101
|
Heemskerk JWM, Mattheij NJA, Cosemans JMEM. Platelet-based coagulation: different populations, different functions. J Thromb Haemost 2013; 11:2-16. [PMID: 23106920 DOI: 10.1111/jth.12045] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platelets in a thrombus interact with (anti)coagulation factors and support blood coagulation. In the concept of cell-based control of coagulation, three different roles of platelets can be distinguished: control of thrombin generation, support of fibrin formation, and regulation of fibrin clot retraction. Here, we postulate that different populations of platelets with distinct surface properties are involved in these coagulant functions. Platelets with elevated Ca(2+) and exposed phosphatidylserine control thrombin and fibrin generation, while platelets with activated α(IIb) β(3) regulate clot retraction. We review how coagulation factor binding depends on the platelet activation state. Furthermore, we discuss the ligands, platelet receptors and downstream intracellular signaling pathways implicated in these coagulant functions. These insights lead to an adapted model of platelet-based coagulation.
Collapse
Affiliation(s)
- J W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| | | | | |
Collapse
|
102
|
Alrehani N, Pradhan S, Khatlani T, Kailasam L, Vijayan KV. Distinct roles for the α , β and γ1 isoforms of protein phosphatase 1 in the outside-in αIIbβ3 integrin signalling-dependent functions. Thromb Haemost 2012. [PMID: 23197154 DOI: 10.1160/th12-04-0237] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although protein kinases and phosphatases participate in integrin αIIbβ3 signalling, whether integrin functions are regulated by the catalytic subunit of protein phosphatase 1(PP1c)isoforms are unclear. We show that siRNA mediated knockdown of all PP1c isoforms(α, β and γ1)in 293 αIIbβ3 cells decreased adhesion to immobilised fibrinogen and fibrin clot retraction. Selective knockdown of only PP1cγ1 did not alter adhesion or clot retraction, while depletion of PP1cβ decreased both functions. Unexpectedly, knockdown of PP1cα enhanced αIIbβ3 adhesion to fibrinogen and clot retraction. Protein interaction studies revealed that all PP1c isoforms can interact with the integrin αIIb subunit. Phospho-profiling studies revealed an enhanced activation of mitogen-activated protein kinase (MAPK) p38 in the PP1cα depleted cells. Enhanced adhesive phenotype displayed by the PP1cα-depleted 293 αIIbβ3 cells was blocked by pharmacological inhibition of p38. Conversely, the decreased adhesion of PP1cα overexpressing cells was rescued by the expression of constitutively active p38α or p38γ. Thus, PP1c isoforms have distinct contribution to the outside-in αIIbβ3 signalling-dependent functions in 293 αIIbβ3 cells. Moreover, PP1cα negatively regulates integrin function by suppressing the p38 pathway.
Collapse
Affiliation(s)
- Nawaf Alrehani
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
103
|
Thielmann I, Stegner D, Kraft P, Hagedorn I, Krohne G, Kleinschnitz C, Stoll G, Nieswandt B. Redundant functions of phospholipases D1 and D2 in platelet α-granule release. J Thromb Haemost 2012; 10:2361-72. [PMID: 22974101 DOI: 10.1111/j.1538-7836.2012.04924.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Platelet activation and aggregation are crucial for primary hemostasis, but can also result in occlusive thrombus formation. Agonist-induced platelet activation involves different signaling pathways leading to the activation of phospholipases, which produce second messengers. The role of phospholipase C (PLC) in platelet activation is well established, but less is known about the relevance of phospholipase D (PLD). OBJECTIVE AND METHODS The aim of this study was to determine a potential function of PLD2 in platelet physiology. Thus, we investigated the function of PLD2 in platelet signaling and thrombus formation, by generating mice lacking PLD2 or both PLD1 and PLD2. Adhesion, activation and aggregation of PLD-deficient platelets were analyzed in vitro and in vivo. RESULTS Whereas the absence of PLD2 resulted in reduced PLD activity in platelets, it had no detectable effect on the function of the cells in vitro and in vivo. However, the combined deficiency of both PLD isoforms resulted in defective α-granule release and protection in a model of FeCl3 -induced arteriolar thrombosis, effects that were not observed in mice lacking only one PLD isoform. CONCLUSION These results reveal redundant roles of PLD1 and PLD2 in platelet α-granule secretion, and indicate that this may be relevant for pathologic thrombus formation.
Collapse
Affiliation(s)
- I Thielmann
- Department of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Würzburg, Würzburg Department of Neurology, University of Würzburg, Würzburg Biocenter, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Elvers M, Grenegård M, Khoshjabinzadeh H, Münzer P, Borst O, Tian H, Di Paolo G, Lang F, Gawaz M, Lindahl TL, Fälker K. A novel role for phospholipase D as an endogenous negative regulator of platelet sensitivity. Cell Signal 2012; 24:1743-52. [DOI: 10.1016/j.cellsig.2012.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/25/2012] [Indexed: 02/01/2023]
|
105
|
UNSWORTH AJ, FINNEY BA, NAVARRO-NUNEZ L, SEVERIN S, WATSON SP, PEARS CJ. Protein kinase Cε and protein kinase Cθ double-deficient mice have a bleeding diathesis. J Thromb Haemost 2012; 10:1887-94. [PMID: 22812584 PMCID: PMC3532618 DOI: 10.1111/j.1538-7836.2012.04857.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 07/10/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND In comparison to the classical isoforms of protein kinase C (PKC), the novel isoforms are thought to play minor or inhibitory roles in the regulation of platelet activation and thrombosis. OBJECTIVES To measure the levels of PKCθ and PKCε and to investigate the phenotype of mice deficient in both novel PKC isoforms. METHODS Tail bleeding and platelet activation assays were monitored in mice and platelets from mice deficient in both PKCθ and PKCε. RESULTS PKCε plays a minor role in supporting aggregation and secretion following stimulation of the collagen receptor GPVI in mouse platelets but has no apparent role in spreading on fibrinogen. PKCθ, in contrast, plays a minor role in supporting adhesion and filopodial generation on fibrinogen but has no apparent role in aggregation and secretion induced by GPVI despite being expressed at over 10 times the level of PKCε. Platelets deficient in both novel isoforms have a similar pattern of aggregation downstream of GPVI and spreading on fibrinogen as the single null mutants. Strikingly, a marked reduction in aggregation on collagen under arteriolar shear conditions is observed in blood from the double but not single-deficient mice along with a significant increase in tail bleeding. CONCLUSIONS These results reveal a greater than additive role for PKCθ and PKCε in supporting platelet activation under shear conditions and demonstrate that, in combination, the two novel PKCs support platelet activation.
Collapse
Affiliation(s)
- A J UNSWORTH
- Department of Biochemistry, University of OxfordOxford
| | - B A FINNEY
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - L NAVARRO-NUNEZ
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - S SEVERIN
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - S P WATSON
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - C J PEARS
- Department of Biochemistry, University of OxfordOxford
| |
Collapse
|
106
|
Abstract
Abstract
Because single nucleotide polymorphisms (SNPs) in platelet endothelial aggregation receptor 1 (PEAR1) are associated with differential functional platelet responses in healthy subjects, we studied the function of PEAR1 in human platelets. During platelet aggregation by various agonists, the membrane expression of PEAR1 and its tyrosine phosphorylation increased. The recombinant PEAR1 EMI domain (GST-EMI) competitively reduced platelet adhesion to surface-coated PEAR1, diminished platelet aggregation, and eliminated PEAR1 phosphorylation. Polyclonal antibodies against the extracellular PEAR1 domain triggered PEAR1 phosphorylation in a src family kinase (SFK)–dependent manner. Such resulted in downstream signaling, culminating in extensive platelet degranulation and irreversible aggregation reactions interrupted by excess monovalent anti–GST-EMI F(ab) fragments. In resting platelets, the cytoplasmic tail of PEAR1 was found complexed to c-Src and Fyn, but on its phosphorylation, phospho-PEAR1 recruited p85 PI3K, resulting in persistent activation of PI3K and Akt. Thus, αIIbβ3 activation was amplified, hence stabilizing platelet aggregates, a signaling cascade fully interrupted by the SFK inhibitor PP1 and the PI3K inhibitor LY294002. This study is the first demonstration of a functional role for PEAR1 in platelet activation, underpinning the observed association between PEAR1 and platelet function in genome-wide association studies.
Collapse
|
107
|
Yeung J, Apopa PL, Vesci J, Kenyon V, Rai G, Jadhav A, Simeonov A, Holman TR, Maloney DJ, Boutaud O, Holinstat M. Protein kinase C regulation of 12-lipoxygenase-mediated human platelet activation. Mol Pharmacol 2012; 81:420-30. [PMID: 22155783 PMCID: PMC3286293 DOI: 10.1124/mol.111.075630] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 12/08/2011] [Indexed: 01/09/2023] Open
Abstract
Platelet activation is important in the regulation of hemostasis and thrombosis. Uncontrolled activation of platelets may lead to arterial thrombosis, which is a major cause of myocardial infarction and stroke. After activation, metabolism of arachidonic acid (AA) by 12-lipoxygenase (12-LOX) may play a significant role in regulating the degree and stability of platelet activation because inhibition of 12-LOX significantly attenuates platelet aggregation in response to various agonists. Protein kinase C (PKC) activation is also known to be an important regulator of platelet activity. Using a newly developed selective inhibitor for 12-LOX and a pan-PKC inhibitor, we investigated the role of PKC in 12-LOX-mediated regulation of agonist signaling in the platelet. To determine the role of PKC within the 12-LOX pathway, a number of biochemical endpoints were measured, including platelet aggregation, calcium mobilization, and integrin activation. Inhibition of 12-LOX or PKC resulted in inhibition of dense granule secretion and attenuation of both aggregation and αIIbβ(3) activation. However, activation of PKC downstream of 12-LOX inhibition rescued agonist-induced aggregation and integrin activation. Furthermore, inhibition of 12-LOX had no effect on PKC-mediated aggregation, indicating that 12-LOX is upstream of PKC. These studies support an essential role for PKC downstream of 12-LOX activation in human platelets and suggest 12-LOX as a possible target for antiplatelet therapy.
Collapse
Affiliation(s)
- Jennifer Yeung
- Department of Medicine, Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Goggs R, Poole AW. Platelet signaling-a primer. J Vet Emerg Crit Care (San Antonio) 2012; 22:5-29. [PMID: 22316389 DOI: 10.1111/j.1476-4431.2011.00704.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 11/25/2011] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To review the receptors and signal transduction pathways involved in platelet plug formation and to highlight links between platelets, leukocytes, endothelium, and the coagulation system. DATA SOURCES Original studies, review articles, and book chapters in the human and veterinary medical fields. DATA SYNTHESIS Platelets express numerous surface receptors. Critical among these are glycoprotein VI, the glycoprotein Ib-IX-V complex, integrin α(IIb) β(3) , and the G-protein-coupled receptors for thrombin, ADP, and thromboxane. Activation of these receptors leads to various important functional events, in particular activation of the principal adhesion receptor α(IIb) β(3) . Integrin activation allows binding of ligands such as fibrinogen, mediating platelet-platelet interaction in the process of aggregation. Signals activated by these receptors also couple to 3 other important functional events, secretion of granule contents, change in cell shape through cytoskeletal rearrangement, and procoagulant membrane expression. These processes generate a stable thrombus to limit blood loss and promote restoration of endothelial integrity. CONCLUSIONS Improvements in our understanding of how platelets operate through their signaling networks are critical for diagnosis of unusual primary hemostatic disorders and for rational antithrombotic drug design.
Collapse
Affiliation(s)
- Robert Goggs
- School of Physiology and Pharmacology, Faculty of Medical and Veterinary Sciences, University of Bristol, UK.
| | | |
Collapse
|
109
|
Abstract
The adhesion and aggregation of platelets during hemostasis and thrombosis represents one of the best-understood examples of cell-matrix adhesion. Platelets are exposed to a wide variety of extracellular matrix (ECM) proteins once blood vessels are damaged and basement membranes and interstitial ECM are exposed. Platelet adhesion to these ECM proteins involves ECM receptors familiar in other contexts, such as integrins. The major platelet-specific integrin, αIIbβ3, is the best-understood ECM receptor and exhibits the most tightly regulated switch between inactive and active states. Once activated, αIIbβ3 binds many different ECM proteins, including fibrinogen, its major ligand. In addition to αIIbβ3, there are other integrins expressed at lower levels on platelets and responsible for adhesion to additional ECM proteins. There are also some important nonintegrin ECM receptors, GPIb-V-IX and GPVI, which are specific to platelets. These receptors play major roles in platelet adhesion and in the activation of the integrins and of other platelet responses, such as cytoskeletal organization and exocytosis of additional ECM ligands and autoactivators of the platelets.
Collapse
Affiliation(s)
- Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599-7035, USA
| | | |
Collapse
|
110
|
Abstract
Atherothrombosis often underlies coronary artery disease, stroke, and peripheral arterial disease. Antiplatelet drugs have come to the forefront of prophylactic treatment of atherothrombotic disease. Dual antiplatelet therapy of aspirin plus clopidogrel-the current standard-has benefits, but it also has limitations with regard to pharmacologic properties and adverse effects with often severe bleeding complications. For these reasons, within the last decade or so, the investigation of novel antiplatelet targets has prospered. Target identification can be the result of large-scale genomic or proteomic studies, functional genomics in animal models, the genetic analysis of patients with inherited bleeding disorders, or a combination of these techniques.
Collapse
|
111
|
Williams CM, Feng Y, Martin P, Poole AW. Protein kinase C alpha and beta are positive regulators of thrombus formation in vivo in a zebrafish (Danio rerio) model of thrombosis. J Thromb Haemost 2011; 9:2457-65. [PMID: 21951302 DOI: 10.1111/j.1538-7836.2011.04520.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The zebrafish (Danio rerio) is becoming an attractive model organism for the assessment of gene function in thrombosis in vivo. Zebrafish, as a thrombosis model, have several advantages, with the capacity to follow thrombus formation at high resolution in real time using intravital microscopy, without the need for complex surgical techniques, and the capability to rapidly knockdown gene expression using morpholino antisense approaches. OBJECTIVES We have recently shown, in mouse models, that protein kinase C alpha (PKCα) plays a critical role in regulating thrombus formation in vivo. PKC beta (β) plays a non-redundant role also in platelet function in vitro, but the function of this gene had not yet been assessed in vivo. METHODS In the present study, we analyzed the function of both PKCα and PKCβ in the zebrafish model in vivo, by live imaging using a laser-induced injury of the main caudal artery in 3-day-old larvae. RESULTS We showed that D. rerio express orthologs of both the PKCα and PKCβ genes, with high sequence identity. Translation blocking and splice-blocking morpholinos effectively and specifically knockdown expression of these genes and knockdown with either morpholino leads to attenuated thrombus formation, as assessed by several quantitative parameters including time to initial adhesion and peak thrombus surface area. CONCLUSIONS Our data indicate that these two highly related genes play non-redundant roles in regulating thrombosis, an observation that supports our previous in vitro murine data, and suggests unique roles, and possibly unique regulation, for PKCα and PKCβ in controlling platelet function in vivo.
Collapse
Affiliation(s)
- C M Williams
- School of Physiology & Pharmacology, University Walk, Bristol, UK
| | | | | | | |
Collapse
|
112
|
Ahmad F, Boulaftali Y, Greene TK, Ouellette TD, Poncz M, Feske S, Bergmeier W. Relative contributions of stromal interaction molecule 1 and CalDAG-GEFI to calcium-dependent platelet activation and thrombosis. J Thromb Haemost 2011; 9:2077-86. [PMID: 21848641 PMCID: PMC3184355 DOI: 10.1111/j.1538-7836.2011.04474.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Stromal interaction molecule 1 (STIM1) was recently identified as a critical component of store-operated calcium entry (SOCE) in platelets. We previously reported the Ca(2+) -sensing guanine nucleotide exchange factor CalDAG-GEFI as a critical molecule in Ca(2+) signaling in platelets. OBJECTIVE To evaluate the contribution of STIM1/SOCE to Ca(2+) -dependent platelet activation and thrombosis, we here compared the activation responses of platelets lacking STIM1 and platelets lacking CalDAG-GEFI. METHODS The murine Stim1 gene was conditionally deleted in the megakaryocyte/platelet lineage. CalDAG-GEFI(-/-) and Stim1(fl/fl) PF4-Cre mice, along with littermate control mice, were used for in vitro and in vivo experiments under flow as well as static conditions. RESULTS Integrin α(IIb) β(3) -mediated aggregation was markedly impaired in CalDAG-GEFI-deficient but not STIM1-deficient platelets, under both static and flow conditions. In contrast, deficiency in either STIM1 or CalDAG-GEFI significantly impaired the ability of platelets to express phosphatidylserine on the cell surface. When subjected to a laser injury thrombosis model, mice lacking STIM1 in platelets were characterized by the formation of unstable platelet-rich thrombi and delayed and reduced fibrin generation in injured arterioles. In CalDAG-GEFI(-/-) mice, fibrin generation was also delayed and reduced, but platelet accumulation was almost abolished. CONCLUSIONS Our studies suggest that: (i) STIM1/SOCE is critical for the procoagulant activity but not the proadhesive function of platelets; and (ii) at the site of vascular injury, STIM1 and CalDAG-GEFI are critical for the first wave of thrombin generation mediated by procoagulant platelets.
Collapse
Affiliation(s)
- F Ahmad
- Department of Medicine and Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
113
|
Hers I, Vincent EE, Tavaré JM. Akt signalling in health and disease. Cell Signal 2011; 23:1515-27. [PMID: 21620960 DOI: 10.1016/j.cellsig.2011.05.004] [Citation(s) in RCA: 1145] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/09/2011] [Indexed: 11/25/2022]
Abstract
Akt (also known as protein kinase B or PKB) comprises three closely related isoforms Akt1, Akt2 and Akt3 (or PKBα/β/γ respectively). We have a very good understanding of the mechanisms by which Akt isoforms are activated by growth factors and other extracellular stimuli as well as by oncogenic mutations in key upstream regulatory proteins including Ras, PI3-kinase subunits and PTEN. There are also an ever increasing number of Akt substrates being identified that play a role in the regulation of the diverse array of biological effects of activated Akt; this includes the regulation of cell proliferation, survival and metabolism. Dysregulation of Akt leads to diseases of major unmet medical need such as cancer, diabetes, cardiovascular and neurological diseases. As a result there has been substantial investment in the development of small molecular Akt inhibitors that act competitively with ATP or phospholipid binding, or allosterically. In this review we will briefly discuss our current understanding of how Akt isoforms are regulated, the substrate proteins they phosphorylate and how this integrates with the role of Akt in disease. We will furthermore discuss the types of Akt inhibitors that have been developed and are in clinical trials for human cancer, as well as speculate on potential on-target toxicities, such as disturbances of heart and vascular function, metabolism, memory and mood, which should be monitored very carefully during clinical trial.
Collapse
Affiliation(s)
- Ingeborg Hers
- School of Physiology and Pharmacology, University of Bristol, UK
| | | | | |
Collapse
|
114
|
Kim SY, Kim S, Yun-Choi HS, Jho EH. Wnt5a potentiates U46619-induced platelet aggregation via the PI3K/Akt pathway. Mol Cells 2011; 32:333-6. [PMID: 21870110 PMCID: PMC3887641 DOI: 10.1007/s10059-011-0134-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/12/2011] [Indexed: 12/31/2022] Open
Abstract
Platelet aggregation plays crucial roles in the formation of hemostatic plugs and thrombosis. Although it was recently shown that canonical Wnt signaling negatively regulates platelet aggregation, the role of non-canonical Wnt signaling remains unknown. Here, we observed that Wnt5a, one of the non-canonical Wnts, positively regulated platelet aggregation. Platelet aggregation was potentiated by the addition of Wnt5a to collagen-or U46619-induced rat platelet rich plasma (PRP). Treatment with Wnt5a to U46619-stimulated PRP resulted in an increase in the level of phosphorylated Akt, whereas phosphorylation of PKCδ and JNK1 was unaffected. In addition, inhibition of PI3K blocked the potentiating effect of Wnt5a. Taken together, these results suggest that Wnt5a potentiates U46619-induced platelet aggregation via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Sun Young Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
- These authors contributed equally to this work
| | - Sewoon Kim
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
- These authors contributed equally to this work
| | - Hye Sook Yun-Choi
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Eek-hoon Jho
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| |
Collapse
|
115
|
SHARPIN is an endogenous inhibitor of β1-integrin activation. Nat Cell Biol 2011; 13:1315-24. [PMID: 21947080 DOI: 10.1038/ncb2340] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/09/2011] [Indexed: 12/16/2022]
Abstract
Regulated activation of integrins is critical for cell adhesion, motility and tissue homeostasis. Talin and kindlins activate β1-integrins, but the counteracting inhibiting mechanisms are poorly defined. We identified SHARPIN as an important inactivator of β1-integrins in an RNAi screen. SHARPIN inhibited β1-integrin functions in human cancer cells and primary leukocytes. Fibroblasts, leukocytes and keratinocytes from SHARPIN-deficient mice exhibited increased β1-integrin activity, which was fully rescued by re-expression of SHARPIN. We found that SHARPIN directly binds to a conserved cytoplasmic region of integrin α-subunits and inhibits recruitment of talin and kindlin to the integrin. Therefore, SHARPIN inhibits the critical switching of β1-integrins from inactive to active conformations.
Collapse
|
116
|
|
117
|
Harper MT, Poole AW. PKC inhibition markedly enhances Ca2+ signaling and phosphatidylserine exposure downstream of protease-activated receptor-1 but not protease-activated receptor-4 in human platelets. J Thromb Haemost 2011; 9:1599-607. [PMID: 21649850 DOI: 10.1111/j.1538-7836.2011.04393.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cytosolic calcium concentration is a critical regulator of platelet activation, and so platelet Ca(2+) signaling must be tightly controlled. Thrombin-induced Ca(2+) signaling is enhanced by inhibitors of protein kinase C (PKC), suggesting that PKC negatively regulates the Ca(2+) signal, although the mechanisms by which this occurs and its physiological relevance are still unclear. OBJECTIVES To investigate the mechanisms by which PKC inhibitors enhance thrombin-induced Ca(2+) signaling, and to determine the importance of this pathway in platelet activation. METHODS Cytosolic Ca(2+) signaling was monitored in fura-2-loaded human platelets. Phosphatidylserine (PS) exposure, a marker of platelet procoagulant activity, was measured by annexin V binding and flow cytometry. RESULTS PKC inhibition by bisindolylmaleimide-I (BIM-I) enhanced α-thrombin-induced Ca(2+) signaling in a concentration-dependent manner. PAR1 signaling, activated by SFLLRN, was enhanced much more strongly than PAR4, activated by AYPGKF or γ-thrombin, which is a potent PAR4 agonist but a poor activator of PAR1. BIM-I had little effect on α-thrombin-induced signaling following treatment with the PAR1 antagonist, SCH-79797. BIM-I enhanced Ca(2+) release from intracellular stores and Ca(2+) entry, as assessed by Mn(2+) quench. However, the plasma membrane Ca(2+) ATPase inhibitor, 5(6)-carboxyeosin, did not prevent the effect of BIM-I. PKC inhibition strongly enhanced α-thrombin-induced PS exposure, which was reversed by blockade of PAR1. CONCLUSIONS Together, these data show that when PAR1 is stimulated, PKC negatively regulates Ca(2+) release and Ca(2+) entry, which leads to reduced platelet PS exposure.
Collapse
Affiliation(s)
- M T Harper
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK.
| | | |
Collapse
|
118
|
|
119
|
Konopatskaya O, Matthews SA, Harper MT, Gilio K, Cosemans JMEM, Williams CM, Navarro MN, Carter DA, Heemskerk JWM, Leitges M, Cantrell D, Poole AW. Protein kinase C mediates platelet secretion and thrombus formation through protein kinase D2. Blood 2011; 118:416-24. [PMID: 21527521 PMCID: PMC4773892 DOI: 10.1182/blood-2010-10-312199] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelets are highly specialized blood cells critically involved in hemostasis and thrombosis. Members of the protein kinase C (PKC) family have established roles in regulating platelet function and thrombosis, but the molecular mechanisms are not clearly understood. In particular, the conventional PKC isoform, PKCα, is a major regulator of platelet granule secretion, but the molecular pathway from PKCα to secretion is not defined. Protein kinase D (PKD) is a family of 3 kinases activated by PKC, which may represent a step in the PKC signaling pathway to secretion. In the present study, we show that PKD2 is the sole PKD member regulated downstream of PKC in platelets, and that the conventional, but not novel, PKC isoforms provide the upstream signal. Platelets from a gene knock-in mouse in which 2 key phosphorylation sites in PKD2 have been mutated (Ser707Ala/Ser711Ala) show a significant reduction in agonist-induced dense granule secretion, but not in α-granule secretion. This deficiency in dense granule release was responsible for a reduced platelet aggregation and a marked reduction in thrombus formation. Our results show that in the molecular pathway to secretion, PKD2 is a key component of the PKC-mediated pathway to platelet activation and thrombus formation through its selective regulation of dense granule secretion.
Collapse
Affiliation(s)
- Olga Konopatskaya
- School of Physiology & Pharmacology, Bristol Heart Institute, Bristol, United Kingdom
| | - Sharon A. Matthews
- Department of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Matthew T. Harper
- School of Physiology & Pharmacology, Bristol Heart Institute, Bristol, United Kingdom
| | - Karen Gilio
- Department of Biochemistry, Maastricht University, Maastricht, the Netherlands
| | | | | | - Maria N. Navarro
- Department of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Deborah A. Carter
- School of Physiology & Pharmacology, Bristol Heart Institute, Bristol, United Kingdom
| | | | - Michael Leitges
- Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| | - Doreen Cantrell
- Department of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alastair W. Poole
- School of Physiology & Pharmacology, Bristol Heart Institute, Bristol, United Kingdom
| |
Collapse
|
120
|
Heemskerk JWM, Harper MT, Cosemans JMEM, Poole AW. Unravelling the different functions of protein kinase C isoforms in platelets. FEBS Lett 2011; 585:1711-6. [PMID: 21596041 DOI: 10.1016/j.febslet.2011.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/28/2011] [Accepted: 05/04/2011] [Indexed: 11/17/2022]
Abstract
Platelets tightly regulate haemostasis and arterial thrombosis. Protein kinase C (PKC) is involved in most platelet responses implicated in thrombus formation. Recent pharmacological and mouse gene knockout approaches show that the conventional PKC isoforms and the novel PKC isoforms contribute in distinct ways to these platelet responses. We hypothesize that, in platelets and other cells, the characteristic functions of PKC isoforms are established through unique activation mechanisms and unique interacting protein partners, which result in isoform-specific patterns of substrate phosphorylation. For identifying the substrate proteins in a living cell, new methodology is available and discussed.
Collapse
Affiliation(s)
- Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
121
|
Unsworth AJ, Smith H, Gissen P, Watson SP, Pears CJ. Submaximal inhibition of protein kinase C restores ADP-induced dense granule secretion in platelets in the presence of Ca2+. J Biol Chem 2011; 286:21073-82. [PMID: 21489985 PMCID: PMC3122168 DOI: 10.1074/jbc.m110.187138] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protein kinase C (PKC) is a family of serine/threonine kinases that play isoform-specific inhibitory and stimulatory roles in platelet activation. We show here that the pan-PKC inhibitor Ro31-8220 can be used to dissect these events following platelet activation by ADP. Submaximal concentrations of Ro31-8220 potentiated aggregation and dense granule secretion to ADP in plasma anticoagulated with citrate, in d-Phe-Pro-Arg-chloromethyl ketone-anticoagulated plasma, which has physiological levels of Ca2+, and in washed platelets. Potentiation was retained on inhibition of cyclooxygenase and was associated with an increase in intracellular Ca2+. Potentiation of aggregation and secretion was abolished by a maximally effective concentration of Ro31-8220, consistent with a critical role of PKC in secretion. ADP-induced secretion was potentiated in the presence of an inhibitor of PKCβ but not in the presence of available inhibitors of other PKC isoforms in human and mouse platelets. ADP-induced secretion was also potentiated in mouse platelets deficient in PKCϵ but not PKCθ. These results demonstrate that partial blockade of PKC potentiates aggregation and dense granule secretion by ADP in association with increased Ca2+. This provides a molecular explanation for the inability of ADP to induce secretion in plasma in the presence of physiological Ca2+ concentrations, and it reveals a novel role for PKC in inhibiting platelet activation by ADP in vivo. These results also demonstrate isoform-specific inhibitory effects of PKC in platelets.
Collapse
Affiliation(s)
- Amanda J Unsworth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
122
|
Jalagadugula G, Mao G, Kaur G, Dhanasekaran DN, Rao AK. Platelet protein kinase C-theta deficiency with human RUNX1 mutation: PRKCQ is a transcriptional target of RUNX1. Arterioscler Thromb Vasc Biol 2011; 31:921-7. [PMID: 21252065 PMCID: PMC3066073 DOI: 10.1161/atvbaha.110.221879] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/07/2011] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Mutations in the hematopoietic transcription factor RUNX1 cause thrombocytopenia and impaired platelet function. In a patient with a heterozygous mutation in RUNX1, we have described decreased platelet pleckstrin phosphorylation and protein kinase C- (PKC-, gene PRKCQ) associated with thrombocytopenia, impaired platelet aggregation, and dense granule secretion. Little is known regarding regulation of PKC- in megakaryocytes and platelets. We have addressed the hypothesis that PRKCQ is a direct transcriptional target of RUNX1. METHODS AND RESULTS In a chromatin immunoprecipitation assay using megakaryocytic cells, there was RUNX1 binding in vivo to PRKCQ promoter region -1225 to -1056 bp containing a RUNX1 consensus site ACCGCA at -1088 to -1069 bp; an electrophoretic mobility shift assay showed RUNX1 binding to the specific site. In RUNX1 overexpression studies, PKC- protein expression and promoter activity were enhanced; mutation of RUNX1 site showed decreased activity even with RUNX1 overexpression. Lastly, PRKCQ promoter activity and PKC- protein were decreased by short interfering RNA knockdown of RUNX1. CONCLUSIONS Our results provide the first evidence that PRKCQ is regulated at the transcriptional level by RUNX1 in megakaryocytic cells and a mechanism for PKC- deficiency associated with RUNX1 haplodeficiency.
Collapse
Affiliation(s)
- Gauthami Jalagadugula
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Guangfen Mao
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Gurpreet Kaur
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Danny N Dhanasekaran
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA, USA
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA, USA
| | - A. Koneti Rao
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
- Department of Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
123
|
Kim JE, Han M, Hanl KS, Kim HK. Vitamin E inhibition on platelet procoagulant activity: involvement of aminophospholipid translocase activity. Thromb Res 2011; 127:435-42. [PMID: 21296386 DOI: 10.1016/j.thromres.2011.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 12/22/2010] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Activated platelets provide an important procoagulant surface, because exposed negatively charged phosphatidylserine (PS) is an important cofactor of the coagulation cascade. Aminophospholipid translocase (APLT) can transport PS from the outer to the inner membrane leaflet. Although vitamin E has been investigated for its anti-aggregating effect on platelets, its effect on platelet procoagulant activity has not been reported. METHODS Phorbol 12-myristate 13-acetate (PMA), a well-known PKC activator, and thrombin were used to induce PS exposure on platelet surface. The expression of PS was measured by annexin A5 binding with flow cytometry. Platelet procoagulant activity was measured by a prothrombinase assay. APLT activity was measured by flow cytometry by determining the percent of 1-palmitoyl-2-[6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]caproyl]-sn-glycero-3-phosphatidylserine (NBD-PS) translocated from the outer to the inner membrane leaflet. Inhibition effects of vitamin E on platelet aggregation were simultaneously measured by a Multiplate aggregometer, a Chrono-log aggregometer, and a PFA-100 system. RESULTS Vitamin E significantly attenuated PMA-induced conformational change of glycoprotein IIb/IIIa and P-selectin expression. Vitamin E significantly inhibited PMA and thrombin-induced PS externalization and reduced prothrombinase activity on platelet surfaces both in vitro and ex vivo. APLT activity was increased by vitamin E in a dose-dependent manner, indicating that reduced procoagulant activity may be attributed, at least in part, to this increased APLT activity. Vitamin E inhibited platelet aggregation induced by combined chemokine SDF-1 and low-dose ADP as well as by usual doses of ADP or collagen when measured by the Multiplate and Chrono-log aggregometers but not when measured by PFA-100. CONCLUSIONS These in vitro and ex vivo results showed that vitamin E inhibited platelet PS exposure and procoagulant activity partly by increasing APLT activity. These actions of vitamin E on platelet function provide new insights into the anticoagulation properties of vitamin E.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Laboratory Medicine and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
124
|
Ding RQ, Tsao J, Chai H, Mochly-Rosen D, Zhou W. Therapeutic potential for protein kinase C inhibitor in vascular restenosis. J Cardiovasc Pharmacol Ther 2010; 16:160-7. [PMID: 21183728 DOI: 10.1177/1074248410382106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vascular restenosis, an overreaction of biological response to injury, is initialized by thrombosis and inflammation. This response is characterized by increased smooth muscle cell migration and proliferation. Available pharmacological treatments include anticoagulants, antiplatelet agents, immunosuppressants, and antiproliferation agents. Protein kinase C (PKC), a large family of serine/threonine kinases, has been shown to participate in various pathological stages of restenosis. Consequently, PKC inhibitors are expected to exert a wide range of pharmacological activities therapeutically beneficial for restenosis. In this review, the roles of PKC isozymes in platelets, leukocytes, endothelial cells, and smooth muscle cells are discussed, with emphasis given to smooth muscle cells. We will describe cellular and animal studies assessing prevention of restenosis with PKC inhibitors, particularly targeting -α, -β, -δ, and -ζ isozymes. The delivery strategy, efficacy, and safety of such PKC regulators will also be discussed.
Collapse
Affiliation(s)
- Richard Qinxue Ding
- Division of Vascular and Endovascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94350, USA
| | | | | | | | | |
Collapse
|
125
|
Fauconnier M, Bourigault ML, Meme S, Szeremeta F, Palomo J, Danneels A, Charron S, Fick L, Jacobs M, Beloeil JC, Ryffel B, Quesniaux VFJ. Protein kinase C-theta is required for development of experimental cerebral malaria. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:212-21. [PMID: 21224058 DOI: 10.1016/j.ajpath.2010.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 09/08/2010] [Accepted: 09/14/2010] [Indexed: 11/18/2022]
Abstract
Cerebral malaria is the most severe neurologic complication in children and young adults infected with Plasmodium falciparum. T-cell activation is required for development of Plasmodium berghei ANKA (PbA)-induced experimental cerebral malaria (CM). To characterize the T-cell activation pathway involved, the role of protein kinase C-theta (PKC-θ) in experimental CM development was examined. PKC-θ-deficient mice are resistant to CM development. In the absence of PKC-θ, no neurologic sign of CM developed after blood stage PbA infection. Resistance of PKC-θ-deficient mice correlated with unaltered cerebral microcirculation and absence of ischemia, as documented by magnetic resonance imaging and magnetic resonance angiography, whereas wild-type mice developed distinct microvascular pathology. Recruitment and activation of CD8(+) T cells, and ICAM-1 and CD69 expression were reduced in the brain of resistant mice; however, the pulmonary inflammation and edema associated with PbA infection were still present in the absence of functional PKC-θ. Resistant PKC-θ-deficient mice developed high parasitemia, and died at 3 weeks with severe anemia. Therefore, PKC-θ signaling is crucial for recruitment of CD8(+) T cells and development of brain microvascular pathology resulting in fatal experimental CM, and may represent a novel therapeutic target of CM.
Collapse
Affiliation(s)
- Mathilde Fauconnier
- University of Orléans and CNRS, Molecular Immunology and Embryology UMR6218, Orléans, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Philipose S, Konya V, Sreckovic I, Marsche G, Lippe IT, Peskar BA, Heinemann A, Schuligoi R. The prostaglandin E2 receptor EP4 is expressed by human platelets and potently inhibits platelet aggregation and thrombus formation. Arterioscler Thromb Vasc Biol 2010; 30:2416-23. [PMID: 21071691 DOI: 10.1161/atvbaha.110.216374] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Low concentrations of prostaglandin (PG) E(2) enhance platelet aggregation, whereas high concentrations inhibit it. The effects of PGE(2) are mediated through 4 G protein-coupled receptors, termed E-type prostaglindin (EP) receptor EP1, EP2, EP3, and EP4. The platelet-stimulating effect of PGE(2) has been suggested to involve EP3 receptors. Here we analyzed the receptor usage relating to the inhibitory effect of PGE(2). METHODS AND RESULTS Using flow cytometry, we found that human platelets expressed EP4 receptor protein. A selective EP4 agonist (ONO AE1-329) potently inhibited the platelet aggregation as induced by ADP or collagen. This effect could be completely reversed by an EP4 antagonist, but not by PGI(2), PGD(2), and thromboxane receptor antagonists or cyclooxygenase inhibition. Moreover, an EP4 antagonist enhanced the PGE(2)-induced stimulation of platelet aggregation, indicating a physiological antiaggregatory activity of EP4 receptors. The inhibitory effect of the EP4 agonist was accompanied by attenuated Ca(2+) flux, inhibition of glycoprotein IIb/IIIa, and downregulation of P-selectin. Most importantly, adhesion of platelets to fibrinogen under flow and in vitro thrombus formation were effectively prevented by the EP4 agonist. In this respect, the EP4 agonist synergized with acetylsalicylic acid. CONCLUSIONS These results are suggestive of EP4 receptor activation as a novel antithrombotic strategy.
Collapse
Affiliation(s)
- Sonia Philipose
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitaetsplatz 4, A-8010 Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Harper MT, Molkentin JD, Poole AW. Protein kinase C alpha enhances sodium-calcium exchange during store-operated calcium entry in mouse platelets. Cell Calcium 2010; 48:333-40. [PMID: 21094527 DOI: 10.1016/j.ceca.2010.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/15/2010] [Accepted: 10/18/2010] [Indexed: 11/20/2022]
Abstract
A rise in intracellular calcium concentration ([Ca(2+)](i)) is necessary for platelet activation. A major component of the [Ca(2+)](i) elevation occurs through store-operated Ca(2+) entry (SOCE). The aim of this study was to understand the contribution of the classical PKC isoform, PKCα to platelet SOCE, using platelets from PKCα-deficient mice. SOCE was reduced by approximately 50% in PKCα(-/-) platelets, or following treatment with bisindolylmaleimide I, a PKC inhibitor. However, TG-induced Mn(2+) entry was unaffected, which suggests that divalent cation entry through store-operated channels is not directly regulated. Blocking the autocrine action of secreted ADP or 5-HT on its receptors did not reproduce the effect of PKCα deficiency. In contrast, SN-6, a Na(+)/Ca(2+) exchanger inhibitor, did reduce SOCE to the same extent as loss of PKCα, as did replacing extracellular Na(+) with NMDG(+). These treatments had no further effect in PKCα(-/-) platelets. These data suggest that PKCα enhances the extent of SOCE in mouse platelets by regulating Ca(2+) entry through the Na(+)/Ca(2+) exchanger.
Collapse
Affiliation(s)
- Matthew T Harper
- School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
128
|
Platelet receptor signaling in thrombus formation. J Mol Med (Berl) 2010; 89:109-21. [DOI: 10.1007/s00109-010-0691-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 09/27/2010] [Accepted: 10/08/2010] [Indexed: 01/09/2023]
|
129
|
Abstract
Rapid activation of platelets at sites of vascular injury is a critical event in thrombosis and hemostasis. Here, we review recent findings, which (a) identified CalDAG-GEFI (RasGRP2) at the nexus of the rapid Ca(2+)-dependent platelet activation, (b) demonstrated a complex synergy between signaling provided by CalDAG-GEFI, protein kinase C and the Gi-coupled receptor for ADP, P2Y12, and (c) suggested CalDAG-GEFI as a novel target for anti-platelet therapy.
Collapse
Affiliation(s)
- Lucia Stefanini
- Department of Medicine and Cardeza Foundation, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|