101
|
Jiang Y, Torrance L, Peichel CL, Bolnick DI. Differences in rheotactic responses contribute to divergent habitat use between parapatric lake and stream threespine stickleback. Evolution 2015. [DOI: 10.1111/evo.12740] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yuexin Jiang
- Department of Integrative Biology; University of Texas at Austin; One University Station C0990 Austin Texas 78712
- Department of Environmental Science and Policy; University of California at Davis; One Shields Avenue Davis California 95616
| | | | - Catherine L. Peichel
- Divisions of Human Biology and Basic Sciences; Fred Hutchinson Cancer Research Center; 1100 Fairview Ave. N. Seattle Washington 98109
| | - Daniel I. Bolnick
- Department of Integrative Biology; University of Texas at Austin; One University Station C0990 Austin Texas 78712
- Howard Hughes Medical Institute; University of Texas at Austin; One University Station C0990 Austin Texas 78712
| |
Collapse
|
102
|
Stutz WE, Schmerer M, Coates JL, Bolnick DI. Among-lake reciprocal transplants induce convergent expression of immune genes in threespine stickleback. Mol Ecol 2015; 24:4629-46. [PMID: 26118468 DOI: 10.1111/mec.13295] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 12/25/2022]
Abstract
Geographic variation in parasite communities can drive evolutionary divergence in host immune genes. However, biotic and abiotic environmental variation can also induce plastic differences in immune function among populations. At present, there is little information concerning the relative magnitudes of heritable vs. induced immune divergence in natural populations. We examined immune gene expression profiles of threespine stickleback (Gasterosteus aculeatus) from six lakes on Vancouver Island, British Columbia. Parasite community composition differs between lake types (large or small, containing limnetic- or benthic-like stickleback) and between watersheds. We observed corresponding differences in immune gene expression profiles among wild-caught stickleback, using a set of seven immune genes representing distinct branches of the immune system. To evaluate the role of environmental effects on this differentiation, we experimentally transplanted wild-caught fish into cages in their native lake, or into a nearby foreign lake. Transplanted individuals' immune gene expression converged on patterns typical of their destination lake, deviating from their native expression profile. Transplant individuals' source population had a much smaller effect, suggesting relatively weak genetic underpinning of population differences in immunity, as viewed through gene expression. This strong environmental regulation of immune gene expression provides a counterpoint to the large emerging literature documenting microevolution and genetic diversification of immune function. Our findings illustrate the value of studying immunity in natural environmental settings where the immune system has evolved and actively functions.
Collapse
Affiliation(s)
- William E Stutz
- Department of Integrative Biology, University of Texas at Austin, One University Station C0990, Austin, TX, 78712, USA
| | - Matthew Schmerer
- Department of Integrative Biology, University of Texas at Austin, One University Station C0990, Austin, TX, 78712, USA
| | - Jessica L Coates
- Department of Biology, Spelman College, 350 Spelman Lane SW, Atlanta, GA, 30314, USA
| | - Daniel I Bolnick
- Department of Integrative Biology, University of Texas at Austin, One University Station C0990, Austin, TX, 78712, USA.,Howard Hughes Medical Institute, University of Texas at Austin, One University Station C0990, Austin, TX, 78712, USA
| |
Collapse
|
103
|
Karvonen A, Lucek K, Marques DA, Seehausen O. Divergent Macroparasite Infections in Parapatric Swiss Lake-Stream Pairs of Threespine Stickleback (Gasterosteus aculeatus). PLoS One 2015; 10:e0130579. [PMID: 26086778 PMCID: PMC4472517 DOI: 10.1371/journal.pone.0130579] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/21/2015] [Indexed: 11/18/2022] Open
Abstract
Spatial heterogeneity in diversity and intensity of parasitism is a typical feature of most host-parasite interactions, but understanding of the evolutionary implications of such variation is limited. One possible outcome of infection heterogeneities is parasite-mediated divergent selection between host populations, ecotypes or species which may facilitate the process of ecological speciation. However, very few studies have described infections in population-pairs along the speciation continuum from low to moderate or high degree of genetic differentiation that would address the possibility of parasite-mediated divergent selection in the early stages of the speciation process. Here we provide an example of divergent parasitism in freshwater fish ecotypes by examining macroparasite infections in threespine stickleback (Gasterosteus aculeatus) of four Swiss lake systems each harbouring parapatric lake-stream ecotype pairs. We demonstrate significant differences in infections within and between the pairs that are driven particularly by the parasite taxa transmitted to fish from benthic invertebrates. The magnitude of the differences tended to correlate positively with the extent of neutral genetic differentiation between the parapatric lake and stream populations of stickleback, whereas no such correlation was found among allopatric populations from similar or contrasting habitats. This suggests that genetic differentiation is unrelated to the magnitude of parasite infection contrasts when gene flow is constrained by geographical barriers while in the absence of physical barriers, genetic differentiation and the magnitude of differences in infections tend to be positively correlated.
Collapse
Affiliation(s)
- Anssi Karvonen
- University of Jyväskylä, Department of Biological and Environmental Science, FI-40014 University of Jyväskylä, Jyväskylä, Finland
- * E-mail:
| | - Kay Lucek
- Eawag, Centre of Ecology, Evolution and Biogeochemistry, Department of Fish Ecology and Evolution, Kastanienbaum, Switzerland
- Division of Aquatic Ecology & Macroevolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - David A. Marques
- Eawag, Centre of Ecology, Evolution and Biogeochemistry, Department of Fish Ecology and Evolution, Kastanienbaum, Switzerland
- Division of Aquatic Ecology & Macroevolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Ole Seehausen
- Eawag, Centre of Ecology, Evolution and Biogeochemistry, Department of Fish Ecology and Evolution, Kastanienbaum, Switzerland
- Division of Aquatic Ecology & Macroevolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
104
|
Twyford AD, Streisfeld MA, Lowry DB, Friedman J. Genomic studies on the nature of species: adaptation and speciation inMimulus. Mol Ecol 2015; 24:2601-9. [DOI: 10.1111/mec.13190] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Alex D. Twyford
- Ashworth Laboratories; Institute of Evolutionary Biology; The University of Edinburgh; Charlotte Auerbach Road Edinburgh EH9 3FL UK
- Department of Biology; Syracuse University; 107 College Place Syracuse NY 13244 USA
| | | | - David B. Lowry
- Plant Biology Laboratories; Department of Plant Biology; Michigan State University; 612 Wilson Road Room 166 East Lansing MI 48824 USA
| | - Jannice Friedman
- Department of Biology; Syracuse University; 107 College Place Syracuse NY 13244 USA
| |
Collapse
|
105
|
Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME JOURNAL 2015; 9:2515-26. [PMID: 25909977 DOI: 10.1038/ismej.2015.64] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/11/2015] [Accepted: 03/25/2015] [Indexed: 02/06/2023]
Abstract
To explain differences in gut microbial communities we must determine how processes regulating microbial community assembly (colonization, persistence) differ among hosts and affect microbiota composition. We surveyed the gut microbiota of threespine stickleback (Gasterosteus aculeatus) from 10 geographically clustered populations and sequenced environmental samples to track potential colonizing microbes and quantify the effects of host environment and genotype. Gut microbiota composition and diversity varied among populations. These among-population differences were associated with multiple covarying ecological variables: habitat type (lake, stream, estuary), lake geomorphology and food- (but not water-) associated microbiota. Fish genotype also covaried with gut microbiota composition; more genetically divergent populations exhibited more divergent gut microbiota. Our results suggest that population level differences in stickleback gut microbiota may depend more on internal sorting processes (host genotype) than on colonization processes (transient environmental effects).
Collapse
|
106
|
Ravinet M, Hynes R, Poole R, Cross TF, McGinnity P, Harrod C, Prodöhl PA. Where the lake meets the sea: strong reproductive isolation is associated with adaptive divergence between lake resident and anadromous three-spined sticklebacks. PLoS One 2015; 10:e0122825. [PMID: 25874617 PMCID: PMC4397041 DOI: 10.1371/journal.pone.0122825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/14/2015] [Indexed: 11/28/2022] Open
Abstract
Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L.) forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean FST = 0.12), we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an important foundation for future work investigating the dynamics of gene flow and adaptive divergence in this newly discovered stickleback contact zone.
Collapse
Affiliation(s)
- Mark Ravinet
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Rosaleen Hynes
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Russell Poole
- Marine Institute, Furnace, Newport, County Mayo, Ireland
| | - Tom F. Cross
- Aquaculture, Fisheries and Development Centre, School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - Phil McGinnity
- Aquaculture, Fisheries and Development Centre, School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - Chris Harrod
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Paulo A. Prodöhl
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- * E-mail:
| |
Collapse
|
107
|
Berchtold A, Colborne S, Longstaffe F, Neff B. Ecomorphological patterns linking morphology and diet across three populations of pumpkinseed sunfish (Lepomis gibbosus). CAN J ZOOL 2015. [DOI: 10.1139/cjz-2014-0236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Relationships between morphological traits and their ecological function frequently result in patterns that are consistently observed within taxa. Across fishes, the field of ecomorphology has identified a number of morphological traits linked to foraging tactic. Here we examined the links between morphology and diet in pumpkinseed sunfish (Lepomis gibbosus (L., 1758)) from three temperate freshwater lakes. We focused on morphological variation in pharyngeal jaw and gill raker structures, both involved with the processing of prey after capture, in relation to diet. Using stomach contents and stable isotope analysis, we established mean resource use estimates for both populations and individual fish. Among populations and individuals within lakes, we observed that pharyngeal jaw size and gill raker spacing increased with the consumption of littoral prey (e.g., hard-shelled snails) relative to pelagic prey (e.g., zooplankton), but the morphological changes were greater for the pharyngeal jaws. Overall, the relationships that we observed between morphology and foraging tactic were consistent with patterns observed in pumpkinseed and across other fishes. Individual-level diet variation associated with morphology may result in phenotypic diversity within populations that has multiple ecological and evolutionary implications for these populations.
Collapse
Affiliation(s)
- A.E. Berchtold
- Department of Biology, The University of Western Ontario, London ON N6A 5B7, Canada
| | - S.F. Colborne
- Department of Biology, The University of Western Ontario, London ON N6A 5B7, Canada
| | - F.J. Longstaffe
- Department of Earth Sciences, The University of Western Ontario, London ON N6A 5B7, Canada
| | - B.D. Neff
- Department of Biology, The University of Western Ontario, London ON N6A 5B7, Canada
| |
Collapse
|
108
|
Wright DS, Pierotti MER, Rundle HD, McKinnon JS. Conspicuous female ornamentation and tests of male mate preference in threespine sticklebacks (Gasterosteus aculeatus). PLoS One 2015; 10:e0120723. [PMID: 25806520 PMCID: PMC4373685 DOI: 10.1371/journal.pone.0120723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/26/2015] [Indexed: 11/19/2022] Open
Abstract
Sexual selection drives the evolution of exaggerated male ornaments in many animal species. Female ornamentation is now acknowledged also to be common but is generally less well understood. One example is the recently documented red female throat coloration in some threespine stickleback (Gasterosteus aculeatus) populations. Although female sticklebacks often exhibit a preference for red male throat coloration, the possibility of sexual selection on female coloration has been little studied. Using sequential and simultaneous mate choice trials, we examined male mate preferences for female throat color, as well as pelvic spine color and standard length, using wild-captured threespine sticklebacks from the Little Campbell River, British Columbia. In a multivariate analysis, we found no evidence for a population-level mate preference in males, suggesting the absence of directional sexual selection on these traits arising from male mate choice. Significant variation was detected among males in their preference functions, but this appeared to arise from differences in their mean responsiveness across mating trials and not from variation in the strength (i.e., slope) of their preference, suggesting the absence of individual-level preferences as well. When presented with conspecific intruder males, male response decreased as intruder red throat coloration increased, suggesting that males can discriminate color and other aspects of phenotype in our experiment and that males may use these traits in intrasexual interactions. The results presented here are the first to explicitly address male preference for female throat color in threespine sticklebacks.
Collapse
Affiliation(s)
- Daniel Shane Wright
- Department of Biology and Center for Biodiversity, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail:
| | - Michele E. R. Pierotti
- Department of Biology and Center for Biodiversity, East Carolina University, Greenville, North Carolina, United States of America
| | - Howard D. Rundle
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jeffrey S. McKinnon
- Department of Biology and Center for Biodiversity, East Carolina University, Greenville, North Carolina, United States of America
| |
Collapse
|
109
|
Conflitti IM, Shields GF, Murphy RW, Currie DC. The speciation continuum: ecological and chromosomal divergence in theSimulium arcticumcomplex (Diptera: Simuliidae). Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ida M. Conflitti
- Department of Ecology and Evolutionary Biology; University of Toronto; 25 Willcocks Street Toronto ON M5S 3B2 Canada
- Department of Natural History; Royal Ontario Museum; 100 Queen's Park Toronto ON M5S 2C6 Canada
| | - Gerald F. Shields
- Department of Natural Sciences; Carroll College; 1601 North Benton Avenue Helena MT 59625 USA
| | - Robert W. Murphy
- Department of Ecology and Evolutionary Biology; University of Toronto; 25 Willcocks Street Toronto ON M5S 3B2 Canada
- Department of Natural History; Royal Ontario Museum; 100 Queen's Park Toronto ON M5S 2C6 Canada
| | - Douglas C. Currie
- Department of Ecology and Evolutionary Biology; University of Toronto; 25 Willcocks Street Toronto ON M5S 3B2 Canada
- Department of Natural History; Royal Ontario Museum; 100 Queen's Park Toronto ON M5S 2C6 Canada
| |
Collapse
|
110
|
Sobel JM, Streisfeld MA. Strong premating reproductive isolation drives incipient speciation in Mimulus aurantiacus. Evolution 2015; 69:447-61. [PMID: 25545789 DOI: 10.1111/evo.12589] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/20/2014] [Indexed: 01/15/2023]
Abstract
Determining which forms of reproductive isolation have the biggest impact on the process of divergence is a major goal of speciation research. These barriers are often divided into those that affect the potential for hybridization (premating isolation), and those that occur after mating (postmating isolation), and much debate has surrounded the relative importance of these categories. Within the species Mimulus aurantiacus, red- and yellow-flowered ecotypes occur in the southwest corner of California, and a hybrid zone occurs where their ranges overlap. We show that premating barriers are exclusively responsible for isolation in this system, with both ecogeographic and pollinator isolation contributing significantly to total isolation. Postmating forms of reproductive isolation have little or no impact on gene flow, indicating that hybrids likely contribute to introgression at neutral loci. Analysis of molecular variation across thousands of restriction-site associated DNA sequencing (RAD-seq) markers reveals that the genomes of these taxa are largely undifferentiated. However, structure analysis shows that these taxa are distinguishable genetically, likely due to the impact of loci underlying differentiated adaptive phenotypes. These data exhibit the power of divergent natural selection to maintain highly differentiated phenotypes in the face of gene flow during the early stages of speciation.
Collapse
Affiliation(s)
- James M Sobel
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, New York, 13902
| | | |
Collapse
|
111
|
Ravinet M, Takeuchi N, Kume M, Mori S, Kitano J. Comparative analysis of Japanese three-spined stickleback clades reveals the Pacific Ocean lineage has adapted to freshwater environments while the Japan Sea has not. PLoS One 2014; 9:e112404. [PMID: 25460163 PMCID: PMC4251985 DOI: 10.1371/journal.pone.0112404] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 10/06/2014] [Indexed: 12/02/2022] Open
Abstract
Divergent selection and adaptive divergence can increase phenotypic diversification amongst populations and lineages. Yet adaptive divergence between different environments, habitats or niches does not occur in all lineages. For example, the colonization of freshwater environments by ancestral marine species has triggered adaptive radiation and phenotypic diversification in some taxa but not in others. Studying closely related lineages differing in their ability to diversify is an excellent means of understanding the factors promoting and constraining adaptive evolution. A well-known example of the evolution of increased phenotypic diversification following freshwater colonization is the three-spined stickleback. Two closely related stickleback lineages, the Pacific Ocean and the Japan Sea occur in Japan. However, Japanese freshwater stickleback populations are derived from the Pacific Ocean lineage only, suggesting the Japan Sea lineage is unable to colonize freshwater. Using stable isotope data and trophic morphology, we first show higher rates of phenotypic and ecological diversification between marine and freshwater populations within the Pacific Ocean lineage, confirming adaptive divergence has occurred between the two lineages and within the Pacific Ocean lineage but not in the Japan Sea lineage. We further identified consistent divergence in diet and foraging behaviour between marine forms from each lineage, confirming Pacific Ocean marine sticklebacks, from which all Japanese freshwater populations are derived, are better adapted to freshwater environments than Japan Sea sticklebacks. We suggest adaptive divergence between ancestral marine populations may have played a role in constraining phenotypic diversification and adaptive evolution in Japanese sticklebacks.
Collapse
Affiliation(s)
- Mark Ravinet
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Naoko Takeuchi
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Manabu Kume
- Biological Laboratory, Gifu-keizai University, Ogaki, Japan
| | - Seiichi Mori
- Biological Laboratory, Gifu-keizai University, Ogaki, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
112
|
Chavarie L, Howland K, Harris L, Tonn W. Polymorphism in lake trout in Great Bear Lake: intra-lake morphological diversification at two spatial scales. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12398] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Louise Chavarie
- Department of Biological Sciences; University of Alberta; Edmonton AB T6G 2E9 Canada
| | - Kimberly Howland
- Fisheries and Oceans Canada; 501 University Crescent Winnipeg MB R3T 2N6 Canada
| | - Les Harris
- Fisheries and Oceans Canada; 501 University Crescent Winnipeg MB R3T 2N6 Canada
| | - William Tonn
- Department of Biological Sciences; University of Alberta; Edmonton AB T6G 2E9 Canada
| |
Collapse
|
113
|
Theis A, Ronco F, Indermaur A, Salzburger W, Egger B. Adaptive divergence between lake and stream populations of an East African cichlid fish. Mol Ecol 2014; 23:5304-22. [DOI: 10.1111/mec.12939] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Anya Theis
- Zoological Institute; University of Basel; Vesalgasse 1 4051 Basel Switzerland
| | - Fabrizia Ronco
- Zoological Institute; University of Basel; Vesalgasse 1 4051 Basel Switzerland
| | - Adrian Indermaur
- Zoological Institute; University of Basel; Vesalgasse 1 4051 Basel Switzerland
| | - Walter Salzburger
- Zoological Institute; University of Basel; Vesalgasse 1 4051 Basel Switzerland
| | - Bernd Egger
- Zoological Institute; University of Basel; Vesalgasse 1 4051 Basel Switzerland
| |
Collapse
|
114
|
Aguirre WE, Walker K, Gideon S. Tinkering with the axial skeleton: vertebral number variation in ecologically divergent threespine stickleback populations. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Windsor E. Aguirre
- Department of Biological Sciences; DePaul University; Chicago IL 60614-3207 USA
| | - Kendal Walker
- Department of Biological Sciences; DePaul University; Chicago IL 60614-3207 USA
| | - Shawn Gideon
- Department of Biological Sciences; DePaul University; Chicago IL 60614-3207 USA
| |
Collapse
|
115
|
Melo MC, Grealy A, Brittain B, Walter GM, Ortiz-Barrientos D. Strong extrinsic reproductive isolation between parapatric populations of an Australian groundsel. THE NEW PHYTOLOGIST 2014; 203:323-334. [PMID: 24684207 DOI: 10.1111/nph.12779] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/20/2014] [Indexed: 06/03/2023]
Abstract
Speciation with gene flow, or the evolution of reproductive isolation between interbreeding populations, remains a controversial problem in evolution. This is because gene flow erodes the adaptive differences that selection creates between populations. Here, we use a combination of common garden experiments in the field and in the glasshouse to investigate what ecological and genetic mechanisms prevent gene flow and maintain morphological and genetic differentiation between coastal parapatric populations of the Australian groundsel Senecio lautus. We discovered that in each habitat extrinsic reproductive barriers prevented gene flow, whereas intrinsic barriers in F1 hybrids were weak. In the field, herbivores played a major role in preventing gene flow, but glasshouse experiments demonstrated that soil type also created variable selective pressures both locally and on a greater geographic scale. Our experimental results demonstrate that interfertile plant populations adapting to contrasting environments may diverge as a consequence of concurrent natural selection acting against migrants and hybrids through multiple mechanisms. These results provide novel insights into the consequences of local adaptation in the origin of strong barriers to gene flow in plants, and suggest that herbivory may play an important role in the early stages of plant speciation.
Collapse
Affiliation(s)
- Maria C Melo
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | | | | | | | | |
Collapse
|
116
|
The speciation continuum: population structure, gene flow, and maternal ancestry in the Simulium arcticum complex (Diptera: Simuliidae). Mol Phylogenet Evol 2014; 78:43-55. [PMID: 24821619 DOI: 10.1016/j.ympev.2014.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/15/2014] [Accepted: 05/01/2014] [Indexed: 12/27/2022]
Abstract
Comparative analyses of populations at different stages of divergence can yield insights into the process of speciation. We assess population structure, gene flow, and maternal ancestry at five locations containing sympatric members of the Simulium arcticum complex at different stages of chromosome divergence. We analyze both nuclear and mitochondrial DNA markers, including 11 microsatellite loci, as well as COI, COII, cytb, and ND4 gene sequences. Simulium negativum, representing the later stages of divergence, shows both nuclear and mitochondrial differentiation when compared with allopatric and sympatric chromosomal forms, as well as both low contemporary and historical gene flow in sympatry. At intermediate stages of chromosome divergence, populations differ at nuclear, but not mitochondrial, loci in allopatry and sympatry. In one comparison of intermediate stage chromosomal forms (S. arcticum sensu stricto and S. apricarium), populations demonstrate low contemporary, but higher historical, gene flow in sympatry. In a second sympatric comparison (S. arcticum s. s. and S. brevicercum), both contemporary and historical gene flow are high. All analyses of sympatric populations at the earliest stages of chromosome divergence demonstrate panmixia; yet, some nuclear differentiation in allopatry is apparent. These findings suggest that molecular divergence is tracking chromosome divergence along a chromosomally-defined continuum of speciation in black flies.
Collapse
|
117
|
Cooke GM, Landguth EL, Beheregaray LB. Riverscape genetics identifies replicated ecological divergence across an Amazonian ecotone. Evolution 2014; 68:1947-60. [PMID: 24641091 DOI: 10.1111/evo.12410] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 03/04/2014] [Indexed: 01/22/2023]
Abstract
Ecological speciation involves the evolution of reproductive isolation and niche divergence in the absence of a physical barrier to gene flow. The process is one of the most controversial topics of the speciation debate, particularly in tropical regions. Here, we investigate ecologically based divergence across an Amazonian ecotone in the electric fish, Steatogenys elegans. We combine phylogenetics, genome scans, and population genetics with a recently developed individual-based evolutionary landscape genetics approach that incorporates selection. This framework is used to assess the relative contributions of geography and divergent natural selection between environments as biodiversity drivers. We report on two closely related and sympatric lineages that exemplify how divergent selection across a major Amazonian aquatic ecotone (i.e., between rivers with markedly different hydrochemical properties) may result in replicated ecologically mediated speciation. The results link selection across an ecological gradient with reproductive isolation and we propose that assortative mating based on water color may be driving the divergence. Divergence resulting from ecologically driven selection highlights the importance of considering environmental heterogeneity in studies of speciation in tropical regions. Furthermore, we show that framing ecological speciation in a spatially explicit evolutionary landscape genetics framework provides an important first step in exploring a wide range of the potential effects of spatial dependence in natural selection.
Collapse
Affiliation(s)
- Georgina M Cooke
- Molecular Ecology Lab, Department of Biological Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia; The Australian Museum, The Australian Museum Research Institute, Sydney, New South Wales, 2010, Australia
| | | | | |
Collapse
|
118
|
Räsänen K, Hendry AP. Asymmetric reproductive barriers and mosaic reproductive isolation: insights from Misty lake-stream stickleback. Ecol Evol 2014; 4:1166-75. [PMID: 24772291 PMCID: PMC3997330 DOI: 10.1002/ece3.1012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 01/25/2023] Open
Abstract
Ecological speciation seems to occur readily but is clearly not ubiquitous - and the relative contributions of different reproductive barriers remain unclear in most systems. We here investigate the potential importance of selection against migrants in lake/stream stickleback (Gasterosteus aculeatus) from the Misty Lake system, Canada. This system is of particular interest because one population contrast (Lake vs. Outlet stream) shows very low genetic and morphological divergence, whereas another population contrast (Lake vs. Inlet stream) shows dramatic genetic and morphological divergence apparently without strong and symmetric reproductive barriers. To test whether selection against migrants might solve this "conundrum of missing reproductive isolation", we performed a fully factorial reciprocal transplant experiment using 225 individually marked stickleback collected from the wild. Relative fitness of the different ecotypes (Lake, Inlet, and Outlet) was assessed based on survival and mass change in experimental enclosures. We found that Inlet fish performed poorly in the lake (selection against migrants in that direction), whereas Lake fish outperformed Inlet fish in all environments (no selection against migrants in the opposite direction). As predicted from their phenotypic and genetic similarity, Outlet and Lake fish performed similarly in all environments. These results suggest that selection against migrants is asymmetric and, together with previous work, indicates that multiple reproductive barriers contribute to reproductive isolation. Similar mosaic patterns of reproductive isolation are likely in other natural systems.
Collapse
Affiliation(s)
- Katja Räsänen
- Redpath Museum and Department of Biology, McGill University 859 Sherbrooke St. W, Montréal, QC, H3A 2K6, Canada
| | - Andrew P Hendry
- Redpath Museum and Department of Biology, McGill University 859 Sherbrooke St. W, Montréal, QC, H3A 2K6, Canada
| |
Collapse
|
119
|
Kusche H, Recknagel H, Elmer KR, Meyer A. Crater lake cichlids individually specialize along the benthic-limnetic axis. Ecol Evol 2014; 4:1127-39. [PMID: 24772288 PMCID: PMC3997327 DOI: 10.1002/ece3.1015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/04/2014] [Accepted: 02/07/2014] [Indexed: 01/07/2023] Open
Abstract
A common pattern of adaptive diversification in freshwater fishes is the repeated evolution of elongated open water (limnetic) species and high-bodied shore (benthic) species from generalist ancestors. Studies on phenotype-diet correlations have suggested that population-wide individual specialization occurs at an early evolutionary and ecological stage of divergence and niche partitioning. This variable restricted niche use across individuals can provide the raw material for earliest stages of sympatric divergence. We investigated variation in morphology and diet as well as their correlations along the benthic-limnetic axis in an extremely young Midas cichlid species, Amphilophus tolteca, endemic to the Nicaraguan crater lake Asososca Managua. We found that A. tolteca varied continuously in ecologically relevant traits such as body shape and lower pharyngeal jaw morphology. The correlation of these phenotypes with niche suggested that individuals are specialized along the benthic-limnetic axis. No genetic differentiation within the crater lake was detected based on genotypes from 13 microsatellite loci. Overall, we found that individual specialization in this young crater lake species encompasses the limnetic-as well as the benthic macro-habitat. Yet there is no evidence for any diversification within the species, making this a candidate system for studying what might be the early stages preceding sympatric divergence. A common pattern of adaptive diversification in freshwater fishes is the repeated evolution of open water (limnetic) species and of shore (benthic) species. Individual specialization can reflect earliest stages of evolutionary and ecological divergence. We here demonstrate individual specialization along the benthic–limnetic axis in a young adaptive radiation of crater lake cichlid fishes.
Collapse
Affiliation(s)
- Henrik Kusche
- Department of Biology, Chair of Zoology and Evolutionary Biology, University of Konstanz Konstanz, 78457, Germany ; International Max Planck Research School for Organismal Biology, University of Konstanz Konstanz, 78457, Germany
| | - Hans Recknagel
- Department of Biology, Chair of Zoology and Evolutionary Biology, University of Konstanz Konstanz, 78457, Germany
| | - Kathryn Rebecca Elmer
- Department of Biology, Chair of Zoology and Evolutionary Biology, University of Konstanz Konstanz, 78457, Germany
| | - Axel Meyer
- Department of Biology, Chair of Zoology and Evolutionary Biology, University of Konstanz Konstanz, 78457, Germany ; International Max Planck Research School for Organismal Biology, University of Konstanz Konstanz, 78457, Germany
| |
Collapse
|
120
|
Ingley SJ, Billman EJ, Belk MC, Johnson JB. Morphological divergence driven by predation environment within and between species of Brachyrhaphis fishes. PLoS One 2014; 9:e90274. [PMID: 24587309 PMCID: PMC3936007 DOI: 10.1371/journal.pone.0090274] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 02/01/2014] [Indexed: 11/19/2022] Open
Abstract
Natural selection often results in profound differences in body shape among populations from divergent selective environments. Predation is a well-studied driver of divergence, with predators having a strong effect on the evolution of prey body shape, especially for traits related to escape behavior. Comparative studies, both at the population level and between species, show that the presence or absence of predators can alter prey morphology. Although this pattern is well documented in various species or population pairs, few studies have tested for similar patterns of body shape evolution at multiple stages of divergence within a taxonomic group. Here, we examine morphological divergence associated with predation environment in the livebearing fish genus Brachyrhaphis. We compare differences in body shape between populations of B. rhabdophora from different predation environments to differences in body shape between B. roseni and B. terrabensis (sister species) from predator and predator free habitats, respectively. We found that in each lineage, shape differed between predation environments, consistent with the hypothesis that locomotor function is optimized for either steady swimming (predator free) or escape behavior (predator). Although differences in body shape were greatest between B. roseni and B. terrabensis, we found that much of the total morphological diversification between these species had already been achieved within B. rhabdophora (29% in females and 47% in males). Interestingly, at both levels of divergence we found that early in ontogenetic development, females differed in shape between predation environments; however, as females matured, their body shapes converged on a similar phenotype, likely due to the constraints of pregnancy. Finally, we found that body shape varies with body size in a similar way, regardless of predation environment, in each lineage. Our findings are important because they provide evidence that the same source of selection can drive similar phenotypic divergence independently at multiple divergence levels.
Collapse
Affiliation(s)
- Spencer J. Ingley
- Department of Biology, Brigham Young University, Provo, Utah, United States of America
| | - Eric J. Billman
- Department of Biology, Brigham Young University, Provo, Utah, United States of America
| | - Mark C. Belk
- Department of Biology, Brigham Young University, Provo, Utah, United States of America
| | - Jerald B. Johnson
- Department of Biology, Brigham Young University, Provo, Utah, United States of America
- Monte L. Bean Life Science Museum, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
121
|
Martin CH, Feinstein LC. Novel trophic niches drive variable progress towards ecological speciation within an adaptive radiation of pupfishes. Mol Ecol 2014; 23:1846-62. [PMID: 24393262 DOI: 10.1111/mec.12658] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 12/09/2013] [Accepted: 12/20/2013] [Indexed: 01/15/2023]
Abstract
Adaptive radiation is recognized by a rapid burst of phenotypic, ecological and species diversification. However, it is unknown whether different species within an adaptive radiation evolve reproductive isolation at different rates. We compared patterns of genetic differentiation between nascent species within an adaptive radiation of Cyprinodon pupfishes using genotyping by sequencing. Similar to classic adaptive radiations, this clade exhibits rapid morphological diversification rates and two species are novel trophic specialists, a scale-eater and hard-shelled prey specialist (durophage), yet the radiation is <10 000 years old. Both specialists and an abundant generalist species all coexist in the benthic zone of lakes on San Salvador Island, Bahamas. Based on 13 912 single-nucleotide polymorphisms (SNPs), we found consistent differences in genetic differentiation between each specialist species and the generalist across seven lakes. The scale-eater showed the greatest genetic differentiation and clustered by species across lakes, whereas durophage populations often clustered with sympatric generalist populations, consistent with parallel speciation across lakes. However, we found strong evidence of admixture between durophage populations in different lakes, supporting a single origin of this species and genome-wide introgression with sympatric generalist populations. We conclude that the scale-eater is further along the speciation-with-gene-flow continuum than the durophage and suggest that different adaptive landscapes underlying these two niche environments drive variable progress towards speciation within the same habitat. Our previous measurements of fitness surfaces in these lakes support this conclusion: the scale-eating fitness peak may be more distant than the durophage peak on the complex adaptive landscape driving adaptive radiation.
Collapse
Affiliation(s)
- Christopher H Martin
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA; Department of Evolution & Ecology, University of California, Davis, CA, 94616, USA
| | | |
Collapse
|
122
|
Scriber JM. Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes. INSECTS 2013; 5:1-61. [PMID: 26462579 PMCID: PMC4592632 DOI: 10.3390/insects5010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/04/2013] [Accepted: 12/06/2013] [Indexed: 01/11/2023]
Abstract
Comprising 50%-75% of the world's fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience) may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including "invasive species" in various ecosystems as they may become disrupted in different ways by rapid climate change. "Invasive genes" (into new species and populations) need to be recognized for their positive creative potential and addressed in conservation programs. "Genetic rescue" via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae) with their long-term historical data base (phylogeographical diversity changes) and recent (3-decade) climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced "reshuffling" (recombinations) of species composition, genotypes, and genomes may become increasingly ecologically and evolutionarily predictable, but future conservation management programs are more likely to remain constrained by human behavior than by lack of academic knowledge.
Collapse
Affiliation(s)
- Jon Mark Scriber
- Department of Entomology, Michigan State University, East Lansing, Michigan, MI 48824, USA.
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
123
|
Raeymaekers JAM, Konijnendijk N, Larmuseau MHD, Hellemans B, De Meester L, Volckaert FAM. A gene with major phenotypic effects as a target for selection vs. homogenizing gene flow. Mol Ecol 2013; 23:162-81. [PMID: 24192132 DOI: 10.1111/mec.12582] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/20/2013] [Accepted: 10/28/2013] [Indexed: 01/28/2023]
Abstract
Genes with major phenotypic effects facilitate quantifying the contribution of genetic vs. plastic effects to adaptive divergence. A classical example is Ectodysplasin (Eda), the major gene controlling lateral plate phenotype in three-spined stickleback. Completely plated marine stickleback populations evolved repeatedly towards low-plated freshwater populations, representing a prime example of parallel evolution by natural selection. However, many populations remain polymorphic for lateral plate number. Possible explanations for this polymorphism include relaxation of selection, disruptive selection or a balance between divergent selection and gene flow. We investigated 15 polymorphic stickleback populations from brackish and freshwater habitats in coastal North-western Europe. At each site, we tracked changes in allele frequency at the Eda gene between subadults in fall, adults in spring and juveniles in summer. Eda genotypes were also compared for body size and reproductive investment. We observed a fitness advantage for the Eda allele for the low morph in freshwater and for the allele for the complete morph in brackish water. Despite these results, the differentiation at the Eda gene was poorly correlated with habitat characteristics. Neutral population structure was the best predictor of spatial variation in lateral plate number, suggestive of a substantial effect of gene flow. A meta-analysis revealed that the signature of selection at Eda was weak compared to similar studies in stickleback. We conclude that a balance between divergent selection and gene flow can maintain stickleback populations polymorphic for lateral plate number and that ecologically relevant genes may not always contribute much to local adaptation, even when targeted by selection.
Collapse
Affiliation(s)
- Joost A M Raeymaekers
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. Deberiotstraat 32, Leuven, B-3000, Belgium; Zoological Institute, University of Basel, Vesalgasse 1, Basel, CH-4051, Switzerland
| | | | | | | | | | | |
Collapse
|
124
|
Kronforst MR, Hansen MEB, Crawford NG, Gallant JR, Zhang W, Kulathinal RJ, Kapan DD, Mullen SP. Hybridization reveals the evolving genomic architecture of speciation. Cell Rep 2013; 5:666-77. [PMID: 24183670 PMCID: PMC4388300 DOI: 10.1016/j.celrep.2013.09.042] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/09/2013] [Accepted: 09/25/2013] [Indexed: 11/30/2022] Open
Abstract
The rate at which genomes diverge during speciation is unknown, as are the physical dynamics of the process. Here, we compare full genome sequences of 32 butterflies, representing five species from a hybridizing Heliconius butterfly community, to examine genome-wide patterns of introgression and infer how divergence evolves during the speciation process. Our analyses reveal that initial divergence is restricted to a small fraction of the genome, largely clustered around known wing-patterning genes. Over time, divergence evolves rapidly, due primarily to the origin of new divergent regions. Furthermore, divergent genomic regions display signatures of both selection and adaptive introgression, demonstrating the link between microevolutionary processes acting within species and the origin of species across macroevolutionary timescales. Our results provide a uniquely comprehensive portrait of the evolving species boundary due to the role that hybridization plays in reducing the background accumulation of divergence at neutral sites.
Collapse
Affiliation(s)
- Marcus R Kronforst
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Millet A, Kristjánsson BK, Einarsson A, Räsänen K. Spatial phenotypic and genetic structure of threespine stickleback (Gasterosteus aculeatus) in a heterogeneous natural system, Lake Mývatn, Iceland. Ecol Evol 2013; 3:3219-32. [PMID: 24223263 PMCID: PMC3797472 DOI: 10.1002/ece3.712] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 12/04/2022] Open
Abstract
Eco-evolutionary responses of natural populations to spatial environmental variation strongly depend on the relative strength of environmental differences/natural selection and dispersal/gene flow. In absence of geographic barriers, as often is the case in lake ecosystems, gene flow is expected to constrain adaptive divergence between environments – favoring phenotypic plasticity or high trait variability. However, if divergent natural selection is sufficiently strong, adaptive divergence can occur in face of gene flow. The extent of divergence is most often studied between two contrasting environments, whereas potential for multimodal divergence is little explored. We investigated phenotypic (body size, defensive structures, and feeding morphology) and genetic (microsatellites) structure in threespine stickleback (Gasterosteus aculeatus) across five habitat types and two basins (North and South) within the geologically young and highly heterogeneous Lake Mývatn, North East Iceland. We found that (1) North basin stickleback were, on average, larger and had relatively longer spines than South basin stickleback, whereas (2) feeding morphology (gill raker number and gill raker gap width) differed among three of five habitat types, and (3) there was only subtle genetic differentiation across the lake. Overall, our results indicate predator and prey mediated phenotypic divergence across multiple habitats in the lake, in face of gene flow.
Collapse
Affiliation(s)
- Antoine Millet
- Department of Aquaculture and Fish Biology, Hólar University College IS-551, Sauðárkrókur, Iceland
| | | | | | | |
Collapse
|
126
|
Powell THQ, Hood GR, Murphy MO, Heilveil JS, Berlocher SH, Nosil P, Feder JL. GENETIC DIVERGENCE ALONG THE SPECIATION CONTINUUM: THE TRANSITION FROM HOST RACE TO SPECIES INRHAGOLETIS(DIPTERA: TEPHRITIDAE). Evolution 2013; 67:2561-76. [DOI: 10.1111/evo.12209] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 06/28/2013] [Indexed: 01/28/2023]
Affiliation(s)
- Thomas H. Q. Powell
- Department of Biological Sciences; University of Notre Dame; 290C Galvin Life Sciences Building; Notre Dame; Indiana; 46556
| | - Glen R. Hood
- Department of Biological Sciences; University of Notre Dame; 290C Galvin Life Sciences Building; Notre Dame; Indiana; 46556
| | - Mason O. Murphy
- Department of Biological Sciences; University of Notre Dame; 290C Galvin Life Sciences Building; Notre Dame; Indiana; 46556
| | | | - Stewart H. Berlocher
- Department of Entomology; University of Illinois at Urbana-Champaign; 320 Morrill Hall; Urbana; Illinois; 61801
| | - Patrik Nosil
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield; S10 2TN; United Kingdom
| | | |
Collapse
|
127
|
Nosil P, Feder JL. GENOME EVOLUTION AND SPECIATION: TOWARD QUANTITATIVE DESCRIPTIONS OF PATTERN AND PROCESS. Evolution 2013; 67:2461-7. [DOI: 10.1111/evo.12191] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 05/30/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Patrik Nosil
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield; S10 2TN; United Kingdom
| | - Jeffrey L. Feder
- Department of Biological Sciences; 290C Galvin Life Sciences Building; University of Notre Dame; Notre Dame; Indiana; 46556
| |
Collapse
|
128
|
Drevecky CJ, Falco R, Aguirre WE. Genetic divergence of a sympatric lake-resident-anadromous three-spined stickleback Gasterosteus aculeatus species pair. JOURNAL OF FISH BIOLOGY 2013; 83:111-132. [PMID: 23808695 DOI: 10.1111/jfb.12154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 04/16/2013] [Indexed: 06/02/2023]
Abstract
The genetic relationship between sympatric, morphologically divergent populations of anadromous and lake-resident three-spined stickleback Gasterosteus aculeatus in the Jim Creek drainage of Cook Inlet, Alaska, was examined using microsatellite loci and mitochondrial d-loop sequence data. Resident samples differed substantially from sympatric anadromous samples in the Jim Creek drainage with the magnitude of the genetic divergence being similar to that between allopatric resident and anadromous populations in other areas. Resident samples were genetically similar within the Jim Creek drainage, as were the anadromous samples surveyed. Neighbour-joining and Structure cluster analysis grouped the samples into four genetic clusters by ecomorph (anadromous v. all resident) and geographic location of the resident samples (Jim Creek, Mat-Su and Kenai). There was no evidence of hybridization between resident and anadromous G. aculeatus in the Jim Creek drainage, which thus appear to be reproductively isolated.
Collapse
Affiliation(s)
- C J Drevecky
- Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, IL 60614-3207, USA
| | | | | |
Collapse
|
129
|
Roda F, Ambrose L, Walter GM, Liu HL, Schaul A, Lowe A, Pelser PB, Prentis P, Rieseberg LH, Ortiz-Barrientos D. Genomic evidence for the parallel evolution of coastal forms in theSenecio lautuscomplex. Mol Ecol 2013; 22:2941-52. [DOI: 10.1111/mec.12311] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 02/10/2013] [Accepted: 02/14/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Federico Roda
- School of Biological Sciences; The University of Queensland; St. Lucia Qld 4072 Australia
| | - Luke Ambrose
- School of Biological Sciences; The University of Queensland; St. Lucia Qld 4072 Australia
| | - Gregory M. Walter
- School of Biological Sciences; The University of Queensland; St. Lucia Qld 4072 Australia
| | - Huanle L. Liu
- School of Biological Sciences; The University of Queensland; St. Lucia Qld 4072 Australia
| | - Andrea Schaul
- School of Biological Sciences; The University of Queensland; St. Lucia Qld 4072 Australia
| | - Andrew Lowe
- Australian Centre for Evolutionary Biology and Biodiversity; School of Earth and Environmental Science; University of Adelaide; Adelaide SA Australia
- Science Resource Centre; Department for Environment and Natural Resources; North Terrace Adelaide South Australia Australia
| | - Pieter B. Pelser
- School of Biological Sciences; University of Canterbury; Private Bag 4800 Christchurch 8140 New Zealand
| | - Peter Prentis
- School of Earth, Environmental and Biological Sciences; Queensland University of Technology; Brisbane Qld 4001 Australia
| | - Loren H. Rieseberg
- Department of Botany; University of British Columbia; 3529-6270 University Boulevard Vancouver BC V6T 1Z4 Canada
- Biology Department; Indiana University; 1001 E Third Street Bloomington IN 47405 USA
| | | |
Collapse
|
130
|
Kitano J, Yoshida K, Suzuki Y. RNA sequencing reveals small RNAs differentially expressed between incipient Japanese threespine sticklebacks. BMC Genomics 2013; 14:214. [PMID: 23547919 PMCID: PMC3637797 DOI: 10.1186/1471-2164-14-214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/20/2013] [Indexed: 01/01/2023] Open
Abstract
Background Non-coding small RNAs, ranging from 20 to 30 nucleotides in length, mediate the regulation of gene expression and play important roles in many biological processes. One class of small RNAs, microRNAs (miRNAs), are highly conserved across taxa and mediate the regulation of the chromatin state and the post-transcriptional regulation of messenger RNA (mRNA). Another class of small RNAs is the Piwi-interacting RNAs, which play important roles in the silencing of transposons and other functional genes. Although the biological functions of the different small RNAs have been elucidated in several laboratory animals, little is known regarding naturally occurring variation in small RNA transcriptomes among closely related species. Results We employed next-generation sequencing technology to compare the expression profiles of brain small RNAs between sympatric species of the Japanese threespine stickleback (Gasterosteus aculeatus). We identified several small RNAs that were differentially expressed between sympatric Pacific Ocean and Japan Sea sticklebacks. Potential targets of several small RNAs were identified as repetitive sequences. Female-biased miRNA expression from the old X chromosome was also observed, and it was attributed to the degeneration of the Y chromosome. Conclusions Our results suggest that expression patterns of small RNA can differ between incipient species and may be a potential mechanism underlying differential mRNA expression and transposon activity.
Collapse
Affiliation(s)
- Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, Japan.
| | | | | |
Collapse
|
131
|
Genetically differentiated races and speciation-with-gene-flow in the sunflower maggot, Strauzia longipennis. Evol Ecol 2012. [DOI: 10.1007/s10682-012-9622-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
132
|
Moser D, Roesti M, Berner D. Repeated lake-stream divergence in stickleback life history within a Central European lake basin. PLoS One 2012; 7:e50620. [PMID: 23226528 PMCID: PMC3514289 DOI: 10.1371/journal.pone.0050620] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/23/2012] [Indexed: 11/19/2022] Open
Abstract
Life history divergence between populations inhabiting ecologically distinct habitats might be a potent source of reproductive isolation, but has received little attention in the context of speciation. We here test for life history divergence between threespine stickleback inhabiting Lake Constance (Central Europe) and multiple tributary streams. Otolith analysis shows that lake fish generally reproduce at two years of age, while their conspecifics in all streams have shifted to a primarily annual life cycle. This divergence is paralleled by a striking and consistent reduction in body size and fecundity in stream fish relative to lake fish. Stomach content analysis suggests that life history divergence might reflect a genetic or plastic response to pelagic versus benthic foraging modes in the lake and the streams. Microsatellite and mitochondrial markers further reveal that life history shifts in the different streams have occurred independently following the colonization by Lake Constance stickleback, and indicate the presence of strong barriers to gene flow across at least some of the lake-stream habitat transitions. Given that body size is known to strongly influence stickleback mating behavior, these barriers might well be related to life history divergence.
Collapse
Affiliation(s)
- Dario Moser
- Zoological Institute, University of Basel, Vesalgasse 1, Basel, Switzerland
| | - Marius Roesti
- Zoological Institute, University of Basel, Vesalgasse 1, Basel, Switzerland
| | - Daniel Berner
- Zoological Institute, University of Basel, Vesalgasse 1, Basel, Switzerland
- * E-mail:
| |
Collapse
|
133
|
Ravinet M, Prodöhl PA, Harrod C. Parallel and nonparallel ecological, morphological and genetic divergence in lake-stream stickleback from a single catchment. J Evol Biol 2012. [PMID: 23199201 DOI: 10.1111/jeb.12049] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Parallel phenotypic evolution in similar environments has been well studied in evolutionary biology; however, comparatively little is known about the influence of determinism and historical contingency on the nature, extent and generality of this divergence. Taking advantage of a novel system containing multiple lake-stream stickleback populations, we examined the extent of ecological, morphological and genetic divergence between three-spined stickleback present in parapatric environments. Consistent with other lake-stream studies, we found a shift towards a deeper body and shorter gill rakers in stream fish. Morphological shifts were concurrent with changes in diet, indicated by both stable isotope and stomach contents analysis. Performing a multivariate test for shared and unique components of evolutionary response to the distance gradient from the lake, we found a strong signature of parallel adaptation. Nonparallel divergence was also present, attributable mainly to differences between river locations. We additionally found evidence of genetic substructuring across five lake-stream transitions, indicating that some level of reproductive isolation occurs between populations in these habitats. Strong correlations between pairwise measures of morphological, ecological and genetic distance between lake and stream populations supports the hypothesis that divergent natural selection between habitats drives adaptive divergence and reproductive isolation. Lake-stream stickleback divergence in Lough Neagh provides evidence for the deterministic role of selection and supports the hypothesis that parallel selection in similar environments may initiate parallel speciation.
Collapse
Affiliation(s)
- M Ravinet
- School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| | | | | |
Collapse
|
134
|
Fischer S, Frommen JG. Eutrophication alters social preferences in three-spined sticklebacks (Gasterosteus aculeatus). Behav Ecol Sociobiol 2012. [DOI: 10.1007/s00265-012-1449-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
135
|
Hume JB, Adams CE, Mable B, Bean C. Post-zygotic hybrid viability in sympatric species pairs: a case study from European lampreys. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.02007.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John B. Hume
- Institute of Biodiversity; Animal Health & Comparative Medicine; College of Medical; Veterinary & Life Sciences; University of Glasgow; Graham Kerr Building; Glasgow; G12 8QQ; UK
| | - Colin E. Adams
- Institute of Biodiversity; Animal Health & Comparative Medicine; College of Medical; Veterinary & Life Sciences; University of Glasgow; Graham Kerr Building; Glasgow; G12 8QQ; UK
| | - Barbara Mable
- Institute of Biodiversity; Animal Health & Comparative Medicine; College of Medical; Veterinary & Life Sciences; University of Glasgow; Graham Kerr Building; Glasgow; G12 8QQ; UK
| | - Colin Bean
- Scottish Natural Heritage; Caspian House; Mariner Court; Clydebank; G81 2NR; UK
| |
Collapse
|
136
|
Siwertsson A, Knudsen R, Præbel K, Adams CE, Newton J, Amundsen PA. Discrete foraging niches promote ecological, phenotypic, and genetic divergence in sympatric whitefish (Coregonus lavaretus). Evol Ecol 2012. [DOI: 10.1007/s10682-012-9607-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
137
|
Scharsack JP, Schweyen H, Schmidt AM, Dittmar J, Reusch TB, Kurtz J. Population genetic dynamics of three-spined sticklebacks (Gasterosteus aculeatus) in anthropogenic altered habitats. Ecol Evol 2012; 2:1122-43. [PMID: 22833789 PMCID: PMC3402189 DOI: 10.1002/ece3.232] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 01/18/2012] [Indexed: 01/26/2023] Open
Abstract
In industrialized and/or agriculturally used landscapes, inhabiting species are exposed to a variety of anthropogenic changes in their environments. Genetic diversity may be reduced if populations encounter founder events, bottlenecks, or isolation. Conversely, genetic diversity may increase if populations adapt to changes in selective regimes in newly created habitats. With the present study, genetic variability of 918 sticklebacks from 43 samplings (21.3 ± 3.8 per sample) at 36 locations from cultivated landscapes in Northwest Germany was analyzed at nine neutral microsatellite loci. To test if differentiation is influenced by habitat alterations, sticklebacks were collected from ancient running waters and adjacent artificial stagnant waters, from brooks with salt water inflow of anthropogenic and natural origin and adjacent freshwater sites. Overall population structure was dominated by isolation by distance (IBD), which was significant across all populations, and analysis of molecular variance (AMOVA) revealed that 10.6% of the variation was explained by river catchment area. Populations in anthropogenic modified habitats deviated from the general IBD structure and in the AMOVA, grouping by habitat type running/stagnant water explained 4.9% of variation and 1.4% of the variation was explained by salt-/freshwater habitat. Sticklebacks in salt-polluted water systems seem to exhibit elevated migratory activity between fresh- and saltwater habitats, reducing IBD. In other situations, populations showed distinct signs of genetic isolation, which in some locations was attributed to mechanical migration barriers, but in others to potential anthropogenic induced bottleneck or founder effects. The present study shows that anthropogenic habitat alterations may have diverse effects on the population genetic structure of inhabiting species. Depending on the type of habitat change, increased genetic differentiation, diversification, or isolation are possible consequences.
Collapse
|
138
|
Aversano R, Ercolano MR, Caruso I, Fasano C, Rosellini D, Carputo D. Molecular tools for exploring polyploid genomes in plants. Int J Mol Sci 2012; 13:10316-10335. [PMID: 22949863 PMCID: PMC3431861 DOI: 10.3390/ijms130810316] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 11/16/2022] Open
Abstract
Polyploidy is a very common phenomenon in the plant kingdom, where even diploid species are often described as paleopolyploids. The polyploid condition may bring about several advantages compared to the diploid state. Polyploids often show phenotypes that are not present in their diploid progenitors or exceed the range of the contributing species. Some of these traits may play a role in heterosis or could favor adaptation to new ecological niches. Advances in genomics and sequencing technology may create unprecedented opportunities for discovering and monitoring the molecular effects of polyploidization. Through this review, we provide an overview of technologies and strategies that may allow an in-depth analysis of polyploid genomes. After introducing some basic aspects on the origin and genetics of polyploids, we highlight the main tools available for genome and gene expression analysis and summarize major findings. In the last part of this review, the implications of next generation sequencing are briefly discussed. The accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists to understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.
Collapse
Affiliation(s)
- Riccardo Aversano
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy; E-Mails: (R.A.); (M.R.E.); (I.C.); (C.F.)
| | - Maria Raffaella Ercolano
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy; E-Mails: (R.A.); (M.R.E.); (I.C.); (C.F.)
| | - Immacolata Caruso
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy; E-Mails: (R.A.); (M.R.E.); (I.C.); (C.F.)
| | - Carlo Fasano
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy; E-Mails: (R.A.); (M.R.E.); (I.C.); (C.F.)
| | - Daniele Rosellini
- Department of Applied Biology, University of Perugia, Borgo XX Giugno 74, Perugia 06121, Italy; E-Mail:
| | - Domenico Carputo
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples Federico II, Via Università 100, Portici 80055, Italy; E-Mails: (R.A.); (M.R.E.); (I.C.); (C.F.)
| |
Collapse
|
139
|
Feulner PGD, Chain FJJ, Panchal M, Eizaguirre C, Kalbe M, Lenz TL, Mundry M, Samonte IE, Stoll M, Milinski M, Reusch TBH, Bornberg-Bauer E. Genome-wide patterns of standing genetic variation in a marine population of three-spined sticklebacks. Mol Ecol 2012; 22:635-49. [PMID: 22747593 DOI: 10.1111/j.1365-294x.2012.05680.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the end of the Pleistocene, the three-spined stickleback (Gasterosteus aculeatus) has repeatedly colonized and adapted to various freshwater habitats probably originating from ancestral marine populations. Standing genetic variation and the underlying genomic architecture both have been speculated to contribute to recent adaptive radiations of sticklebacks. Here, we expand on the current genomic resources of this fish by providing extensive genome-wide variation data from six individuals from a marine (North Sea) stickleback population. Using next-generation sequencing and a combination of paired-end and mate-pair libraries, we detected a wide size range of genetic variation. Among the six individuals, we found more than 7% of the genome is polymorphic, consisting of 2599111 SNPs, 233464 indels and structural variation (SV) (>50 bp) such as 1054 copy-number variable regions (deletions and duplications) and 48 inversions. Many of these polymorphisms affect gene and coding sequences. Based on SNP diversity, we determined outlier regions concordant with signatures expected under adaptive evolution. As some of these outliers overlap with pronounced regions of copy-number variation, we propose the consideration of such SV when analysing SNP data from re-sequencing approaches. We further discuss the value of this resource on genome-wide variation for further investigation upon the relative contribution of standing variation on the parallel evolution of sticklebacks and the importance of the genomic architecture in adaptive radiation.
Collapse
Affiliation(s)
- Philine G D Feulner
- Institute for Evolution and Biodiversity, Evolutionary Bioinformatics, Westfaelische Wilhelms University, Muenster, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
McKinnon JS, Hamele N, Frey N, Chou J, McAleavey L, Greene J, Paulson W. Male choice in the stream-anadromous stickleback complex. PLoS One 2012; 7:e37951. [PMID: 22701589 PMCID: PMC3372497 DOI: 10.1371/journal.pone.0037951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 04/30/2012] [Indexed: 12/04/2022] Open
Abstract
Studies of mating preferences and pre-mating reproductive isolation have often focused on females, but the potential importance of male preferences is increasingly appreciated. We investigated male behavior in the context of reproductive isolation between divergent anadromous and stream-resident populations of threespine stickleback, Gasterosteus aculeatus, using size-manipulated females of both ecotypes. Specifically, we asked if male courtship preferences are present, and if they are based on relative body size, non-size aspects of ecotype, or other traits. Because male behaviors were correlated with each other, we conducted a principal components analysis on the correlations and ran subsequent analyses on the principal components. The two male ecotypes differed in overall behavioral frequencies, with stream-resident males exhibiting consistently more vigorous and positive courtship than anadromous males, and an otherwise aggressive behavior playing a more positive role in anadromous than stream-resident courtship. We observed more vigorous courtship toward smaller females by (relatively small) stream-resident males and the reverse pattern for (relatively large) anadromous males. Thus size-assortative male courtship preferences may contribute to reproductive isolation in this system, although preferences are far from absolute. We found little indication of males responding preferentially to females of their own ecotype independent of body size.
Collapse
Affiliation(s)
- Jeffrey S McKinnon
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America.
| | | | | | | | | | | | | |
Collapse
|
141
|
Nosil P, Feder JL. Genomic divergence during speciation: causes and consequences. Philos Trans R Soc Lond B Biol Sci 2012; 367:332-42. [PMID: 22201163 DOI: 10.1098/rstb.2011.0263] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Speciation is a fundamental process responsible for the diversity of life. Progress has been made in detecting individual 'speciation genes' that cause reproductive isolation. In contrast, until recently, less attention has been given to genome-wide patterns of divergence during speciation. Thus, major questions remain concerning how individual speciation genes are arrayed within the genome, and how this affects speciation. This theme issue is dedicated to exploring this genomic perspective of speciation. Given recent sequencing and computational advances that now allow genomic analyses in most organisms, the goal is to help move the field towards a more integrative approach. This issue draws upon empirical studies in plants and animals, and theoretical work, to review and further document patterns of genomic divergence. In turn, these studies begin to disentangle the role that different processes, such as natural selection, gene flow and recombination rate, play in generating observed patterns. These factors are considered in the context of how genomes diverge as speciation unfolds, from beginning to end. The collective results point to how experimental work is now required, in conjunction with theory and sequencing studies, to move the field from descriptive studies of patterns of divergence towards a predictive framework that tackles the causes and consequences of genome-wide patterns.
Collapse
Affiliation(s)
- Patrik Nosil
- Department of Ecology and Evolutionary Biology, University of Boulder, Boulder, CO 80309, USA.
| | | |
Collapse
|
142
|
Feder JL, Gejji R, Yeaman S, Nosil P. Establishment of new mutations under divergence and genome hitchhiking. Philos Trans R Soc Lond B Biol Sci 2012; 367:461-74. [PMID: 22201175 DOI: 10.1098/rstb.2011.0256] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Theoretical models addressing genome-wide patterns of divergence during speciation are needed to help us understand the evolutionary processes generating empirical patterns. Here, we examine a critical issue concerning speciation-with-gene flow: to what degree does physical linkage (r < 0.5) of new mutations to already diverged genes aid the build-up of genomic islands of differentiation? We used simulation and analytical approaches to partition the probability of establishment for a new divergently selected mutation when the mutation (i) is the first to arise in an undifferentiated genome (the direct effect of selection), (ii) arises unlinked to any selected loci (r = 0.5), but within a genome that has some already diverged genes (the effect of genome-wide reductions in gene flow for facilitating divergence, which we term 'genome hitchhiking'), and (iii) arises in physical linkage to a diverged locus (divergence hitchhiking). We find that the strength of selection acting directly on a new mutation is generally the most important predictor for establishment, with divergence and genomic hitchhiking having smaller effects. We outline the specific conditions under which divergence and genome hitchhiking can aid mutation establishment. The results generate predictions about genome divergence at different points in the speciation process and avenues for further work.
Collapse
Affiliation(s)
- Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | |
Collapse
|
143
|
Feder JL, Egan SP, Nosil P. The genomics of speciation-with-gene-flow. Trends Genet 2012; 28:342-50. [PMID: 22520730 DOI: 10.1016/j.tig.2012.03.009] [Citation(s) in RCA: 544] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
Abstract
The emerging field of speciation genomics is advancing our understanding of the evolution of reproductive isolation from the individual gene to a whole-genome perspective. In this new view it is important to understand the conditions under which 'divergence hitchhiking' associated with the physical linkage of gene regions, versus 'genome hitchhiking' associated with reductions in genome-wide rates of gene flow caused by selection, can enhance speciation-with-gene-flow. We describe here a theory predicting four phases of speciation, defined by changes in the relative effectiveness of divergence and genome hitchhiking, and review empirical data in light of the theory. We outline future directions, emphasizing the need to couple next-generation sequencing with selection, transplant, functional genomics, and mapping studies. This will permit a natural history of speciation genomics that will help to elucidate the factors responsible for population divergence and the roles that genome structure and different forms of hitchhiking play in facilitating the genesis of new biodiversity.
Collapse
Affiliation(s)
- Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | |
Collapse
|
144
|
Kashiwagi T, Marshall AD, Bennett MB, Ovenden JR. The genetic signature of recent speciation in manta rays (Manta alfredi and M. birostris). Mol Phylogenet Evol 2012; 64:212-8. [PMID: 22503670 DOI: 10.1016/j.ympev.2012.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 03/22/2012] [Accepted: 03/30/2012] [Indexed: 11/30/2022]
Abstract
Manta rays have been taxonomically revised as two species, Manta alfredi and M. birostris, on the basis of morphological and meristic data, yet the two species occur in extensive mosaic sympatry. We analysed the genetic signatures of the species boundary using a portion of the nuclear RAG1 (681 base pairs), mitochondrial CO1 (574 bp) and ND5 genes (1188 bp). The assay with CO1 sequences, widely used in DNA barcoding, failed to distinguish the two species. The two species were clearly distinguishable, however, with no shared RAG1 or ND5 haplotypes. The species were reciprocally monophyletic for RAG1, but paraphyletic for ND5 sequences. Qualitative evidence and statistical inferences using the 'Isolation-with-Migration models' indicated that these results were better explained with post-divergence gene flow in the recent past rather than incomplete lineage sorting with zero gene flow since speciation. An estimate of divergence time was less than 0.5 Ma with an upper confidence limit of within 1 Ma. Recent speciation of highly mobile species in the marine environment is of great interest, as it suggests that speciation may have occurred in the absence of long-term physical barriers to gene flow. We propose that the ecologically driven forces such as habitat choice played a significant role in speciation in manta rays.
Collapse
Affiliation(s)
- Tom Kashiwagi
- School of Biomedical Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | | | | | | |
Collapse
|
145
|
|
146
|
AGUIRRE WINDSORE, BELL MICHAELA. Twenty years of body shape evolution in a threespine stickleback population adapting to a lake environment. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2011.01825.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
147
|
Postzygotic Isolation Evolves before Prezygotic Isolation between Fresh and Saltwater Populations of the Rainwater Killifish, Lucania parva. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:523967. [PMID: 22518334 PMCID: PMC3296222 DOI: 10.1155/2012/523967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/20/2011] [Accepted: 10/05/2011] [Indexed: 01/30/2023]
Abstract
Divergent natural selection has the potential to drive the evolution of reproductive isolation. The euryhaline killifish Lucania parva has stable populations in both fresh water and salt water. Lucania parva and its sister species, the freshwater L. goodei, are isolated by both prezygotic and postzygotic barriers. To further test whether adaptation to salinity has led to the evolution of these isolating barriers, we tested for incipient reproductive isolation within L. parva by crossing freshwater and saltwater populations. We found no evidence for prezygotic isolation, but reduced hybrid survival indicated that postzygotic isolation existed between L. parva populations. Therefore, postzygotic isolation evolved before prezygotic isolation in these ecologically divergent populations. Previous work on these species raised eggs with methylene blue, which acts as a fungicide. We found this fungicide distorts the pattern of postzygotic isolation by increasing fresh water survival in L. parva, masking species/population differences, and underestimating hybrid inviability.
Collapse
|
148
|
Factors Influencing Progress toward Ecological Speciation. INTERNATIONAL JOURNAL OF ECOLOGY 2012. [DOI: 10.1155/2012/235010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
149
|
Use of Host-Plant Trait Space by Phytophagous Insects during Host-Associated Differentiation: The Gape-and-Pinch Model. INTERNATIONAL JOURNAL OF ECOLOGY 2012. [DOI: 10.1155/2012/192345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ecological speciation via host shifting has contributed to the astonishing diversity of phytophagous insects. The importance for host shifting of trait differences between alternative host plants is well established, but much less is known about trait variationwithinhosts. I outline a conceptual model, the “gape-and-pinch” (GAP) model, of insect response to host-plant trait variation during host shifting and host-associated differentiation. I offer four hypotheses about insect use of plant trait variation on two alternative hosts, for insects at different stages of host-associated differentiation. Collectively, these hypotheses suggest that insect responses to plant trait variation can favour or oppose critical steps in herbivore diversification. I provide statistical tools for analysing herbivore trait-space use, demonstrate their application for four herbivores of the goldenrodsSolidago altissimaandS. gigantea, and discuss their broader potential to advance our understanding of diet breadth and ecological speciation in phytophagous insects.
Collapse
|
150
|
Synergy between Allopatry and Ecology in Population Differentiation and Speciation. INTERNATIONAL JOURNAL OF ECOLOGY 2012. [DOI: 10.1155/2012/273413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The general diversity pattern of the Caribbean anole radiation has been described in detail; however, the actual mechanisms at the origin of their diversification remain controversial. In particular, the role of ecological speciation, and the relative importance of divergence in allopatry and in parapatry, is debated. We describe the genetic structure of anole populations across lineage contact zones and ecotones to investigate the effect of allopatric divergence, natural selection, and the combination of both factors on population differentiation. Allopatric divergence had no significant impact on differentiation across the lineage boundary, while a clear bimodality in genetic and morphological characters was observed across an ecotone within a single lineage. Critically, the strongest differentiation was observed when allopatry and ecology act together, leading to a sharp reduction in gene flow between two lineages inhabiting different habitats. We suggest that, for Caribbean anoles to reach full speciation, a synergistic combination of several historical and ecological factors may be requisite.
Collapse
|