruginosa in Cyprus. Our results demonstrated that most strains have the biofilm-forming capacity with an algD-positive genotype and the majority carry exoT and exoS with a high frequency of exoT + /exoS + genotype.
Collapse
Affiliation(s)
- Afnan S B E Ali
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, 99138, Nicosia, Cyprus
| | - Batur Ozler
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, 99138, Nicosia, Cyprus
| | - Buket Baddal
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, 99138, Nicosia, Cyprus.
- Microbial Pathogenesis Research Group, DESAM Research Institute, Near East University, 99138, Nicosia, Cyprus.
| |
Collapse
|
109
|
Qin Y, Shi Z, Zhu L, Li H, Lu W, Ye G, Huang Q, Cui L. Impact of Airborne Pathogen-Derived Extracellular Vesicles on Macrophages Revealed by Raman Spectroscopy and Multiomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15858-15868. [PMID: 37812447 DOI: 10.1021/acs.est.3c04800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Long-term exposure to the indoor environment may pose threats to human health due to the presence of pathogenic bacteria and their byproducts. Nanoscale extracellular vesicles (EVs) extensively secreted from pathogenic bacteria can traverse biological barriers and affect physio-pathological processes. However, the potential health impact of EVs from indoor dust and the underlying mechanisms remain largely unexplored. Here, Raman spectroscopy combined with multiomics (genomics and proteomics) was used to address these issues. Genomic analysis revealed that Pseudomonas was an efficient producer of EVs that harbored 68 types of virulence factor-encoding genes. Upon exposing macrophages to environmentally relevant doses of Pseudomonas aeruginosa PAO1-derived EVs, macrophage internalization was observed, and release of inflammatory factors was determined by RT-PCR. Subsequent Raman spectroscopy and unsupervised surprisal analysis of EV-affected macrophages distinguished metabolic alterations, particularly in proteins and lipids. Proteomic analysis further revealed differential expression of proteins in inflammatory and metabolism-related pathways, indicating that EV exposure induced macrophage metabolic reprogramming and inflammation. Collectively, our findings revealed that pathogen-derived EVs in the indoor environments can act as a new mediator for pathogens to exert adverse health effects. Our method of Raman integrated with multiomics offers a complementary approach for rapid and in-depth understanding of EVs' impact.
Collapse
Affiliation(s)
- Yifei Qin
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Shi
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- State Environment Protection Key Laboratory of Satellite Remote Sensing, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
| | - Longji Zhu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hongzhe Li
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wenjia Lu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guozhu Ye
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Li Cui
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
110
|
Naga NG, Zaki AA, El-Badan DE, Rateb HS, Ghanem KM, Shaaban MI. Inhibition of Pseudomonas aeruginosa quorum sensing by methyl gallate from Mangifera indica. Sci Rep 2023; 13:17942. [PMID: 37864035 PMCID: PMC10589227 DOI: 10.1038/s41598-023-44063-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
Antipathogenic drugs are a potential source of therapeutics, particularly following the emergence of multiple drug-resistant pathogenic microorganisms in the last decade. The inhibition of quorum sensing (QS) is an advanced antipathogenic approach for suppression of bacterial virulence and dissemination. This study aimed to investigate the inhibitory effect of some Egyptian medicinal plants on the QS signaling system of Pseudomonas aeruginosa. Among the tested plants, Mangifera indica exhibited the highest quorum sensing inhibition (QSI) activity against Chromobacterium violaceum ATCC 12472. Four pure compounds were extracted and identified; of these, methyl gallate (MG) showed the most potent QSI. MG had a minimum inhibitory concentration (MIC) of 512 g/mL against P. aeruginosa strains PAO1, PA14, Pa21, Pa22, Pa23, Pa24, and PAO-JP2. The virulence factors of PAO1, PA14, Pa21, Pa22, Pa23, and Pa24 were significantly inhibited by MG at 1/4 and 1/2 sub-MICs without affecting bacterial viability. Computational insights were performed by docking the MG compound on the LasR receptor, and the QSI behavior of MG was found to be mediated by three hydrogen bonds: Trp60, Arg61, and Thr75. This study indicates the importance of M. indica and MG in the inhibition and modulation of QS and QS-related virulence factors in P. aeruginosa.
Collapse
Affiliation(s)
- Nourhan G Naga
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed A Zaki
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, El Mansoura, Egypt
| | - Dalia E El-Badan
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Heba S Rateb
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, Misr University for Science and Technology, Cairo, Egypt
| | - Khaled M Ghanem
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mona I Shaaban
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, El Mansoura, Egypt.
| |
Collapse
|
111
|
Huang R, Zhang H, Chen H, He L, Liu X, Zhang Z. The determination of the biological function of bacterial pink pigment and Fusarium chlamydosporum on alfalfa ( Medicago sativa L.). Front Microbiol 2023; 14:1285961. [PMID: 37928657 PMCID: PMC10620923 DOI: 10.3389/fmicb.2023.1285961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023] Open
Abstract
Bacterial pigment is one of the secondary metabolites produced by bacteria and has functions that are yet to be understood in relation to soil-borne pathogenic fungi and plants in mutualistic processes. The study evaluates the growth, photosynthetic, and physiological characteristics of alfalfa after interacting with different concentrations of Cp2 pink pigment and Fusarium chlamydosporum. The findings showed that Cp2 pink pigment has the ability to inhibit the growth of alfalfa, with the inhibition ratio gradually increasing with rising concentration. F. chlamydosporum inhibited the growth of alfalfa, which reduced the photosynthetic physiological response and elevated antioxidant enzymes, which are typically manifested by yellowing leaves and shortened roots. Under the combined effect of Cp2 pink pigment and F. chlamydosporum, increasing concentrations of Cp2 pink pigment intensified the symptoms in alfalfa and led to more pronounced growth and physiological response. This indicates that the Cp2 pink pigment is one of the potential virulence factors secreted by the Erwinia persicina strain Cp2, which plays an inhibitory role in the interactions between F. chlamydosporum and alfalfa, and also has the potential to be developed into a plant immunomodulator agent.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenfen Zhang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Ministry of Science and Technology, Pratacultural College, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
112
|
Lee JH, Kim NH, Jang KM, Jin H, Shin K, Jeong BC, Kim DW, Lee SH. Prioritization of Critical Factors for Surveillance of the Dissemination of Antibiotic Resistance in Pseudomonas aeruginosa: A Systematic Review. Int J Mol Sci 2023; 24:15209. [PMID: 37894890 PMCID: PMC10607276 DOI: 10.3390/ijms242015209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Pseudomonas aeruginosa is the primary opportunistic human pathogen responsible for a range of acute and chronic infections; it poses a significant threat to immunocompromised patients and is the leading cause of morbidity and mortality for nosocomial infections. Its high resistance to a diverse array of antimicrobial agents presents an urgent health concern. Among the mechanisms contributing to resistance in P. aeruginosa, the horizontal acquisition of antibiotic resistance genes (ARGs) via mobile genetic elements (MGEs) has gained recognition as a substantial concern in clinical settings, thus indicating that a comprehensive understanding of ARG dissemination within the species is strongly required for surveillance. Here, two approaches, including a systematic literature analysis and a genome database survey, were employed to gain insights into ARG dissemination. The genome database enabled scrutinizing of all the available sequence information and various attributes of P. aeruginosa isolates, thus providing an extensive understanding of ARG dissemination within the species. By integrating both approaches, with a primary focus on the genome database survey, mobile ARGs that were linked or correlated with MGEs, important sequence types (STs) carrying diverse ARGs, and MGEs responsible for ARG dissemination were identified as critical factors requiring strict surveillance. Although human isolates play a primary role in dissemination, the importance of animal and environmental isolates has also been suggested. In this study, 25 critical mobile ARGs, 45 critical STs, and associated MGEs involved in ARG dissemination within the species, are suggested as critical factors. Surveillance and management of these prioritized factors across the One Health sectors are essential to mitigate the emergence of multidrug-resistant (MDR) and extensively resistant (XDR) P. aeruginosa in clinical settings.
Collapse
Affiliation(s)
- Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Nam-Hoon Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Kyung-Min Jang
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Hyeonku Jin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Kyoungmin Shin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Dae-Wi Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| |
Collapse
|
113
|
Islam MM, Kolling GL, Glass EM, Goldberg JB, Papin JA. Model-driven characterization of functional diversity of Pseudomonas aeruginosa clinical isolates with broadly representative phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561426. [PMID: 37873245 PMCID: PMC10592701 DOI: 10.1101/2023.10.08.561426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Pseudomonas aeruginosa is a leading cause of infections in immunocompromised individuals and in healthcare settings. This study aims to understand the relationships between phenotypic diversity and the functional metabolic landscape of P. aeruginosa clinical isolates. To better understand the metabolic repertoire of P. aeruginosa in infection, we deeply profiled a representative set from a library of 971 clinical P. aeruginosa isolates with corresponding patient metadata and bacterial phenotypes. The genotypic clustering based on whole-genome sequencing of the isolates, multi-locus sequence types, and the phenotypic clustering generated from a multi-parametric analysis were compared to each other to assess the genotype-phenotype correlation. Genome-scale metabolic network reconstructions were developed for each isolate through amendments to an existing PA14 network reconstruction. These network reconstructions show diverse metabolic functionalities and enhance the collective P. aeruginosa pangenome metabolic repertoire. Characterizing this rich set of clinical P. aeruginosa isolates allows for a deeper understanding of the genotypic and metabolic diversity of the pathogen in a clinical setting and lays a foundation for further investigation of the metabolic landscape of this pathogen and host-associated metabolic differences during infection.
Collapse
Affiliation(s)
- Mohammad Mazharul Islam
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | - Glynis L. Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | - Emma M. Glass
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| | | | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22903
| |
Collapse
|
114
|
Chen X, Wei W, Xiong W, Wu S, Wu Q, Wang P, Zhu G. Two Different Isocitrate Dehydrogenases from Pseudomonas aeruginosa: Enzymology and Coenzyme-Evolutionary Implications. Int J Mol Sci 2023; 24:14985. [PMID: 37834433 PMCID: PMC10574006 DOI: 10.3390/ijms241914985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Pseudomonas aeruginosa PAO1, as an experimental model for Gram-negative bacteria, harbors two NADP+-dependent isocitrate dehydrogenases (NADP-IDHs) that were evolved from its ancient counterpart NAD-IDHs. For a better understanding of PaIDH1 and PaIDH2, we cloned the genes, overexpressed them in Escherichia coli and purified them to homogeneity. PaIDH1 displayed higher affinity to NADP+ and isocitrate, with lower Km values when compared to PaIDH2. Moreover, PaIDH1 possessed higher temperature tolerance (50 °C) and wider pH range tolerance (7.2-8.5) and could be phosphorylated. After treatment with the bifunctional PaIDH kinase/phosphatase (PaIDH K/P), PaIDH1 lost 80% of its enzymatic activity in one hour due to the phosphorylation of Ser115. Small-molecule compounds like glyoxylic acid and oxaloacetate can effectively inhibit the activity of PaIDHs. The mutant PaIDH1-D346I347A353K393 exhibited enhanced affinity for NAD+ while it lost activity towards NADP+, and the Km value (7770.67 μM) of the mutant PaIDH2-L589 I600 for NADP+ was higher than that observed for NAD+ (5824.33 μM), indicating a shift in coenzyme specificity from NADP+ to NAD+ for both PaIDHs. The experiments demonstrated that the mutation did not alter the oligomeric state of either protein. This study provides a foundation for the elucidation of the evolution and function of two NADP-IDHs in the pathogenic bacterium P. aeruginosa.
Collapse
Affiliation(s)
| | | | | | | | | | - Peng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China; (X.C.); (W.W.); (W.X.); (S.W.); (Q.W.)
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China; (X.C.); (W.W.); (W.X.); (S.W.); (Q.W.)
| |
Collapse
|
115
|
Cai W, Liao H, Lu M, Zhou X, Cheng X, Staehelin C, Dai W. New Evolutionary Insights into RpoA: A Novel Quorum Sensing Reprograming Factor in Pseudomonas aeruginosa. Mol Biol Evol 2023; 40:msad203. [PMID: 37708386 PMCID: PMC10566545 DOI: 10.1093/molbev/msad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023] Open
Abstract
Quorum-sensing (QS) coordinates the expression of virulence factors in Pseudomonas aeruginosa, an opportunistic pathogen known for causing severe infections in immunocompromised patients. QS has a master regulator, the lasR gene, but in clinical settings, P. aeruginosa isolates have been found that are QS-active but LasR-null. In this study, we developed an experimental evolutionary approach to identify additional QS-reprogramming determinants. We began the study with a LasR-null mutant with an extra copy of mexT, a transcriptional regulator gene that is known to be able to reprogram QS in laboratory LasR-null strains. In this strain, spontaneous single mexT mutations are expected to have no or little phenotypic consequences. Using this novel method, which we have named "targeted gene duplication followed by mutant screening", we identified QS-active revertants with mutations in genes other than mexT. One QS-active revertant had a point mutation in rpoA, a gene encoding the α-subunit of RNA polymerase. QS activation in this mutant was found to be associated with the downregulated expression of mexEF-oprN efflux pump genes. Our study therefore uncovers a new functional role for RpoA in regulating QS activity. Our results indicate that a RpoA-dependent regulatory circuit controlling the expression of the mexEF-oprN operon is critical for QS-reprogramming. In conclusion, our study reports on the identification of non-MexT proteins associated with QS-reprogramming in a laboratory strain, shedding light on possible QS activation mechanisms in clinical P. aeruginosa isolates.
Collapse
Affiliation(s)
- Wenjie Cai
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- College of Plant Protection, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Huimin Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- College of Plant Protection, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Mingqi Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- College of Plant Protection, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Xiangting Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- College of Plant Protection, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Xiaoyan Cheng
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- College of Plant Protection, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weijun Dai
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- College of Plant Protection, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
116
|
Abdelghafar A, El-Ganiny A, Shaker G, Askoura M. A novel lytic phage exhibiting a remarkable in vivo therapeutic potential and higher antibiofilm activity against Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 2023; 42:1207-1234. [PMID: 37608144 PMCID: PMC10511388 DOI: 10.1007/s10096-023-04649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Pseudomonas aeruginosa is a nosocomial bacterium responsible for variety of infections. Inappropriate use of antibiotics could lead to emergence of multidrug-resistant (MDR) P. aeruginosa strains. Herein, a virulent phage; vB_PaeM_PS3 was isolated and tested for its application as alternative to antibiotics for controlling P. aeruginosa infections. METHODS Phage morphology was observed using transmission electron microscopy (TEM). The phage host range and efficiency of plating (EOP) in addition to phage stability were analyzed. One-step growth curve was performed to detect phage growth kinetics. The impact of isolated phage on planktonic cells and biofilms was assessed. The phage genome was sequenced. Finally, the therapeutic potential of vB_PaeM_PS3 was determined in vivo. RESULTS Isolated phage has an icosahedral head and a contractile tail and was assigned to the family Myoviridae. The phage vB_PaeM_PS3 displayed a broad host range, strong bacteriolytic ability, and higher environmental stability. Isolated phage showed a short latent period and large burst size. Importantly, the phage vB_PaeM_PS3 effectively eradicated bacterial biofilms. The genome of vB_PaeM_PS3 consists of 93,922 bp of dsDNA with 49.39% G + C content. It contains 171 predicted open reading frames (ORFs) and 14 genes as tRNA. Interestingly, the phage vB_PaeM_PS3 significantly attenuated P. aeruginosa virulence in host where the survival of bacteria-infected mice was markedly enhanced following phage treatment. Moreover, the colonizing capability of P. aeruginosa was markedly impaired in phage-treated mice as compared to untreated infected mice. CONCLUSION Based on these findings, isolated phage vB_PaeM_PS3 could be potentially considered for treating of P. aeruginosa infections.
Collapse
Affiliation(s)
- Aliaa Abdelghafar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Amira El-Ganiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ghada Shaker
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Momen Askoura
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
117
|
Ramirez DM, Ramirez D, Dhiman S, Arora R, Lozeau C, Arthur G, Zhanel G, Schweizer F. Guanidinylated Amphiphilic Tobramycin Derivatives Synergize with β-Lactam/β-Lactamase Inhibitor Combinations against Pseudomonas aeruginosa. ACS Infect Dis 2023; 9:1754-1768. [PMID: 37603592 DOI: 10.1021/acsinfecdis.3c00217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) was designated as a critical priority pathogen by the World Health Organization for which new therapeutic solutions are required. With the rapid dissemination of β-lactamases in P. aeruginosa, β-lactam (BL) antibiotics are used in conjunction with β-lactamase inhibitors (BLI). The effectiveness of the BL/BLI combination could be further enhanced with the inclusion of an outer membrane (OM) permeabilizer, such as aminoglycosides and aminoglycoside-based adjuvants. Thus, the development of seven tobramycin derivatives reported herein focused on improving OM permeabilizing capabilities and reducing associated toxicity. The structure-activity relationship studies emphasized the effects of the nature of the cationic group; the number of polar head groups and positive charges; and flexibility, length, and steric bulk of the hydrophobic moiety. The optimized guanidinylated tobramycin-biphenyl derivative was noncytotoxic and demonstrated the ability to potentiate ceftazidime and aztreonam monotherapy and in dual combinations with avibactam against multidrug-resistant (MDR) and β-lactamase harboring isolates of P. aeruginosa. The triple combination of ceftazidime/avibactam plus guanidinylated tobramycin-biphenyl resulted in rapid bactericidal activity within 4-8 h of treatment, demonstrating the potential application of these guanidinylated amphiphilic tobramycin derivatives in augmenting BL/BLI combinations.
Collapse
Affiliation(s)
| | - Danyel Ramirez
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Shiv Dhiman
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Rajat Arora
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Christian Lozeau
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MBR3E 0W2, Canada
| | - George Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MBR3E 0J9, Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MBR3E 0J9, Canada
| |
Collapse
|
118
|
Azeem M, Hanif M, Mahmood K, Siddique F, Hashem HE, Aziz M, Ameer N, Abid U, Latif H, Ramzan N, Rawat R. Design, synthesis, spectroscopic characterization, in-vitro antibacterial evaluation and in-silico analysis of polycaprolactone containing chitosan-quercetin microspheres. J Biomol Struct Dyn 2023; 41:7084-7103. [PMID: 36069131 DOI: 10.1080/07391102.2022.2119602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 08/14/2022] [Indexed: 10/14/2022]
Abstract
Aim of present study was to synthesize a novel chitosan-quercetin (CTS-QT) complex by making a carbodiimide linkage using maleic anhydride as cross-linker and to investigate its enhanced antibacterial and antioxidant activities as compare to pure CTS and QT. Equimolar concentration of QT and maleic anhydride were used to react with 100 mg CTS to form CTS-QT complex. For this purpose, three bacterial strains namely E. Coli, S. Aureus and P. Aeruginosa were used for in-vitro antibacterial analysis (ZOI, MIC, MBC, checker board and time kill assay). Later molecular docking studies were performed on protein structure of E. Coli to assess binding affinity of pure QT and CTS-QT complex. MD simulations with accelerated settings were used to explore the protein-ligand complex's binding interactions and stability. Antioxidant profile was determined by performing DPPH• radical scavenging assay, total antioxidant capacity (TAC) and total reducing power (TRP) assays. Delivery mechanism to CTS-QT complex was improved by synthesizing polycaprolactone containing microspheres (CTS-QT-PCL-Levo-Ms) using Levofloxacin as model drug to enhance their antibacterial profile. Resulted microspheres were evaluated by particle size, charge, surface morphology, in-vitro drug release and hemolytic profile and are all were found within limits. Antibacterial assay revealed that CTS-QT-PCL-Levo-Ms showed more than two folds increased bactericidal activity against E. Coli and P. Aeruginosa, while 1.5 folds against S. Aureus. Green colored formation of phosphate molybdate complexes with highest 85 ± 1.32% TAC confirmed its antioxidant properties. Furthermore, molecular docking and dynamics studies revealed that CTS-QT was embedded nicely within the active pocket of UPPS with binding energy greater than QT with RSMD value of below 1.5. Conclusively, use of maleic acid, in-vitro and in-silico antimicrobial studies confirm the emergence of CTS-QT complex containing microspheres as novel treatment strategy for all types of bacterial infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Azeem
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
- Hamdard Institute of Pharmaceutical Sciences, Hamdard University Islamabad, Multan, Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrkoping, Sweden
| | - Heba E Hashem
- Department of Chemistry, Faculty of Women, Ain Shams University, Cairo, Egypt
| | - Mubashir Aziz
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Nabeela Ameer
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Usman Abid
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Hafsa Latif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Nasreen Ramzan
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Ravi Rawat
- School of Pharmaceutical Sciences, MVN University, Haryana, India
| |
Collapse
|
119
|
Lapierre J, Hub JS. Converging PMF Calculations of Antibiotic Permeation across an Outer Membrane Porin with Subkilocalorie per Mole Accuracy. J Chem Inf Model 2023; 63:5319-5330. [PMID: 37560945 DOI: 10.1021/acs.jcim.3c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The emergence of multidrug-resistant pathogens led to a critical need for new antibiotics. A key property of effective antibiotics against Gram-negative bacteria is their ability to permeate through the bacterial outer membrane via transmembrane porin proteins. Molecular dynamics (MD) simulations are, in principle, capable of modeling antibiotic permeation across outer membrane porins (OMPs). However, owing to sampling problems, it has remained challenging to obtain converged potentials of mean force (PMFs) for antibiotic permeation across OMPs. Here, we investigated the convergence of PMFs along a single collective variable aimed at quantifying the permeation of the antibiotic fosmidomycin across the OprO porin. We compared standard umbrella sampling (US) with three advanced flavors of the US technique: (i) Hamiltonian replica exchange with solute tempering in combination with US, (ii) simulated tempering-enhanced US, and (iii) replica-exchange US. To quantify the PMF convergence and to reveal hysteresis problems, we computed several independent sets of US simulations starting from pulling simulations in the outward and inward permeation directions. We find that replica-exchange US in combination with well-chosen restraints is highly successful for obtaining converged PMFs of fosmidomycin permeation through OprO, reaching PMFs converged to subkilocalorie per mole accuracy.
Collapse
Affiliation(s)
- Jeremy Lapierre
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken 66123, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken 66123, Germany
| |
Collapse
|
120
|
Vo N, Sidner BS, Yu Y, Piepenbrink KH. Type IV Pilus-Mediated Inhibition of Acinetobacter baumannii Biofilm Formation by Phenothiazine Compounds. Microbiol Spectr 2023; 11:e0102323. [PMID: 37341603 PMCID: PMC10433872 DOI: 10.1128/spectrum.01023-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
Infections by pathogenic Acinetobacter species represent a significant burden on the health care system, despite their relative rarity, due to the difficulty of treating infections through oral antibiotics. Multidrug resistance is commonly observed in clinical Acinetobacter infections and multiple molecular mechanisms have been identified for this resistance, including multidrug efflux pumps, carbapenemase enzymes, and the formation of bacterial biofilm in persistent infections. Phenothiazine compounds have been identified as a potential inhibitor of type IV pilus production in multiple Gram-negative bacterial species. Here, we report the ability of two phenothiazines to inhibit type IV pilus-dependent surface (twitching) motility and biofilm formation in multiple Acinetobacter species. Biofilm formation was inhibited in both static and continuous flow models at micromolar concentrations without significant cytotoxicity, suggesting that type IV pilus biogenesis was the primary molecular target for these compounds. These results suggest that phenothiazines may be useful lead compounds for the development of biofilm dispersal agents against Gram-negative bacterial infections. IMPORTANCE Acinetobacter infections are a growing burden on health care systems worldwide due to increasing antimicrobial resistance through multiple mechanisms. Biofilm formation is an established mechanism of antimicrobial resistance, and its inhibition has the potential to potentiate the use of existing drugs against pathogenic Acinetobacter. Additionally, as discussed in the manuscript, anti-biofilm activity by phenothiazines has the potential to help to explain their known activity against other bacteria, including Staphylococcus aureus and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Nam Vo
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Benjamin S. Sidner
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Yafan Yu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Kurt H. Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
121
|
Kanak KR, Dass RS, Pan A. Anti-quorum sensing potential of selenium nanoparticles against LasI/R, RhlI/R, and PQS/MvfR in Pseudomonas aeruginosa: a molecular docking approach. Front Mol Biosci 2023; 10:1203672. [PMID: 37635941 PMCID: PMC10449602 DOI: 10.3389/fmolb.2023.1203672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Pseudomonas aeruginosa is an infectious pathogen which has the ability to cause primary and secondary contagions in the blood, lungs, and other body parts of immunosuppressed individuals, as well as community-acquired diseases, such as folliculitis, osteomyelitis, pneumonia, and others. This opportunistic bacterium displays drug resistance and regulates its pathogenicity via the quorum sensing (QS) mechanism, which includes the LasI/R, RhlI/R, and PQS/MvfR systems. Targeting the QS systems might be an excellent way to treat P. aeruginosa infections. Although a wide array of antibiotics, namely, newer penicillins, cephalosporins, and combination drugs are being used, the use of selenium nanoparticles (SeNPs) to cure P. aeruginosa infections is extremely rare as their mechanistic interactions are weakly understood, which results in carrying out this study. The present study demonstrates a computational approach of binding the interaction pattern between SeNPs and the QS signaling proteins in P. aeruginosa, utilizing multiple bioinformatics approaches. The computational investigation revealed that SeNPs were acutely 'locked' into the active region of the relevant proteins by the abundant residues in their surroundings. The PatchDock-based molecular docking analysis evidently indicated the strong and significant interaction between SeNPs and the catalytic cleft of LasI synthase (Phe105-Se = 2.7 Å and Thr121-Se = 3.8 Å), RhlI synthase (Leu102-Se = 3.7 Å and Val138-Se = 3.2 Å), transcriptional receptor protein LasR (Lys42-Se = 3.9 Å, Arg122-Se = 3.2 Å, and Glu124-Se = 3.9 Å), RhlR (Tyr43-Se = 2.9 Å, Tyr45-Se = 3.4 Å, and His61-Se = 3.5 Å), and MvfR (Leu208-Se = 3.2 Å and Arg209-Se = 4.0 Å). The production of acyl homoserine lactones (AHLs) was inhibited by the use of SeNPs, thereby preventing QS as well. Obstructing the binding affinity of transcriptional regulatory proteins may cause the suppression of LasR, RhlR, and MvfR systems to become inactive, thereby blocking the activation of QS-regulated virulence factors along with their associated gene expression. Our findings clearly showed that SeNPs have anti-QS properties against the established QS systems of P. aeruginosa, which strongly advocated that SeNPs might be a potent solution to tackle drug resistance and a viable alternative to conventional antibiotics along with being helpful in therapeutic development to cure P. aeruginosa infections.
Collapse
Affiliation(s)
- Kanak Raj Kanak
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University (A Central University), Pondicherry, India
| | - Regina Sharmila Dass
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University (A Central University), Pondicherry, India
| | - Archana Pan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University (A Central University), Pondicherry, India
| |
Collapse
|
122
|
Liu S, Huang S, Li F, Sun Y, Fu J, Xiao F, Jia N, Huang X, Sun C, Zhou J, Wang Y, Qu D. Rapid detection of Pseudomonas aeruginosa by recombinase polymerase amplification combined with CRISPR-Cas12a biosensing system. Front Cell Infect Microbiol 2023; 13:1239269. [PMID: 37637458 PMCID: PMC10449609 DOI: 10.3389/fcimb.2023.1239269] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an important bacterial pathogen involved in a wide range of infections and antimicrobial resistance. Rapid and reliable diagnostic methods are of vital important for early identification, treatment, and stop of P. aeruginosa infections. In this study, we developed a simple, rapid, sensitive, and specific detection platform for P. aeruginosa infection diagnosis. The method integrated recombinase polymerase amplification (RPA) technique with clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 12a (Cas12a) biosensing system and was termed P. aeruginosa-CRISPR-RPA assay. The P. aeruginosa-CRISPR-RPA assay was subject to optimization of reaction conditions and evaluation of sensitivity, specificity, and clinical feasibility with the serial dilutions of P. aeruginosa genomic DNA, the non-P. aeruginosa strains, and the clinical samples. As a result, the P. aeruginosa-CRISPR-RPA assay was able to complete P. aeruginosa detection within half an hour, including RPA reaction at 42°C for 20 min and CRISPR-Cas12a detection at 37°C for 10 min. The diagnostic method exhibited high sensitivity (60 fg per reaction, ~8 copies) and specificity (100%). The results of the clinical samples by P. aeruginosa-CRISPR-RPA assay were consistent to that of the initial result by microfluidic chip method. These data demonstrated that the newly developed P. aeruginosa-CRISPR-RPA assay was reliable for P. aeruginosa detection. In summary, the P. aeruginosa-CRISPR-RPA assay is a promising tool to early and rapid diagnose P. aeruginosa infection and stop its wide spread especially in the hospital settings.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Critical Medicine, Children’s Hospital Affiliated Capital Institute of Pediatrics, Beijing, China
| | - Siyuan Huang
- Department of Critical Medicine, Children’s Hospital Affiliated Capital Institute of Pediatrics, Beijing, China
| | - Fang Li
- Department of Critical Medicine, Children’s Hospital Affiliated Capital Institute of Pediatrics, Beijing, China
| | - Yuanyuan Sun
- Department of Critical Medicine, Children’s Hospital Affiliated Capital Institute of Pediatrics, Beijing, China
| | - Jin Fu
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Fei Xiao
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Nan Jia
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Xiaolan Huang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Chunrong Sun
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Juan Zhou
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Yi Wang
- Experimental Research Center, Capital Institute of Pediatrics, Beijing, China
| | - Dong Qu
- Department of Critical Medicine, Children’s Hospital Affiliated Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
123
|
Thornton JM, Padovani CM, Rodriguez A, Spur BW, Yin K. Lipoxin A 4 promotes antibiotic and monocyte bacterial killing in established Pseudomonas aeruginosa biofilm formed under hydrodynamic conditions. FASEB J 2023; 37:e23098. [PMID: 37462621 PMCID: PMC10694838 DOI: 10.1096/fj.202300619r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Pseudomonas aeruginosa is a gram-negative, opportunistic bacteria commonly found in wounds and in lungs of immunocompromised patients. These bacteria commonly form biofilms which encapsulate the bacteria, making it difficult for antibiotics or immune cells to reach the bacterial cells. We previously reported that Lipoxin A4 (LxA4 ), a Specialized Pro-resolving Mediator, has direct effects on P. aeruginosa where it reduced biofilm formation and promoted ciprofloxacin antibiotic efficacy in a static biofilm-forming system. In the current studies, we examined the actions of LxA4 on established biofilms formed in a biofilm reactor under dynamic conditions with constant flow and shear stress. These conditions allow for biofilm growth with nutrient replenishment and for examination of bacteria within the biofilm structure. We show that LxA4 helped ciprofloxacin reduction of live/dead ratio of bacteria within the biofilm. THP-1 monocytes interacted with the biofilm to increase the number of viable bacteria within the biofilm as well as TNF-α production in the biofilm milieu, suggesting that monocyte interaction with bacterial biofilm exacerbates the inflammatory state. Pre-treatment of the THP-1 monocytes with LxA4 abolished the increase in biofilm bacteria and reduced TNF-α production. The effect of decreased biofilm bacteria was associated with increased LxA4 -induced monocyte adherence to biofilm but not increased bacteria killing suggesting that the mechanism for the reduced biofilm bacteria was due to LxA4 -mediated increase in adherence to biofilm. These results suggest that LxA4 can help antibiotic efficacy and promote monocyte activity against established P. aeruginosa biofilm formed under hydrodynamic conditions.
Collapse
Affiliation(s)
- Julianne M. Thornton
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine Stratford, NJ, USA 08084
| | - Cristina M. Padovani
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine Stratford, NJ, USA 08084
| | - Ana Rodriguez
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine Stratford, NJ, USA 08084
| | - Bernd W. Spur
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine Stratford, NJ, USA 08084
| | - Kingsley Yin
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Osteopathic Medicine Stratford, NJ, USA 08084
| |
Collapse
|
124
|
Kumar N, Pestrak MJ, Wu Q, Ahumada OS, Dellos-Nolan S, Saljoughian N, Shukla RK, Mitchem CF, Nagareddy PR, Ganesan LP, William LP, Wozniak DJ, Rajaram MVS. Pseudomonas aeruginosa pulmonary infection results in S100A8/A9-dependent cardiac dysfunction. PLoS Pathog 2023; 19:e1011573. [PMID: 37624851 PMCID: PMC10484443 DOI: 10.1371/journal.ppat.1011573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/07/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa (P.a.) infection accounts for nearly 20% of all cases of hospital acquired pneumonia with mortality rates >30%. P.a. infection induces a robust inflammatory response, which ideally enhances bacterial clearance. Unfortunately, excessive inflammation can also have negative effects, and often leads to cardiac dysfunction with associated morbidity and mortality. However, it remains unclear how P.a. lung infection causes cardiac dysfunction. Using a murine pneumonia model, we found that P.a. infection of the lungs led to severe cardiac left ventricular dysfunction and electrical abnormalities. More specifically, we found that neutrophil recruitment and release of S100A8/A9 in the lungs activates the TLR4/RAGE signaling pathways, which in turn enhance systemic inflammation and subsequent cardiac dysfunction. Paradoxically, global deletion of S100A8/A9 did not improve but aggravated cardiac dysfunction and mortality likely due to uncontrolled bacterial burden in the lungs and heart. Our results indicate that P.a. infection induced release of S100A8/9 is double-edged, providing increased risk for cardiac dysfunction yet limiting P.a. growth.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Matthew J. Pestrak
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Qian Wu
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Omar Santiagonunez Ahumada
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Sheri Dellos-Nolan
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Noushin Saljoughian
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Rajni Kant Shukla
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Cortney F. Mitchem
- Department of Microbiology, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Prabhakara R. Nagareddy
- Department of Surgery, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Latha P. Ganesan
- Department of Internal Medicine, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Lafuse P. William
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Microbiology, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| | - Murugesan V. S. Rajaram
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, Ohio, United States of America
| |
Collapse
|
125
|
Serretiello E, Manente R, Dell’Annunziata F, Folliero V, Iervolino D, Casolaro V, Perrella A, Santoro E, Galdiero M, Capunzo M, Franci G, Boccia G. Antimicrobial Resistance in Pseudomonas aeruginosa before and during the COVID-19 Pandemic. Microorganisms 2023; 11:1918. [PMID: 37630478 PMCID: PMC10458743 DOI: 10.3390/microorganisms11081918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa (PA) is a major Gram-negative opportunistic pathogen causing several serious acute and chronic infections in the nosocomial and community settings. PA eradication has become increasingly difficult due to its remarkable ability to evade antibiotics. Therefore, epidemiological studies are needed to limit the infection and aim for the correct treatment. The present retrospective study focused on PA presence among samples collected at the San Giovanni di Dio and Ruggi D'Aragona University Hospital in Salerno, Italy; its resistance profile and relative variations over the eight years were analyzed. Bacterial identification and antibiotic susceptibility tests were performed by VITEK® 2. In the 2015-2019 and 2020-2022 timeframes, respectively, 1739 and 1307 isolates of PA were obtained from respiratory samples, wound swabs, urine cultures, cultural swabs, blood, liquor, catheter cultures, vaginal swabs, and others. During 2015-2019, PA strains exhibited low resistance against amikacin (17.2%), gentamicin (25.2%), and cefepime (28.3%); moderate resistance against ceftazidime (34.4%), imipenem (34.6%), and piperacillin/tazobactam (37.7%); and high resistance against ciprofloxacin (42.4%) and levofloxacin (50.6%). Conversely, during the 2020-2022 era, PA showed 11.7, 21.1, 26.9, 32.6, 33.1, 38.7, and 39.8% resistance to amikacin, tobramycin, cefepime, imipenem, ceftazidime, ciprofloxacin, and piperacillin/tazobactam, respectively. An overall resistance-decreasing trend was observed for imipenem and gentamicin during 2015-2019. Instead, a significant increase in resistance was recorded for cefepime, ceftazidime, and imipenem in the second set of years investigated. Monitoring sentinel germs represents a key factor in optimizing empirical therapy to minimize the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Enrica Serretiello
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy; (E.S.); (M.C.); (G.F.)
| | - Roberta Manente
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.M.); (F.D.); (M.G.)
| | - Federica Dell’Annunziata
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.M.); (F.D.); (M.G.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.F.); (V.C.); (E.S.)
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.F.); (V.C.); (E.S.)
| | - Domenico Iervolino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.F.); (V.C.); (E.S.)
| | - Alessandro Perrella
- Division Emerging Infectious Disease and High Contagiousness, Hospital D Cotugno, 80131 Naples, Italy;
| | - Emanuela Santoro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.F.); (V.C.); (E.S.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.M.); (F.D.); (M.G.)
| | - Mario Capunzo
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy; (E.S.); (M.C.); (G.F.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.F.); (V.C.); (E.S.)
| | - Gianluigi Franci
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy; (E.S.); (M.C.); (G.F.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.F.); (V.C.); (E.S.)
| | - Giovanni Boccia
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy; (E.S.); (M.C.); (G.F.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84084 Salerno, Italy; (V.F.); (V.C.); (E.S.)
- UOC Hospital and Epidemiological Hygiene, San Giovanni di Dio and Ruggi D’Aragona University Hospital, 84131 Salerno, Italy
| |
Collapse
|
126
|
Tadesse S, Geteneh A, Hailu T. Emergence of Extended-Spectrum Beta-Lactamase and Carbapenemase Producing Gram Negative Non-Fermenters at Selected Hospitals of Northeast Ethiopia: A Prospective Cross-Sectional Study. Infect Drug Resist 2023; 16:4891-4901. [PMID: 37534064 PMCID: PMC10391048 DOI: 10.2147/idr.s407151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
Background The emergence and spread of extended-spectrum β-lactamases (ESβLs) and carbapenemase (CP) producing gram negative non-fermenters are becoming a serious public health threat globally. Infections caused by these pathogens limit treatment options and contribute to the significant morbidity and mortality. Thus, to reduce their spread, early detection of these superbugs is very crucial. This study therefore aimed to assess the prevalence of ESβLs and CP producing gram negative non-fermenters at selected hospitals of North East Ethiopia. Methods A cross-sectional study was conducted from January to June 2021. Acinetobacter baumannii (A. baumannii) and Pseudomonas aeruginosa (P. aeruginosa) were identified using standard bacteriological techniques. ESβL and CP production were detected by combined disk diffusion and modified carbapenem inhibitory methods, respectively. Data were collected via face-to-face interview and patient card review. Chi-squared and Fisher's exact tests were calculated and p-value < 0.05 was considered statistically significant. Results A total of 384 patients participated in this study. Overall, 30 (7.8%) patients had positive culture for A. baumannii and P. aeruginosa. The prevalence of A. baumannii was 20 (5.2%) and that of P. aeruginosa was 10 (2.6%). From the overall isolates, 16 (53.3%) were ESβL and the proportion of carbapenemase production was 4 (13.3%). ESβL production was 8 (40%) in A. baumannii and 8 (80%) in P. aeruginosa isolates. ESβL production infections were significantly associated with hospitalization (p=0.004). Intravenous catheterization, hospitalization, and surgery had significant association with ESβL production (p<0.005). All isolates of A. baumannii and P. aeruginosa were MDR. Conclusion ESβL and carbapenemase production among A. baumannii and P. aeruginosa were high in the selected hospitals. The treatment of such resistant infectious agents should be guided by antimicrobial susceptibility test in a study setting. Thus, restricted and wise use of antibiotics is highly recommended to contain the spread of these superbugs. Hospitals should develop infection prevention guidelines to prevent the spread of resistant pathogens in hospitalized patients.
Collapse
Affiliation(s)
- Selamyhun Tadesse
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Alene Geteneh
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Tilahun Hailu
- School of Public Health, College of Health Sciences, Woldia University, Woldia, Ethiopia
| |
Collapse
|
127
|
Abdelghafar A, El-Ganiny A, Shaker G, Askoura M. Isolation of a bacteriophage targeting Pseudomonas aeruginosa and exhibits a promising in vivo efficacy. AMB Express 2023; 13:79. [PMID: 37495819 PMCID: PMC10371947 DOI: 10.1186/s13568-023-01582-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
Pseudomonas aeruginosa is an important pathogen that causes serious infections. Bacterial biofilms are highly resistant and render bacterial treatment very difficult, therefore necessitates alternative antibacterial strategies. Phage therapy has been recently regarded as a potential therapeutic option for treatment of bacterial infections. In the current study, a novel podovirus vB_PaeP_PS28 has been isolated from sewage with higher lytic activity against P. aeruginosa. Isolated phage exhibits a short latent period, large burst size and higher stability over a wide range of temperatures and pH. The genome of vB_PaeP_PS28 consists of 72,283 bp circular double-stranded DNA, with G + C content of 54.75%. The phage genome contains 94 open reading frames (ORFs); 32 for known functional proteins and 62 for hypothetical proteins and no tRNA genes. The phage vB_PaeP_PS28 effectively inhibited the growth of P. aeruginosa planktonic cells and displayed a higher biofilm degrading capability. Moreover, therapeutic efficacy of isolated phage was evaluated in vivo using mice infection model. Interestingly, survival of mice infected with P. aeruginosa was significantly enhanced upon treatment with vB_PaeP_PS28. Furthermore, the bacterial load in liver and kidney isolated from mice infected with P. aeruginosa and treated with phage markedly decreased as compared with phage-untreated P. aeruginosa-infected mice. These findings support the efficacy of isolated phage vB_PaeP_PS28 in reducing P. aeruginosa colonization and pathogenesis in host. Importantly, the isolated phage vB_PaeP_PS28 could be applied alone or as combination therapy with other lytic phages as phage cocktail therapy or with antibiotics to limit infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Aliaa Abdelghafar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Amira El-Ganiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ghada Shaker
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Momen Askoura
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
128
|
Moustafa DA, DiGiandomenico A, Raghuram V, Schulman M, Scarff JM, Davis, MR, Varga JJ, Dean CR, Goldberg JB. Efficacy of a Pseudomonas aeruginosa Serogroup O9 Vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548830. [PMID: 37502855 PMCID: PMC10369961 DOI: 10.1101/2023.07.13.548830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
There are currently no approved vaccines against the opportunistic pathogen Pseudomonas aeruginosa. Among vaccine targets, the lipopolysaccharide (LPS) O antigen of P. aeruginosa is the most immunodominant protective candidate. There are twenty different O antigens composed of different repeat sugars structures conferring serogroup specificity, and ten are found most frequently in infection. Thus, one approach to combat infection by P. aeruginosa could be to generate immunity with a vaccine cocktail that includes all these serogroups. Serogroup O9 is one of the ten serogroups commonly found in infection, but it has never been developed into a vaccine, likely due, in part, to the acid labile nature of the O9 polysaccharide. Our laboratory has previously shown that intranasal administration of an attenuated Salmonella strain expressing the P. aeruginosa serogroup O11 LPS O antigen was effective in clearing and preventing mortality in mice following intranasal challenge with serogroup O11 P. aeruginosa. Consequently, we set out to develop a P. aeruginosa serogroup O9 vaccine using a similar approach. Here we show that Salmonella expressing serogroup O9 triggered an antibody-mediated immune response following intranasal administration to mice and that it conferred protection from P. aeruginosa serogroup O9 in a murine model of acute pneumonia.
Collapse
Affiliation(s)
- Dina A. Moustafa
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Antonio DiGiandomenico
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Vishnu Raghuram
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Marc Schulman
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Jennifer M. Scarff
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Michael R. Davis,
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - John J. Varga
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Charles R. Dean
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
129
|
Esnaashari F, Rostamnejad D, Zahmatkesh H, Zamani H. In vitro and in silico assessment of anti-quorum sensing activity of Naproxen against Pseudomonas aeruginosa. World J Microbiol Biotechnol 2023; 39:244. [PMID: 37407806 DOI: 10.1007/s11274-023-03690-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Serious infections caused by Pseudomonas aeruginosa are usually related to quorum sensing (QS)-dependent virulence factors. Hence, QS inhibition is a promising approach to overcoming P. aeruginosa infections. This study aimed to investigate the effect of naproxen on biofilm formation and QS-related virulence traits of P. aeruginosa. Furthermore, the anti-QS potential of naproxen was evaluated using real-time PCR and molecular docking analysis. Our findings supported the anti-QS activity of naproxen, as evidenced by down-regulation of the lasI and rhlI genes expression as well as the attenuation of bacterial protease, hemolysin, pyocyanin, biofilm, and motility. Additionally, the high binding affinity of naproxen with QS regulatory proteins was determined in the molecular docking simulation. Altogether, these findings suggest that naproxen has a promising potential in inhibiting QS-associated traits of P. aeruginosa.
Collapse
Affiliation(s)
- Fatemeh Esnaashari
- Department of Biology, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Dorna Rostamnejad
- Department of Microbiology, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Hossein Zahmatkesh
- Department of Microbiology, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | | |
Collapse
|
130
|
Boucher E, Plazy C, Le Gouellec A, Toussaint B, Hannani D. Inulin Prebiotic Protects against Lethal Pseudomonas aeruginosa Acute Infection via γδ T Cell Activation. Nutrients 2023; 15:3037. [PMID: 37447363 DOI: 10.3390/nu15133037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) causes harmful lung infections, especially in immunocompromised patients. The immune system and Interleukin (IL)-17-producing γδ T cells (γδ T) are critical in controlling these infections in mice. The gut microbiota modulates host immunity in both cancer and infection contexts. Nutritional intervention is a powerful means of modulating both microbiota composition and functions, and subsequently the host's immune status. We have recently shown that inulin prebiotic supplementation triggers systemic γδ T activation in a cancer context. We hypothesized that prophylactic supplementation with inulin might protect mice from lethal P. aeruginosa acute lung infection in a γδ T-dependent manner. C57Bl/6 mice were supplemented with inulin for 15 days before the lethal P. aeruginosa lung infection, administered intranasally. We demonstrate that prophylactic inulin supplementation triggers a higher proportion of γδ T in the blood, accompanied by a higher infiltration of IL-17-producing γδ T within the lungs, and protects 33% of infected mice from death. This observation relies on γδ T, as in vivo γδ TcR blocking using a monoclonal antibody completely abrogates inulin-mediated protection. Overall, our data indicate that inulin supplementation triggers systemic γδ T activation, and could help resolve lung P. aeruginosa infections. Moreover, our data suggest that nutritional intervention might be a powerful way to prevent/reduce infection-related mortality, by reinforcing the microbiota-dependent immune system.
Collapse
Affiliation(s)
- Emilie Boucher
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Caroline Plazy
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - Audrey Le Gouellec
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - Bertrand Toussaint
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000 Grenoble, France
| | - Dalil Hannani
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| |
Collapse
|
131
|
Doménech-Sánchez A, Laso E, Albertí S. Environmental surveillance of Pseudomonas aeruginosa in recreational waters in tourist facilities of the Balearic Islands, Spain (2016-2019). Travel Med Infect Dis 2023; 54:102622. [PMID: 37495060 DOI: 10.1016/j.tmaid.2023.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Pseudomonas aeruginosa is a major opportunistic human pathogen commonly connected with recreational water activities. Spain is a tourist destination where most of the establishments have swimming pool. Nevertheless, the prevalence of P. aeruginosa in public swimming pools in our country is unknown. This works aimed to survey the P. aeruginosa presence in tourist Spanish recreational waters. METHOD Tourist recreational water in hotels in the Balearic Islands were visited for four years (2016-2019). The levels of selected parameters were determined, and their correlation with P. aeruginosa contamination investigated. RESULTS We evaluated 11,014 samples from 254 facilities. Unacceptable levels of at least one legislated parameter were detected in 30.7% of cases, implicating closure in 15.9%, being P. aeruginosa the leading cause of closure. The prevalence of the pathogen was 14.2%, with lower presence in outer swimming pools. Disinfectant levels influence P. aeruginosa contamination, and bromine-maintained pools were more often contaminated than those treated with chlorine. Prevalence remained constant over the years, although it increased in 2019. CONCLUSIONS P. aeruginosa prevalence in our recreational waters is similar to other countries, and the contamination rates depend on the installations and type and disinfectant levels. Corrective measures are still needed to improve pathogen control.
Collapse
Affiliation(s)
- Antonio Doménech-Sánchez
- Saniconsult Ibérica SL, Can Foradí 37 bajos, 07009, Palma de Mallorca, Spain; Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares, Carretera de Valldemossa km 7.5, 07122, Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de les Illes Balears (IdIsBa), Edificio S, Hospital Universitario Son Espases, Carretera de Valldemossa, 79, 07120, Palma de Mallorca, Spain.
| | - Elena Laso
- Saniconsult Ibérica SL, Can Foradí 37 bajos, 07009, Palma de Mallorca, Spain
| | - Sebastián Albertí
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares, Carretera de Valldemossa km 7.5, 07122, Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de les Illes Balears (IdIsBa), Edificio S, Hospital Universitario Son Espases, Carretera de Valldemossa, 79, 07120, Palma de Mallorca, Spain
| |
Collapse
|
132
|
Okumura H, Kawashima A, Hanamoto A. Squawks as an important physical finding for differentiation of diffuse panbronchiolitis from asthma in children: A case report. J Gen Fam Med 2023; 24:261-263. [PMID: 37484129 PMCID: PMC10357090 DOI: 10.1002/jgf2.635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Diffuse panbronchiolitis (DPB) is an idiopathic chronic inflammatory pulmonary disease clinically characterized by cough, sputum, and chronic sinusitis. Although the average age of onset is 40 years, DPB occasionally occurs in children and is often misdiagnosed as asthma. Long-term therapy with macrolide antibiotics significantly improves survival in DPB. Herein, we report the case of a 16-year-old man who had been treated for asthma and was referred to our department as transition from the Department of Pediatrics. Adequate auscultation to detect squawks and history taking of purulent sputum led to the correct diagnosis and appropriate treatment, which improved his quality of life.
Collapse
Affiliation(s)
- Hisatoshi Okumura
- Division of General Internal MedicineFukuchiyama City HospitalFukuchiyama‐shiJapan
| | - Atsushi Kawashima
- Division of General Internal MedicineFukuchiyama City HospitalFukuchiyama‐shiJapan
| | | |
Collapse
|
133
|
Ng WJ, Hing CL, Loo CB, Hoh EK, Loke IL, Ee KY. Ginger-Enriched Honey Attenuates Antibiotic Resistant Pseudomonas aeruginosa Quorum Sensing Virulence Factors and Biofilm Formation. Antibiotics (Basel) 2023; 12:1123. [PMID: 37508219 PMCID: PMC10376338 DOI: 10.3390/antibiotics12071123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/30/2023] Open
Abstract
Quorum sensing (QS) in Pseudomonas aeruginosa plays an essential role in virulence factors, biofilm formation as well as antibiotic resistance. Approaches that target virulence factors are known to be more sustainable than antibiotics in weakening the infectivity of bacteria. Although honey has been shown to exert antipseudomonal activities, the enhancement of such activity in ginger-enriched honey is still unknown. The main objective of this study was to determine the impacts of honey and ginger-enriched honey on the QS virulence factors and biofilm formation of antibiotic resistant P. aeruginosa clinical isolates. Outcomes showed honey and/or ginger-enriched honey significantly reduced the protease activity, pyocyanin production and exotoxin A concentration of the isolates. The swarming and swimming motility together with biofilm formation in all clinical isolates were also significantly inhibited by both honey samples. Notable morphological alteration of bacterial cells was also observed using scanning electron microscopy. A principal component analysis (PCA) managed to distinguish the untreated group and treatment groups into two distinct clusters, although honey and ginger-enriched honey groups were not well differentiated. This study revealed the effectiveness of honey including ginger-enriched honey to attenuate QS virulence factors and biofilm formation of P. aeruginosa.
Collapse
Affiliation(s)
- Wen-Jie Ng
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
- Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Chin-Lu Hing
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Choon-Boq Loo
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Ee-Khang Hoh
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Ian-Lung Loke
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Kah-Yaw Ee
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
- Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| |
Collapse
|
134
|
Momenah AM, Bakri RA, Jalal NA, Ashgar SS, Felemban RF, Bantun F, Hariri SH, Barhameen AA, Faidah H, AL-Said HM. Antimicrobial Resistance Pattern of Pseudomonas aeruginosa: An 11-Year Experience in a Tertiary Care Hospital in Makkah, Saudi Arabia. Infect Drug Resist 2023; 16:4113-4122. [PMID: 37396063 PMCID: PMC10312329 DOI: 10.2147/idr.s409726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023] Open
Abstract
Purpose Pseudomonas aeruginosa (P. aeruginosa) is a common causative pathogen in healthcare settings and displays increasing levels of resistance to common antimicrobial drugs. Its capacity to resist has been reported in multiple locations across the world. This study evaluates current levels of antibiotic resistance and seeks to understand antibiotic resistance patterns in the context of the clinical isolates of P. aeruginosa. Methods All clinical isolates were cultured at 37 °C for 24 h in different media: blood sheep agar, McConkey agar, and cystine-lactose-electrolyte-deficient agar (CLED), bacterial identification and antibiotic susceptibility patterns were determined using the Vitek-2 (bioMérieux) automated system. Results In total, there were 61,029 patient specimens, of which 5534 were identified as non-duplicated P. aeruginosa clinical isolates, most being from males aged over 60 years. The research findings revealed that the maximum antibiotic resistance associated with P. aeruginosa isolates was found in colistin (97%), which was followed by piperacillin/tazobactam (75.8%). The maximum resistance rates in P. aeruginosa isolates were found in relation to cefepime (42.7%,) which was followed by ciprofloxacin (34.3%). Conclusion The antibiotic resistance rate during the first six years of the research period was notably higher than in the last years, due to the application of infection control protocols and strict policies to control antibiotic prescriptions in all Saudi hospitals.
Collapse
Affiliation(s)
- Aiman M Momenah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rafat Ahmed Bakri
- University Medical Center, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naif A Jalal
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami S Ashgar
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rakan Fahad Felemban
- Department of Laboratory and Blood Bank, Al-Noor Specialist Hospital, Makkah, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sumyya H Hariri
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abeer A Barhameen
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hani Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hamdi M AL-Said
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
135
|
Jin LM, Shen H, Che XY, Jin Y, Yuan CM, Zhang NH. Anti-bacterial mechanism of baicalin-tobramycin combination on carbapenem-resistant Pseudomonas aeruginosa. World J Clin Cases 2023; 11:4026-4034. [PMID: 37388786 PMCID: PMC10303599 DOI: 10.12998/wjcc.v11.i17.4026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (P. aeruginosa) is an important cause of nosocomial infections, and contributes to high morbidity and mortality, especially in intensive care units. P. aeruginosa is considered a 'critical' category bacterial pathogen by the World Health Organization to encourage an urgent need for research and development of new antibiotics against its infections.
AIM To investigate the effectiveness of baicalin combined with tobramycin therapy as a potential treatment method for carbapenem-resistant P. aeruginosa (CRPA) infections.
METHODS Polymerase chain reaction (PCR) and RT-PCR were used to detect the expression levels of drug-resistant genes (including VIM, IMP and OprD2) and biofilm-related genes (including algD, pslA and lasR) in CRPA that confer resistance to tobramycin, baicalin and tobramycin combined with baicalin (0, 1/8, 1/4, 1/2 and 1MIC).
RESULTS There was a correlation between biofilm formation and the expression of biofilm-related genes. In addition, VIM, IMP, OprD2, algD, pslA and lasR that confer biofilm production under different concentrations in CRPA were significantly correlated. The synergistic effect of baicalin combined with tobramycin was a significant down-regulation of VIM, IMP, algD, pslA and lasR.
CONCLUSION Baicalin combined with tobramycin therapy can be an effective treatment method for patients with CRPA infection.
Collapse
Affiliation(s)
- Li-Min Jin
- Laboratory Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, Zhejiang Province, China
| | - Hui Shen
- Laboratory Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, Zhejiang Province, China
| | - Xing-Ying Che
- Laboratory Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, Zhejiang Province, China
| | - Ye Jin
- Laboratory Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, Zhejiang Province, China
| | - Chun-Mei Yuan
- Laboratory Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, Zhejiang Province, China
| | - Neng-Hua Zhang
- Laboratory Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314001, Zhejiang Province, China
| |
Collapse
|
136
|
Rajab AAH, Hegazy WAH. What’s old is new again: Insights into diabetic foot microbiome. World J Diabetes 2023; 14:680-704. [PMID: 37383589 PMCID: PMC10294069 DOI: 10.4239/wjd.v14.i6.680] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 06/14/2023] Open
Abstract
Diabetes is a chronic disease that is considered one of the most stubborn global health problems that continues to defy the efforts of scientists and physicians. The prevalence of diabetes in the global population continues to grow to alarming levels year after year, causing an increase in the incidence of diabetes complications and health care costs all over the world. One major complication of diabetes is the high susceptibility to infections especially in the lower limbs due to the immunocompromised state of diabetic patients, which is considered a definitive factor in all cases. Diabetic foot infections continue to be one of the most common infections in diabetic patients that are associated with a high risk of serious complications such as bone infection, limb amputations, and life-threatening systemic infections. In this review, we discussed the circumstances associated with the high risk of infection in diabetic patients as well as some of the most commonly isolated pathogens from diabetic foot infections and the related virulence behavior. In addition, we shed light on the different treatment strategies that aim at eradicating the infection.
Collapse
Affiliation(s)
- Azza A H Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagzig 44511, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagzig 44511, Egypt
| |
Collapse
|
137
|
Zhang P, Chen W, Ma YC, Bai B, Sun G, Zhang S, Chang X, Wang Y, Jiang N, Zhang X, Ma S. Design and Synthesis of 4-Fluorophenyl-5-methylene-2(5 H)-furanone Derivatives as Potent Quorum Sensing Inhibitors. J Med Chem 2023. [PMID: 37310919 DOI: 10.1021/acs.jmedchem.2c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Quorum sensing inhibitors (QSIs) are a class of compounds that can reduce the pathogenicity of bacteria without affecting bacterial growth. In this study, we designed and synthesized four series of 4-fluorophenyl-5-methylene-2(5H)-furanone derivatives and evaluated their QSI activities. Among them, compound 23e not only showed excellent inhibitory activity against various virulence factors but also significantly enhanced the inhibitory activity of antibiotics ciprofloxacin and clarithromycin against two strains of Pseudomonas aeruginosa in vitro. What is even more exciting is that it remarkably increased the antibacterial effect in vivo in combination with ciprofloxacin in the bacteremia model infected with P. aeruginosa PAO1. Moreover, 23e had little hemolytic activity to mouse erythrocytes. Further, the results of GFP reporter fluorescence strain inhibition and β-galactosidase activity inhibition experiments demonstrated that 23e simultaneously targeted the three quorum sensing systems in P. aeruginosa. As a result, compound 23e could be used as an effective QSI for further development against bacterial infections.
Collapse
Affiliation(s)
- Panpan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Weijin Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Yang-Chun Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Bingfang Bai
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Guanglin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Shenyan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Xiaohong Chang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Yingmei Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Nan Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Xianghui Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| |
Collapse
|
138
|
Edward EA, El Shehawy MR, Abouelfetouh A, Aboulmagd E. Prevalence of different virulence factors and their association with antimicrobial resistance among Pseudomonas aeruginosa clinical isolates from Egypt. BMC Microbiol 2023; 23:161. [PMID: 37270502 DOI: 10.1186/s12866-023-02897-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/17/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Emergence of multi-drug resistant Pseudomonas aeruginosa, coupled with the pathogen's versatile virulence factors, lead to high morbidity and mortality rates. The current study investigated the potential association between the antibiotic resistance and the production of virulence factors among P. aeruginosa clinical isolates collected from Alexandria Main University Hospital in Egypt. We also evaluated the potential of the phenotypic detection of virulence factors to reflect virulence as detected by virulence genes presence. The role of alginate in the formation of biofilms and the effect of ambroxol, a mucolytic agent, on the inhibition of biofilm formation were investigated. RESULTS A multi-drug resistant phenotype was detected among 79.8% of the isolates. The most predominant virulence factor was biofilm formation (89.4%), while DNase was least detected (10.6%). Pigment production was significantly associated with ceftazidime susceptibility, phospholipase C production was significantly linked to sensitivity to cefepime, and DNase production was significantly associated with intermediate resistance to meropenem. Among the tested virulence genes, lasB and algD showed the highest prevalence rates (93.3% and 91.3%, respectively), while toxA and plcN were the least detected ones (46.2% and 53.8%, respectively). Significant association of toxA with ceftazidime susceptibility, exoS with ceftazidime and aztreonam susceptibility, and plcH with piperacillin-tazobactam susceptibility was observed. There was a significant correlation between alkaline protease production and the detection of algD, lasB, exoS, plcH and plcN; pigment production and the presence of algD, lasB, toxA and exoS; and gelatinase production and the existence of lasB, exoS and plcH. Ambroxol showed a high anti-biofilm activity (5% to 92%). Quantitative reverse transcriptase polymerase chain reaction showed that alginate was not an essential matrix component in P. aeruginosa biofilms. CONCLUSIONS High virulence coupled with the isolates' multi-drug resistance to commonly used antimicrobials would increase morbidity and mortality rates among P. aeruginosa infections. Ambroxol that displayed anti-biofilm action could be suggested as an alternative treatment option, yet in vivo studies are required to confirm these findings. We recommend active surveillance of antimicrobial resistance and virulence determinant prevalence for better understanding of coregulatory mechanisms.
Collapse
Affiliation(s)
- Eva A Edward
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Marwa R El Shehawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alamein International University, Alamein, Egypt
| | - Elsayed Aboulmagd
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- College of Pharmacy, Arab Academy for Science, Technology and Maritime, Alamein Branch, Alamein, Egypt
| |
Collapse
|
139
|
Zaidi SEZ, Zaheer R, Thomas K, Abeysekara S, Haight T, Saville L, Stuart-Edwards M, Zovoilis A, McAllister TA. Genomic Characterization of Carbapenem-Resistant Bacteria from Beef Cattle Feedlots. Antibiotics (Basel) 2023; 12:960. [PMID: 37370279 DOI: 10.3390/antibiotics12060960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Carbapenems are considered a last resort for the treatment of multi-drug-resistant bacterial infections in humans. In this study, we investigated the occurrence of carbapenem-resistant bacteria in feedlots in Alberta, Canada. The presumptive carbapenem-resistant isolates (n = 116) recovered after ertapenem enrichment were subjected to antimicrobial susceptibility testing against 12 different antibiotics, including four carbapenems. Of these, 72% of the isolates (n = 84) showed resistance to ertapenem, while 27% of the isolates (n = 31) were resistant to at least one other carbapenem, with all except one isolate being resistant to at least two other drug classes. Of these 31 isolates, 90% were carbapenemase positive, while a subset of 36 ertapenem-only resistant isolates were carbapenemase negative. The positive isolates belonged to three genera; Pseudomonas, Acinetobacter, and Stenotrophomonas, with the majority being Pseudomonas aeruginosa (n = 20) as identified by 16S rRNA gene sequencing. Whole genome sequencing identified intrinsic carbapenem resistance genes, including blaOXA-50 and its variants (P. aeruginosa), blaOXA-265 (A. haemolyticus), blaOXA-648 (A. lwoffii), blaOXA-278 (A. junii), and blaL1 and blaL2 (S. maltophilia). The acquired carbapenem resistance gene (blaPST-2) was identified in P. saudiphocaensis and P. stutzeri. In a comparative genomic analysis, clinical P. aeruginosa clustered separately from those recovered from bovine feces. In conclusion, despite the use of selective enrichment methods, finding carbapenem-resistant bacteria within a feedlot environment was a rarity.
Collapse
Affiliation(s)
- Sani-E-Zehra Zaidi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Krysty Thomas
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Sujeema Abeysekara
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Travis Haight
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Luke Saville
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Matthew Stuart-Edwards
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Athanasios Zovoilis
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
140
|
Kuttithodi AM, Narayanankutty A, Visakh NU, Job JT, Pathrose B, Olatunji OJ, Alfarhan A, Ramesh V. Chemical Composition of the Cinnamomum malabatrum Leaf Essential Oil and Analysis of Its Antioxidant, Enzyme Inhibitory and Antibacterial Activities. Antibiotics (Basel) 2023; 12:antibiotics12050940. [PMID: 37237843 DOI: 10.3390/antibiotics12050940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 05/28/2023] Open
Abstract
Cinnamomum species are a group of plants belonging to the Lauraceae family. These plants are predominantly used as spices in various food preparations and other culinary purposes. Furthermore, these plants are attributed to having cosmetic and pharmacological potential. Cinnamomum malabatrum (Burm. f.) J. Presl is an underexplored plant in the Cinnamomum genus. The present study evaluated the chemical composition by a GC-MS analysis and antioxidant properties of the essential oil from C. malabatrum (CMEO). Further, the pharmacological effects were determined as radical quenching, enzyme inhibition and antibacterial activity. The results of the GC-MS analysis indicated the presence of 38.26 % of linalool and 12.43% of caryophyllene in the essential oil. Furthermore, the benzyl benzoate (9.60%), eugenol (8.75%), cinnamaldehyde (7.01%) and humulene (5.32%) were also present in the essential oil. The antioxidant activity was indicated by radical quenching properties, ferric-reducing potential and lipid peroxidation inhibition ex vivo. Further, the enzyme-inhibitory potential was confirmed against the enzymes involved in diabetes and diabetic complications. The results also indicated the antibacterial activity of these essential oils against different Gram-positive and Gram-negative bacteria. The disc diffusion method and minimum inhibitory concentration analysis revealed a higher antibacterial potential for C. malabatrum essential oil. Overall, the results identified the predominant chemical compounds of C. malabatrum essential oil and its biological and pharmacological effects.
Collapse
Affiliation(s)
- Aswathi Moothakoottil Kuttithodi
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Calicut 673008, Kerala, India
| | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Calicut 673008, Kerala, India
| | - Naduvilthara U Visakh
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India
| | - Joice Tom Job
- Division of Cell and Molecular Biology, PG & Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, Calicut 673008, Kerala, India
| | - Berin Pathrose
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India
| | - Opeyemi Joshua Olatunji
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Varsha Ramesh
- Department of Biotechnology, Deakin University, Geelong, VIC 3217, Australia
| |
Collapse
|
141
|
Khayat MT, Abbas HA, Ibrahim TS, Elbaramawi SS, Khayyat AN, Alharbi M, Hegazy WAH, Yehia FAZA. Synergistic Benefits: Exploring the Anti-Virulence Effects of Metformin/Vildagliptin Antidiabetic Combination against Pseudomonas aeruginosa via Controlling Quorum Sensing Systems. Biomedicines 2023; 11:biomedicines11051442. [PMID: 37239113 DOI: 10.3390/biomedicines11051442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The repurposing of drugs is one of the most competent strategies for discovering new antimicrobial agents. Vildagliptin is a dipeptidyl peptidase-4 inhibitor (DPI-4) that is used effectively in combination with metformin to control blood glucose levels in diabetic patients. This study was designed to evaluate the anti-virulence activities of this combination against one of the most clinically important pathogens, Pseudomonas aeruginosa. The current findings show a significant ability of the vildagliptin-metformin combination to diminish biofilm formation, bacterial motility, and the production of virulent extracellular enzymes and pyocyanin pigment. Furthermore, this drug combination significantly increased the susceptibility of P. aeruginosa to oxidative stress, indicating immunity enhancement in the eradication of bacterial cells. In compliance with the in vitro findings, the histopathological photomicrographs of mice showed a considerable protective effect of the metformin-vildagliptin combination against P. aeruginosa, revealing relief of inflammation due to P. aeruginosa-induced pathogenesis. P. aeruginosa mainly employs quorum sensing (QS) systems to control the production of its huge arsenal of virulence factors. The anti-virulence activities of the metformin-vildagliptin combination can be interrupted by the anti-QS activities of both metformin and vildagliptin, as both exhibited a considerable affinity to QS receptors. Additionally, the metformin-vildagliptin combination significantly downregulated the expression of the main three QS-encoding genes in P. aeruginosa. These findings show the significant anti-virulence activities of metformin-vildagliptin at very low concentrations (10, 1.25 mg/mL, respectively) compared to the concentrations (850, 50 mg/mL, respectively) used to control diabetes.
Collapse
Affiliation(s)
- Maan T Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hisham A Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samar S Elbaramawi
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahdab N Khayyat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| | - Fatma Al-Zahraa A Yehia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
142
|
Sonnleitner E, Bassani F, Cianciulli Sesso A, Brear P, Lilic B, Davidovski L, Resch A, Luisi BF, Moll I, Bläsi U. Catabolite repression control protein antagonist, a novel player in Pseudomonas aeruginosa carbon catabolite repression control. Front Microbiol 2023; 14:1195558. [PMID: 37250041 PMCID: PMC10213629 DOI: 10.3389/fmicb.2023.1195558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
In the opportunistic human pathogen Pseudomonas aeruginosa (Pae), carbon catabolite repression (CCR) orchestrates the hierarchical utilization of N and C sources, and impacts virulence, antibiotic resistance and biofilm development. During CCR, the RNA chaperone Hfq and the catabolite repression control protein Crc form assemblies on target mRNAs that impede translation of proteins involved in uptake and catabolism of less preferred C sources. After exhaustion of the preferred C-source, translational repression of target genes is relieved by the regulatory RNA CrcZ, which binds to and acts as a decoy for Hfq. Here, we asked whether Crc action can be modulated to relieve CCR after exhaustion of a preferred carbon source. As Crc does not bind to RNA per se, we endeavored to identify an interacting protein. In vivo co-purification studies, co-immunoprecipitation and biophysical assays revealed that Crc binds to Pae strain O1 protein PA1677. Our structural studies support bioinformatics analyzes showing that PA1677 belongs to the isochorismatase-like superfamily. Ectopic expression of PA1677 resulted in de-repression of Hfq/Crc controlled target genes, while in the absence of the protein, an extended lag phase is observed during diauxic growth on a preferred and a non-preferred carbon source. This observations indicate that PA1677 acts as an antagonist of Crc that favors synthesis of proteins required to metabolize non-preferred carbon sources. We present a working model wherein PA1677 diminishes the formation of productive Hfq/Crc repressive complexes on target mRNAs by titrating Crc. Accordingly, we propose the name CrcA (catabolite repression control protein antagonist) for PA1677.
Collapse
Affiliation(s)
- Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Flavia Bassani
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Anastasia Cianciulli Sesso
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, a doctoral School of the University of Vienna and Medical University of Vienna, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Paul Brear
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Branislav Lilic
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, a doctoral School of the University of Vienna and Medical University of Vienna, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Lovro Davidovski
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Armin Resch
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Ben F. Luisi
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| |
Collapse
|
143
|
Abstract
Aspiration pneumonia (AP), inflammation of the lung parenchyma initiated by aspirated microorganisms into the lower airways from proximal sites, including the oral cavity, is prevalent in, and problematic for, the elderly, especially those in institutions, and for those with several important risk factors. Many factors influence the pathogenesis of AP, including dysphagia, poor oral hygiene, diminished host defense, and underlying medical conditions. This article reviews the epidemiology, microbiology, pathogenesis, and prevention of AP, focusing on the role of poor oral health as a risk factor for, and on dental care for the prevention and management of, this important infection.
Collapse
Affiliation(s)
- Frank A Scannapieco
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Foster Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| |
Collapse
|
144
|
Elfaky MA, Elbaramawi SS, Eissa AG, Ibrahim TS, Khafagy ES, Ali MAM, Hegazy WAH. Drug repositioning: doxazosin attenuates the virulence factors and biofilm formation in Gram-negative bacteria. Appl Microbiol Biotechnol 2023; 107:3763-3778. [PMID: 37079062 DOI: 10.1007/s00253-023-12522-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
The resistance development is an increasing global health risk that needs innovative solutions. Repurposing drugs to serve as anti-virulence agents is suggested as an advantageous strategy to diminish bacterial resistance development. Bacterial virulence is controlled by quorum sensing (QS) system that orchestrates the expression of biofilm formation, motility, and virulence factors production as enzymes and virulent pigments. Interfering with QS could lead to bacterial virulence mitigation without affecting bacterial growth that does not result in bacterial resistance development. This study investigated the probable anti-virulence and anti-QS activities of α-adrenoreceptor blocker doxazosin against Proteus mirabilis and Pseudomonas aeruginosa. Besides in silico study, in vitro and in vivo investigations were conducted to assess the doxazosin anti-virulence actions. Doxazosin significantly diminished the biofilm formation and release of QS-controlled Chromobacterium violaceum pigment and virulence factors in P. aeruginosa and P. mirabilis, and downregulated the QS encoding genes in P. aeruginosa. Virtually, doxazosin interfered with QS proteins, and in vivo protected mice against P. mirabilis and P. aeruginosa. The role of the membranal sensors as QseC and PmrA was recognized in enhancing the Gram-negative virulence. Doxazosin downregulated the membranal sensors PmR and QseC encoding genes and could in silico interfere with them. In conclusion, this study preliminary documents the probable anti-QS and anti-virulence activities of doxazosin, which indicate its possible application as an alternative or in addition to antibiotics. However, extended toxicological and pharmacological investigations are essential to approve the feasible clinical application of doxazosin as novel efficient anti-virulence agent. KEY POINTS: • Anti-hypertensive doxazosin acquires anti-quorum sensing activities • Doxazosin diminishes the virulence of Proteus mirabilis and Pseudomonas aeruginosa • Doxazosin could dimmish the bacterial espionage.
Collapse
Affiliation(s)
- Mahmoud A Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Samar S Elbaramawi
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed G Eissa
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11432, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat, 113, Oman.
| |
Collapse
|
145
|
Verdial C, Serrano I, Tavares L, Gil S, Oliveira M. Mechanisms of Antibiotic and Biocide Resistance That Contribute to Pseudomonas aeruginosa Persistence in the Hospital Environment. Biomedicines 2023; 11:biomedicines11041221. [PMID: 37189839 DOI: 10.3390/biomedicines11041221] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for multiple hospital- and community-acquired infections, both in human and veterinary medicine. P. aeruginosa persistence in clinical settings is worrisome and is a result of its remarkable flexibility and adaptability. This species exhibits several characteristics that allow it to thrive under different environmental conditions, including the ability to colonize inert materials such as medical equipment and hospital surfaces. P. aeruginosa presents several intrinsic mechanisms of defense that allow it to survive external aggressions, but it is also able to develop strategies and evolve into multiple phenotypes to persevere, which include antimicrobial-tolerant strains, persister cells, and biofilms. Currently, these emergent pathogenic strains are a worldwide problem and a major concern. Biocides are frequently used as a complementary/combination strategy to control the dissemination of P. aeruginosa-resistant strains; however, tolerance to commonly used biocides has also already been reported, representing an impediment to the effective elimination of this important pathogen from clinical settings. This review focuses on the characteristics of P. aeruginosa responsible for its persistence in hospital environments, including those associated with its antibiotic and biocide resistance ability.
Collapse
Affiliation(s)
- Cláudia Verdial
- Gato Escondido-Veterinary Clinic, Av. Bombeiros Voluntários n°22B, 2950-209 Palmela, Portugal
| | - Isa Serrano
- CIISA-Center for Interdisciplinary Research in Animal Health, Faculty of Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA-Center for Interdisciplinary Research in Animal Health, Faculty of Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Solange Gil
- CIISA-Center for Interdisciplinary Research in Animal Health, Faculty of Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Manuela Oliveira
- CIISA-Center for Interdisciplinary Research in Animal Health, Faculty of Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
146
|
Hawsawi NM, Hamad AM, Rashid SN, Alshehri F, Sharaf M, Zakai SA, Al Yousef SA, Ali AM, Abou-Elnour A, Alkhudhayri A, Elrefaei NG, Elkelish A. Biogenic silver nanoparticles eradicate of Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA) isolated from the sputum of COVID-19 patients. Front Microbiol 2023; 14:1142646. [PMID: 37143540 PMCID: PMC10153441 DOI: 10.3389/fmicb.2023.1142646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
In recent investigations, secondary bacterial infections were found to be strongly related to mortality in COVID-19 patients. In addition, Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA) bacteria played an important role in the series of bacterial infections that accompany infection in COVID-19. The objective of the present study was to investigate the ability of biosynthesized silver nanoparticles from strawberries (Fragaria ananassa L.) leaf extract without a chemical catalyst to inhibit Gram-negative P. aeruginosa and Gram-positive Staph aureus isolated from COVID-19 patient’s sputum. A wide range of measurements was performed on the synthesized AgNPs, including UV–vis, SEM, TEM, EDX, DLS, ζ -potential, XRD, and FTIR. UV-Visible spectral showed the absorbance at the wavelength 398 nm with an increase in the color intensity of the mixture after 8 h passed at the time of preparation confirming the high stability of the FA-AgNPs in the dark at room temperature. SEM and TEM measurements confirmed AgNPs with size ranges of ∼40-∼50 nm, whereas the DLS study confirmed their average hydrodynamic size as ∼53 nm. Furthermore, Ag NPs. EDX analysis showed the presence of the following elements: oxygen (40.46%), and silver (59.54%). Biosynthesized FA-AgNPs (ζ = −17.5 ± 3.1 mV) showed concentration-dependent antimicrobial activity for 48 h in both pathogenic strains. MTT tests showed concentration-dependent and line-specific effects of FA-AgNPs on cancer MCF-7 and normal liver WRL-68 cell cultures. According to the results, synthetic FA-AgNPs obtained through an environmentally friendly biological process are inexpensive and may inhibit the growth of bacteria isolated from COVID-19 patients.
Collapse
|
147
|
Agustín MDR, Stengel P, Kellermeier M, Tücking KS, Müller M. Monitoring Growth and Removal of Pseudomonas Biofilms on Cellulose-Based Fabrics. Microorganisms 2023; 11:microorganisms11040892. [PMID: 37110314 PMCID: PMC10143030 DOI: 10.3390/microorganisms11040892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Biofilms are often tolerant towards routine cleaning and disinfection processes. As they can grow on fabrics in household or healthcare settings, resulting in odors and serious health problems, it is necessary to contain biofilms through eradication strategies. The current study proposes a novel test model for the growth and removal of biofilms on textiles with Pseudomonas fluorescens and the opportunistic nosocomial pathogen Pseudomonas aeruginosa as model organisms. To assess the biofilm removal on fabrics, (1) a detergent-based, (2) enzyme-based, and (3) combined formulation of both detergent and enzymes (F1/2) were applied. Biofilms were analyzed microscopically (FE-SEM, SEM, 3D laser scanning- and epifluorescence microscopy), via a quartz crystal microbalance with mass dissipation monitoring (QCM-D) as well as plate counting of colonies. This study indicated that Pseudomonas spp. form robust biofilms on woven cellulose that can be efficiently removed via F1/2, proven by a significant reduction (p < 0.001) of viable bacteria in biofilms. Moreover, microscopic analysis indicated a disruption and almost complete removal of the biofilms after F1/2 treatment. QCM-D measurements further confirmed a maximal mass dissipation change after applying F1/2. The combination strategy applying both enzymes and detergent is a promising antibiofilm approach to remove bacteria from fabrics.
Collapse
|
148
|
Yi EJ, Kim AJ. Antimicrobial and Antibiofilm Effect of Bacteriocin-Producing Pediococcus inopinatus K35 Isolated from Kimchi against Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2023; 12:antibiotics12040676. [PMID: 37107038 PMCID: PMC10135125 DOI: 10.3390/antibiotics12040676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Recently, the emergence of multidrug-resistant bacteria due to the misuse of antibiotics has attracted attention as a global public health problem. Many studies have found that fermented foods are good sources of probiotics that are beneficial to the human immune system. Therefore, in this study, we tried to find a substance for the safe alternative treatment of multidrug-resistant bacterial infection in kimchi, a traditional fermented food from Korea. METHOD Antimicrobial activity and antibiofilm activity were assessed against multidrug-resistant (MDR) Pseudomonas aeruginosa using cell-free supernatants of lactic acid bacteria (LAB) isolated from kimchi. Then, UPLC-QTOF-MS analysis was performed to detect the substances responsible for the antimicrobial effect. RESULTS The cell-free supernatant (CFS) of strain K35 isolated from kimchi effectively inhibited the growth of MDR P. aeruginosa. Similarly, CFS from strain K35 combined with P. aeruginosa co-cultures produced significant inhibition of biofilm formation upon testing. On the basis of 16s rRNA gene sequence similarity, strain K35 was identified as Pediococcus inopinatus. As a result of UPLC-QTOF-MS analysis of the CFS of P. inopinatus K35, curacin A and pediocin A were detected. CONCLUSION As a result of this study, it was confirmed that P. inopinatus isolated from kimchi significantly reduced MDR P. aeruginosa growth and biofilm formation. Therefore, kimchi may emerge as a potential source of bacteria able to help manage diseases associated with antibiotic-resistant infections.
Collapse
Affiliation(s)
- Eun-Ji Yi
- Department of Alternative Medicine, Kyonggi University, Seoul 03746, Republic of Korea
| | - Ae-Jung Kim
- Department of Alternative Medicine, Kyonggi University, Seoul 03746, Republic of Korea
| |
Collapse
|
149
|
Wang Y, Zhang L, Yuan X, Wang D. Treatment with paeoniflorin increases lifespan of Pseudomonas aeruginosa infected Caenorhabditis elegans by inhibiting bacterial accumulation in intestinal lumen and biofilm formation. Front Pharmacol 2023; 14:1114219. [PMID: 37050896 PMCID: PMC10083309 DOI: 10.3389/fphar.2023.1114219] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Paeoniflorin is one of the important components in Paeoniaceae plants. In this study, we used Caenorhabditis elegans as a model host and Pseudomonas aeruginosa as a bacterial pathogen to investigate the possible role of paeoniflorin treatment against P. aeruginosa infection in the host and the underlying mechanisms. Posttreatment with 1.25–10 mg/L paeoniflorin could significantly increase the lifespan of P. aeruginosa infected nematodes. After the infection, the P. aeruginosa colony-forming unit (CFU) and P. aeruginosa accumulation in intestinal lumen were also obviously reduced by 1.25–10 mg/L paeoniflorin treatment. The beneficial effects of paeoniflorin treatment in increasing lifespan in P. aeruginosa infected nematodes and in reducing P. aeruginosa accumulation in intestinal lumen could be inhibited by RNAi of pmk-1, egl-1, and bar-1. In addition, paeoniflorin treatment suppressed the inhibition in expressions of pmk-1, egl-1, and bar-1 caused by P. aeruginosa infection in nematodes, suggesting that paeoniflorin could increase lifespan of P. aeruginosa infected nematode by activating PMK-1, EGL-1, and BAR-1. Moreover, although treatment with 1.25–10 mg/L paeoniflorin did not show obvious anti-P. aeruginosa activity, the P. aeruginosa biofilm formation and expressions of related virulence genes (pelA, pelB, phzA, lasB, lasR, rhlA, and rhlC) were significantly inhibited by paeoniflorin treatment. Treatment with 1.25–10 mg/L paeoniflorin could further decrease the levels of related virulence factors of pyocyanin, elastase, and rhamnolipid. In addition, 2.5–10 mg/L paeoniflorin treatment could inhibit the swimming, swarming, and twitching motility of P. aeruginosa, and treatment with 2.5–10 mg/L paeoniflorin reduced the cyclic-di-GMP (c-di-GMP) level. Therefore, paeoniflorin treatment has the potential to extend lifespan of P. aeruginosa infected hosts by reducing bacterial accumulation in intestinal lumen and inhibiting bacterial biofilm formation.
Collapse
|
150
|
Zouhir A, Souiai O, Harigua E, Cherif A, Chaalia AB, Sebei K. ANTIPSEUDOBASE: Database of Antimicrobial Peptides and Essential Oils Against Pseudomonas. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|