101
|
Farh MEA, Jeon J. Roles of Fungal Volatiles from Perspective of Distinct Lifestyles in Filamentous Fungi. THE PLANT PATHOLOGY JOURNAL 2020; 36:193-203. [PMID: 32547336 PMCID: PMC7272855 DOI: 10.5423/ppj.rw.02.2020.0025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 05/06/2023]
Abstract
Volatile compounds (VOCs) are not only media for communication within a species but also effective tools for sender to manipulate behavior and physiology of receiver species. Although the influence of VOCs on the interactions among organisms is evident, types of VOCs and specific mechanisms through which VOCs work during such interactions are only beginning to become clear. Here, we review the fungal volatile compounds (FVOCs) and their impacts on different recipient organisms from perspective of distinct lifestyles of the filamentous fungi. Particularly, we discuss the possibility that different lifestyles are intimately associated with an ability to produce a repertoire of FVOCs in fungi. The FVOCs discussed here have been identified and analyzed as relevant signals under a range of experimental settings. However, mechanistic insight into how specific interactions are mediated by such FVOCs at the molecular levels, amidst complex community of microbes and plants, requires further testing. Experimental designs and advanced technologies that attempt to address this question will facilitate our understanding and applications of FVOCs to agriculture and ecosystem management.
Collapse
Affiliation(s)
- Mohamed El-Agamy Farh
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Korea
| | - Junhyun Jeon
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Korea
- Corresponding author. Phone) +82-53-810-3030, FAX) +82-53-810-4769, E-mail) , ORCID Junhyun Jeon https://orcid.org/0000-0002-0617-4007
| |
Collapse
|
102
|
Grąz M, Jarosz-Wilkołazka A, Pawlikowska-Pawlęga B, Janusz G, Kapral-Piotrowska J, Ruminowicz-Stefaniuk M, Skrzypek T, Zięba E. Oxalate oxidase from Abortiporus biennis - protein localisation and gene sequence analysis. Int J Biol Macromol 2020; 148:1307-1315. [PMID: 31739051 DOI: 10.1016/j.ijbiomac.2019.10.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 11/25/2022]
Abstract
We have described for the first time the localisation of oxalate oxidase (OXO, EC 1.2.3.4) in Abortiporus biennis cells, using histochemical and immunochemical methods coupled with transmission electron microscopy. Rabbit anti-oxalate oxidase immunoglobulins with anti-rabbit secondary antibody conjugated with 10-nm gold particles were used. Moreover, the formation of electron dense precipitation of reaction of diaminobenzidine (DAB) with horseradish peroxidase (HRP) for histochemical localisation of the enzyme was found. OXO was localised close to the membranous structures of the cell membranes, in membranous vesicles located close to the outer cell membrane, and vacuolar membranes surrounding vacuoles. The positive immunoreaction to OXO was also intense in cell wall areas. Moreover, we proved that gene coding for OXO was expressed in the same cultures. Corresponding mRNA was isolated, full length cDNA was synthesized, cloned and sequenced. Two copies of cupin domains were found in the sequence of amino-acids conserved domain coding for the cupin enzyme. Comparison of the genomic DNA and cDNA sequences has revealed the presence of seventeen introns in the gene. The isoelectric point of the protein was estimated at pH 4.5 and several possible N-glycosylation sites were predicted.
Collapse
Affiliation(s)
- Marcin Grąz
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland.
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Bożena Pawlikowska-Pawlęga
- Department of Comparative Anatomy and Anthropology, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland; Electron Microscopy Laboratory, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Grzegorz Janusz
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | - Justyna Kapral-Piotrowska
- Department of Comparative Anatomy and Anthropology, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland; Electron Microscopy Laboratory, Maria Curie-Skłodowska University, Akademicka 19, Lublin 20-033, Poland
| | | | - Tomasz Skrzypek
- Center for Interdisciplinary Research, Confocal and Electron Microscopy Laboratory, The John Paul II Catholic University of Lublin, Konstantynów 1J, Lublin, Poland
| | - Emil Zięba
- Center for Interdisciplinary Research, Confocal and Electron Microscopy Laboratory, The John Paul II Catholic University of Lublin, Konstantynów 1J, Lublin, Poland
| |
Collapse
|
103
|
Potential PGPR Properties of Cellulolytic, Nitrogen-Fixing, Phosphate-Solubilizing Bacteria in Rehabilitated Tropical Forest Soil. Microorganisms 2020; 8:microorganisms8030442. [PMID: 32245141 PMCID: PMC7143980 DOI: 10.3390/microorganisms8030442] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 11/17/2022] Open
Abstract
In the midst of the major soil degradation and erosion faced by tropical ecosystems, rehabilitated forests are being established to avoid the further deterioration of forest lands. In this context, cellulolytic, nitrogen-fixing (N-fixing), phosphate-solubilizing bacteria are very important functional groups in regulating the elemental cycle and plant nutrition, hence replenishing the nutrient content in forest soils. As is the case for other potential plant growth-promoting (PGP) rhizobacteria, these functional bacteria could have cross-functional abilities or beneficial traits that are essential for plants and can improve their growth. This study was conducted to isolate, identify, and characterize selected PGP properties of these three functional groups of bacteria from tropical rehabilitated forest soils at Universiti Putra Malaysia Bintulu Sarawak Campus, Malaysia. The bacteria were isolated based on their colonial growth on respective functional media, identified using both molecular and selected biochemical properties, and were assessed for their functional quantitative activities as well as PGP properties based on seed germination tests and indole-3-acetic acid (IAA) production. Out of the 15 identified bacterial isolates that exhibited beneficial phenotypic traits, a third belong to the genus Burkholderia and a fifth to Stenotrophomonas sp., with both genera consisting of members from two different functional groups. The results of the experiments confirm the multiple PGP traits of some selected bacterial isolates based on their respective high functional activities, root and shoot lengths, and seedling vigor improvements when bacterized on mung bean seeds, as well as significant IAA production. The results of this study suggest that these functional bacterial strains could potentially be included in bio-fertilizer formulations for crop growth on acid soils.
Collapse
|
104
|
Tang A, Haruna AO, Majid NMA, Jalloh MB. Potential PGPR Properties of Cellulolytic, Nitrogen-Fixing, Phosphate-Solubilizing Bacteria in Rehabilitated Tropical Forest Soil. Microorganisms 2020; 8:microorganisms8030442. [PMID: 32245141 DOI: 10.1101/351916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 05/22/2023] Open
Abstract
In the midst of the major soil degradation and erosion faced by tropical ecosystems, rehabilitated forests are being established to avoid the further deterioration of forest lands. In this context, cellulolytic, nitrogen-fixing (N-fixing), phosphate-solubilizing bacteria are very important functional groups in regulating the elemental cycle and plant nutrition, hence replenishing the nutrient content in forest soils. As is the case for other potential plant growth-promoting (PGP) rhizobacteria, these functional bacteria could have cross-functional abilities or beneficial traits that are essential for plants and can improve their growth. This study was conducted to isolate, identify, and characterize selected PGP properties of these three functional groups of bacteria from tropical rehabilitated forest soils at Universiti Putra Malaysia Bintulu Sarawak Campus, Malaysia. The bacteria were isolated based on their colonial growth on respective functional media, identified using both molecular and selected biochemical properties, and were assessed for their functional quantitative activities as well as PGP properties based on seed germination tests and indole-3-acetic acid (IAA) production. Out of the 15 identified bacterial isolates that exhibited beneficial phenotypic traits, a third belong to the genus Burkholderia and a fifth to Stenotrophomonas sp., with both genera consisting of members from two different functional groups. The results of the experiments confirm the multiple PGP traits of some selected bacterial isolates based on their respective high functional activities, root and shoot lengths, and seedling vigor improvements when bacterized on mung bean seeds, as well as significant IAA production. The results of this study suggest that these functional bacterial strains could potentially be included in bio-fertilizer formulations for crop growth on acid soils.
Collapse
Affiliation(s)
- Amelia Tang
- Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu 97008, Sarawak, Malaysia
| | - Ahmed Osumanu Haruna
- Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Bintulu 97008, Sarawak, Malaysia
- Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nik Muhamad Ab Majid
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohamadu Boyie Jalloh
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan Branch, Locked Bag No. 3, Sandakan 90509, Sabah, Malaysia
| |
Collapse
|
105
|
Grover SP, Butterly CR, Wang X, Gleeson DB, Macdonald LM, Hall D, Tang C. An agricultural practise with climate and food security benefits: "Claying" with kaolinitic clay subsoil decreased soil carbon priming and mineralisation in sandy cropping soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:134488. [PMID: 31884291 DOI: 10.1016/j.scitotenv.2019.134488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
As the agricultural sector seeks to feed a growing global population, climate-smart agriculture offers opportunities to concurrently mitigate climate change by reducing greenhouse gas emissions and/or increasing carbon storage in soils. This study examined the potential for clay addition to reduce CO2 emissions from plant residues and soil organic matter in a sandy soil. Soils were sourced from a 15-year-old field trial where claying (200 t ha-1) had already demonstrated improvements in water infiltration, grain yield and profits. Isotopically labelled plant residues (wheat, canola, or pea) were used to separate residue-derived and soil-derived CO2 sources from a nil-clay control, a historically clayed, and two freshly created soils with either high (10%) or low (3%) subsoil clay additions. Laboratory incubations demonstrated that historically clayed soils released less CO2 from plant residues and soil organic matter. Clay addition also decreased the priming effect of adding fresh residue to soils. The results from clay experimentally added in the laboratory varied. Differences in chemical and biological indicators (pH, microbial biomass C and N, extractable organic C and N, NO3-, NH4+, abundance of bacterial, archaeal, fungal, LMCO, GH48 and CbhI genes) did not correlate with patterns of CO2 emissions across treatments. While claying practices have previously demonstrated benefits to crop productivity, this research demonstrates long-term changes in carbon-cycling that could promote greater carbon sequestration.
Collapse
Affiliation(s)
- Samantha P Grover
- Department of Animal, Plant & Soil Sciences, AgriBio, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, VIC 3086, Australia.
| | - Clayton R Butterly
- Department of Animal, Plant & Soil Sciences, AgriBio, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, VIC 3086, Australia; School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Xiaojuan Wang
- Department of Animal, Plant & Soil Sciences, AgriBio, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, VIC 3086, Australia
| | - Deirdre B Gleeson
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
| | | | - David Hall
- Western Australian Department of Primary Industries and Regional Development, Esperance, WA 6450, Australia
| | - Caixian Tang
- Department of Animal, Plant & Soil Sciences, AgriBio, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, VIC 3086, Australia
| |
Collapse
|
106
|
Abstract
The development of biorefinery processes to platform chemicals for most lignocellulosic substrates, results in side processes to intermediates such as oligosaccharides. Agrofood wastes are most amenable to produce such intermediates, in particular, cellooligo-saccharides (COS), pectooligosaccharides (POS), xylooligosaccharides (XOS) and other less abundant oligomers containing mannose, arabinose, galactose and several sugar acids. These compounds show a remarkable bioactivity as prebiotics, elicitors in plants, food complements, healthy coadyuvants in certain therapies and more. They are medium to high added-value compounds with an increasing impact in the pharmaceutical, nutraceutical, cosmetic and food industries. This review is focused on the main production processes: autohydrolysis, acid and basic catalysis and enzymatic saccharification. Autohydrolysis of food residues at 160–190 °C leads to oligomer yields in the 0.06–0.3 g/g dry solid range, while acid hydrolysis of pectin (80–120 °C) or cellulose (45–180 °C) yields up to 0.7 g/g dry polymer. Enzymatic hydrolysis at 40–50 °C of pure polysaccharides results in 0.06–0.35 g/g dry solid (DS), with values in the range 0.08–0.2 g/g DS for original food residues.
Collapse
|
107
|
Wang BT, Hu S, Yu XY, Jin L, Zhu YJ, Jin FJ. Studies of Cellulose and Starch Utilization and the Regulatory Mechanisms of Related Enzymes in Fungi. Polymers (Basel) 2020; 12:polym12030530. [PMID: 32121667 PMCID: PMC7182937 DOI: 10.3390/polym12030530] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/24/2022] Open
Abstract
Polysaccharides are biopolymers made up of a large number of monosaccharides joined together by glycosidic bonds. Polysaccharides are widely distributed in nature: Some, such as peptidoglycan and cellulose, are the components that make up the cell walls of bacteria and plants, and some, such as starch and glycogen, are used as carbohydrate storage in plants and animals. Fungi exist in a variety of natural environments and can exploit a wide range of carbon sources. They play a crucial role in the global carbon cycle because of their ability to break down plant biomass, which is composed primarily of cell wall polysaccharides, including cellulose, hemicellulose, and pectin. Fungi produce a variety of enzymes that in combination degrade cell wall polysaccharides into different monosaccharides. Starch, the main component of grain, is also a polysaccharide that can be broken down into monosaccharides by fungi. These monosaccharides can be used for energy or as precursors for the biosynthesis of biomolecules through a series of enzymatic reactions. Industrial fermentation by microbes has been widely used to produce traditional foods, beverages, and biofuels from starch and to a lesser extent plant biomass. This review focuses on the degradation and utilization of plant homopolysaccharides, cellulose and starch; summarizes the activities of the enzymes involved and the regulation of the induction of the enzymes in well-studied filamentous fungi.
Collapse
|
108
|
Efficient xylose utilization leads to highest lipid productivity in Candida tropicalis SY005 among six yeast strains grown in mixed sugar medium. Appl Microbiol Biotechnol 2020; 104:3133-3144. [PMID: 32076780 DOI: 10.1007/s00253-020-10443-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
Six local isolates of yeasts were screened for cell mass and lipid production in mixed glucose and xylose medium. Candida tropicalis SY005 and Trichosporon (Apiotrichum) loubieri SY006 showed significant lipid accumulation of 24.6% and 32% (dry cell weight), respectively when grown in medium containing equal mass of both the sugars. SY005 produced relatively higher cell mass of 9.66 gL-1 due to higher rate of sugar consumption, which raised the lipid productivity of the organism to 0.792 gL-1day-1 as compared to 0.446 gL-1day-1 in SY006. When grown with each sugar separately, the xylose consumption rate of SY005 was found to be 0.55 gL-1 h-1 after 4 days as compared to 0.52 gL-1 h-1 for SY006. Transcript expression of the high affinity xylose transporter (Cthaxt), xylose reductase (Ctxyl1), and xylitol dehydrogenase (Ctxyl2) of SY005 was monitored to unravel such high rate of sugar consumption. Expression of all the three genes was observed to vary in mixed sugars with Cthaxt exhibiting the highest expression in presence of only xylose. Expression levels of both Ctxyl1 and Ctxyl2, involved in xylose catabolism, were maximum during 24-48 h of growth, indicating that xylose utilization started in the presence of glucose, which was depleted in the medium after 96 h. Together, the present study documents that C. tropicalis SY005 consumes xylose concomitant to glucose during early period of growth, and it is a promising yeast strain for viable production of storage lipid or other high-value oleochemicals utilizing lignocellulose hydrolysate.
Collapse
|
109
|
de Vries RP, Mäkelä MR. Genomic and Postgenomic Diversity of Fungal Plant Biomass Degradation Approaches. Trends Microbiol 2020; 28:487-499. [PMID: 32396827 DOI: 10.1016/j.tim.2020.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/15/2019] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
Plant biomass degradation by fungi is a widely studied and applied field of science, due to its relevance for the global carbon cycle and many biotechnological applications. Before the genome era, many of the in-depth studies focused on a relatively small number of species, whereas now, many species can be addressed in detail, revealing the large variety in the approach used by fungi to degrade plant biomass. This variation is found at many levels and includes genomic adaptation to the preferred biomass component, but also different approaches to degrade this component by diverse sets of activities encoded in the genome. Even larger differences have been observed using transcriptome and proteome studies, even between closely related species, suggesting a high level of adaptation in individual species. A better understanding of the drivers of this diversity could be highly valuable in developing more efficient biotechnology approaches for the enzymatic conversion of plant biomass.
Collapse
Affiliation(s)
- Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
110
|
Ovaskainen O, Abrego N, Somervuo P, Palorinne I, Hardwick B, Pitkänen JM, Andrew NR, Niklaus PA, Schmidt NM, Seibold S, Vogt J, Zakharov EV, Hebert PDN, Roslin T, Ivanova NV. Monitoring Fungal Communities With the Global Spore Sampling Project. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2019.00511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
111
|
Jain KK, Kumar A, Shankar A, Pandey D, Chaudhary B, Sharma KK. De novo transcriptome assembly and protein profiling of copper-induced lignocellulolytic fungus Ganoderma lucidum MDU-7 reveals genes involved in lignocellulose degradation and terpenoid biosynthetic pathways. Genomics 2020; 112:184-198. [DOI: 10.1016/j.ygeno.2019.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/07/2019] [Accepted: 01/20/2019] [Indexed: 12/23/2022]
|
112
|
Initial Rhodonia placenta Gene Expression in Acetylated Wood: Group-Wise Upregulation of Non-Enzymatic Oxidative Wood Degradation Genes Depending on the Treatment Level. FORESTS 2019. [DOI: 10.3390/f10121117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Acetylation has been shown to delay fungal decay, but the underlying mechanisms are poorly understood. Brown-rot fungi, such as Rhodonia placenta (Fr.) Niemelä, K.H. Larss. & Schigel, degrade wood in two steps, i.e., oxidative depolymerization followed by secretion of hydrolytic enzymes. Since separating the two degradation steps has been proven challenging, a new sample design was applied to the task. The aim of this study was to compare the expression of 10 genes during the initial decay phase in wood and wood acetylated to three different weight percentage gains (WPG). The results showed that not all genes thought to play a role in initiating brown-rot decay are upregulated. Furthermore, the results indicate that R. placenta upregulates an increasing number of genes involved in the oxidative degradation phase with increasing WPG.
Collapse
|
113
|
Carotenoid-producing yeasts: Identification and Characteristics of Environmental Isolates with a Valuable Extracellular Enzymatic Activity. Microorganisms 2019; 7:microorganisms7120653. [PMID: 31817221 PMCID: PMC6956281 DOI: 10.3390/microorganisms7120653] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/03/2022] Open
Abstract
Sixteen cold-adapted reddish-pigmented yeast strains were obtained from environmental samples. According to the PCR-based detection of classical yeast markers combined with phylogenetic studies, the yeasts belong mainly to the genera Rhodotorula, Sporobolomyces and Cystobasidium, all within the subphylum Pucciniomycotina. All strains produced carotenoids within a 0.25–10.33 mg/L range under non-optimized conditions. Noteworthily, among them, representatives of the Cystobasidium genus were found; of particular value are the strains C. laryngis and C. psychroaquaticum, poorly described in the literature to date. Interestingly, carotenoid production with representatives of Cystobasidium was improved 1.8- to 10-fold at reduced temperature. As expected, most of the isolated yeasts biosynthesized extracellular lipases, but within them also one proteolytic and four cellulolytic strains were revealed. We succeeded in isolating strain Cystofilobasidium macerans WUT145 with extraordinarily high cellulolytic activity at 22°C (66.23 ± 0.15 µmol/mg protein·min) that is described here for the first time. Consequently, a set of yeasts capable of producing both carotenoids and extracellular enzymes was identified. Taking into account those abilities, the strains might be applicable for a development of carotenoids production on an agro-industrial waste, e.g., lignocellulose.
Collapse
|
114
|
Hu Y, Xu W, Hu S, Lian L, Zhu J, Shi L, Ren A, Zhao M. InGanoderma lucidum, Glsnf1 regulates cellulose degradation by inhibiting GlCreA during the utilization of cellulose. Environ Microbiol 2019; 22:107-121. [DOI: 10.1111/1462-2920.14826] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/05/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Yanru Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| | - Wenzhao Xu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| | - Shishan Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| | - Lingdan Lian
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| | - MingWen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| |
Collapse
|
115
|
Zhang C, Too HP. Revalorizing Lignocellulose for the Production of Natural Pharmaceuticals and Other High Value Bioproducts. Curr Med Chem 2019; 26:2475-2484. [PMID: 28901274 DOI: 10.2174/0929867324666170912095755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/02/2017] [Accepted: 08/25/2017] [Indexed: 01/27/2023]
Abstract
Lignocellulose is the most abundant renewable natural resource on earth and has been successfully used for the production of biofuels. A significant challenge is to develop cost-effective, environmentally friendly and efficient processes for the conversion of lignocellulose materials into suitable substrates for biotransformation. A number of approaches have been explored to convert lignocellulose into sugars, e.g. combining chemical pretreatment and enzymatic hydrolysis. In nature, there are organisms that can transform the complex lignocellulose efficiently, such as wood-degrading fungi (brown rot and white rot fungi), bacteria (e.g. Clostridium thermocellum), arthropods (e.g. termite) and certain animals (e.g. ruminant). Here, we highlight recent case studies of the natural degraders and the mechanisms involved, providing new utilities in biotechnology. The sugars produced from such biotransformations can be used in metabolic engineering and synthetic biology for the complete biosynthesis of natural medicine. The unique opportunities in using lignocellulose directly to produce natural drug molecules with either using mushroom and/or 'industrial workhorse' organisms (Escherichia coli and Saccharomyces cerevisiae) will be discussed.
Collapse
Affiliation(s)
- Congqiang Zhang
- Biotransformation Innovation Platform (BioTrans), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Heng-Phon Too
- Biotransformation Innovation Platform (BioTrans), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biochemistry, National University of Singapore, Singapore
| |
Collapse
|
116
|
Hirakata Y, Hatamoto M, Oshiki M, Watari T, Kuroda K, Araki N, Yamaguchi T. Temporal variation of eukaryotic community structures in UASB reactor treating domestic sewage as revealed by 18S rRNA gene sequencing. Sci Rep 2019; 9:12783. [PMID: 31484981 PMCID: PMC6726610 DOI: 10.1038/s41598-019-49290-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/22/2019] [Indexed: 11/09/2022] Open
Abstract
Eukaryotes are important components of ecosystems in wastewater treatment processes. However, little is known about eukaryotic community in anaerobic wastewater treatment systems. In this study, eukaryotic communities in an up flow anaerobic sludge blanket (UASB) reactor treating domestic sewage during two years of operation were investigated using V4 and V9 regions of 18S rRNA gene for amplicon sequencing. In addition, activated sludge and influent sewage samples were also analyzed and used as the references for aerobic eukaryotic community to characterize anaerobic eukaryotes. The amplicon sequence V4 and V9 libraries detected different taxonomic groups, especially from the UASB samples, suggesting that commonly used V4 and V9 primer pairs could produce a bias for eukaryotic communities analysis. Eukaryotic community structures in the UASB reactor were influenced by the immigration of eukaryotes via influent sewage but were clearly different from the influent sewage and activated sludge. Multivariate statistics indicated that protist genera Cyclidium, Platyophrya and Subulatomonas correlated with chemical oxygen demand and suspended solid concentration, and could be used as bioindicators of treatment performance. Uncultured eukaryotes groups were dominant in the UASB reactor, and their physiological roles need to be examined to understand their contributions to anaerobic processes in future studies.
Collapse
Affiliation(s)
- Yuga Hirakata
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Masashi Hatamoto
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.
| | - Mamoru Oshiki
- Department of Civil Engineering, National institute of Technology, Nagaoka College, 888 Nishikatakaimachi, Nagaoka, Niigata, 940-0834, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Kyohei Kuroda
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, 473-1 Yoshio-cho, Miyakonojo, Miyazaki, 885-8567, Japan
| | - Nobuo Araki
- Department of Civil Engineering, National institute of Technology, Nagaoka College, 888 Nishikatakaimachi, Nagaoka, Niigata, 940-0834, Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.,Department of Civil and Environmental Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| |
Collapse
|
117
|
Unveiling of Concealed Processes for the Degradation of Pharmaceutical Compounds by Neopestalotiopsis sp. Microorganisms 2019; 7:microorganisms7080264. [PMID: 31426384 PMCID: PMC6722755 DOI: 10.3390/microorganisms7080264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 01/15/2023] Open
Abstract
The presence of pharmaceutical products has raised emerging biorisks in aquatic environments. Fungi have been considered in sustainable approaches for the degradation of pharmaceutical compounds from aquatic environments. Soft rot fungi of the Ascomycota phylum are the most widely distributed among fungi, but their ability to biodegrade pharmaceuticals has not been studied as much as that of white rot fungi of the Basidiomycota phylum. Herein, we evaluated the capacity of the soft rot fungus Neopestalotiopsis sp. B2B to degrade pharmaceuticals under treatment of woody and nonwoody lignocellulosic biomasses. Nonwoody rice straw induced laccase activity fivefold compared with that in YSM medium containing polysaccharide. But B2B preferentially degraded polysaccharide over lignin regions in woody sources, leading to high concentrations of sugar. Hence, intermediate products from saccharification may inhibit laccase activity and thereby halt the biodegradation of pharmaceutical compounds. These results provide fundamental insights into the unique characteristics of pharmaceutical degradation by soft rot fungus Neopestalotiopsis sp. in the presence of preferred substrates during delignification.
Collapse
|
118
|
Partial purification and characterization of a thermostable mushroom tannase induced during solid state fermentation of Toxicodendron vernicifluum stem bark by Fomitella fraxinea. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
119
|
The Importance of Moisture for Brown Rot Degradation of Modified Wood: A Critical Discussion. FORESTS 2019. [DOI: 10.3390/f10060522] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effect of wood modification on wood-water interactions in modified wood is poorly understood, even though water is a critical factor in fungal wood degradation. A previous review suggested that decay resistance in modified wood is caused by a reduced wood moisture content (MC) that inhibits the diffusion of oxidative fungal metabolites. It has been reported that a MC below 23%–25% will protect wood from decay, which correlates with the weight percent gain (WPG) level seen to inhibit decay in modified wood for several different kinds of wood modifications. In this review, the focus is on the role of water in brown rot decay of chemically and thermally modified wood. The study synthesizes recent advances in the inhibition of decay and the effects of wood modification on the MC and moisture relationships in modified wood. We discuss three potential mechanisms for diffusion inhibition in modified wood: (i) nanopore blocking; (ii) capillary condensation in nanopores; and (iii) plasticization of hemicelluloses. The nanopore blocking theory works well with cell wall bulking and crosslinking modifications, but it seems less applicable to thermal modification, which may increase nanoporosity. Preventing the formation of capillary water in nanopores also explains cell wall bulking modification well. However, the possibility of increased nanoporosity in thermally modified wood and increased wood-water surface tension for 1.3-dimethylol-4.5-dihydroxyethyleneurea (DMDHEU) modification complicate the interpretation of this theory for these modifications. Inhibition of hemicellulose plasticization fits well with diffusion prevention in acetylated, DMDHEU and thermally modified wood, but plasticity in furfurylated wood may be increased. We also point out that the different mechanisms are not mutually exclusive, and it may be the case that they all play some role to varying degrees for each modification. Furthermore, we highlight recent work which shows that brown rot fungi will eventually degrade modified wood materials, even at high treatment levels. The herein reviewed literature suggests that the modification itself may initially be degraded, followed by an increase in wood cell wall MC to a level where chemical transport is possible.
Collapse
|
120
|
Abstract
Many filamentous fungi colonizing animal or plant tissue, waste matter, or soil must find optimal paths through the constraining geometries of their microenvironment. Imaging of live fungal growth in custom-built microfluidics structures revealed the intracellular mechanisms responsible for this remarkable efficiency. In meandering channels, the Spitzenkörper (an assembly of vesicles at the filament tip) acted like a natural gyroscope, conserving the directional memory of growth, while the fungal cytoskeleton organized along the shortest growth path. However, if an obstacle could not be negotiated, the directional memory was lost due to the disappearance of the Spitzenkörper gyroscope. This study can impact diverse environmental, industrial, and medical applications, from fungal pathogenicity in plants and animals to biology-inspired computation. Filamentous fungi that colonize microenvironments, such as animal or plant tissue or soil, must find optimal paths through their habitat, but the biological basis for negotiating growth in constrained environments is unknown. We used time-lapse live-cell imaging of Neurospora crassa in microfluidic environments to show how constraining geometries determine the intracellular processes responsible for fungal growth. We found that, if a hypha made contact with obstacles at acute angles, the Spitzenkörper (an assembly of vesicles) moved from the center of the apical dome closer to the obstacle, thus functioning as an internal gyroscope, which preserved the information regarding the initial growth direction. Additionally, the off-axis trajectory of the Spitzenkörper was tracked by microtubules exhibiting “cutting corner” patterns. By contrast, if a hypha made contact with an obstacle at near-orthogonal incidence, the directional memory was lost, due to the temporary collapse of the Spitzenkörper–microtubule system, followed by the formation of two “daughter” hyphae growing in opposite directions along the contour of the obstacle. Finally, a hypha passing a lateral opening in constraining channels continued to grow unperturbed, but a daughter hypha gradually branched into the opening and formed its own Spitzenkörper–microtubule system. These observations suggest that the Spitzenkörper–microtubule system is responsible for efficient space partitioning in microenvironments, but, in its absence during constraint-induced apical splitting and lateral branching, the directional memory is lost, and growth is driven solely by the isotropic turgor pressure. These results further our understanding of fungal growth in microenvironments relevant to environmental, industrial, and medical applications.
Collapse
|
121
|
Champreda V, Mhuantong W, Lekakarn H, Bunterngsook B, Kanokratana P, Zhao XQ, Zhang F, Inoue H, Fujii T, Eurwilaichitr L. Designing cellulolytic enzyme systems for biorefinery: From nature to application. J Biosci Bioeng 2019; 128:637-654. [PMID: 31204199 DOI: 10.1016/j.jbiosc.2019.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/06/2019] [Accepted: 05/11/2019] [Indexed: 12/14/2022]
Abstract
Cellulolytic enzymes play a key role on conversion of lignocellulosic plant biomass to biofuels and biochemicals in sugar platform biorefineries. In this review, we survey composite carbohydrate-active enzymes (CAZymes) among groups of cellulolytic fungi and bacteria that exist under aerobic and anaerobic conditions. Recent advances in designing effective cellulase mixtures are described, starting from the most complex microbial consortium-based enzyme preparations, to single-origin enzymes derived from intensively studied cellulase producers such as Trichoderma reesei, Talaromyces cellulolyticus, and Penicellium funiculosum, and the simplest minimal enzyme systems comprising selected sets of mono-component enzymes tailor-made for specific lignocellulosic substrates. We provide a comprehensive update on studies in developing high-performance cellulases for biorefineries.
Collapse
Affiliation(s)
- Verawat Champreda
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand.
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Hataikarn Lekakarn
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Benjarat Bunterngsook
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Pattanop Kanokratana
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hiroyuki Inoue
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Hiroshima 739-0046, Japan
| | - Tatsuya Fujii
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Hiroshima 739-0046, Japan
| | - Lily Eurwilaichitr
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
122
|
Bentil JA, Thygesen A, Lange L, Mensah M, Meyer AS. Green seaweeds (Ulva fasciata sp.) as nitrogen source for fungal cellulase production. World J Microbiol Biotechnol 2019; 35:82. [DOI: 10.1007/s11274-019-2658-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 05/15/2019] [Indexed: 01/19/2023]
|
123
|
Li Y, Liu J, Wang G, Yang M, Yang X, Li T, Chen G. De novo transcriptome analysis of Pleurotus djamor to identify genes encoding CAZymes related to the decomposition of corn stalk lignocellulose. J Biosci Bioeng 2019; 128:529-536. [PMID: 31147217 DOI: 10.1016/j.jbiosc.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/06/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
Abstract
CAZymes play a very important role in the biotransformation of corn stalk biomass, which is an important resource for sustainable development. Pleurotus djamor can produce CAZymes related to the decomposition of corn stalk lignocellulose biomass in sole corn stalk substrate; however, little is known about their encoding genes. In order to identify CAZymes encoding genes, RNA high-throughput sequencing of P. djamor was performed in this study. The results showed that a core set of 70 upregulated genes encoding putative CAZymes were revealed. They encode 19 kinds of CAZymes in total, of which there are 4 EGLs, 8 CBHs, 5 BGLs, and 12 LPMOs related to cellulose degradation, 8 XYNs, 1 XYL, 2 AGUs, 3 ABFs, 2 AGLs, and 2 AXEs related to hemicellulose degradation, and 5 LACCs, 2 MnPs, 5 VPs, 3 CDHs, 1 AAO, 1 GOX, 1 AOX, 2 GAOXs, and 3 GLOXs related to lignin degradation. This variety suggests that CAZymes may play a very important role in decomposing the lignocellulose biomass of corn stalk. This is the first study to report the de novo transcriptome sequencing of P. djamor, which will produce a dataset of genes encoding CAZymes, thereby laying the foundation to elucidate the degradation mechanism of corn stalk biomass and boost the biotransformation of corn stalk biomass resources.
Collapse
Affiliation(s)
- Yanli Li
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China; Innovation Platform of Jilin Province for Straw Comprehensive Utilization Technology, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China; Engineering Research Center of the Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China.
| | - Jiahao Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China; Innovation Platform of Jilin Province for Straw Comprehensive Utilization Technology, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China
| | - Gang Wang
- Innovation Platform of Jilin Province for Straw Comprehensive Utilization Technology, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China
| | - Meiying Yang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China
| | - Xue Yang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Science, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China
| | - Tongbing Li
- Innovation Platform of Jilin Province for Straw Comprehensive Utilization Technology, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China
| | - Guang Chen
- Innovation Platform of Jilin Province for Straw Comprehensive Utilization Technology, Jilin Agricultural University, Xincheng Street 2888, Nanguan District, Changchun 130118, Jilin, China
| |
Collapse
|
124
|
Baskaran P, Ekblad A, Soucémarianadin LN, Hyvönen R, Schleucher J, Lindahl BD. Nitrogen dynamics of decomposing Scots pine needle litter depends on colonizing fungal species. FEMS Microbiol Ecol 2019; 95:5479879. [DOI: 10.1093/femsec/fiz059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/25/2019] [Indexed: 11/12/2022] Open
Abstract
ABSTRACT
In boreal ecosystems plant production is often limited by low availability of nitrogen. Nitrogen retention in below-ground organic pools plays an important role in restricting recirculation to plants and thereby hampers forest production. Saprotrophic fungi are commonly assigned to different decomposer strategies, but how these relate to nitrogen cycling remains to be understood. Decomposition of Scots pine needle litter was studied in axenic microcosms with the ligninolytic litter decomposing basidiomycete Gymnopus androsaceus or the stress tolerant ascomycete Chalara longipes. Changes in chemical composition were followed by 13C CP/MAS NMR spectroscopy and nitrogen dynamics was assessed by the addition of a 15N tracer. Decomposition by C. longipes resulted in nitrogen retention in non-hydrolysable organic matter, enriched in aromatic and alkylic compounds, whereas the ligninolytic G. androsaceus was able to access this pool, counteracting nitrogen retention. Our observations suggest that differences in decomposing strategies between fungal species play an important role in regulating nitrogen retention and release during litter decomposition, implying that fungal community composition may impact nitrogen cycling at the ecosystem level.
Collapse
Affiliation(s)
- Preetisri Baskaran
- Swedish University of Agricultural Sciences, Department of Ecology, Box 7044, SE-750 07 Uppsala, Sweden
| | - Alf Ekblad
- Örebro University, School of Science and Technology, SE-70 182 Örebro, Sweden
| | - Laure N Soucémarianadin
- CNRS, Laboratoire de Géologie de l'ENS, Ecole Normale Supérieure, 75231 Paris, France
- Umeå University, Department of Medical Biochemistry and Biophysics, SE-901 87, Umeå, Sweden
| | - Riitta Hyvönen
- Swedish University of Agricultural Sciences, Department of Ecology, Box 7044, SE-750 07 Uppsala, Sweden
| | - Jürgen Schleucher
- Umeå University, Department of Medical Biochemistry and Biophysics, SE-901 87, Umeå, Sweden
| | - Björn D Lindahl
- Swedish University of Agricultural Sciences, Department of Soil and Environment, Box 7014, SE-750 07 Uppsala, Sweden
| |
Collapse
|
125
|
Historical Nitrogen Deposition and Straw Addition Facilitate the Resistance of Soil Multifunctionality to Drying-Wetting Cycles. Appl Environ Microbiol 2019; 85:AEM.02251-18. [PMID: 30737352 DOI: 10.1128/aem.02251-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/01/2019] [Indexed: 02/04/2023] Open
Abstract
Climate change is predicted to alter precipitation and drought patterns, which has become a global concern as evidence accumulates that it will affect ecosystem services. Disentangling the ability of soil multifunctionality to withstand this stress (multifunctionality resistance) is a crucial topic for assessing the stability and adaptability of agroecosystems. In this study, we explored the effects of nutrient addition on multifunctionality resistance to drying-wetting cycles and evaluated the importance of microbial functional capacity (characterized by the abundances of genes involved in carbon, nitrogen and phosphorus cycles) for this resistance. The multifunctionality of soils treated with nitrogen (N) and straw showed a higher resistance to drying-wetting cycles than did nonamended soils. Microbial functional capacity displayed a positive linear relationship with multifunctionality resistance. Random forest analysis showed that the abundances of the archeal amoA (associated with nitrification) and nosZ and narG (denitrification) genes were major predictors of multifunctionality resistance in soils without straw addition. In contrast, major predictors of multifunctionality resistance in straw amended soils were the abundances of the GH51 (xylan degradation) and fungcbhIF (cellulose degradation) genes. Structural equation modeling further demonstrated the large direct contribution of carbon (C) and N cycling-related gene abundances to multifunctionality resistance. The modeling further elucidated the positive effects of microbial functional capacity on this resistance, which was mediated potentially by a high soil fungus/bacterium ratio, dissolved organic C content, and low pH. The present work suggests that nutrient management of agroecosystems can buffer negative impacts on ecosystem functioning caused by a climate change-associated increase in drying-wetting cycles via enriching functional capacity of microbial communities.IMPORTANCE Current climate trends indicate an increasing frequency of drying-wetting cycles. Such cycles are severe environmental perturbations and have received an enormous amount of attention. Prediction of ecosystem's stability and adaptability requires a better mechanistic understanding of the responses of microbially mediated C and nutrient cycling processes to external disturbance. Assessment of this stability and adaptability further need to disentangle the relationships between functional capacity of soil microbial communities and the resistance of multifunctionality. Study of the physiological responses and community reorganization of soil microbes in response to stresses requires large investments of resources that vary with the management history of the system. Our study provides evidence that nutrient managements on agroecosystems can be expected to buffer the impacts of progressive climate change on ecosystem functioning by enhancing the functional capacity of soil microbial communities, which can serve as a basis for field studies.
Collapse
|
126
|
Aziz NS, Sofian-Seng NS, Mohd Razali NS, Lim SJ, Mustapha WA. A review on conventional and biotechnological approaches in white pepper production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2665-2676. [PMID: 30426501 DOI: 10.1002/jsfa.9481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 09/28/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
White pepper is the dried seeds obtained from pepper berries (Piper nigrum L.) after the removal of the pericarp. It has been widely used as seasoning and condiments in food preparation. Globally, white pepper fetches a higher price compared to black pepper due to its lighter colour, preferable milder flavour and pungency. Increasing global demand of the spice outpaced the supply as the conventional production method used is laborious, lengthy and also not very hygienic. The most common conventional method is water retting but can also include pit soil, chemical, boiling, steaming and mechanical methods. The introduction of a biotechnological approach has gained a lot of interest, as it is a more rapid, convenient and hygienic method of producing white pepper. This technique involves the application of microorganisms and/or enzymes. This review highlights both conventional and latest biotechnological processes of white pepper production. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nurul S Aziz
- Centre for Biotechnology and Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Malaysia
| | - Noor-Soffalina Sofian-Seng
- Centre for Biotechnology and Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Malaysia
| | - Noorul S Mohd Razali
- Centre for Biotechnology and Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Malaysia
| | - Seng Joe Lim
- Centre for Biotechnology and Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Malaysia
| | - Wan Aw Mustapha
- Centre for Biotechnology and Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Malaysia
| |
Collapse
|
127
|
Li H, Ding X, Chen C, Zheng X, Han H, Li C, Gong J, Xu T, Li QX, Ding GC, Li J. Enrichment of phosphate solubilizing bacteria during late developmental stages of eggplant (Solanum melongenaL.). FEMS Microbiol Ecol 2019; 95:5319216. [DOI: 10.1093/femsec/fiz023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/13/2019] [Indexed: 02/02/2023] Open
Affiliation(s)
- Huixiu Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| | - Xiaoyan Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| | - Chen Chen
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| | - Xiangnan Zheng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| | - Hui Han
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| | - Chennan Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| | - Jingyang Gong
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| | - Ting Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 968222234,USA
| | - Guo-chun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
128
|
Sousa G, Gandara ACP, Oliveira PL, Gomes FM, Bahia AC, Machado EA. The relationship between oxidant levels and gut physiology in a litter-feeding termite. Sci Rep 2019; 9:670. [PMID: 30679618 PMCID: PMC6345907 DOI: 10.1038/s41598-018-37043-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/28/2018] [Indexed: 11/09/2022] Open
Abstract
The termite gut is an efficient decomposer of polyphenol-rich diets, such as lignocellulosic biomasses, and it has been proposed that non-enzymatic oxidative mechanisms could be involved with the digestive process in these animals. However, oxidant levels are completely unknown in termites, as well as protective mechanisms against oxidative damage to the termite gut and its microbiota. As the first step in investigating the role oxidants plays in termite gut physiology, this work presents oxidant levels, antioxidant enzymatic defenses, cell renewal and microbiota abundance along the litter-feeding termite Cornitermes cumulans gut compartments (foregut, midgut, mixed segment and hindgut p1, p3, p4, and p5 segments) and salivary glands. The results show variable levels of oxidants along the C. cumulans gut, the production of antioxidant enzymes, gut cell renewal as potential defenses against oxidative injuries and the profile of microbiota distribution (being predominantly inverse to oxidant levels). In this fashion, the oxidative challenges imposed by polyphenol-rich diet seem to be circumvented by the C. cumulans gut, ensuring efficiency of the digestive process together with preservation of tissue homoeostasis and microbiota growth. These results present new insights into the physicochemical properties of the gut in a litter-feeding termite, expanding our view in relation to termites’ digestive physiology.
Collapse
Affiliation(s)
- Gessica Sousa
- Laboratório de Bioquímica de Insetos e Parasitos (Labip), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Caroline P Gandara
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio M Gomes
- Laboratory of Malaria and Vector Research, National Institute of Health, Bethesda, United States of America
| | - Ana Cristina Bahia
- Laboratório de Bioquímica de Insetos e Parasitos (Labip), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ednildo A Machado
- Laboratório de Bioquímica de Insetos e Parasitos (Labip), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil.
| |
Collapse
|
129
|
Baldrian P. The known and the unknown in soil microbial ecology. FEMS Microbiol Ecol 2019; 95:5281230. [DOI: 10.1093/femsec/fiz005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/08/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220 Praha 4, Czech Republic
| |
Collapse
|
130
|
Miao J, Wang M, Ma L, Li T, Huang Q, Liu D, Shen Q. Effects of amino acids on the lignocellulose degradation by Aspergillus fumigatus Z5: insights into performance, transcriptional, and proteomic profiles. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:4. [PMID: 30622646 PMCID: PMC6318881 DOI: 10.1186/s13068-018-1350-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/26/2018] [Indexed: 05/15/2023]
Abstract
BACKGROUND As a ubiquitous filamentous fungal, Aspergillus spp. play a critical role in lignocellulose degradation, which was also defined as considerable cell factories for organic acids and industrially relevant enzymes producer. Nevertheless, the production of various extracellular enzymes can be influenced by different factors including nitrogen source, carbon source, cultivation temperature, and initial pH value. Thus, this study aims to reveal how amino acids affect the decomposition of lignocellulose by Aspergillus fumigatus Z5 through transcriptional and proteomics methods. RESULTS The activities of several lignocellulosic enzymes secreted by A. fumigatus Z5 adding with cysteine, methionine, and ammonium sulfate were determined with the chromatometry method. The peak of endo-glucanase (7.33 ± 0.03 U mL-1), exo-glucanase (10.50 ± 0.07 U mL-1), β-glucosidase (21.50 ± 0.22 U mL-1), and xylanase (76.43 ± 0.71 U mL-1) were all obtained in the Cys treatment. The secretomes of A. fumigatus Z5 under different treatments were also identified by LC-MS/MS, and 227, 256 and 159 different proteins were identified in the treatments of Cys, Met, and CK (Control, treatment with ammonium sulfate as the sole nitrogen source), respectively. Correlation analysis results of transcriptome and proteome data with fermentation profiles showed that most of the cellulose-degrading enzymes including cellulases, hemicellulases and glycoside hydrolases were highly upregulated when cysteine was added to the growth medium. In particular, the enzymes that convert cellulose into cellobiose appear to be upregulated. This study could increase knowledge of lignocellulose bioconversion pathways and fungal genetics. CONCLUSIONS Transcriptome and proteome analyses' results indicated that cysteine could significantly promote the secretion of lignocellulosic enzymes of an efficient lignocellulosic decomposing strain, A. fumigatus Z5. The possible reason for these results is that Z5 preferred to use amino acids such as cysteine to adapt to the external environment through upregulating carbon-related metabolism pathways.
Collapse
Affiliation(s)
- Jiaxi Miao
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
| | - Mengmeng Wang
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lei Ma
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tuo Li
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qiwei Huang
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dongyang Liu
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qirong Shen
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing, 210095 China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095 China
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
131
|
Kirtzel J, Scherwietes EL, Merten D, Krause K, Kothe E. Metal release and sequestration from black slate mediated by a laccase of Schizophyllum commune. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5-13. [PMID: 29943246 DOI: 10.1007/s11356-018-2568-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Schizophyllum commune is a filamentous basidiomycete which can degrade complex organic macromolecules like lignin by the secretion of a large repertoire of enzymes. One of these white rot enzymes, laccase, exhibits a broad substrate specificity and is able to oxidize a variety of substances including carbonaceous rocks. To investigate the role of laccase in bioweathering, laccase gene lcc2 was overexpressed, and the influence on weathering of black slate, originating from a former alum mine in Schmiedefeld, Germany, was examined. The metal release from the rock material was enhanced, associated with a partial metal accumulation into the mycelium. A sequestration of metals could be shown with fluorescent staining methods, and an accumulation of Zn, Cd, and Pb was visualized in different cell organelles. Additionally, we could show an increased metal resistance of the laccase overexpressing strain.
Collapse
Affiliation(s)
- Julia Kirtzel
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Jena, Germany
| | - Eric Leon Scherwietes
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Jena, Germany
| | - Dirk Merten
- Institute of Geosciences, Applied Geology, Friedrich Schiller University, Jena, Germany
| | - Katrin Krause
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
132
|
Ghiloufi W, Seo J, Kim J, Chaieb M, Kang H. Effects of Biological Soil Crusts on Enzyme Activities and Microbial Community in Soils of an Arid Ecosystem. MICROBIAL ECOLOGY 2019; 77:201-216. [PMID: 29922904 DOI: 10.1007/s00248-018-1219-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Arid ecosystems constitute 41% of land's surface and play an important role in global carbon cycle. In particular, biological soil crusts (BSC) are known to be a hotspot of carbon fixation as well as mineralization in arid ecosystems. However, little information is available on carbon decomposition and microbes in BSC and key controlling variables for microbial activities in arid ecosystems. The current study, carried out in South Mediterranean arid ecosystem, aimed to evaluate the effects of intact and removed cyanobacteria/lichen crusts on soil properties, soil enzyme activities, and microbial abundances (bacteria and fungi). We compared five different treatments (bare soil, soil with intact cyanobacteria, soil with cyanobacteria removed, soil with intact lichens, and soil with lichens removed) in four different soil layers (0-5, 5-10, 10-15, and 15-20 cm). Regardless of soil treatments, activities of hydrolases and water content increased with increasing soil depth. The presence of lichens increased significantly hydrolase activities, which appeared to be associated with greater organic matter, nitrogen, and water contents. However, phenol oxidase was mainly controlled by pH and oxygen availability. Neither fungal nor bacterial abundance exhibited a significant correlation with enzyme activities suggesting that soil enzyme activities are mainly controlled by edaphic and environmental conditions rather than source microbes. Interestingly, the presence of lichens reduced the abundance of bacteria of which mechanism is still to be investigated.
Collapse
Affiliation(s)
- Wahida Ghiloufi
- Unit of Research Plant Biodiversity and Ecosystems in Arid Environments, University of Sfax, Sfax, Tunisia
| | - Juyoung Seo
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Jinhyun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Mohamed Chaieb
- Unit of Research Plant Biodiversity and Ecosystems in Arid Environments, University of Sfax, Sfax, Tunisia
| | - Hojeong Kang
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
133
|
Qian X, Duan T, Sun X, Zheng Y, Wang Y, Hu M, Yao H, Ji N, Lv P, Chen L, Shi M, Guo L, Zhang D. Host genotype strongly influences phyllosphere fungal communities associated with Mussaenda pubescens var. alba (Rubiaceae). FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
134
|
Role of the antioxidant defense system during the production of lignocellulolytic enzymes by fungi. Int Microbiol 2018; 22:255-264. [PMID: 30810986 DOI: 10.1007/s10123-018-00045-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022]
Abstract
Fungi are used for the production of several compounds and the efficiency of biotechnological processes is directly related to the metabolic activity of these microorganisms. The reactions catalyzed by lignocellulolytic enzymes are oxidative and generate reactive oxygen species (ROS). Excess of ROS can cause serious damages to cells, including cell death. Thus, the objective of this work was to evaluate the lignocellulolytic enzymes produced by Pleurotus sajor-caju CCB020, Phanerochaete chrysosporium ATCC 28326, Trichoderma reesei RUT-C30, and Aspergillus niger IZ-9 grown in sugarcane bagasse and two yeast extract (YE) concentrations and characterize the antioxidant defense system of fungal cells by the activities of superoxide dismutase (SOD) and catalase (CAT). Pleurotus sajor-caju exhibited the highest activities of laccase and peroxidase in sugarcane bagasse with 2.6 g of YE and an increased activity of manganese peroxidase in sugarcane bagasse with 1.3 g of YE was observed. However, P. chrysosporium showed the highest activities of exoglucanase and endoglucanase in sugarcane bagasse with 1.3 g of YE. Lipid peroxidation and variations in SOD and CAT activities were observed during the production of lignocellulolytic enzymes and depending on the YE concentrations. The antioxidant defense system was induced in response to the oxidative stress caused by imbalances between the production and the detoxification of ROS.
Collapse
|
135
|
Tsuji A, Yuasa K, Asada C. Cellulose-binding activity of a 21-kDa endo-ß-1,4-glucanase lacking cellulose-binding domain and its synergy with other cellulases in the digestive fluid of Aplysia kurodai. PLoS One 2018; 13:e0205915. [PMID: 30412581 PMCID: PMC6226162 DOI: 10.1371/journal.pone.0205915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/03/2018] [Indexed: 12/05/2022] Open
Abstract
Endo-ß-1,4-glucanase AkEG21 belonging to glycosyl hydrolase family 45 (GHF45) is the most abundant cellulase in the digestive fluid of sea hare (Aplysia kurodai). The specific activity of this 21-kDa enzyme is considerably lower than those of other endo ß-1,4-glucanases in the digestive fluid of A. kurodai, therefore its role in whole cellulose hydrolysis by sea hare is still uncertain. Although AkEG21 has a catalytic domain without a cellulose binding domain, it demonstrated stable binding to cellulose fibers, similar to that of fungal cellobiohydrolase (CBH) 1 and CBH 2, which is strongly inhibited by cellohexaose, suggesting the involvement of the catalytic site in cellulose binding. Cellulose-bound AkEG21 hydrolyzed cellulose to cellobiose, cellotriose and cellotetraose, but could not digest an external substrate, azo-carboxymethyl cellulose. Cellulose hydrolysis was considerably stimulated by the synergistic action of cellulose-bound AkEG21 and AkEG45, another ß-1,4-endoglucanase present in the digestive fluid of sea hare; however no synergy in carboxymethylcellulose hydrolysis was observed. When AkEG21 was removed from the digestive fluid by immunoprecipitation, the cellulose hydrolyzing activity of the fluid was significantly reduced, indicating a critical role of AkEG21 in cellulose hydrolysis by A. kurodai. These findings suggest that AkEG21 is a processive endoglucanase functionally equivalent to the CBH, which provides a CBH-independent mechanism for the mollusk to digest seaweed cellulose to glucose.
Collapse
Affiliation(s)
- Akihiko Tsuji
- Department of Biomolecular Function and Technology, Graduate School of Bioscience & Bioindustry, Tokushima University, Minamijosanjima, Tokushima, Japan
- * E-mail:
| | - Keizo Yuasa
- Department of Biomolecular Function and Technology, Graduate School of Bioscience & Bioindustry, Tokushima University, Minamijosanjima, Tokushima, Japan
| | - Chikako Asada
- Department of Bioresource Chemistry and Technology, Graduate School of Bioscience & Bioindustry, Tokushima University, Minamijosanjima, Tokushima, Japan
| |
Collapse
|
136
|
Luo C, Li Y, Liao H, Yang Y. De novo transcriptome assembly of the bamboo snout beetle Cyrtotrachelus buqueti reveals ability to degrade lignocellulose of bamboo feedstock. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:292. [PMID: 30386429 PMCID: PMC6204003 DOI: 10.1186/s13068-018-1291-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/15/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND The bamboo weevil Cyrtotrachelus buqueti, which is considered a pest species, damages bamboo shoots via its piercing-sucking mode of feeding. C. buqueti is well known for its ability to transform bamboo shoot biomass into nutrients and energy for growth, development and reproduction with high specificity and efficacy of bioconversion. Woody bamboo is a perennial grass that is a potential feedstock for lignocellulosic biomass because of its high growth rate and lignocellulose content. To verify our hypothesis that C. buqueti efficiently degrades bamboo lignocellulose, we assessed the bamboo lignocellulose-degrading ability of this insect through RNA sequencing for identifying a potential route for utilisation of bamboo biomass. RESULTS Analysis of carbohydrate-active enzyme (CAZyme) family genes in the developmental transcriptome of C. buqueti revealed 1082 unigenes, including 55 glycoside hydrolases (GH) families containing 309 GHs, 51 glycosyltransferases (GT) families containing 329 GTs, 8 carbohydrate esterases (CE) families containing 174 CEs, 6 polysaccharide lyases (PL) families containing 11 PLs, 8 auxiliary activities (AA) families containing 131 enzymes with AAs and 17 carbohydrate-binding modules (CBM) families containing 128 CBMs. We used weighted gene co-expression network analysis to analyse developmental RNA sequencing data, and 19 unique modules were identified in the analysis. Of these modules, the expression of MEyellow module genes was unique and the module included numerous CAZyme family genes. CAZyme genes in this module were divided into two groups depending on whether gene expression was higher in the adult/larval stages or in the egg/pupal stages. Enzyme assays revealed that cellulase activity was highest in the midgut whereas lignin-degrading enzyme activity was highest in the hindgut, consistent with findings from intestinal gene expression studies. We also analysed the expression of CAZyme genes in the transcriptome of C. buqueti from two cities and found that several genes were also assigned to CAZyme families. The insect had genes and enzymes associated with lignocellulose degradation, the expression of which differed with developmental stage and intestinal region. CONCLUSION Cyrtotrachelus buqueti exhibits lignocellulose degradation-related enzymes and genes, most notably CAZyme family genes. CAZyme family genes showed differences in expression at different developmental stages, with adults being more effective at cellulose degradation and larvae at lignin degradation, as well as at different regions of the intestine, with the midgut being more cellulolytic than the hindgut. This degradative system could be utilised for the bioconversion of bamboo lignocellulosic biomass.
Collapse
Affiliation(s)
- Chaobing Luo
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| | - Yuanqiu Li
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
- College of Food and Biological Engineering, Xihua University, Chengdu, China
| | - Hong Liao
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| | - Yaojun Yang
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, No. 778, Riverside Road, Central District, Leshan, 614000 China
| |
Collapse
|
137
|
Wu B, Gaskell J, Held BW, Toapanta C, Vuong T, Ahrendt S, Lipzen A, Zhang J, Schilling JS, Master E, Grigoriev IV, Blanchette RA, Cullen D, Hibbett DS. Substrate-Specific Differential Gene Expression and RNA Editing in the Brown Rot Fungus Fomitopsis pinicola. Appl Environ Microbiol 2018; 84:e00991-18. [PMID: 29884757 PMCID: PMC6070754 DOI: 10.1128/aem.00991-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/03/2018] [Indexed: 12/20/2022] Open
Abstract
Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. Fomitopsis pinicola is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed the gene expression levels and RNA editing profiles of F. pinicola from submerged cultures with ground wood powder (sampled at 5 days) or solid wood wafers (sampled at 10 and 30 days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures). Fomitopsis pinicola expressed similar sets of wood-degrading enzymes typical of brown rot fungi across all culture conditions and time points. Nevertheless, differential gene expression and RNA editing were observed across all pairwise comparisons of substrates and time points. Genes exhibiting differential expression and RNA editing encode diverse enzymes with known or potential function in brown rot decay, including laccase, benzoquinone reductase, aryl alcohol oxidase, cytochrome P450s, and various glycoside hydrolases. There was no overlap between differentially expressed and differentially edited genes, suggesting that these may provide F. pinicola with independent mechanisms for responding to different conditions. Comparing transcriptomes from submerged cultures and wood wafers, we found that culture conditions had a greater impact on global expression profiles than substrate wood species. In contrast, the suites of genes subject to RNA editing were much less affected by culture conditions. These findings highlight the need for standardization of culture conditions in studies of gene expression in wood-decaying fungi.IMPORTANCE All species of wood-decaying fungi occur on a characteristic range of substrates (host plants), which may be broad or narrow. Understanding the mechanisms that enable fungi to grow on particular substrates is important for both fungal ecology and applied uses of different feedstocks in industrial processes. We grew the wood-decaying polypore Fomitopsis pinicola on three different wood species, aspen, pine, and spruce, under various culture conditions. We examined both gene expression (transcription levels) and RNA editing (posttranscriptional modification of RNA, which can potentially yield different proteins from the same gene). We found that F. pinicola is able to modify both gene expression and RNA editing profiles across different substrate species and culture conditions. Many of the genes involved encode enzymes with known or predicted functions in wood decay. This work provides clues to how wood-decaying fungi may adjust their arsenal of decay enzymes to accommodate different host substrates.
Collapse
Affiliation(s)
- Baojun Wu
- Biology Department, Clark University, Worcester, Massachusetts, USA
| | - Jill Gaskell
- USDA Forest Products Laboratory, Madison, Wisconsin, USA
| | - Benjamin W Held
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Cristina Toapanta
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Thu Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Steven Ahrendt
- Department of Energy Joint Genome Institute, Walnut Creek, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Jiwei Zhang
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Jonathan S Schilling
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Emma Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Igor V Grigoriev
- Department of Energy Joint Genome Institute, Walnut Creek, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Robert A Blanchette
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Dan Cullen
- USDA Forest Products Laboratory, Madison, Wisconsin, USA
| | - David S Hibbett
- Biology Department, Clark University, Worcester, Massachusetts, USA
| |
Collapse
|
138
|
Hernández-Martínez CA, Treviño-Cabrera GF, Hernández-Luna CE, Silva-Vázquez R, Hume ME, Gutiérrez-Soto G, Méndez-Zamora G. The effects of hydrolysed sorghum on growth performance and meat quality of rabbits. WORLD RABBIT SCIENCE 2018. [DOI: 10.4995/wrs.2018.7822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
<p class="Articletitle">The effect of sorghum hydrolysed by <em>Trametes maxima</em> CU1 and <em>Pycnoporus sanguineus</em> CS2 was evaluated on growth performance traits and rabbit meat quality. A total of 24 unsexed New Zealand rabbits, weaned at 20 d of age, were allocated to 2 treatments: T1 (diet including 300 g/kg of non-hydrolysed sorghum) and T2 (diet including 300 g/kg of hydrolysed sorghum by <em>Trametes maxima</em> CU1 and <em>Pycnoporus sanguineus</em> CS2). Rabbits of group T2 did not have significantly different (<em>P</em>>0.05) feed intake compared to those in T1. Carcass traits were also not significantly different (<em>P</em>>0.05) between the 2 groups. The pH, water-holding capacity, colour and cooking loss of the longissimus lumborum were not different (<em>P</em>>0.05) between treatments, whereas the pH of the rabbits biceps femoris was higher in T2 (6.21; <em>P</em><0.05) than in T1 (6.14). Meat hardness and gumminess in T2 were lower (<em>P</em><0.05) in comparison to meat from T1. Thus, sorghum hydrolysed by <em>Trametes maxima</em> CU1 and <em>Pycnoporus sanguineus</em> CS2 contributed to a better rabbit meat texture.</p>
Collapse
|
139
|
Tan YN, Li Q. Microbial production of rhamnolipids using sugars as carbon sources. Microb Cell Fact 2018; 17:89. [PMID: 29884194 PMCID: PMC5994124 DOI: 10.1186/s12934-018-0938-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/31/2018] [Indexed: 12/27/2022] Open
Abstract
Rhamnolipids are a class of biosurfactants with effective surface-active properties. The high cost of microbial production of rhamnolipids largely affects their commercial applications. To reduce the production post, research has been carried out in screening more powerful strains, engineering microbes with higher biosurfactant yields and exploring cheaper substrates to reduce the production cost. Extensive refining is required for biosurfactant production using oils and oil-containing wastes, necessitating the use of complex and expensive biosurfactant recovery methods such as extraction with solvents or acid precipitation. As raw materials normally can account for 10-30% of the overall production cost, sugars have been proven to be an alternative carbon source for microbial production of rhamnolipids due to its lower costs and straightforward processing techniques. Studies have thus been focused on using tropical agroindustrial crop residues as renewable substrates. Herein, we reviewed studies that are using sugar-containing substrates as carbon sources for producing rhamnolipids. We speculate that sugars derived from agricultural wastes rich in cellulose and sugar-containing wastes are potential carbon sources in fermentation while challenges still remain in large scales.
Collapse
Affiliation(s)
- Yun Nian Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Singapore, Jurong Island 627833 Singapore
| | - Qingxin Li
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Singapore, Jurong Island 627833 Singapore
| |
Collapse
|
140
|
Matuszewska A, Jaszek M, Stefaniuk D, Ciszewski T, Matuszewski Ł. Anticancer, antioxidant, and antibacterial activities of low molecular weight bioactive subfractions isolated from cultures of wood degrading fungus Cerrena unicolor. PLoS One 2018; 13:e0197044. [PMID: 29874240 PMCID: PMC5991343 DOI: 10.1371/journal.pone.0197044] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
The aim of this study is to investigate in vitro the anticancer, antioxidant, and antibacterial activities of three low molecular weight subfractions I, II and III isolated from secondary metabolites produced by the wood degrading fungus Cerrena unicolor. The present study demonstrated that the low molecular weight subfractions III exhibited the strongest inhibitory activity towards breast carcinoma cells MDA-MB-231, prostatic carcinoma cells PC3, and breast cancer cells MCF7 with the half-maximal inhibitory concentration (IC50) value of 52,25 μg/mL, 60,66 μg/mL, and 54,92 μg/mL, respectively. The highest percentage of inhibition was noted at a concentration of 300 μg/mL in all the examined tumor lines. A significant percentage (59.08%) of ex-LMSIII inhibition of the MDA-MB-231 tumor line was reached at a concentration of 15 μg/ml, while the concentration applied did not affect normal human fibroblast cells. The low molecular weight subfraction III was the most effective and additionally showed the highest free radical 1,1-diphenyl-2-picryl-hydrazyl scavenging activity (IC50 20.39 μg/mL) followed by the low molecular weight subfraction I (IC50 64.14 μg/mL) and II (IC50 49.22 μg/mL). The antibacterial activity of the tested preparations was evaluated against three microorganisms: Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. The MIC minimal inhibitory concentration (MIC) values for the low molecular weight subfraction I, II, and III showed a stronger inhibition effect on S. aureus than on B. subtilis and E. coli cells. The MIC values for the low molecular weight subfraction II against S. aureus, B. subtilis, and E. coli were 6.25, 12.5, and 100 mg/mL, respectively.
Collapse
Affiliation(s)
- Anna Matuszewska
- Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
- * E-mail:
| | - Magdalena Jaszek
- Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Dawid Stefaniuk
- Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | | | - Łukasz Matuszewski
- Department of Paediatric Orthopaedics and Rehabilitation, Medical University, Lublin, Poland
| |
Collapse
|
141
|
Kumar M, Verma S, Gazara RK, Kumar M, Pandey A, Verma PK, Thakur IS. Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating β-proteobacterium Pandoraea sp. ISTKB. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:154. [PMID: 29991962 PMCID: PMC5987411 DOI: 10.1186/s13068-018-1148-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/17/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Lignin is a major component of plant biomass and is recalcitrant to degradation due to its complex and heterogeneous aromatic structure. The biomass-based research mainly focuses on polysaccharides component of biomass and lignin is discarded as waste with very limited usage. The sustainability and success of plant polysaccharide-based biorefinery can be possible if lignin is utilized in improved ways and with minimal waste generation. Discovering new microbial strains and understanding their enzyme system for lignin degradation are necessary for its conversion into fuel and chemicals. The Pandoraea sp. ISTKB was previously characterized for lignin degradation and successfully applied for pretreatment of sugarcane bagasse and polyhydroxyalkanoate (PHA) production. In this study, genomic analysis and proteomics on aromatic polymer kraft lignin and vanillic acid are performed to find the important enzymes for polymer utilization. RESULTS Genomic analysis of Pandoraea sp. ISTKB revealed the presence of strong lignin degradation machinery and identified various candidate genes responsible for lignin degradation and PHA production. We also applied label-free quantitative proteomic approach to identify the expression profile on monoaromatic compound vanillic acid (VA) and polyaromatic kraft lignin (KL). Genomic and proteomic analysis simultaneously discovered Dyp-type peroxidase, peroxidases, glycolate oxidase, aldehyde oxidase, GMC oxidoreductase, laccases, quinone oxidoreductase, dioxygenases, monooxygenases, glutathione-dependent etherases, dehydrogenases, reductases, and methyltransferases and various other recently reported enzyme systems such as superoxide dismutases or catalase-peroxidase for lignin degradation. A strong stress response and detoxification mechanism was discovered. The two important gene clusters for lignin degradation and three PHA polymerase spanning gene clusters were identified and all the clusters were functionally active on KL-VA. CONCLUSIONS The unusual aerobic '-CoA'-mediated degradation pathway of phenylacetate and benzoate (reported only in 16 and 4-5% of total sequenced bacterial genomes), peroxidase-accessory enzyme system, and fenton chemistry based are the major pathways observed for lignin degradation. Both ortho and meta ring cleavage pathways for aromatic compound degradation were observed in expression profile. Genomic and proteomic approaches provided validation to this strain's robust machinery for the metabolism of recalcitrant compounds and PHA production and provide an opportunity to target important enzymes for lignin valorization in future.
Collapse
Affiliation(s)
- Madan Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sandhya Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Rajesh Kumar Gazara
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Manish Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, 31 MG Marg, Lucknow, 226 001 India
| | - Praveen Kumar Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
142
|
Tovar-Herrera OE, Martha-Paz AM, Pérez-LLano Y, Aranda E, Tacoronte-Morales JE, Pedroso-Cabrera MT, Arévalo-Niño K, Folch-Mallol JL, Batista-García RA. Schizophyllum commune: An unexploited source for lignocellulose degrading enzymes. Microbiologyopen 2018; 7:e00637. [PMID: 29785766 PMCID: PMC6011954 DOI: 10.1002/mbo3.637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 02/01/2023] Open
Abstract
Lignocellulose represents the most abundant source of carbon in the Earth. Thus, fraction technology of the biomass turns up as an emerging technology for the development of biorefineries. Saccharification and fermentation processes require the formulation of enzymatic cocktails or the development of microorganisms (naturally or genetically modified) with the appropriate toolbox to produce a cost‐effective fermentation technology. Therefore, the search for microorganisms capable of developing effective cellulose hydrolysis represents one of the main challenges in this era. Schizophyllum commune is an edible agarical with a great capability to secrete a myriad of hydrolytic enzymes such as xylanases and endoglucanases that are expressed in a high range of substrates. In addition, a large number of protein‐coding genes for glycoside hydrolases, oxidoreductases like laccases (Lacs; EC 1.10.3.2), as well as some sequences encoding for lytic polysaccharide monooxygenases (LPMOs) and expansins‐like proteins demonstrate the potential of this fungus to be applied in different biotechnological process. In this review, we focus on the enzymatic toolbox of S. commune at the genetic, transcriptomic, and proteomic level, as well as the requirements to be employed for fermentable sugars production in biorefineries. At the end the trend of its use in patent registration is also reviewed.
Collapse
Affiliation(s)
- Omar Eduardo Tovar-Herrera
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, México
| | - Adriana Mayrel Martha-Paz
- Laboratorio de Micología y Fitopatología, Unidad de manipulación genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, México
| | - Yordanis Pérez-LLano
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Elisabet Aranda
- Instituto del Agua, Universidad de Granada, Granada, Granada, Spain
| | | | | | - Katiushka Arévalo-Niño
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, México
| | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
143
|
Cellulase production by white-rot basidiomycetous fungi: solid-state versus submerged cultivation. Appl Microbiol Biotechnol 2018; 102:5827-5839. [PMID: 29766241 DOI: 10.1007/s00253-018-9072-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/28/2018] [Accepted: 05/01/2018] [Indexed: 10/16/2022]
Abstract
White-rot basidiomycetous (WRB) fungi are a group of wood-decaying fungi that are known to be endowed with the ability to secrete enzymes that can catalyze decomposition of a range of plant cell wall polysaccharides, including cellulose and lignin. Expression of these enzymes is induced by the substrate and the enzyme yields obtained depend on the growth of the fungi and thus the mode of cultivation. In order to exploit WRB fungi for local enzyme production for converting lignocellulosic materials in biorefinery processes, the fungi can principally be cultivated in either solid-state (SSC) or submerged cultivation (SmC) systems. In this review, we quantitatively assess the data available in the literature on cellulase production yields by WRB fungi cultivated by SSC or SmC. The review also assesses cellulolytic enzyme production rates and enzyme recovery when WRB fungi are cultivated on different biomass residues in SSC or SmC systems. Although some variation in cellulase production yields have been reported for certain substrates, the analysis convincingly shows that SmC is generally more efficient than SSC for obtaining high cellulase production yields and high cellulase production rates on the substrate used. However, the cultivation method also affects the enzyme activity profile obtained, and the resulting enzyme titers and significant dilution of the enzymes usually occurs in SmC. The review also highlights some future approaches, including sequential cultivations and co-cultivation of WRB fungi for improved enzyme expression, as well as on-site approaches for production of enzyme blends for industrial biomass conversion. The quantitative comparisons made have implications for selection of the most appropriate cultivation method for WRB fungi for attaining maximal cellulase production.
Collapse
|
144
|
Shah F, Mali T, Lundell TK. Polyporales Brown Rot Species Fomitopsis pinicola: Enzyme Activity Profiles, Oxalic Acid Production, and Fe 3+-Reducing Metabolite Secretion. Appl Environ Microbiol 2018; 84:e02662-17. [PMID: 29439983 PMCID: PMC5881074 DOI: 10.1128/aem.02662-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/01/2018] [Indexed: 02/05/2023] Open
Abstract
Basidiomycota fungi in the order Polyporales are specified to decomposition of dead wood and woody debris and thereby are crucial players in the degradation of organic matter and cycling of carbon in the forest ecosystems. Polyporales wood-decaying species comprise both white rot and brown rot fungi, based on their mode of wood decay. While the white rot fungi are able to attack and decompose all the lignocellulose biopolymers, the brown rot species mainly cause the destruction of wood polysaccharides, with minor modification of the lignin units. The biochemical mechanism of brown rot decay of wood is still unclear and has been proposed to include a combination of nonenzymatic oxidation reactions and carbohydrate-active enzymes. Therefore, a linking approach is needed to dissect the fungal brown rot processes. We studied the brown rot Polyporales species Fomitopsis pinicola by following mycelial growth and enzyme activity patterns and generating metabolites together with Fenton-promoting Fe3+-reducing activity for 3 months in submerged cultures supplemented with spruce wood. Enzyme activities to degrade hemicellulose, cellulose, proteins, and chitin were produced by three Finnish isolates of F. pinicola Substantial secretion of oxalic acid and a decrease in pH were notable. Aromatic compounds and metabolites were observed to accumulate in the fungal cultures, with some metabolites having Fe3+-reducing activity. Thus, F. pinicola demonstrates a pattern of strong mycelial growth leading to the active production of carbohydrate- and protein-active enzymes, together with the promotion of Fenton biochemistry. Our findings point to fungal species-level "fine-tuning" and variations in the biochemical reactions leading to the brown rot type of wood decay.IMPORTANCEFomitopsis pinicola is a common fungal species in boreal and temperate forests in the Northern Hemisphere encountered as a wood-colonizing saprotroph and tree pathogen, causing a severe brown rot type of wood degradation. However, its lignocellulose-decomposing mechanisms have remained undiscovered. Our approach was to explore both the enzymatic activities and nonenzymatic Fenton reaction-promoting activities (Fe3+ reduction and metabolite production) by cultivating three isolates of F. pinicola in wood-supplemented cultures. Our findings on the simultaneous production of versatile enzyme activities, including those of endoglucanase, xylanase, β-glucosidase, chitinase, and acid peptidase, together with generation of low pH, accumulation of oxalic acid, and Fe3+-reducing metabolites, increase the variations of fungal brown rot decay mechanisms. Furthermore, these findings will aid us in revealing the wood decay proteomic, transcriptomic, and metabolic activities of this ecologically important forest fungal species.
Collapse
Affiliation(s)
- Firoz Shah
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Tuulia Mali
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Taina K Lundell
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
145
|
Paramjeet S, Manasa P, Korrapati N. Biofuels: Production of fungal-mediated ligninolytic enzymes and the modes of bioprocesses utilizing agro-based residues. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
146
|
|
147
|
Epps MJ, Arnold AE. Quantifying beetle-macrofungal associations in a temperate biodiversity hot spot. Mycologia 2018; 110:269-285. [DOI: 10.1080/00275514.2018.1430439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Mary Jane Epps
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, Arizona 85721
| | - A. Elizabeth Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
148
|
Wani ZA, Ahmad T, Nalli Y, Ali A, Singh AP, Vishwakarma RA, Ashraf N, Riyaz-Ul-Hassan S. Porostereum sp., Associated with Saffron (Crocus sativus L.), is a Latent Pathogen Capable of Producing Phytotoxic Chlorinated Aromatic Compounds. Curr Microbiol 2018; 75:880-887. [DOI: 10.1007/s00284-018-1461-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/19/2018] [Indexed: 11/24/2022]
|
149
|
Gu J, Liu T, Sadiq FA, Yang H, Yuan L, Zhang G, He G. Biogenic amines content and assessment of bacterial and fungal diversity in stinky tofu – A traditional fermented soy curd. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.08.085] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
150
|
Guo T, Zhang Q, Ai C, Liang G, He P, Zhou W. Nitrogen enrichment regulates straw decomposition and its associated microbial community in a double-rice cropping system. Sci Rep 2018; 8:1847. [PMID: 29382917 PMCID: PMC5789828 DOI: 10.1038/s41598-018-20293-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/16/2018] [Indexed: 11/30/2022] Open
Abstract
Litter bag method was conducted to investigate the decomposition characteristics of rice straw (6000 kg ha−1) and its associated microbial community under different nitrogen (N) addition rates (0, 90, 180 and 270 kg N ha−1) under double-rice rotation. Generally, straw mass reduction and nutrient release of rice straw were faster in early stage of decomposition (0−14 days after decomposition), when easily-utilized carbohydrates and amines were the preferential substrates for involved decomposers. Straw-associated N-acetyl-glucosamidase and L-leucine aminopeptidase activities, which were higher under 180 and 270 kg N ha−1 addition, showed more activities in the early stage of decomposition. Gram-positive bacteria were the quantitatively predominant microorganisms, while fungi and actinomycetes played a key role in decomposing recalcitrant compounds in late decomposition stage. Straw residue at middle decomposition stage was associated with greater cbhI and GH48 abundance and was followed by stronger β-glucosidase, β-cellobiohydrolase and β-xylosidase activities. Although enzyme activities and cellulolytic gene abundances were enhanced by 180 and 270 kg N ha−1 application, microbial communities and metabolic capability associated with rice straw were grouped by sampling time rather than specific fertilizer treatments. Thus, we recommended 180 kg N ha−1 application should be the economical rate for the current 6000 kg ha−1 rice straw returning.
Collapse
Affiliation(s)
- Tengfei Guo
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Zhongguancun No. 12, Beijing, 100081, PR China
| | - Qian Zhang
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Zhongguancun No. 12, Beijing, 100081, PR China
| | - Chao Ai
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Zhongguancun No. 12, Beijing, 100081, PR China
| | - Guoqing Liang
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Zhongguancun No. 12, Beijing, 100081, PR China
| | - Ping He
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Zhongguancun No. 12, Beijing, 100081, PR China
| | - Wei Zhou
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Zhongguancun No. 12, Beijing, 100081, PR China.
| |
Collapse
|