101
|
Inkster B, Strijbis EM, Vounou M, Kappos L, Radue EW, Matthews PM, Uitdehaag BM, Barkhof F, Polman CH, Montana G, Geurts JJ. Histone deacetylase gene variants predict brain volume changes in multiple sclerosis. Neurobiol Aging 2013; 34:238-47. [DOI: 10.1016/j.neurobiolaging.2012.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 07/05/2012] [Accepted: 07/11/2012] [Indexed: 11/15/2022]
|
102
|
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease that is considered by many people to have an autoimmune aetiology. In recent years, new data emerging from histopathology, imaging and other studies have expanded our understanding of the disease and may change the way in which it is treated. Conceptual shifts have included: first, an appreciation of the extent to which the neuron and its axon are affected in MS, and second, elucidation of how the neurobiology of axon-glial and, particularly, axon-myelin interaction may influence disease progression. In this article, we review advances in both areas, focusing on the molecular mechanisms underlying axonal loss in acute inflammation and in chronic demyelination, and discussing how the restoration of myelin sheaths via the regenerative process of remyelination might prevent axon degeneration. An understanding of these processes could lead to better strategies for the prevention and treatment of axonal loss, which will ultimately benefit patients with MS.
Collapse
|
103
|
Lassmann H, van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 2012; 8:647-56. [PMID: 23007702 DOI: 10.1038/nrneurol.2012.168] [Citation(s) in RCA: 710] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Major progress has been made during the past three decades in understanding the inflammatory process and pathogenetic mechanisms in multiple sclerosis (MS). Consequently, effective anti-inflammatory and immunomodulatory treatments are now available for patients in the relapsing-remitting stage of the disease. This Review summarizes studies on the pathology of progressive MS and discusses new data on the mechanisms underlying its pathogenesis. In progressive MS, as in relapsing-remitting MS, active tissue injury is associated with inflammation, but the inflammatory response in the progressive phase occurs at least partly behind the blood-brain barrier, which makes it more difficult to treat. The other mechanisms that drive disease in patients with primary or secondary progressive MS are currently unresolved, although oxidative stress resulting in mitochondrial injury might participate in the induction of demyelination and neurodegeneration in both the relapsing-remitting and progressive stages of MS. Oxidative stress seems to be mainly driven by inflammation and oxidative burst in microglia; however, its effects might be amplified in patients with progressive MS by age-dependent iron accumulation in the brain and by mitochondrial gene deletions, triggered by the chronic inflammatory process.
Collapse
Affiliation(s)
- Hans Lassmann
- Centre for Brain Research, Medical University of Vienna, Wien, Austria.
| | | | | |
Collapse
|
104
|
Mechanisms of oxidative damage in multiple sclerosis and neurodegenerative diseases: therapeutic modulation via fumaric acid esters. Int J Mol Sci 2012; 13:11783-11803. [PMID: 23109883 PMCID: PMC3472775 DOI: 10.3390/ijms130911783] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress plays a crucial role in many neurodegenerative conditions such as Alzheimer’s disease, amyotrophic lateral sclerosis and Parkinson’s as well as Huntington’s disease. Inflammation and oxidative stress are also thought to promote tissue damage in multiple sclerosis (MS). Recent data point at an important role of anti-oxidative pathways for tissue protection in chronic-progressive MS, particularly involving the transcription factor nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2). Thus, novel therapeutics enhancing cellular resistance to free radicals could prove useful for MS treatment. Here, fumaric acid esters (FAE) are a new, orally available treatment option which had already been tested in phase II/III MS trials demonstrating beneficial effects on relapse rates and magnetic resonance imaging markers. In vitro, application of dimethylfumarate (DMF) leads to stabilization of Nrf2, activation of Nrf2-dependent transcriptional activity and abundant synthesis of detoxifying proteins. Furthermore, application of FAE involves direct modification of the inhibitor of Nrf2, Kelch-like ECH-associated protein 1. On cellular levels, the application of FAE enhances neuronal survival and protects astrocytes against oxidative stress. Increased levels of Nrf2 are detected in the central nervous system of DMF treated mice suffering from experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In EAE, DMF ameliorates the disease course and improves preservation of myelin, axons and neurons. Finally, Nrf2 is also up-regulated in the spinal cord of autopsy specimens from untreated patients with MS, probably as part of a naturally occurring anti-oxidative response. In summary, oxidative stress and anti-oxidative pathways are important players in MS pathophysiology and constitute a promising target for future MS therapies like FAE.
Collapse
|
105
|
Neuropathologic Correlates of Magnetic Resonance Imaging in Multiple Sclerosis. J Neuropathol Exp Neurol 2012; 71:762-78. [DOI: 10.1097/nen.0b013e3182676388] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
106
|
Serum Response Factor (SRF)-cofilin-actin signaling axis modulates mitochondrial dynamics. Proc Natl Acad Sci U S A 2012; 109:E2523-32. [PMID: 22927399 DOI: 10.1073/pnas.1208141109] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aberrant mitochondrial function, morphology, and transport are main features of neurodegenerative diseases. To date, mitochondrial transport within neurons is thought to rely mainly on microtubules, whereas actin might mediate short-range movements and mitochondrial anchoring. Here, we analyzed the impact of actin on neuronal mitochondrial size and localization. F-actin enhanced mitochondrial size and mitochondrial number in neurites and growth cones. In contrast, raising G-actin resulted in mitochondrial fragmentation and decreased mitochondrial abundance. Cellular F-actin/G-actin levels also regulate serum response factor (SRF)-mediated gene regulation, suggesting a possible link between SRF and mitochondrial dynamics. Indeed, SRF-deficient neurons display neurodegenerative hallmarks of mitochondria, including disrupted morphology, fragmentation, and impaired mitochondrial motility, as well as ATP energy metabolism. Conversely, constitutively active SRF-VP16 induced formation of mitochondrial networks and rescued huntingtin (HTT)-impaired mitochondrial dynamics. Finally, SRF and actin dynamics are connected via the actin severing protein cofilin and its slingshot phosphatase to modulate neuronal mitochondrial dynamics. In summary, our data suggest that the SRF-cofilin-actin signaling axis modulates neuronal mitochondrial function.
Collapse
|
107
|
Wilhelmus MMM, Nijland PG, Drukarch B, de Vries HE, van Horssen J. Involvement and interplay of Parkin, PINK1, and DJ1 in neurodegenerative and neuroinflammatory disorders. Free Radic Biol Med 2012; 53:983-92. [PMID: 22687462 DOI: 10.1016/j.freeradbiomed.2012.05.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 11/19/2022]
Abstract
The involvement of parkin, PINK1, and DJ1 in mitochondrial dysfunction, oxidative injury, and impaired functioning of the ubiquitin-proteasome system (UPS) has been intensively investigated in light of Parkinson's disease (PD) pathogenesis. However, these pathological mechanisms are not restricted to PD, but are common denominators of various neurodegenerative and neuroinflammatory disorders. It is therefore conceivable that parkin, PINK1, and DJ1 are also linked to the pathogenesis of other neurological diseases, including Alzheimer's disease (AD) and multiple sclerosis (MS). The importance of these proteins in mechanisms underlying neurodegeneration is reflected by the neuroprotective properties of parkin, DJ1, and PINK1 in counteracting oxidative stress and improvement of mitochondrial and UPS functioning. This review provides a concise overview on the cellular functions of the E3 ubiquitin ligase parkin, the mitochondrial kinase PINK1, and the cytoprotective protein DJ1 and their involvement and interplay in processes underlying neurodegeneration in common neurological disorders.
Collapse
Affiliation(s)
- Micha M M Wilhelmus
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
108
|
Zaaraoui W, Konstandin S, Audoin B, Nagel AM, Rico A, Malikova I, Soulier E, Viout P, Confort-Gouny S, Cozzone PJ, Pelletier J, Schad LR, Ranjeva JP. Distribution of brain sodium accumulation correlates with disability in multiple sclerosis: a cross-sectional 23Na MR imaging study. Radiology 2012; 264:859-67. [PMID: 22807483 DOI: 10.1148/radiol.12112680] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE To quantify brain sodium accumulations and characterize for the first time the spatial location of sodium abnormalities at different stages of relapsing-remitting (RR) multiple sclerosis (MS) by using sodium 23 ((23)Na) magnetic resonance (MR) imaging. MATERIALS AND METHODS This study was approved by the local committee on ethics, and written informed consent was obtained from all participants. Three-dimensional (23)Na MR imaging data were obtained with a 3.0-T unit in two groups of patients with RR MS-14 with early RR MS (disease duration <5 years) and 12 with advanced RR MS (disease duration >5 years)-and 15 control subjects. Quantitative assessment of total sodium concentration (TSC) levels within compartments (MS lesions, white matter [WM], and gray matter [GM]) as well as statistical mapping analyses of TSC abnormalities were performed. RESULTS TSC was increased inside demyelinating lesions in both groups of patients, whereas increased TSC was observed in normal-appearing WM and GM only in those with advanced RR MS. In patients, increased TSC inside GM was correlated with disability (as determined with the Expanded Disability Status Scale [EDSS] score; P = .046, corrected) and lesion load at T2-weighted imaging (P = .003, corrected) but not with disease duration (P = .089, corrected). Statistical mapping analysis showed confined TSC increases inside the brainstem, cerebellum, and temporal poles in early RR MS and widespread TSC increases that affected the entire brain in advanced RR MS. EDSS score correlated with TSC increases inside motor networks. CONCLUSION TSC accumulation dramatically increases in the advanced stage of RR MS, especially in the normal-appearing brain tissues, concomitant with disability. Brain sodium MR imaging may help monitor the occurrence of tissue injury and disability.
Collapse
Affiliation(s)
- Wafaa Zaaraoui
- CRMBM, no. 7339, Aix-Marseille University, CNRS, Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
The role of metabolomics in neurological disease. J Neuroimmunol 2012; 248:48-52. [DOI: 10.1016/j.jneuroim.2012.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/18/2012] [Indexed: 12/14/2022]
|
110
|
van Horssen J, Witte ME, Ciccarelli O. The role of mitochondria in axonal degeneration and tissue repair in MS. Mult Scler 2012; 18:1058-67. [PMID: 22723572 DOI: 10.1177/1352458512452924] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Axonal injury is a key feature of multiple sclerosis (MS) pathology and is currently seen as the main correlate for permanent clinical disability. Although little is known about the pathogenetic mechanisms that drive axonal damage and loss, there is accumulating evidence highlighting the central role of mitochondrial dysfunction in axonal degeneration and associated neurodegeneration. The aim of this topical review is to provide a concise overview on the involvement of mitochondrial dysfunction in axonal damage and destruction in MS. Hereto, we will discuss putative pathological mechanisms leading to mitochondrial dysfunction and recent imaging studies performed in vivo in patients with MS. Moreover, we will focus on molecular mechanisms and novel imaging studies that address the role of mitochondrial metabolism in tissue repair. Finally, we will briefly review therapeutic strategies aimed at improving mitochondrial metabolism and function under neuroinflammatory conditions.
Collapse
Affiliation(s)
- J van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, The Netherlands.
| | | | | |
Collapse
|
111
|
Huang X, Huang HQ. Alteration of the kidney membrane proteome of Mizuhopecten yessoensis induced by low-level methyl parathion exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 114-115:189-199. [PMID: 22446831 DOI: 10.1016/j.aquatox.2012.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 01/25/2012] [Accepted: 01/31/2012] [Indexed: 05/31/2023]
Abstract
Methyl parathion (MP) is a widely used organophosphorus pesticide that causes severe health and environmental effects. We investigated the alteration of the proteomic profile in the membrane enriched fraction of the kidneys of the scallop Mizuhopecten yessoensis exposed to low-level MP. Gas chromatography analysis showed that MP residues were significantly accumulated in the kidneys and the digestive glands of the scallops. According to two-dimensional electrophoresis, 17 proteins were differentially modulated under MP exposure. The mRNA expressions of 12 differential proteins were analyzed using quantitative PCR, and 10 showed consistent alteration of mRNA level with that of protein expression level. Altered expressions of two proteins (mitochondrial processing peptidase and α-tubulin) were also examined using Western blotting, showing that the mitochondrial processing peptidase was down-regulated but α-tubulin remained unchanged in response to MP exposure. Subcellular locations of all the identified proteins that were predicted using bioinformatics tools indicate that few of them are permanently located in the membrane. The differentially expressed proteins are involved in several critical biological processes, and their relevance to human health has been illuminated. These data taken together have provided some novel insights into the chronic toxicity mechanism of MP and have suggested mitochondrial processing peptidase as a potential biomarker for human health and environmental monitoring.
Collapse
Affiliation(s)
- Xiang Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | |
Collapse
|
112
|
|
113
|
Impairment of heme synthesis in myelin as potential trigger of multiple sclerosis. Med Hypotheses 2012; 78:707-10. [DOI: 10.1016/j.mehy.2012.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/10/2012] [Indexed: 12/24/2022]
|
114
|
von Bernhardi R, Eugenín J. Alzheimer's disease: redox dysregulation as a common denominator for diverse pathogenic mechanisms. Antioxid Redox Signal 2012; 16:974-1031. [PMID: 22122400 DOI: 10.1089/ars.2011.4082] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and a progressive neurodegeneration that appears to result from multiple pathogenic mechanisms (including protein misfolding/aggregation, involved in both amyloid β-dependent senile plaques and tau-dependent neurofibrillary tangles), metabolic and mitochondrial dysfunction, excitoxicity, calcium handling impairment, glial cell dysfunction, neuroinflammation, and oxidative stress. Oxidative stress, which could be secondary to several of the other pathophysiological mechanisms, appears to be a major determinant of the pathogenesis and progression of AD. The identification of oxidized proteins common for mild cognitive impairment and AD suggests that key oxidation pathways are triggered early and are involved in the initial progression of the neurodegenerative process. Abundant data support that oxidative stress, also considered as a main factor for aging, the major risk factor for AD, can be a common key element capable of articulating the divergent nature of the proposed pathogenic factors. Pathogenic mechanisms influence each other at different levels. Evidence suggests that it will be difficult to define a single-target therapy resulting in the arrest of progression or the improvement of AD deterioration. Since oxidative stress is present from early stages of disease, it appears as one of the main targets to be included in a clinical trial. Exploring the articulation of AD pathogenic mechanisms by oxidative stress will provide clues for better understanding the pathogenesis and progression of this dementing disorder and for the development of effective therapies to treat this disease.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Department of Neurology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | |
Collapse
|
115
|
Fischer MT, Sharma R, Lim JL, Haider L, Frischer JM, Drexhage J, Mahad D, Bradl M, van Horssen J, Lassmann H. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. ACTA ACUST UNITED AC 2012; 135:886-99. [PMID: 22366799 PMCID: PMC3286337 DOI: 10.1093/brain/aws012] [Citation(s) in RCA: 380] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Multiple sclerosis is a chronic inflammatory disease of the central nervous system, associated with demyelination and neurodegeneration. The mechanisms of tissue injury are poorly understood, but recent data suggest that mitochondrial injury may play an important role in this process. Mitochondrial injury can be triggered by reactive oxygen and nitric oxide species, and we recently provided evidence for oxidative damage of oligodendrocytes and dystrophic axons in early stages of active multiple sclerosis lesions. In this study, we identified potential sources of reactive oxygen and nitrogen species through gene expression in carefully staged and dissected lesion areas and by immunohistochemical analysis of protein expression. Genome-wide microarrays confirmed mitochondrial injury in active multiple sclerosis lesions, which may serve as an important source of reactive oxygen species. In addition, we found differences in the gene expression levels of various nicotinamide adenine dinucleotide phosphate oxidase subunits between initial multiple sclerosis lesions and control white matter. These results were confirmed at the protein level by means of immunohistochemistry, showing upregulation of the subunits gp91phox, p22phox, p47phox, nicotinamide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate oxidase organizer 1 in activated microglia in classical active as well as slowly expanding lesions. The subunits gp91phox and p22phox were constitutively expressed in microglia and were upregulated in the initial lesion. In contrast, p47phox, nicotinamide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate oxidase organizer 1 expression were more restricted to the zone of initial damage or to lesions from patients with acute or early relapsing/remitting multiple sclerosis. Double labelling showed co-expression of the nicotinamide adenine dinucleotide phosphate oxidase subunits in activated microglia and infiltrated macrophages, suggesting the assembly of functional complexes. Our data suggest that the inflammation-associated oxidative burst in activated microglia and macrophages plays an important role in demyelination and free radical-mediated tissue injury in the pathogenesis of multiple sclerosis.
Collapse
Affiliation(s)
- Marie T Fischer
- Centre for Brain Research, Medical University of Vienna, A-1090 Wien, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Lassmann H. Review: the architecture of inflammatory demyelinating lesions: implications for studies on pathogenesis. Neuropathol Appl Neurobiol 2012; 37:698-710. [PMID: 21696413 DOI: 10.1111/j.1365-2990.2011.01189.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent technological advances provided the chance to analyse the molecular events involved in the pathogenesis of lesions in human disease. A major prerequisite for such studies is, however, that the pathological material used is exactly defined and characterized. In multiple sclerosis (MS), this is difficult, as several types of active lesions exist, depending upon the stage of the disease, the age and location of these lesions and the inter-individual differences between patients. In addition, within an active lesion, different closely adjacent zones are present reflecting initial tissue injury, debris removal or repair. Here evidence is reviewed, showing that distinct subareas of active MS lesions reflect different pathological hallmarks of lesion evolution. These data provide the basis for our understanding of the pathogenesis of tissue injury in MS and imply that studies on MS pathogenesis have to rely on a clear definition of the lesions analysed and have to focus on specific lesion areas, isolated by microdissection. In addition, these data also imply that molecules, identified in these studies, must be confirmed and validated in the correct context of lesion initiation and/or progression.
Collapse
Affiliation(s)
- H Lassmann
- Center for Brain Research, Medical University of Vienna, Wien, Austria.
| |
Collapse
|
117
|
Millet V, Marder M, Pasquini L. Adult CNP::EGFP transgenic mouse shows pronounced hypomyelination and an increased vulnerability to cuprizone-induced demyelination. Exp Neurol 2012; 233:490-504. [DOI: 10.1016/j.expneurol.2011.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/17/2011] [Accepted: 11/21/2011] [Indexed: 12/20/2022]
|
118
|
Huang JK, Franklin RJM. Current status of myelin replacement therapies in multiple sclerosis. PROGRESS IN BRAIN RESEARCH 2012. [PMID: 23186717 DOI: 10.1016/b978-0-444-59544-7.00011-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis is an autoimmune disease of the human central nervous system characterized by immune-mediated myelin and axonal damage, and chronic axonal loss attributable to the absence of myelin sheaths. There are two aspects to the treatment of MS-first, the prevention of damage by suppressing the maladaptive immune system, and second, the long-term preservation of axons by the promotion of remyelination, a regenerative process in which new axons are restored to demyelinated axons. Medicine has made significant progress in the first of these in recent years-there is an increasing number of ever more effective disease-modifying immunomodulatory interventions. However, there are currently no widely used regenerative therapies in MS. Conceptually, there are two approaches to remyelination therapy-transplantation of myelinogenic cells and promotion of endogenous remyelination mediated by myelinogenic cells present within the diseased tissue. In this chapter, in addition to describing why remyelination therapies are important, we review both these approaches, outlining their current status and future developments.
Collapse
Affiliation(s)
- Jeffrey K Huang
- Wellcome Trust and MRC, Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
119
|
Acs P, Kalman B. Pathogenesis of multiple sclerosis: what can we learn from the cuprizone model. Methods Mol Biol 2012; 900:403-431. [PMID: 22933081 DOI: 10.1007/978-1-60761-720-4_20] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Multiple sclerosis is an inflammatory demyelinating and neurodegenerative disorder of the central nervous system (CNS). The primary cause of the disease remains unknown, but an altered immune regulation with features of autoimmunity has generally been considered to play a critical role in the pathogenesis. Historically, lesion development has been attributed to activation of CD4 and CD8 T lymphocytes, B lymphocytes, and monocytes in the peripheral circulation and the migration of these cells through the blood-brain barrier to exert direct or indirect cytotoxic effects on myelin, oligodendrocytes and neuronal processes in the CNS. This broadly accepted concept was significantly influenced by the experimental autoimmune encephalitis (EAE) model, in which either immunization with myelin antigens or injection of a myelin antigen-specific T cell line into a recipient results in inflammatory demyelination in the CNS. More recent studies reveal that the loss of oligodendrocytes and neurons begins in the earliest stages of the disease and may not always be associated with blood-derived inflammatory cells. The pathology affects both the white and the gray matters and the clinical disability best correlates with the overall neurodegenerative process. These newer observations prompted several revisions of the classical concept of MS and facilitated a shift from using EAE to using other model systems. This chapter summarizes the classical and more contemporary concepts of MS, and provides methodologies for employing the cuprizone model for further explorations of the pathogenesis and treatment of the disease.
Collapse
Affiliation(s)
- Peter Acs
- Department of Neurology, SUNY Upstate Medical University, VA Medical Center, Syracuse, NY, USA
| | | |
Collapse
|
120
|
Bradl M, Lassmann H. Microarray analysis on archival multiple sclerosis tissue: Pathogenic authenticity outweighs technical obstacles. Neuropathology 2011; 32:463-6. [DOI: 10.1111/j.1440-1789.2011.01282.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
121
|
Freeman LR, Keller JN. Oxidative stress and cerebral endothelial cells: regulation of the blood-brain-barrier and antioxidant based interventions. Biochim Biophys Acta Mol Basis Dis 2011; 1822:822-9. [PMID: 22206999 DOI: 10.1016/j.bbadis.2011.12.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 12/14/2011] [Indexed: 12/21/2022]
Abstract
While numerous lines of evidence point to increased levels of oxidative stress playing a causal role in a number of neurodegenerative conditions, our current understanding of the specific role of oxidative stress in the genesis and/or propagation of neurodegenerative diseases remains poorly defined. Even more challenging to the "oxidative stress theory of neurodegeneration" is the fact that many antioxidant-based clinical trials and therapeutic interventions have been largely disappointing in their therapeutic benefit. Together, these factors have led researchers to begin to focus on understanding the contribution of highly localized structures, and defined anatomical features, within the brain as the sites responsible for oxidative stress-induced neurodegeneration. This review focuses on the potential for oxidative stress within the cerebrovascular architecture serving as a modulator of neurodegeneration in a variety of pathological settings. In particular, this review highlights important implications for vascular-derived oxidative stress in the initiating and promoting pathophysiology in the brain, identifying new roles for cerebrovascular oxidative stress in a variety of brain disorders. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
Affiliation(s)
- Linnea R Freeman
- Pennington Biomedical Research Center, BAton Rouge, LA 70808, USA
| | | |
Collapse
|
122
|
Williams R, Buchheit CL, Berman NEJ, LeVine SM. Pathogenic implications of iron accumulation in multiple sclerosis. J Neurochem 2011; 120:7-25. [PMID: 22004421 DOI: 10.1111/j.1471-4159.2011.07536.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Iron, an essential element used for a multitude of biochemical reactions, abnormally accumulates in the CNS of patients with multiple sclerosis (MS). The mechanisms of abnormal iron deposition in MS are not fully understood, nor do we know whether these deposits have adverse consequences, that is, contribute to pathogenesis. With some exceptions, excess levels of iron are represented concomitantly in multiple deep gray matter structures often with bilateral representation, whereas in white matter, pathological iron deposits are usually located at sites of inflammation that are associated with veins. These distinct spatial patterns suggest disparate mechanisms of iron accumulation between these regions. Iron has been postulated to promote disease activity in MS by various means: (i) iron can amplify the activated state of microglia resulting in the increased production of proinflammatory mediators; (ii) excess intracellular iron deposits could promote mitochondria dysfunction; and (iii) improperly managed iron could catalyze the production of damaging reactive oxygen species (ROS). The pathological consequences of abnormal iron deposits may be dependent on the affected brain region and/or accumulation process. Here, we review putative mechanisms of enhanced iron uptake in MS and address the likely roles of iron in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Rachel Williams
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
123
|
Cannon JR, Greenamyre JT. The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci 2011; 124:225-50. [PMID: 21914720 DOI: 10.1093/toxsci/kfr239] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neurodegeneration describes the loss of neuronal structure and function. Numerous neurodegenerative diseases are associated with neurodegeneration. Many are rare and stem from purely genetic causes. However, the prevalence of major neurodegenerative diseases is increasing with improvements in treating major diseases such as cancers and cardiovascular diseases, resulting in an aging population. The neurological consequences of neurodegeneration in patients can have devastating effects on mental and physical functioning. The causes of most cases of prevalent neurodegenerative diseases are unknown. The role of neurotoxicant exposures in neurodegenerative disease has long been suspected, with much effort devoted to identifying causative agents. However, causative factors for a significant number of cases have yet to be identified. In this review, the role of environmental neurotoxicant exposures on neurodegeneration in selected major neurodegenerative diseases is discussed. Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis were chosen because of available data on environmental influences. The special sensitivity the nervous system exhibits to toxicant exposure and unifying mechanisms of neurodegeneration are explored.
Collapse
Affiliation(s)
- Jason R Cannon
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
124
|
The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett 2011; 585:3715-23. [PMID: 21854776 DOI: 10.1016/j.febslet.2011.08.004] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/01/2011] [Accepted: 08/01/2011] [Indexed: 11/23/2022]
Abstract
Studies aimed to elucidate the pathogenesis of the disease and to find new therapeutic options for multiple sclerosis (MS) patients heavily rely on experimental autoimmune encephalomyelitis (EAE) as a suitable experimental model. This strategy has been highly successful for the inflammatory component of the disease, but had so far little success in the development of neuroprotective therapies, which are also effective in the progressive stage of the disease. Here we discuss opportunities and limitations of EAE models for MS research and provide an overview on the complex mechanisms leading to demyelination and neurodegeneration in this disease. We suggest that the underlying mechanisms involve adaptive and innate immunity. However, mitochondrial injury, resulting in energy failure, is a key element of neurodegeneration in MS and is apparently driven by radical production in activated microglia.
Collapse
|
125
|
Multiple sclerosis as a neurodegenerative disease: pathology, mechanisms and therapeutic implications. Curr Opin Neurol 2011; 24:224-9. [PMID: 21455066 DOI: 10.1097/wco.0b013e328346056f] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Multiple sclerosis (MS) treatments targeting the inflammatory nature of the disease have become increasingly effective in recent years. However, our efforts at targeting the progressive disease phase have so far been largely unsuccessful. This has led to the hypothesis that disease mechanisms independent of an adaptive immune response contribute to disease progression and closely resemble neurodegeneration. RECENT FINDINGS Nonfocal, diffuse changes in the MS brain, especially axonal loss and mitochondrial dysfunction, prove better correlates of disability than total lesion load and have been associated with disease progression. Molecular changes in nondemyelinated MS tissue also suggest that alterations in the MS brain are widespread and consist of pro-inflammatory as well as anti-inflammatory responses. However, local lymphocytic inflammation and microglial activation are salient features of the chronic disease, and T-cell-mediated inflammation contributes to tissue damage. In addition, neuroaxonal cytoskeletal alterations have been associated with disease progression. SUMMARY Our knowledge of the molecular mechanisms leading to neuroaxonal damage and demise in MS is steadily increasing. Experimental therapies targeting neuroaxonal ionic imbalances and energy metabolism in part show promising results. A better understanding of the molecular mechanisms underlying chronic progression will substantially aid the development of new treatment strategies.
Collapse
|
126
|
Krone B, Grange JM. Paradigms in multiple sclerosis: time for a change, time for a unifying concept. Inflammopharmacology 2011; 19:187-95. [PMID: 21547536 PMCID: PMC3127006 DOI: 10.1007/s10787-011-0084-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 04/09/2011] [Indexed: 12/12/2022]
Abstract
It has recently been suggested that, rather than being an autoimmune disease, multiple sclerosis (MS) is an example of a neurocristopathy, a pathological process resulting from a faulty development of the neural crest. Whilst several characteristics of the disease suggest a neurocristopathy, other aetiological factors require consideration, including hygiene-related factors that alter the immune responses to common pathogens resulting in an eclipse of immune reactivity that could protect against MS, the possible role of human endogenous retroviruses (HERVs) in pathogenesis and autoimmune phenomena, HLA polymorphism, vitamin D levels before and after birth and immune repair mechanisms. A postulated aetiological factor in MS, associated with altered vitamin D metabolism and abnormal HERV expression, is a long-lasting disturbed redox regulation in the biosynthesis of a melanoma-like melanin pigment. Although intensive further studies on melanin pigments in nerve tissue in MS are required, the known properties of a pathological form of such pigments in melanoma could explain a number of observations in MS, including the impact of light, UV-light, and vitamin D, and could explain the clinical manifestations of MS on the basis of an oscillating process of oxidative charge and discharge of the pigments and a threshold phenomenon with a change of the quasi-catalytic function of the pigment from destroying reactive oxygen radicals or species to transforming them to more harmful long-persisting highly reactive species. Taken together with the consequences of an adaptive process in partly demyelinated neurons, resulting in an increase in number of mitochondria, and the impact of stressful life events, these conditions are necessary and sufficient to explain the disease process of MS with its spatial (plaques) and temporal (attacks and remissions) characteristics. This suggested unifying concept of the pathogenesis of MS may open perspectives for prevention, diagnosis and therapy. In particular, prevention may be achieved by vaccinating against Epstein-Barr virus in early childhood.
Collapse
Affiliation(s)
- Bernd Krone
- Institute of Virology, Centre for Hygiene and Human Genetics, University of Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
| | | |
Collapse
|
127
|
Cerebrospinal fluid and blood biomarkers of neuroaxonal damage in multiple sclerosis. Mult Scler Int 2011; 2011:767083. [PMID: 22096642 PMCID: PMC3198600 DOI: 10.1155/2011/767083] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 02/08/2011] [Indexed: 12/20/2022] Open
Abstract
Following emerging evidence that neurodegenerative processes in multiple sclerosis (MS) are present from its early stages, an intensive scientific interest has been directed to biomarkers of neuro-axonal damage in body fluids of MS patients. Recent research has introduced new candidate biomarkers but also elucidated pathogenetic and clinical relevance of the well-known ones. This paper reviews the existing data on blood and cerebrospinal fluid biomarkers of neuroaxonal damage in MS and highlights their relation to clinical parameters, as well as their potential predictive value to estimate future disease course, disability, and treatment response. Strategies for future research in this field are suggested.
Collapse
|
128
|
Wilhelmus MMM, van der Pol SMA, Jansen Q, Witte ME, van der Valk P, Rozemuller AJM, Drukarch B, de Vries HE, Van Horssen J. Association of Parkinson disease-related protein PINK1 with Alzheimer disease and multiple sclerosis brain lesions. Free Radic Biol Med 2011; 50:469-76. [PMID: 21145388 DOI: 10.1016/j.freeradbiomed.2010.11.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/29/2010] [Accepted: 11/29/2010] [Indexed: 11/29/2022]
Abstract
Mitochondrial dysfunction and oxidative stress are hallmarks of various neurological disorders, including multiple sclerosis (MS), Alzheimer disease (AD), and Parkinson disease (PD). Mutations in PINK1, a mitochondrial kinase, have been linked to the occurrence of early onset parkinsonism. Currently, various studies support the notion of a neuroprotective role for PINK1, as it protects cells from stress-mediated mitochondrial dysfunction, oxidative stress, and apoptosis. Because information about the distribution pattern of PINK1 in neurological diseases other than PD is scarce, we here investigated PINK1 expression in well-characterized brain samples derived from MS and AD individuals using immunohistochemistry. In control gray matter PINK1 immunoreactivity was observed in neurons, particularly neurons in layers IV-VI. Astrocytes were the most prominent cell type decorated by anti-PINK1 antibody in the white matter. In addition, PINK1 staining was observed in the cerebrovasculature. In AD, PINK1 was found to colocalize with classic senile plaques and vascular amyloid depositions, as well as reactive astrocytes associated with the characteristic AD lesions. Interestingly, PINK1 was absent from neurofibrillary tangles. In active demyelinating MS lesions we observed a marked astrocytic PINK1 immunostaining, whereas astrocytes in chronic lesions were weakly stained. Taken together, we observed PINK1 immunostaining in both AD and MS lesions, predominantly in reactive astrocytes associated with these lesions, suggesting that the increase in astrocytic PINK1 protein might be an intrinsic protective mechanism to limit cellular injury.
Collapse
Affiliation(s)
- Micha M M Wilhelmus
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, 1007 MB Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Abstract
Mitochondrial dysfunction contributes to the pathogenesis of many neurological diseases, including multiple sclerosis (MS), but is not directly measurable in vivo. We modeled N-acetyl-aspartate (NAA), which reflects axonal structural integrity and mitochondrial metabolism, with imaging measures of axonal structural integrity (axial diffusivity and cord cross-sectional area) to extract its mitochondrial metabolic contribution. Lower residual variance in NAA, reflecting reduced mitochondrial metabolism, was associated with greater clinical disability in MS, independent of structural damage.
Collapse
|
130
|
Abstract
Autophagy is emerging as a central regulator of cellular health and disease and, in the central nervous system (CNS), this homeostatic process appears to influence synaptic growth and plasticity. Herein, we review the evidence that dysregulation of autophagy may contribute to several neurodegenerative diseases of the CNS. Up-regulation of autophagy may prevent, delay or ameliorate at least some of these disorders, and - based on recent findings from our laboratory - we speculate that this goal may be achieved using a safe, simple and inexpensive approach.
Collapse
Affiliation(s)
- Mehrdad Alirezaei
- Department of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
131
|
Leadsham JE, Gourlay CW. cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation. BMC Cell Biol 2010; 11:92. [PMID: 21108829 PMCID: PMC3001716 DOI: 10.1186/1471-2121-11-92] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/25/2010] [Indexed: 12/31/2022] Open
Abstract
Background Appropriate control of mitochondrial function, morphology and biogenesis are crucial determinants of the general health of eukaryotic cells. It is therefore imperative that we understand the mechanisms that co-ordinate mitochondrial function with environmental signaling systems. The regulation of yeast mitochondrial function in response to nutritional change can be modulated by PKA activity. Unregulated PKA activity can lead to the production of mitochondria that are prone to the production of ROS, and an apoptotic form of cell death. Results We present evidence that mitochondria are sensitive to the level of cAMP/PKA signaling and can respond by modulating levels of respiratory activity or committing to self execution. The inappropriate activation of one of the yeast PKA catalytic subunits, Tpk3p, is sufficient to commit cells to an apoptotic death through transcriptional changes that promote the production of dysfunctional, ROS producing mitochondria. Our data implies that cAMP/PKA regulation of mitochondrial function that promotes apoptosis engages the function of multiple transcription factors, including HAP4, SOK2 and SCO1. Conclusions We propose that in yeast, as is the case in mammalian cells, mitochondrial function and biogenesis are controlled in response to environmental change by the concerted regulation of multiple transcription factors. The visualization of cAMP/TPK3 induced cell death within yeast colonies supports a model that PKA regulation plays a physiological role in coordinating respiratory function and cell death with nutritional status in budding yeast.
Collapse
Affiliation(s)
- Jane E Leadsham
- Department of Biosciences, University of Kent, Canterbury Kent, England, UK
| | | |
Collapse
|
132
|
Dutta R, Trapp BD. Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog Neurobiol 2010; 93:1-12. [PMID: 20946934 DOI: 10.1016/j.pneurobio.2010.09.005] [Citation(s) in RCA: 324] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/14/2010] [Accepted: 09/30/2010] [Indexed: 01/18/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. Due to its high prevalence, MS is the leading cause of non-traumatic neurological disability in young adults in the United States and Europe. The clinical disease course is variable and starts with reversible episodes of neurological disability in the third or fourth decade of life. This transforms into a disease of continuous and irreversible neurological decline by the sixth or seventh decade. Available therapies for MS patients have little benefit for patients who enter this irreversible phase of the disease. It is well established that irreversible loss of axons and neurons are the major cause of the irreversible and progressive neurological decline that most MS patients endure. This review discusses the etiology, mechanisms and progress made in determining the cause of axonal and neuronal loss in MS.
Collapse
Affiliation(s)
- Ranjan Dutta
- Department of Neurosciences/NC30, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | |
Collapse
|
133
|
Abstract
Disruption of the most fundamental cellular energy process, the mitochondrial respiratory chain, results in a diverse and variable group of multisystem disorders known collectively as mitochondrial disease. The frequent involvement of the brain, nerves, and muscles, often in the same patient, places neurologists at the forefront of the interesting and challenging process of diagnosing and caring for these patients. Mitochondrial diseases are among the most frequently inherited neurological disorders, and can be caused by mutations in mitochondrial or nuclear DNA. Substantial progress has been made over the past decade in understanding the genetic basis of these disorders, with important implications for the general neurologist in terms of the diagnosis, investigation, and multidisciplinary management of these patients.
Collapse
Affiliation(s)
- Robert McFarland
- Mitochondrial Research Group, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
134
|
Beneficial effects of minocycline on cuprizone induced cortical demyelination. Neurochem Res 2010; 35:1422-33. [PMID: 20544279 DOI: 10.1007/s11064-010-0202-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2010] [Indexed: 12/18/2022]
Abstract
In this study, we investigated the potential of minocycline to influence cuprizone induced demyelination in the grey and white matter. To induce demyelination C57BL/6 mice were fed with cuprizone for up to 6 weeks and were analysed at different timepoints (week 0, 4, 5, 6). Mice treated with minocycline had less demyelination of the cortex and corpus callosum compared with sham treated animals. In the cortex decreased numbers of activated and proliferating microglia were found after 6 weeks of cuprizone feeding, while there were no significant effects for microglial infiltration of the corpus callosum. In addition to the beneficial effects on demyelination, minocycline prevented from motor coordination disturbance as shown in the beam walking test. For astrogliosis and the numbers of OPC and oligodendrocytes no treatment effects were found. In summary, minocycline treatment diminished the course of demyelination in the grey and white matter and prevented disturbances in motor coordination.
Collapse
|
135
|
Axo-glial antigens as targets in multiple sclerosis: implications for axonal and grey matter injury. J Mol Med (Berl) 2010; 88:753-61. [PMID: 20445955 DOI: 10.1007/s00109-010-0632-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 03/09/2010] [Accepted: 03/30/2010] [Indexed: 01/09/2023]
Abstract
Multiple sclerosis is thought to be an autoimmune-mediated disease of the central nervous system. For many years, T-cells were regarded as the key players in the pathogenesis, and myelin of white matter was considered as the main victim. However, research during recent years showed a more complex picture. Besides T-cells, also B-cells, antibodies and the innate immunity contribute to the tissue damage. Modern imaging techniques and neuropathological examinations showed that not only myelin but also axons, cortical neurons and nodes of Ranvier are damaged. The autoimmune targets of this widespread injury are so far not known. The identification of the axo-glial proteins contactin-2 and neurofascin provides excellent examples how antibodies can induce axonal injury at the node of Ranvier and how T-cells can destruct cortical integrity. This review will discuss the pathogenic implications of an autoimmune response against these newly discovered antigens.
Collapse
|
136
|
Bradl M, Lassmann H. Progressive multiple sclerosis. Semin Immunopathol 2010; 31:455-65. [PMID: 19730864 DOI: 10.1007/s00281-009-0182-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 08/13/2009] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory, demyelinating disease of the central nervous system, which starts in the majority of patients with a relapsing/remitting MS (RRMS) course , which after several years of disease duration converts into a progressive disease. Since anti-inflammatory therapies and immune modulation exert a beneficial effect at the relapsing/remitting stage of the disease, but not in the progressive stage, the question was raised whether inflammation drives tissue damage in progressive MS at all. We show here that also in progressive MS, inflammation is the driving force for brain injury and that the discrepancy between inflammation-driven tissue injury and response to immunomodulatory therapies can be explained by different pathomechanisms acting in RRMS and progressive MS.
Collapse
Affiliation(s)
- Monika Bradl
- Department of Neuroimmunology, Medical University Vienna, Center for Brain Research, Vienna, Austria.
| | | |
Collapse
|
137
|
Ciccarelli O, Altmann DR, McLean MA, Wheeler-Kingshott CA, Wimpey K, Miller DH, Thompson AJ. Spinal cord repair in MS: does mitochondrial metabolism play a role? Neurology 2010; 74:721-7. [PMID: 20107138 DOI: 10.1212/wnl.0b013e3181d26968] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the mechanisms of spinal cord repair and their relative contribution to clinical recovery in patients with multiple sclerosis (MS) after a cervical cord relapse, using spinal cord (1)H-magnetic resonance spectroscopy (MRS) and volumetric imaging. METHODS Fourteen patients with MS and 13 controls underwent spinal cord imaging at baseline and at 1, 3, and 6 months. N-acetyl-aspartate (NAA) concentration, which reflects axonal count and metabolism in mitochondria, and the cord cross-sectional area, which indicates axonal count, were measured in the affected cervical region. Mixed effect linear regression models investigated the temporal evolution of these measures and their association with clinical changes. Ordinal logistic regressions identified predictors of recovery. RESULTS Patients who recovered showed a sustained increase in NAA after 1 month. In the whole patient group, a greater increase of NAA after 1 month was associated with greater recovery. Patients showed a significant decline in cord area during follow-up, which did not correlate with clinical changes. A worse recovery was predicted by a longer disease duration at study entry. CONCLUSIONS The partial recovery of N-acetyl-aspartate levels after the acute event, which is concurrent with a decline in cord cross-sectional area, may be driven by increased axonal mitochondrial metabolism. This possible repair mechanism is associated with clinical recovery, and is less efficient in patients with longer disease duration. These insights into the mechanisms of spinal cord repair highlight the need to extend spinal cord magnetic resonance spectroscopy to other spinal cord disorders, and explore therapies that enhance recovery by modulating mitochondrial activity.
Collapse
Affiliation(s)
- O Ciccarelli
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | | | | | | | | | | | | |
Collapse
|
138
|
Bradl M, Lassmann H. Oligodendrocytes: biology and pathology. Acta Neuropathol 2010; 119:37-53. [PMID: 19847447 PMCID: PMC2799635 DOI: 10.1007/s00401-009-0601-5] [Citation(s) in RCA: 610] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/09/2009] [Accepted: 10/10/2009] [Indexed: 11/29/2022]
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system (CNS). They are the end product of a cell lineage which has to undergo a complex and precisely timed program of proliferation, migration, differentiation, and myelination to finally produce the insulating sheath of axons. Due to this complex differentiation program, and due to their unique metabolism/physiology, oligodendrocytes count among the most vulnerable cells of the CNS. In this review, we first describe the different steps eventually culminating in the formation of mature oligodendrocytes and myelin sheaths, as they were revealed by studies in rodents. We will then show differences and similarities of human oligodendrocyte development. Finally, we will lay out the different pathways leading to oligodendrocyte and myelin loss in human CNS diseases, and we will reveal the different principles leading to the restoration of myelin sheaths or to a failure to do so.
Collapse
Affiliation(s)
- Monika Bradl
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria.
| | | |
Collapse
|
139
|
Masoud A, Kiran R, Sandhir R. Impaired mitochondrial functions in organophosphate induced delayed neuropathy in rats. Cell Mol Neurobiol 2009; 29:1245-55. [PMID: 19517227 PMCID: PMC11506266 DOI: 10.1007/s10571-009-9420-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Accepted: 05/22/2009] [Indexed: 12/15/2022]
Abstract
Acute exposure to organophosphates induces a delayed neurodegenerative condition known as organophosphate-induced delayed neuropathy (OPIDN). The mechanism of OPIDN has not been fully understood as it does not involve cholinergic crisis. The present study has been designed to evaluate the role of mitochondrial dysfunctions in the development of OPIDN. OPIDN was induced in rats by administering acute dose of monocrotophos (MCP, 20 mg/kg body weight, orally) or dichlorvos (DDVP, 200 mg/kg body weight, subcutaneously), 15-20 min after treatment with antidotes [atropine (20 mg/kg body weight) and 2-PAM (100 mg/kg body weight) intraperitoneally]. MDA levels were observed to be higher and thiol content was lower in mitochondria from brain regions of OP exposed animals. This was accompanied by decreased activities of the mitochondrial enzymes; NADH dehydrogenase, succinate dehydrogenase, and cytochrome oxidase. In addition, mitochondrial functions assessed by MTT reduction also confirmed mitochondrial dysfunctions following development of OPIDN. The spatial long-term memory evaluated using elevated plus-maze test was observed to be deficit in OPIDN. The results suggest impaired mitochondrial functions as a mechanism involved in the development of organophosphate induced delayed neuropathy.
Collapse
Affiliation(s)
- Anwar Masoud
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh, 160014 India
- Department of Chemistry, Thamar University, P.O. Box 87246, Thamar, Yemen
| | - Ravi Kiran
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh, 160014 India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Building, Panjab University, Chandigarh, 160014 India
| |
Collapse
|
140
|
Lassmann H. Axonal and neuronal pathology in multiple sclerosis: what have we learnt from animal models. Exp Neurol 2009; 225:2-8. [PMID: 19840788 DOI: 10.1016/j.expneurol.2009.10.009] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/08/2009] [Accepted: 10/10/2009] [Indexed: 12/21/2022]
Abstract
Axonal and neuronal injury and loss are of critical importance for permanent clinical disability in multiple sclerosis patients. Axonal injury occurs already early during the disease and accumulates with disease progression. It is not restricted to focal demyelinated lesions in the white matter, but also affects the normal appearing white matter and the grey matter. Experimental studies show that many different immunological mechanisms may lead to axonal and neuronal injury, including antigen-specific destruction by specific T-cells and auto-antibodies as well as injury induced by products of activated macrophages and microglia. They all appear to be relevant for multiple sclerosis pathogensis in different patients and at different stages of the disease. However, in MS lesions a major mechanism of axonal and neuronal damage appears to be related to the action of reactive oxygen and nitrogen species, which may induce neuronal injury through impairment of mitochondrial function and subsequent energy failure.
Collapse
Affiliation(s)
- Hans Lassmann
- Centre for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Wien, Austria.
| |
Collapse
|
141
|
Is multiple sclerosis a mitochondrial disease? Biochim Biophys Acta Mol Basis Dis 2009; 1802:66-79. [PMID: 19607913 PMCID: PMC2790545 DOI: 10.1016/j.bbadis.2009.07.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is a relatively common and etiologically unknown disease with no cure. It is the leading cause of neurological disability in young adults, affecting over two million people worldwide. Traditionally, MS has been considered a chronic, inflammatory disorder of the central white matter in which ensuing demyelination results in physical disability. Recently, MS has become increasingly viewed as a neurodegenerative disorder in which axonal injury, neuronal loss, and atrophy of the central nervous system leads to permanent neurological and clinical disability. In this article, we discuss the latest developments on MS research, including etiology, pathology, genetic association, EAE animal models, mechanisms of neuronal injury and axonal transport, and therapeutics. In this article, we also focus on the mechanisms of mitochondrial dysfunction that are involved in MS, including mitochondrial DNA defects, and mitochondrial structural/functional changes.
Collapse
|
142
|
Arnold S, Beyer C. Neuroprotection by estrogen in the brain: the mitochondrial compartment as presumed therapeutic target. J Neurochem 2009; 110:1-11. [DOI: 10.1111/j.1471-4159.2009.06133.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|