101
|
Shin S, Roy CR. Host cell processes that influence the intracellular survival of Legionella pneumophila. Cell Microbiol 2008; 10:1209-20. [PMID: 18363881 DOI: 10.1111/j.1462-5822.2008.01145.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Key to the pathogenesis of intracellular pathogens is their ability to manipulate host cell processes, permitting the establishment of an intracellular replicative niche. In turn, the host cell deploys defence mechanisms that limit intracellular infection. The bacterial pathogen Legionella pneumophila, the aetiological agent of Legionnaire's Disease, has evolved virulence mechanisms that allow it to replicate within protozoa, its natural host. Many of these tactics also enable L. pneumophila's survival and replication inside macrophages within a membrane-bound compartment known as the Legionella-containing vacuole. One of the virulence factors indispensable for L. pneumophila's intracellular survival is a type IV secretion system, which translocates a large repertoire of bacterial effectors into the host cell. These effectors modulate multiple host cell processes and in particular, redirect trafficking of the L. pneumophila phagosome and mediate its conversion into an ER-derived organelle competent for intracellular bacterial replication. In this review, we discuss how L. pneumophila manipulates host cells, as well as host cell processes that either facilitate or impede its intracellular survival.
Collapse
Affiliation(s)
- Sunny Shin
- Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, Room 345, New Haven, CT 06536, USA.
| | | |
Collapse
|
102
|
Briken V. Molecular mechanisms of host-pathogen interactions and their potential for the discovery of new drug targets. Curr Drug Targets 2008; 9:150-7. [PMID: 18288966 PMCID: PMC2650272 DOI: 10.2174/138945008783502449] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vaccines and chemotherapy have undeniably been the discoveries in the field of biomedical research that have exerted the biggest impact on the improvement of public health. Nevertheless, the development of bacterial resistance to antibiotics has co-evolved over time with the discovery of new drugs. This entails the necessity for continuous research on new anti-infectious agents. The current review highlights recent discoveries in the molecular mechanisms of specific host pathogen interactions and their potential for drug discovery. The focus is on facultative and obligate intracellular pathogens (Mycobacterium, Chlamydia and Legionella) and their manipulation of host cells in regard to inhibition of phagosome maturation and cell death. Furthermore, the composition and role of the SecA2 and the ESX-1 secretion pathways in bacterial virulence and manipulation of infected host cells is discussed. The central hypothesis proposed in this review is that the characterization of bacterial proteins and lipids involved in host cell manipulation (modulins) will provide an abundance of new drug targets. One advantage of targeting such bacterial modulins for drug development is that these anti-modulin drugs will not disrupt the beneficial host microflora and therefore have fewer side effects.
Collapse
Affiliation(s)
- Volker Briken
- Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, Microbiology Bldg. 231, Room 2201, College Park, MD, 20742, USA.
| |
Collapse
|
103
|
D'Auria G, Jiménez N, Peris-Bondia F, Pelaz C, Latorre A, Moya A. Virulence factor rtx in Legionella pneumophila, evidence suggesting it is a modular multifunctional protein. BMC Genomics 2008; 9:14. [PMID: 18194518 PMCID: PMC2257941 DOI: 10.1186/1471-2164-9-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 01/14/2008] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The repeats in toxin (Rtx) are an important pathogenicity factor involved in host cells invasion of Legionella pneumophila and other pathogenic bacteria. Its role in escaping the host immune system and cytotoxic activity is well known. Its repeated motives and modularity make Rtx a multifunctional factor in pathogenicity. RESULTS The comparative analysis of rtx gene among 6 strains of L. pneumophila showed modularity in their structures. Among compared genomes, the N-terminal region of the protein presents highly dissimilar repeats with functionally similar domains. On the contrary, the C-terminal region is maintained with a fashionable modular configuration, which gives support to its proposed role in adhesion and pore formation. Despite the variability of rtx among the considered strains, the flanking genes are maintained in synteny and similarity. CONCLUSION In contrast to the extracellular bacteria Vibrio cholerae, in which the rtx gene is highly conserved and flanking genes have lost synteny and similarity, the gene region coding for the Rtx toxin in the intracellular pathogen L. pneumophila shows a rapid evolution. Changes in the rtx could play a role in pathogenicity. The interplay of the Rtx toxin with host membranes might lead to the evolution of new variants that are able to escape host cell defences.
Collapse
Affiliation(s)
- Giuseppe D'Auria
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universitat de València, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Spain
| | - Núria Jiménez
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universitat de València, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Spain
| | - Francesc Peris-Bondia
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universitat de València, Spain
| | - Carmen Pelaz
- National Centre of Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Amparo Latorre
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universitat de València, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Spain
| | - Andrés Moya
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universitat de València, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|
104
|
Lührmann A, Roy CR. Coxiella burnetii inhibits activation of host cell apoptosis through a mechanism that involves preventing cytochrome c release from mitochondria. Infect Immun 2007; 75:5282-9. [PMID: 17709406 PMCID: PMC2168311 DOI: 10.1128/iai.00863-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular pathogen and the etiological agent of the human disease Q fever. C. burnetii infects mammalian cells and then remodels the membrane-bound compartment in which it resides into a unique lysosome-derived organelle that supports bacterial multiplication. To gain insight into the mechanisms by which C. burnetii is able to multiply intracellularly, we examined the ability of host cells to respond to signals that normally induce apoptosis. Our data show that mammalian cells infected with C. burnetii are resistant to apoptosis induced by staurosporine and UV light. C. burnetii infection prevented caspase 3/7 activation and limited fragmentation of the host cell nucleus in response to agonists that induce apoptosis. Inhibition of bacterial protein synthesis reduced the antiapoptotic effect that C. burnetii exerted on infected host cells. Inhibition of apoptosis in C. burnetii-infected cells did not correlate with the degradation of proapoptotic BH3-only proteins involved in activation of the intrinsic cell death pathway; however, cytochrome c release from mitochondria was diminished in cells infected with C. burnetii upon induction of apoptosis. These data indicate that C. burnetii can interfere with the intrinsic cell death pathway during infection by producing proteins that either directly or indirectly prevent release of cytochrome c from mitochondria. It is likely that inhibition of apoptosis by C. burnetii represents an important virulence property that allows this obligate intracellular pathogen to maintain host cell viability despite inducing stress that would normally activate the intrinsic death pathway.
Collapse
Affiliation(s)
- Anja Lührmann
- Yale University School of Medicine, Section of Microbial Pathogenesis, 295 Congress Avenue, New Haven, CT 06536, USA
| | | |
Collapse
|
105
|
Ninio S, Roy CR. Effector proteins translocated by Legionella pneumophila: strength in numbers. Trends Microbiol 2007; 15:372-80. [PMID: 17632005 DOI: 10.1016/j.tim.2007.06.006] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 05/22/2007] [Accepted: 06/26/2007] [Indexed: 01/05/2023]
Abstract
The Gram-negative bacterium Legionella pneumophila is a parasite of eukaryotic cells. It has evolved to survive and replicate in a wide range of protozoan hosts and can also infect human alveolar macrophages as an opportunistic pathogen. Crucially for the infection process, L. pneumophila uses a type IV secretion system called Dot/Icm to translocate bacterial proteins into host cells. In recent years a large number of Dot/Icm-translocated proteins have been identified. The study of these proteins, referred to as effectors, is providing valuable insight into the mechanism by which an intracellular pathogen can manipulate eukaryotic cellular processes to traffic and replicate in host cells.
Collapse
Affiliation(s)
- Shira Ninio
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| | | |
Collapse
|
106
|
Voth DE, Howe D, Heinzen RA. Coxiella burnetii inhibits apoptosis in human THP-1 cells and monkey primary alveolar macrophages. Infect Immun 2007; 75:4263-71. [PMID: 17606599 PMCID: PMC1951190 DOI: 10.1128/iai.00594-07] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Coxiella burnetii, the cause of human Q fever, is an aerosol-borne, obligate intracellular bacterium that targets host alveolar mononuclear phagocytic cells during infection. In all cell types examined, C. burnetii establishes a replicative niche in a lysosome-like parasitophorous vacuole where it carries out a lengthy infectious cycle with minimal cytopathic effects. The persistent and mild nature of C. burnetii infection in vitro suggests that the pathogen modulates apoptosis to sustain the host cell. In the current study, we examined the ability of C. burnetii to inhibit apoptotic cell death during infection of human THP-1 monocyte-derived macrophages and primary monkey alveolar macrophages. C. burnetii-infected cells demonstrated significant protection from death relative to uninfected cells following treatment with staurosporine, a potent inducer of intrinsic apoptosis. This protection correlated with reduced cleavage of caspase-9, caspase-3, and poly(ADP-ribose) polymerase (PARP), all proteolytic events that occur during apoptosis. Reduced PARP cleavage was also observed in cells treated with tumor necrosis factor alpha to induce extrinsic apoptosis. Apoptosis inhibition was a C. burnetii-driven process as infected cells treated with rifampin or chloramphenicol, inhibitors of bacterial RNA and protein synthesis, respectively, showed significantly reduced protection against staurosporine-induced apoptosis. C. burnetii infection affected the expression of multiple apoptosis-related genes and resulted in increased synthesis of the antiapoptotic proteins A1/Bfl-1 and c-IAP2. Collectively, these data suggest that C. burnetii modulates apoptotic pathways to inhibit host cell death, thus providing a stable, intracellular niche for the course of the pathogen's infectious cycle.
Collapse
Affiliation(s)
- Daniel E Voth
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, 903 S. 4th Street, Hamilton, MT 59840, USA
| | | | | |
Collapse
|
107
|
Santic M, Asare R, Doric M, Abu Kwaik Y. Host-dependent trigger of caspases and apoptosis by Legionella pneumophila. Infect Immun 2007; 75:2903-13. [PMID: 17420236 PMCID: PMC1932860 DOI: 10.1128/iai.00147-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/23/2007] [Accepted: 03/26/2007] [Indexed: 12/24/2022] Open
Abstract
The Dot/Icm system of Legionella pneumophila triggers activation of caspase-3 during early stages of infection of human macrophages, but apoptosis is delayed until late stages of infection. During early stages of infection of mouse macrophages, the organism triggers rapid caspase-1-mediated cytotoxicity, which is mediated by bacterial flagellin. However, it is not known whether caspase-1 is triggered by L. pneumophila in human macrophages or whether caspase-3 is activated in permissive or nonpermissive mouse macrophages. Using single-cell analyses, we show that the wild-type strain of L. pneumophila does not trigger caspase-1 activation throughout the intracellular infection of human monocyte-derived macrophages (hMDMs), even when the flagellated bacteria escape into the cytoplasm during late stages. Using single-cell analyses, we show that the Dot/Icm system of L. pneumophila triggers caspase-3 but not caspase-1 within permissive A/J mouse bone marrow-derived primary macrophages by 2 to 8 h, but apoptosis is delayed until late stages of infection. While L. pneumophila triggers a Dot/Icm-dependent activation of caspase-1 in nonpermissive BALB/c mouse-derived macrophages, caspase-3 is not activated at any stage of infection. We show that robust intrapulmonary replication of the wild-type strain of L. pneumophila in susceptible A/J mice is associated with late-stage Dot/Icm-dependent pulmonary apoptosis and alveolar inflammation. In the lungs of nonpermissive BALB/c mice, L. pneumophila does not replicate and does not trigger pulmonary apoptosis or alveolar inflammation. Thus, similar to hMDMs, L. pneumophila does not trigger caspase-1 but triggers caspase-3 activation during early and exponential replication in permissive A/J mouse-derived macrophages, and apoptosis is delayed until late stages of infection. The Dot/Icm type IV secretion system is essential for pulmonary apoptosis in the genetically susceptible A/J mice.
Collapse
Affiliation(s)
- Marina Santic
- Department of Microbiology and Immunology, University of Louisville College of Medicine, 319 Abraham Flexner Way 55A, Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
108
|
Molmeret M, Santic' M, Asare R, Carabeo RA, Abu Kwaik Y. Rapid escape of the dot/icm mutants of Legionella pneumophila into the cytosol of mammalian and protozoan cells. Infect Immun 2007; 75:3290-304. [PMID: 17438033 PMCID: PMC1932949 DOI: 10.1128/iai.00292-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Legionella pneumophila-containing phagosome evades endocytic fusion and intercepts endoplasmic reticulum (ER)-to-Golgi vesicle traffic, which is believed to be mediated by the Dot/Icm type IV secretion system. Although phagosomes harboring dot/icm mutants are thought to mature through the endosomal-lysosomal pathway, colocalization studies with lysosomal markers have reported contradictory results. In addition, phagosomes harboring the dot/icm mutants do not interact with endocytosed materials, which is inconsistent with maturation of the phagosomes in the endosomal-lysosomal pathway. Using multiple strategies, we show that the dot/icm mutants defective in the Dot/Icm structural apparatus are unable to maintain the integrity of their phagosomes and escape into the cytoplasm within minutes of entry into various mammalian and protozoan cells in a process independent of the type II secretion system. In contrast, mutants defective in cytoplasmic chaperones of Dot/Icm effectors and rpoS, letA/S, and letE regulatory mutants are all localized within intact phagosomes. Importantly, non-dot/icm L. pneumophila mutants whose phagosomes acquire late endosomal-lysosomal markers are all located within intact phagosomes. Using high-resolution electron microscopy, we show that phagosomes harboring the dot/icm transporter mutants do not fuse to lysosomes but are free in the cytoplasm. Inhibition of ER-to-Golgi vesicle traffic by brefeldin A does not affect the integrity of the phagosomes harboring the parental strain of L. pneumophila. We conclude that the Dot/Icm transporter is involved in maintaining the integrity of the L. pneumophila phagosome, independent of interception of ER-to-Golgi vesicle traffic, which is a novel function of type IV secretion systems.
Collapse
Affiliation(s)
- Maëlle Molmeret
- Department of Microbiology and Immunology, University of Louisville College of Medicine, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|
109
|
Abstract
Most intracellular parasites employ sophisticated mechanisms to direct biogenesis of a vacuolar replicative niche that circumvents default maturation through the endolysosomal cascade. However, this is not the case of the Q fever bacterium, Coxiella burnetii. This hardy, obligate intracellular pathogen has evolved to not only survive, but to thrive, in the harshest of intracellular compartments: the phagolysosome. Following internalization, the nascent Coxiella phagosome ultimately develops into a large and spacious parasitophorous vacuole (PV) that acquires lysosomal characteristics such as acidic pH, acid hydrolases and cationic peptides, defences designed to rid the host of intruders. However, transit of Coxiella to this environment is initially stalled, a process that is apparently modulated by interactions with the autophagic pathway. Coxiella actively participates in biogenesis of its PV by synthesizing proteins that mediate phagosome stalling, autophagic interactions, and development and maintenance of the mature vacuole. Among the potential mechanisms mediating these processes is deployment of a type IV secretion system to deliver effector proteins to the host cytosol. Here we summarize our current understanding of the cellular events that occur during parasitism of host cells by Coxiella.
Collapse
Affiliation(s)
- Daniel E Voth
- Coxiella Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | |
Collapse
|
110
|
Banga S, Gao P, Shen X, Fiscus V, Zong WX, Chen L, Luo ZQ. Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. Proc Natl Acad Sci U S A 2007; 104:5121-6. [PMID: 17360363 PMCID: PMC1829273 DOI: 10.1073/pnas.0611030104] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To establish a vacuole that supports bacterial replication, Legionella pneumophila translocates a large number of bacterial proteins into host cells via the Dot/Icm type IV secretion system. Functions of most of these translocated proteins are unknown, but recent investigations suggest their roles in modulating diverse host processes such as vesicle trafficking, autophagy, ubiquitination, and apoptosis. Cells infected by L. pneumophila exhibited resistance to apoptotic stimuli, but the bacterial protein directly involved in this process remained elusive. We show here that SidF, one substrate of the Dot/Icm transporter, is involved in the inhibition of infected cells from undergoing apoptosis to allow maximal bacterial multiplication. Permissive macrophages harboring a replicating sidF mutant are more apoptotic and more sensitive to staurosporine-induced cell death. Furthermore, cells expressing SidF are resistant to apoptosis stimuli. SidF contributes to apoptosis resistance in L. pneumophila-infected cells by specifically interacting with and neutralizing the effects of BNIP3 and Bcl-rambo, two proapoptotic members of Bcl2 protein family. Thus, inhibiting the functions of host pro-death proteins by translocated effectors constitutes a mechanism for L. pneumophila to protect host cells from apoptosis.
Collapse
Affiliation(s)
- Simran Banga
- *Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907
| | - Ping Gao
- *Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907
| | - Xihui Shen
- *Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907
| | - Valena Fiscus
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405; and
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| | - Lingling Chen
- Department of Biology, Indiana University, 915 East Third Street, Bloomington, IN 47405; and
| | - Zhao-Qing Luo
- *Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
111
|
Asare R, Santic M, Gobin I, Doric M, Suttles J, Graham JE, Price CD, Abu Kwaik Y. Genetic susceptibility and caspase activation in mouse and human macrophages are distinct for Legionella longbeachae and L. pneumophila. Infect Immun 2007; 75:1933-45. [PMID: 17261610 PMCID: PMC1865702 DOI: 10.1128/iai.00025-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Legionella pneumophila is the predominant cause of Legionnaires' disease in the United States and Europe, while Legionella longbeachae is the common cause of the disease in Western Australia. Although clinical manifestations by both intracellular pathogens are very similar, recent studies have shown that phagosome biogeneses of both species within human macrophages are distinct (R. Asare and Y. Abu Kwaik, Cell. Microbiol., in press). Most inbred mouse strains are resistant to infection by L. pneumophila, with the exception of the A/J mouse strain, and this genetic susceptibility is associated with polymorphism in the naip5 allele and flagellin-mediated early activation of caspase 1 and pyropoptosis in nonpermissive mouse macrophages. Here, we show that genetic susceptibility of mice to infection by L. longbeachae is independent of allelic polymorphism of naip5. L. longbeachae replicates within bone marrow-derived macrophages and in the lungs of A/J, C57BL/6, and BALB/c mice, while L. pneumophila replicates in macrophages in vitro and in the lungs of the A/J mouse strain only. Quantitative real-time PCR studies on infected A/J and C57BL/6 mouse bone marrow-derived macrophages show that both L. longbeachae and L. pneumophila trigger similar levels of naip5 expression, but the levels are higher in infected C57BL/6 mouse macrophages. In contrast to L. pneumophila, L. longbeachae has no detectable pore-forming activity and does not activate caspase 1 in A/J and C57BL/6 mouse or human macrophages, despite flagellation. Unlike L. pneumophila, L. longbeachae triggers only a modest activation of caspase 3 and low levels of apoptosis in human and murine macrophages in vitro and in the lungs of infected mice at late stages of infection. We conclude that despite flagellation, infection by L. longbeachae is independent of polymorphism in the naip5 allele and L. longbeachae does not trigger the activation of caspase 1, caspase 3, or late-stage apoptosis in mouse and human macrophages. Neither species triggers caspase 1 activation in human macrophages.
Collapse
Affiliation(s)
- Rexford Asare
- Department of Microbiology and Immunology, University of Louisville College of Medicine, 319 Abraham Flexner Way, Louisville, KY 40292, USA.
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Laguna RK, Creasey EA, Li Z, Valtz N, Isberg RR. A Legionella pneumophila-translocated substrate that is required for growth within macrophages and protection from host cell death. Proc Natl Acad Sci U S A 2006; 103:18745-50. [PMID: 17124169 PMCID: PMC1656969 DOI: 10.1073/pnas.0609012103] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila requires the Dot/Icm protein translocation system to replicate within host cells as a critical component of Legionnaire's pneumonia. None of the known individual substrates of the translocator have been shown to be essential for intracellular replication. We demonstrate here that mutants lacking the Dot/Icm substrate SdhA were severely impaired for intracellular growth within mouse bone marrow macrophages, with the defect absolute in triple mutants lacking sdhA and its two paralogs. The defect caused by the absence of the sdhA family was less severe during growth within Dictyostelium discoideum amoebae, indicating that the requirement for SdhA shows cell-type specificity. Macrophages harboring the L. pneumophila sdhA mutant showed increased nuclear degradation, mitochondrial disruption, membrane permeability, and caspase activation, indicating a role for SdhA in preventing host cell death. Defective intracellular growth of the sdhA(-) mutant could be partially suppressed by the action of caspase inhibitors, but caspase-independent cell death pathways eventually aborted replication of the mutant.
Collapse
Affiliation(s)
- Rita K. Laguna
- *Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111
| | - Elizabeth A. Creasey
- Howard Hughes Medical Institute and
- *Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111
| | - Zhiru Li
- *Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111
| | - Nicole Valtz
- *Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111
| | - Ralph R. Isberg
- Howard Hughes Medical Institute and
- *Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111
| |
Collapse
|
113
|
Liu Y, Luo ZQ. The Legionella pneumophila effector SidJ is required for efficient recruitment of endoplasmic reticulum proteins to the bacterial phagosome. Infect Immun 2006; 75:592-603. [PMID: 17101649 PMCID: PMC1828518 DOI: 10.1128/iai.01278-06] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The virulence of Legionella pneumophila is dependent on the Dot/Icm type IV protein secretion system, which translocates effectors into infected cells. A large number of such translocated proteins have been identified, but few of these proteins are necessary for intracellular replication of the pathogen, making it difficult to correlate these genes with specific cell-biological events associated with L. pneumophila infection. We report here the identification and characterization of a family of two substrates, SidJ and SdjA, with distinctive phenotypes. In contrast to many Dot/Icm substrates, whose expression levels are elevated when bacteria are grown to postexponential phase, SidJ is produced at a constant rate during the entire bacterial growth cycle. Mutation in sidJ causes a significant growth defect in both macrophage and amoeba hosts, but an sdjA mutant is detectably defective only in protozoan hosts. However, in the amoeba host a mutant lacking both sidJ and sdjA does not display a more severe growth defect than the sidJ mutant. Despite its significant intracellular growth defect, the sidJ mutant is still able to effectively evade fusion with lysosomes. Importantly, recruitment of endoplasmic reticulum (ER) proteins by vacuoles containing the sidJ mutant was considerably delayed in both mammalian and amoeba cells. Our results suggest that SidJ modulates host cellular pathways, contributing to the trafficking or retention of ER-derived vesicles to L. pneumophila vacuoles.
Collapse
Affiliation(s)
- Yancheng Liu
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA
| | | |
Collapse
|