101
|
Bhattacharya S, Roy C, Mandal S, Sarkar J, Rameez MJ, Mondal N, Mapder T, Chatterjee S, Pyne P, Alam M, Haldar PK, Roy R, Fernandes S, Peketi A, Chakraborty R, Mazumdar A, Ghosh W. Aerobic microbial communities in the sediments of a marine oxygen minimum zone. FEMS Microbiol Lett 2020; 367:5911577. [PMID: 32975580 PMCID: PMC7568448 DOI: 10.1093/femsle/fnaa157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022] Open
Abstract
The ecology of aerobic microorganisms is never explored in marine oxygen minimum zone (OMZ) sediments. Here we reveal aerobic bacterial communities along ∼3 m sediment-horizons of the eastern Arabian Sea OMZ. Sulfide-containing sediment-cores retrieved from 530 mbsl (meters beneath the sea-level) and 580 mbsl were explored at 15–30 cm intervals, using metagenomics, pure-culture-isolation, genomics and metatranscriptomics. Genes for aerobic respiration, and oxidation of methane/ammonia/alcohols/thiosulfate/sulfite/organosulfur-compounds, were detected in the metagenomes from all 25 sediment-samples explored. Most probable numbers for aerobic chemolithoautotrophs and chemoorganoheterotrophs at individual sample-sites were up to 1.1 × 107 (g sediment)-1. The sediment-sample collected from 275 cmbsf (centimeters beneath the seafloor) of the 530-mbsl-core yielded many such obligately aerobic isolates belonging to Cereibacter, Guyparkeria, Halomonas, Methylophaga, Pseudomonas and Sulfitobacter which died upon anaerobic incubation, despite being provided with all possible electron acceptors and fermentative substrates. High percentages of metatranscriptomic reads from the 275 cmbsf sediment-sample, and metagenomic reads from all 25 sediment-samples, matched the isolates’ genomic sequences including those for aerobic metabolisms, genetic/environmental information processing and cell division, thereby illustrating the bacteria's in-situ activity, and ubiquity across the sediment-horizons, respectively. The findings hold critical implications for organic carbon sequestration/remineralization, and inorganic compounds oxidation, within the sediment realm of global marine OMZs.
Collapse
Affiliation(s)
| | - Chayan Roy
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Subhrangshu Mandal
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Jagannath Sarkar
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Moidu Jameela Rameez
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Nibendu Mondal
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Tarunendu Mapder
- Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata 700009, India
| | - Sumit Chatterjee
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Prosenjit Pyne
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Masrure Alam
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Prabir Kumar Haldar
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Rimi Roy
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Svetlana Fernandes
- Gas Hydrate Research Group, Geological Oceanography, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Aditya Peketi
- Gas Hydrate Research Group, Geological Oceanography, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Ranadhir Chakraborty
- Department of Biotechnology, University of North Bengal, Raja Rammohanpur, District - Darjeeling, West Bengal 734013, India
| | - Aninda Mazumdar
- Gas Hydrate Research Group, Geological Oceanography, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India
| |
Collapse
|
102
|
Wells M, Stolz JF. Microbial selenium metabolism: a brief history, biogeochemistry and ecophysiology. FEMS Microbiol Ecol 2020; 96:5921172. [DOI: 10.1093/femsec/fiaa209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 01/02/2023] Open
Abstract
ABSTRACTSelenium is an essential trace element for organisms from all three domains of life. Microorganisms, in particular, mediate reductive transformations of selenium that govern the element's mobility and bioavailability in terrestrial and aquatic environments. Selenium metabolism is not just ubiquitous but an ancient feature of life likely extending back to the universal common ancestor of all cellular lineages. As with the sulfur biogeochemical cycle, reductive transformations of selenium serve two metabolic functions: assimilation into macromolecules and dissimilatory reduction during anaerobic respiration. This review begins with a historical overview of how research in both aspects of selenium metabolism has developed. We then provide an overview of the global selenium biogeochemical cycle, emphasizing the central role of microorganisms in the cycle. This serves as a basis for a robust discussion of current models for the evolution of the selenium biogeochemical cycle over geologic time, and how knowledge of the evolution and ecophysiology of selenium metabolism can enrich and refine these models. We conclude with a discussion of the ecophysiological function of selenium-respiring prokaryotes within the cycle, and the tantalizing possibility of oxidative selenium transformations during chemolithoautotrophic growth.
Collapse
Affiliation(s)
- Michael Wells
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
103
|
Pandey CB, Kumar U, Kaviraj M, Minick KJ, Mishra AK, Singh JS. DNRA: A short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139710. [PMID: 32544704 DOI: 10.1016/j.scitotenv.2020.139710] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
This paper reviews dissimilatory nitrate reduction to ammonium (DNRA) in soils - a newly appreciated pathway of nitrogen (N) cycling in the terrestrial ecosystems. The reduction of NO3- occurs in two steps; in the first step, NO3- is reduced to NO2-; and in the second, unlike denitrification, NO2- is reduced to NH4+ without intermediates. There are two sets of NO3-/NO2- reductase enzymes, i.e., Nap/Nrf and Nar/Nir; the former occurs on the periplasmic-membrane and energy conservation is respiratory via electron-transport-chain, whereas the latter is cytoplasmic and energy conservation is both respiratory and fermentative (Nir, substrate-phosphorylation). Since, Nir catalyzes both assimilatory- and dissimilatory-nitrate reduction, the nrfA gene, which transcribes the NrfA protein, is treated as a molecular-marker of DNRA; and a high nrfA/nosZ (N2O-reductase) ratio favours DNRA. Recently, several crystal structures of NrfA have been presumed to producee N2O as a byproduct of DNRA via the NO (nitric-oxide) pathway. Meta-analyses of about 200 publications have revealed that DNRA is regulated by oxidation state of soils and sediments, carbon (C)/N and NO2-/NO3- ratio, and concentrations of ferrous iron (Fe2+) and sulfide (S2-). Under low-redox conditions, a high C/NO3- ratio selects for DNRA while a low ratio selects for denitrification. When the proportion of both C and NO3- are equal, the NO2-/NO3- ratio modulates partitioning of NO3-, and a high NO2-/NO3- ratio favours DNRA. A high S2-/NO3- ratio also promotes DNRA in coastal-ecosystems and saline sediments. Soil pH, temperature, and fine soil particles are other factors known to influence DNRA. Since, DNRA reduces NO3- to NH4+, it is essential for protecting NO3- from leaching and gaseous (N2O) losses and enriches soils with readily available NH4+-N to primary producers and heterotrophic microorganisms. Therefore, DNRA may be treated as a tool to reduce ground-water NO3- pollution, enhance soil health and improve environmental quality.
Collapse
Affiliation(s)
- C B Pandey
- ICAR-Central Arid Zone Research Institute, Jodhpur 342003, Rajasthan, India.
| | - Upendra Kumar
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India.
| | - Megha Kaviraj
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - K J Minick
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - A K Mishra
- International Rice Research Institute, New Delhi 110012, India
| | - J S Singh
- Ecosystem Analysis Lab, Centre of Advanced Study in Botany, Banaras Hindu University (BHU), Varanasi 221005, India
| |
Collapse
|
104
|
Insights into growth kinetics and roles of enzymes of Krebs' cycle and sulfur oxidation during exochemolithoheterotrophic growth of Achromobacter aegrifaciens NCCB 38021 on succinate with thiosulfate as the auxiliary electron donor. Arch Microbiol 2020; 203:561-578. [PMID: 32989476 DOI: 10.1007/s00203-020-02028-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/18/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Achromobacter aegrifaciens NCCB 38021 was grown heterotrophically on succinate versus exochemolithoheterotrophically on succinate with thiosulfate as auxiliary electron donor. In batch culture, no significant differences in specific molar growth yield or specific growth rate were found for the two growth conditions, but in continuous culture in the succinate-limited chemostat, the maximum specific growth yield coefficient increased by 23.3% with thiosulfate present, consistent with previous studies of endo- and exochemolithoheterotrophs and thermodynamic predictions. Thiosulfate oxidation was coupled to respiration at cytochrome c551, and thiosulfate-dependent ATP biosynthesis occurred. Specific activities of cytochrome c-linked thiosulfate dehydrogenase (E.C. 1.8.2.2) and two other enzymes of sulfur metabolism were significantly higher in exochemolithoheterotrophically grown cell extracts, while those of succinyl-transferring 2-oxoglutarate dehydrogenase (E.C. 1.2.4.2), fumarate hydratase (E.C. 4.2.1.2) and malate dehydrogenase (NAD+, E.C. 1.1.1.37) were significantly lower-presumably owing to less need to generate reducing equivalents during Krebs' cycle, since they could be produced from thiosulfate oxidation.
Collapse
|
105
|
Abstract
Mismanagement of mine waste rock can mobilize acidity, metal (loid)s, and other contaminants, and thereby negatively affect downstream environments. Hence, strategic long-term planning is required to prevent and mitigate deleterious environmental impacts. Technical frameworks to support waste-rock management have existed for decades and typically combine static and kinetic testing, field-scale experiments, and sometimes reactive-transport models. Yet, the design and implementation of robust long-term solutions remains challenging to date, due to site-specificity in the generated waste rock and local weathering conditions, physicochemical heterogeneity in large-scale systems, and the intricate coupling between chemical kinetics and mass- and heat-transfer processes. This work reviews recent advances in our understanding of the hydrogeochemical behavior of mine waste rock, including improved laboratory testing procedures, innovative analytical techniques, multi-scale field investigations, and reactive-transport modeling. Remaining knowledge-gaps pertaining to the processes involved in mine waste weathering and their parameterization are identified. Practical and sustainable waste-rock management decisions can to a large extent be informed by evidence-based simplification of complex waste-rock systems and through targeted quantification of a limited number of physicochemical parameters. Future research on the key (bio)geochemical processes and transport dynamics in waste-rock piles is essential to further optimize management and minimize potential negative environmental impacts.
Collapse
|
106
|
Sato Y, Yabuki T, Adachi N, Moriya T, Arakawa T, Kawasaki M, Yamada C, Senda T, Fushinobu S, Wakagi T. Crystallographic and cryogenic electron microscopic structures and enzymatic characterization of sulfur oxygenase reductase from Sulfurisphaera tokodaii. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100030. [PMID: 32775998 PMCID: PMC7398979 DOI: 10.1016/j.yjsbx.2020.100030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Sulfur oxygenase reductase (SOR) was biochemically and structurally characterized. High resolution structures of SOR were determined by crystallography and cryo-EM. Twenty-four identical subunits of SOR form a hollow sphere. Catalytic components exhibited different features in the crystal and cryo-EM structures.
Sulfur oxygenase reductases (SORs) are present in thermophilic and mesophilic archaea and bacteria, and catalyze oxygen-dependent oxygenation and disproportionation of elemental sulfur. SOR has a hollow, spherical homo-24-mer structure and reactions take place at active sites inside the chamber. The crystal structures of SORs from Acidianus species have been reported. However, the states of the active site components (mononuclear iron and cysteines) and the entry and exit paths of the substrate and products are still in dispute. Here, we report the biochemical and structural characterizations of SORs from the thermoacidophilic archaeon Sulfurisphaera tokodaii (StSOR) and present high-resolution structures determined by X-ray crystallography and cryogenic electron microscopy (cryo-EM). The crystal structure of StSOR was determined at 1.73 Å resolution. At the catalytic center, iron is ligated to His86, His90, Glu114, and two water molecules. Three conserved cysteines in the cavity are located 9.5–13 Å from the iron and were observed as free thiol forms. A mutational analysis indicated that the iron and one of the cysteines (Cys31) were essential for both activities. The cryo-EM structure was determined at 2.24 Å resolution using an instrument operating at 200 kV. The two structures determined by different methodologies showed similar main chain traces, but the maps exhibited different features at catalytically important components. A possible role of StSOR in the sulfur metabolism of S. tokodaii (an obligate aerobe) is discussed based on this study. Given the high resolution achieved in this study, StSOR was shown to be a good benchmark sample for cryo-EM.
Collapse
Key Words
- AaSOR, Acidianus ambivalens SOR
- AqSOR, Aquifex aeolicus SOR
- Archaea
- AtSOR, Acidianus tengchongensis SOR
- CTF, contrast transfer function
- Cryogenic electron microscopy
- DTNB, 5,5′-dithiobis(2-nitrobenzoic acid)
- FSC, Fourier shell correlation
- HnSOR, Halothiobacillus neapolitanus SOR
- Nonheme mononuclear iron center
- PAGE, polyacrylamide gel electrophoresis
- RMSD, root mean square deviation
- SD, standard deviation
- SDS, sodium dodecyl sulfate
- SOR, sulfur oxygenase reductase
- SbSOR, Sulfobacillus thermosulfidooxidans SOR
- StSOR, Sulfurisphaera tokodaii SOR
- Sulfur metabolism
- TpSOR, Thioalkalivibrio paradoxus SOR
- X-ray crystallography
- cryo-EM, cryogenic electron microscopy
- pCMB, p-chloromercuribenzoate
Collapse
Affiliation(s)
- Yuta Sato
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Yabuki
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naruhiko Adachi
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Toshio Moriya
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Takatoshi Arakawa
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masato Kawasaki
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Chihaya Yamada
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayoshi Wakagi
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
107
|
Abstract
A unique environment at Borup Fiord Pass is characterized by a sulfur-enriched glacial ecosystem in the low-temperature Canadian High Arctic. BFP represents one of the best terrestrial analog sites for studying icy, sulfur-rich worlds outside our own, such as Europa and Mars. The site also allows investigation of sulfur-based microbial metabolisms in cold environments here on Earth. Here, we report whole-genome sequencing data that suggest that sulfur cycling metabolisms at BFP are more widely used across bacterial taxa than predicted. From our analyses, the metabolic capability of sulfur oxidation among multiple community members appears likely due to functional redundancy present in their genomes. Functional redundancy, with respect to sulfur-oxidation at the BFP sulfur-ice environment, may indicate that this dynamic ecosystem hosts microorganisms that are able to use multiple sulfur electron donors alongside other metabolic pathways, including those for carbon and nitrogen. Biological sulfur cycling in polar, low-temperature ecosystems is an understudied phenomenon in part due to difficulty of access and the dynamic nature of glacial environments. One such environment where sulfur cycling is known to play an important role in microbial metabolisms is located at Borup Fiord Pass (BFP) in the Canadian High Arctic. Here, transient springs emerge from ice near the terminus of a glacier, creating a large area of proglacial aufeis (spring-derived ice) that is often covered in bright yellow/white sulfur, sulfate, and carbonate mineral precipitates accompanied by a strong odor of hydrogen sulfide. Metagenomic sequencing of samples from multiple sites and of various sample types across the BFP glacial system produced 31 metagenome-assembled genomes (MAGs) that were queried for sulfur, nitrogen, and carbon cycling/metabolism genes. An abundance of sulfur cycling genes was widespread across the isolated MAGs and sample metagenomes taxonomically associated with the bacterial classes Alphaproteobacteria and Gammaproteobacteria and Campylobacteria (formerly the Epsilonproteobacteria). This corroborates previous research from BFP implicating Campylobacteria as the primary class responsible for sulfur oxidation; however, data reported here suggested putative sulfur oxidation by organisms in both the alphaproteobacterial and gammaproteobacterial classes that was not predicted by previous work. These findings indicate that in low-temperature, sulfur-based environments, functional redundancy may be a key mechanism that microorganisms use to enable coexistence whenever energy is limited and/or focused by redox chemistry. IMPORTANCE A unique environment at Borup Fiord Pass is characterized by a sulfur-enriched glacial ecosystem in the low-temperature Canadian High Arctic. BFP represents one of the best terrestrial analog sites for studying icy, sulfur-rich worlds outside our own, such as Europa and Mars. The site also allows investigation of sulfur-based microbial metabolisms in cold environments here on Earth. Here, we report whole-genome sequencing data that suggest that sulfur cycling metabolisms at BFP are more widely used across bacterial taxa than predicted. From our analyses, the metabolic capability of sulfur oxidation among multiple community members appears likely due to functional redundancy present in their genomes. Functional redundancy, with respect to sulfur-oxidation at the BFP sulfur-ice environment, may indicate that this dynamic ecosystem hosts microorganisms that are able to use multiple sulfur electron donors alongside other metabolic pathways, including those for carbon and nitrogen.
Collapse
|
108
|
Genome-Resolved Metagenomics and Detailed Geochemical Speciation Analyses Yield New Insights into Microbial Mercury Cycling in Geothermal Springs. Appl Environ Microbiol 2020; 86:AEM.00176-20. [PMID: 32414793 DOI: 10.1128/aem.00176-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Geothermal systems emit substantial amounts of aqueous, gaseous, and methylated mercury, but little is known about microbial influences on mercury speciation. Here, we report results from genome-resolved metagenomics and mercury speciation analysis of acidic warm springs in the Ngawha Geothermal Field (<55°C, pH <4.5), Northland Region, Aotearoa New Zealand. Our aim was to identify the microorganisms genetically equipped for mercury methylation, demethylation, or Hg(II) reduction to volatile Hg(0) in these springs. Dissolved total and methylated mercury concentrations in two adjacent springs with different mercury speciation ranked among the highest reported from natural sources (250 to 16,000 ng liter-1 and 0.5 to 13.9 ng liter-1, respectively). Total solid mercury concentrations in spring sediments ranged from 1,274 to 7,000 μg g-1 In the context of such ultrahigh mercury levels, the geothermal microbiome was unexpectedly diverse and dominated by acidophilic and mesophilic sulfur- and iron-cycling bacteria, mercury- and arsenic-resistant bacteria, and thermophilic and acidophilic archaea. By integrating microbiome structure and metagenomic potential with geochemical constraints, we constructed a conceptual model for biogeochemical mercury cycling in geothermal springs. The model includes abiotic and biotic controls on mercury speciation and illustrates how geothermal mercury cycling may couple to microbial community dynamics and sulfur and iron biogeochemistry.IMPORTANCE Little is currently known about biogeochemical mercury cycling in geothermal systems. The manuscript presents a new conceptual model, supported by genome-resolved metagenomic analysis and detailed geochemical measurements. The model illustrates environmental factors that influence mercury cycling in acidic springs, including transitions between solid (mineral) and aqueous phases of mercury, as well as the interconnections among mercury, sulfur, and iron cycles. This work provides a framework for studying natural geothermal mercury emissions globally. Specifically, our findings have implications for mercury speciation in wastewaters from geothermal power plants and the potential environmental impacts of microbially and abiotically formed mercury species, particularly where they are mobilized in spring waters that mix with surface or groundwaters. Furthermore, in the context of thermophilic origins for microbial mercury volatilization, this report yields new insights into how such processes may have evolved alongside microbial mercury methylation/demethylation and the environmental constraints imposed by the geochemistry and mineralogy of geothermal systems.
Collapse
|
109
|
Kloska A, Cech GM, Sadowska M, Krause K, Szalewska-Pałasz A, Olszewski P. Adaptation of the Marine Bacterium Shewanella baltica to Low Temperature Stress. Int J Mol Sci 2020; 21:ijms21124338. [PMID: 32570789 PMCID: PMC7352654 DOI: 10.3390/ijms21124338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 11/30/2022] Open
Abstract
Marine bacteria display significant versatility in adaptation to variations in the environment and stress conditions, including temperature shifts. Shewanella baltica plays a major role in denitrification and bioremediation in the marine environment, but is also identified to be responsible for spoilage of ice-stored seafood. We aimed to characterize transcriptional response of S. baltica to cold stress in order to achieve a better insight into mechanisms governing its adaptation. We exposed bacterial cells to 8 °C for 90 and 180 min, and assessed changes in the bacterial transcriptome with RNA sequencing validated with the RT-qPCR method. We found that S. baltica general response to cold stress is associated with massive downregulation of gene expression, which covered about 70% of differentially expressed genes. Enrichment analysis revealed upregulation of only few pathways, including aminoacyl-tRNA biosynthesis, sulfur metabolism and the flagellar assembly process. Downregulation was observed for fatty acid degradation, amino acid metabolism and a bacterial secretion system. We found that the entire type II secretion system was transcriptionally shut down at low temperatures. We also observed transcriptional reprogramming through the induction of RpoE and repression of RpoD sigma factors to mediate the cold stress response. Our study revealed how diverse and complex the cold stress response in S. baltica is.
Collapse
Affiliation(s)
- Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
- Correspondence: (A.K.); (P.O.)
| | - Grzegorz M. Cech
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.M.C.); (M.S.); (K.K.); (A.S.-P.)
| | - Marta Sadowska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.M.C.); (M.S.); (K.K.); (A.S.-P.)
| | - Klaudyna Krause
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.M.C.); (M.S.); (K.K.); (A.S.-P.)
| | - Agnieszka Szalewska-Pałasz
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.M.C.); (M.S.); (K.K.); (A.S.-P.)
| | - Paweł Olszewski
- 3P Medicine Laboratory, International Research Agenda, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
- Correspondence: (A.K.); (P.O.)
| |
Collapse
|
110
|
Zhang J, Liu R, Xi S, Cai R, Zhang X, Sun C. A novel bacterial thiosulfate oxidation pathway provides a new clue about the formation of zero-valent sulfur in deep sea. ISME JOURNAL 2020; 14:2261-2274. [PMID: 32457501 PMCID: PMC7608252 DOI: 10.1038/s41396-020-0684-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 11/09/2022]
Abstract
Zero-valent sulfur (ZVS) has been shown to be a major sulfur intermediate in the deep-sea cold seep of the South China Sea based on our previous work, however, the microbial contribution to the formation of ZVS in cold seep has remained unclear. Here, we describe a novel thiosulfate oxidation pathway discovered in the deep-sea cold seep bacterium Erythrobacter flavus 21–3, which provides a new clue about the formation of ZVS. Electronic microscopy, energy-dispersive, and Raman spectra were used to confirm that E. flavus 21–3 effectively converts thiosulfate to ZVS. We next used a combined proteomic and genetic method to identify thiosulfate dehydrogenase (TsdA) and thiosulfohydrolase (SoxB) playing key roles in the conversion of thiosulfate to ZVS. Stoichiometric results of different sulfur intermediates further clarify the function of TsdA in converting thiosulfate to tetrathionate (−O3S–S–S–SO3−), SoxB in liberating sulfone from tetrathionate to form ZVS and sulfur dioxygenases (SdoA/SdoB) in oxidizing ZVS to sulfite under some conditions. Notably, homologs of TsdA, SoxB, and SdoA/SdoB widely exist across the bacteria including in Erythrobacter species derived from different environments. This strongly indicates that this novel thiosulfate oxidation pathway might be frequently used by microbes and plays an important role in the biogeochemical sulfur cycle in nature.
Collapse
Affiliation(s)
- Jing Zhang
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Rui Liu
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shichuan Xi
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ruining Cai
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth Science, University of Chinese Academy of Sciences, Beijing, China.,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xin Zhang
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Chaomin Sun
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. .,Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
111
|
Microbiome and ecology of a hot spring-microbialite system on the Trans-Himalayan Plateau. Sci Rep 2020; 10:5917. [PMID: 32246033 PMCID: PMC7125080 DOI: 10.1038/s41598-020-62797-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 03/17/2020] [Indexed: 11/30/2022] Open
Abstract
Little is known about life in the boron-rich hot springs of Trans-Himalayas. Here, we explore the geomicrobiology of a 4438-m-high spring which emanates ~70 °C-water from a boratic microbialite called Shivlinga. Due to low atmospheric pressure, the vent-water is close to boiling point so can entropically destabilize biomacromolecular systems. Starting from the vent, Shivlinga’s geomicrobiology was revealed along the thermal gradients of an outflow-channel and a progressively-drying mineral matrix that has no running water; ecosystem constraints were then considered in relation to those of entropically comparable environments. The spring-water chemistry and sinter mineralogy were dominated by borates, sodium, thiosulfate, sulfate, sulfite, sulfide, bicarbonate, and other macromolecule-stabilizing (kosmotropic) substances. Microbial diversity was high along both of the hydrothermal gradients. Bacteria, Eukarya and Archaea constituted >98%, ~1% and <1% of Shivlinga’s microbiome, respectively. Temperature constrained the biodiversity at ~50 °C and ~60 °C, but not below 46 °C. Along each thermal gradient, in the vent-to-apron trajectory, communities were dominated by Aquificae/Deinococcus-Thermus, then Chlorobi/Chloroflexi/Cyanobacteria, and finally Bacteroidetes/Proteobacteria/Firmicutes. Interestingly, sites of >45 °C were inhabited by phylogenetic relatives of taxa for which laboratory growth is not known at >45 °C. Shivlinga’s geomicrobiology highlights the possibility that the system’s kosmotrope-dominated chemistry mitigates against the biomacromolecule-disordering effects of its thermal water.
Collapse
|
112
|
Li W, Zhang M, Kang D, Chen W, Yu T, Xu D, Zeng Z, Li Y, Zheng P. Mechanisms of sulfur selection and sulfur secretion in a biological sulfide removal (BISURE) system. ENVIRONMENT INTERNATIONAL 2020; 137:105549. [PMID: 32086075 DOI: 10.1016/j.envint.2020.105549] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/06/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Biological desulfurization technology is a sustainable process for the sulfide removal from biogas, which has multiple advantages. In this study, a biological sulfide removal (BISURE) system was established to investigate the working performances and process mechanisms. The results showed that the sulfide removal rate was 2.30 kg-S/(m3 d), the sulfide removal efficiency was higher than 98%, the sulfur production rate was 1.76 kg-S/(m3 d), the sulfur selectivity was 75.02 ± 3.63% and the main form of products (sulfur compounds) was Rosickyite-S and S8. The performance of BISURE system was supported by the dominant genus (abundance more than 60%) of sulfur-oxidizing bacteria (SOB) which shifted to Thiovirga at the high SLR. The sqr and dsrA genes could serve as the indicators for the pathway of two-step sulfide oxidation, i.e. "partial sulfide oxidation (PSO, sulfide → sulfur)" and "complete sulfide oxidation (CSO, sulfur → sulfate)". The sulfur selectivity was improved by enhancing PSO and inhibiting CSO with the indication of two genes. The cellular sulfur secretion was revealed, and the "outer-membrane vesicles (OMVs)-dependent" sulfur-secreting hypothesis was proposed to explain the transportation of elemental sulfur from inside to outside of SOB cells. The findings of this work provide a new perspective to understand the sulfur selection of sulfide bio-oxidation and the sulfur secretion of SOB cells so as to promote the development of biological desulfurization technology.
Collapse
Affiliation(s)
- Wenji Li
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| | - Da Kang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenda Chen
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tao Yu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dongdong Xu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhuo Zeng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yiyu Li
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
113
|
Camacho D, Frazao R, Fouillen A, Nanci A, Lang BF, Apte SC, Baron C, Warren LA. New Insights Into Acidithiobacillus thiooxidans Sulfur Metabolism Through Coupled Gene Expression, Solution Chemistry, Microscopy, and Spectroscopy Analyses. Front Microbiol 2020; 11:411. [PMID: 32231653 PMCID: PMC7082400 DOI: 10.3389/fmicb.2020.00411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 02/27/2020] [Indexed: 01/23/2023] Open
Abstract
Here, we experimentally expand understanding of the reactions and enzymes involved in Acidithiobacillus thiooxidans ATCC 19377 S0 andS 2 O 3 2 - metabolism by developing models that integrate gene expression analyzed by RNA-Seq, solution sulfur speciation, electron microscopy and spectroscopy. The A. thiooxidansS 2 O 3 2 - metabolism model involves the conversion ofS 2 O 3 2 - to SO 4 2 - , S0 andS 4 O 6 2 - , mediated by the sulfur oxidase complex (Sox), tetrathionate hydrolase (TetH), sulfide quinone reductase (Sqr), and heterodisulfate reductase (Hdr) proteins. These same proteins, with the addition of rhodanese (Rhd), were identified to convert S0 to SO 3 2 - ,S 2 O 3 2 - and polythionates in the A. thiooxidans S0 metabolism model. Our combined results shed light onto the important role specifically of TetH inS 2 O 3 2 - metabolism. Also, we show that activity of Hdr proteins rather than Sdo are likely associated with S0 oxidation. Finally, our data suggest that formation of intracellularS 2 O 3 2 - is a critical step in S0 metabolism, and that recycling of internally generated SO 3 2 - occurs, through comproportionating reactions that result inS 2 O 3 2 - . Electron microscopy and spectroscopy confirmed intracellular production and storage of S0 during growth on both S0 andS 2 O 3 2 - substrates.
Collapse
Affiliation(s)
- David Camacho
- School of Geography and Earth Science, Faculty of Science, McMaster University, Hamilton, ON, Canada
| | - Rodolfo Frazao
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Aurélien Fouillen
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada
| | - Antonio Nanci
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculty of Dentistry, Université de Montréal, Montreal, QC, Canada
| | - B. Franz Lang
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Simon C. Apte
- CSIRO, Land and Water, Lucas Heights, NSW, Australia
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Lesley A. Warren
- School of Geography and Earth Science, Faculty of Science, McMaster University, Hamilton, ON, Canada
- Department of Civil and Mineral Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
114
|
Blake RC, White RA. In situ absorbance measurements: a new means to study respiratory electron transfer in chemolithotrophic microorganisms. Adv Microb Physiol 2020; 76:81-127. [PMID: 32408948 DOI: 10.1016/bs.ampbs.2020.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Absorbance measurements on intact chemolithotrophic microorganisms that respire aerobically on soluble iron are described that used a novel integrating cavity absorption meter to eliminate the effects of light scattering on the experimental results. Steady state kinetic measurements on ferric iron production by intact cells revealed that the Michaelis Menten equation described the initial rates of product formation for at least 8 different chemolithotrophic microorganisms in 6 phyla distributed equally among the archaea and the Gram negative and Gram positive eubacteria. Cell-monitored turnover measurements during aerobic respiration on soluble iron by the same 12 intact microorganisms revealed six different patterns of iron-dependent absorbance changes, suggesting that there may be at least six different sets of prosthetic groups and biomolecules that can accomplish aerobic respiration on soluble iron. Detailed kinetic studies revealed that the 3-component iron respiratory chain of Acidithiobacillus ferrooxidans functioned as an ensemble with a single macroscopic rate constant when the iron-reduced proteins were oxidized in the presence of excess molecular oxygen. The principal member of this 3-component system was a cupredoxin called rusticyanin that was present in the periplasm of At. ferrooxidans at an approximate concentration of 350 mg/mL, an observation that provides new insights into the crowded environments in the periplasms of Gram negative eubacteria that conduct electrons across their periplasm. The ability to conduct direct spectrophotometric measurements under noninvasive physiological conditions represents a new and powerful approach to examine the rates and extents of biological events in situ without disrupting the complexity of the live cellular environment.
Collapse
Affiliation(s)
- Robert C Blake
- College of Pharmacy, Xavier University of Louisiana, New Orleans, United States
| | - Richard A White
- Department of Plant Pathology, Washington State University, Pullman, WA, United States; RAW Molecular Systems (RMS) LLC, Spokane, WA, United States; Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
115
|
Wang G, Hu Z, Li S, Wang Y, Sun X, Zhang X, Li M. Sulfur controlled cadmium dissolution in pore water of cadmium-contaminated soil as affected by DOC under waterlogging. CHEMOSPHERE 2020; 240:124846. [PMID: 31550594 DOI: 10.1016/j.chemosphere.2019.124846] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/24/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) precipitation and dissolution in pore water is associated with dissolved organic carbon (DOC)-induced reduction-oxidation of sulfur (S) under waterlogging and is vital for controlling the bioavailability in paddy soil. A 120-day soil incubation experiment, including application of sulfur (S, 30 mg kg-1) and wheat straw (W, 1.0%) alone or in combination (W + S) into Cd-contaminated paddy soil under waterlogging, was conducted to investigate the dynamic of dissolved Cd and its relationship with DOC, S2-, Fe2+, pH, Eh and pe + pH in soil pore water. The results showed that the lowest dissolved Cd concentration was observed in the W + S-treated soil pore water among all treatments when the soil Eh remained at lower values during the period of 15-60 days of incubation, which could be attributed to CdS precipitation and/or co-precipitation of Cd absorbed by FeS2 because of the reduction in sulfur. The application of S resulted in a Cd rebound in the pore water irrespective of W addition when the Eh began to increase from its lowest values during the period of 45-75 days of incubation, and SOB genera were observed in the S added soil. This could be attributed to re-dissolution of the precipitated Cd in soils under the SOB-driven oxidation of sulfide such as CdS and FeS2. In conclusion, DOC-driven reduction-oxidation of sulfur controls Cd dissolution in the pore water of Cd-contaminated paddy soil under waterlogging conditions. Further studies are required to investigate the interaction of sulfur and SOM-induced DOC on Cd bioavailability in rice-planted paddy soils.
Collapse
Affiliation(s)
- Guoxi Wang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengyi Hu
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Songyan Li
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Wang
- Soil Physics and Land Management, Wageningen University & Research, Wageningen, 6700AA, Netherlands
| | - Xiaolei Sun
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangru Zhang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
116
|
Mandal S, Rameez MJ, Chatterjee S, Sarkar J, Pyne P, Bhattacharya S, Shaw R, Ghosh W. Molecular mechanism of sulfur chemolithotrophy in the betaproteobacterium Pusillimonas ginsengisoli SBSA. MICROBIOLOGY-SGM 2020; 166:386-397. [PMID: 31999239 DOI: 10.1099/mic.0.000890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chemolithotrophic sulfur oxidation represents a significant part of the biogeochemical cycling of this element. Due to its long evolutionary history, this ancient metabolism is well known for its extensive mechanistic and phylogenetic diversification across a diverse taxonomic spectrum. Here we carried out whole-genome sequencing and analysis of a new betaproteobacterial isolate, Pusillimonas ginsengisoli SBSA, which is found to oxidize thiosulfate via the formation of tetrathionate as an intermediate. The 4.7 Mb SBSA genome was found to encompass a soxCDYZAXOB operon, plus single thiosulfate dehydrogenase (tsdA) and sulfite : acceptor oxidoreductase (sorAB) genes. Recombination-based knockout of tsdA revealed that the entire thiosulfate is first converted to tetrathionate by the activity of thiosulfate dehydrogenase (TsdA) and the Sox pathway is not functional in this bacterium despite the presence of all necessary sox genes. The ∆soxYZ and ∆soxXA knockout mutants exhibited a wild-type-like phenotype for thiosulfate/tetrathionate oxidation, whereas ∆soxB, ∆soxCD and soxO::KanR mutants only oxidized thiosulfate up to tetrathionate intermediate and had complete impairment in tetrathionate oxidation. The substrate-dependent O2 consumption rate of whole cells and the sulfur-oxidizing enzyme activities of cell-free extracts, measured in the presence/absence of thiol inhibitors/glutathione, indicated that glutathione plays a key role in SBSA tetrathionate oxidation. The present findings collectively indicate that the potential glutathione : tetrathionate coupling in P. ginsengisoli involves a novel enzymatic component, which is different from the dual-functional thiol dehydrotransferase (ThdT), while subsequent oxidation of the sulfur intermediates produced (e.g. glutathione : sulfodisulfane molecules) may proceed via the iterative action of soxBCD .
Collapse
Affiliation(s)
- Subhrangshu Mandal
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata-700054, India
| | - Moidu Jameela Rameez
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata-700054, India
| | - Sumit Chatterjee
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata-700054, India
| | - Jagannath Sarkar
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata-700054, India
| | - Prosenjit Pyne
- Present address: National Institute of Cholera and Enteric Diseases (NICED), P- C.I.T. Scheme XM, Beleghata, 33, CIT Rd, Beleghata, Kolkata - 700054, India.,Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata-700054, India
| | | | - Rahul Shaw
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata-700054, India
| | - Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata-700054, India
| |
Collapse
|
117
|
Distribution of Phototrophic Purple Nonsulfur Bacteria in Massive Blooms in Coastal and Wastewater Ditch Environments. Microorganisms 2020; 8:microorganisms8020150. [PMID: 31979033 PMCID: PMC7074854 DOI: 10.3390/microorganisms8020150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/06/2020] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
The biodiversity of phototrophic purple nonsulfur bacteria (PNSB) in comparison with purple sulfur bacteria (PSB) in colored blooms and microbial mats that developed in coastal mudflats and pools and wastewater ditches was investigated. For this, a combination of photopigment and quinone profiling, pufM gene-targeted quantitative PCR, and pufM gene clone library analysis was used in addition to conventional microscopic and cultivation methods. Red and pink blooms in the coastal environments contained PSB as the major populations, and smaller but significant densities of PNSB, with members of Rhodovulum predominating. On the other hand, red-pink blooms and mats in the wastewater ditches exclusively yielded PNSB, with Rhodobacter, Rhodopseudomonas, and/or Pararhodospirillum as the major constituents. The important environmental factors affecting PNSB populations were organic matter and sulfide concentrations and oxidation‒reduction potential (ORP). Namely, light-exposed, sulfide-deficient water bodies with high-strength organic matter and in a limited range of ORP provide favorable conditions for the massive growth of PNSB over co-existing PSB. We also report high-quality genome sequences of Rhodovulum sp. strain MB263, previously isolated from a pink mudflat, and Rhodovulum sulfidophilum DSM 1374T, which would enhance our understanding of how PNSB respond to various environmental factors in the natural ecosystem.
Collapse
|
118
|
Magnuson E, Mykytczuk NC, Pellerin A, Goordial J, Twine SM, Wing B, Foote SJ, Fulton K, Whyte LG. Thiomicrorhabdus
streamers and sulfur cycling in perennial hypersaline cold springs in the Canadian high Arctic. Environ Microbiol 2020; 23:3384-3400. [DOI: 10.1111/1462-2920.14916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 12/10/2019] [Accepted: 01/08/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Elisse Magnuson
- Natural Resource Sciences McGill University Montreal QC Canada
| | | | - Andre Pellerin
- Centre for Geomicrobiology Aarhus University Aarhus Denmark
| | - Jacqueline Goordial
- Natural Resource Sciences McGill University Montreal QC Canada
- School of Environmental Sciences University of Guelph Guelph, ON Canada
| | - Susan M. Twine
- Institute for Biological Sciences National Research Council Ottawa Ontario
| | - Boswell Wing
- Earth and Planetary Sciences McGill University Montreal QC Canada
| | - Simon J. Foote
- Institute for Biological Sciences National Research Council Ottawa Ontario
| | - Kelly Fulton
- Institute for Biological Sciences National Research Council Ottawa Ontario
| | - Lyle G. Whyte
- Natural Resource Sciences McGill University Montreal QC Canada
| |
Collapse
|
119
|
Lahme S, Callbeck CM, Eland LE, Wipat A, Enning D, Head IM, Hubert CR. Comparison of sulfide‐oxidizing
Sulfurimonas
strains reveals a new mode of thiosulfate formation in subsurface environments. Environ Microbiol 2020; 22:1784-1800. [DOI: 10.1111/1462-2920.14894] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Sven Lahme
- School of Natural and Environmental SciencesNewcastle University Devonshire Building (3rd floor) Newcastle upon Tyne NE1 7RU UK
| | | | - Lucy E. Eland
- School of ComputingNewcastle University Newcastle upon Tyne UK
| | - Anil Wipat
- School of ComputingNewcastle University Newcastle upon Tyne UK
| | - Dennis Enning
- ExxonMobil Upstream Research Company Spring Texas USA
| | - Ian M. Head
- School of Natural and Environmental SciencesNewcastle University Devonshire Building (3rd floor) Newcastle upon Tyne NE1 7RU UK
| | - Casey R.J. Hubert
- School of Natural and Environmental SciencesNewcastle University Devonshire Building (3rd floor) Newcastle upon Tyne NE1 7RU UK
- Department of Biological SciencesUniversity of Calgary Calgary Canada
| |
Collapse
|
120
|
Wang X, Yu M, Wang L, Lin H, Li B, Xue CX, Sun H, Zhang XH. Comparative genomic and metabolic analysis of manganese-oxidizing mechanisms in Celeribacter manganoxidans DY25 T: Its adaptation to the environment of polymetallic nodules. Genomics 2019; 112:2080-2091. [PMID: 31809796 DOI: 10.1016/j.ygeno.2019.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022]
Abstract
Manganese (Mn) nodule is one of the ubiquitous polymetallic concretions and mainly consists of Mn - Fe oxi-hydroxide precipitations. A primary oxidation of Mn(II) to MnO2, in which microorganisms may play important roles, is followed by agglomeration of MnO2 into nodules. Celeribater manganoxidans DY25T, belonging to family Rhodobacteraceae, has ability to catalyze the formation of MnO2 [1]. The concentration of MnO2 formed by harvested cells reached 7.08 μM after suspended in 10 mM HEPES (pH 7.5). Genomic and physiological characteristics of strain DY25T provided a better understanding of its Mn-oxidizing mechanism. Fifteen genes (including four multicopper oxidases) may be involved in Mn(II)-oxidation, whereas only three of them can promote this process. Sulfur-oxidizing activity was detected, which may be associated with manganese oxidation. Genes involved in import and export of primary elemental ingredients (C, N, P and S) and metallic elements (e.g. Mn) were discovered, demonstrating its potential roles in the biogeochemical cycle.
Collapse
Affiliation(s)
- Xiaolei Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Min Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Long Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Heyu Lin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bei Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Chun-Xu Xue
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hao Sun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiao-Hua Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
121
|
Yin Z, Feng S, Tong Y, Yang H. Adaptive mechanism of Acidithiobacillus thiooxidans CCTCC M 2012104 under stress during bioleaching of low-grade chalcopyrite based on physiological and comparative transcriptomic analysis. ACTA ACUST UNITED AC 2019; 46:1643-1656. [DOI: 10.1007/s10295-019-02224-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/07/2019] [Indexed: 11/27/2022]
Abstract
Abstract
Acidithiobacillus thiooxidans (A. thiooxidans) is often used for sulfur-bearing ores bioleaching, but its adaptive mechanism to harsh environments remains unclear. Here, we explored the adaptive mechanism of A. thiooxidans in the process of low-grade chalcopyrite bioleaching based on the physiology and comparative transcriptome analysis. It was indicated that A. thiooxidans maintains intracellular pH homeostasis by regulating unsaturated fatty acids, especially cyclopropane fatty acids, intracellular ATP, amino acid metabolism, and antioxidant factors. Comparative transcriptome analysis indicated that the key genes involved in sulfur oxidation, sor and soxABXYZ, were significantly up-regulated, generating more energy to resist extreme environmental stress by more active sulfur metabolism. Confocal laser scanning microscope analysis found that down-regulation of flagellar-related genes was likely to promote the biofilm formation. System-level understanding of leaching microorganisms under extreme stress can contribute to the evolution of these extremophiles via genetic engineering modification work, which further improves bioleaching in future.
Collapse
Affiliation(s)
- Zongwei Yin
- The Key Laboratory of Industrial Biotechnology Ministry of Education Wuxi People’s Republic of China
- grid.258151.a 0000 0001 0708 1323 School of Biotechnology Jiangnan University 1800 Lihu Road Wuxi People’s Republic of China
- grid.258151.a 0000 0001 0708 1323 Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education Wuxi People’s Republic of China
| | - Shoushuai Feng
- The Key Laboratory of Industrial Biotechnology Ministry of Education Wuxi People’s Republic of China
- grid.258151.a 0000 0001 0708 1323 School of Biotechnology Jiangnan University 1800 Lihu Road Wuxi People’s Republic of China
- grid.258151.a 0000 0001 0708 1323 Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education Wuxi People’s Republic of China
| | - Yanjun Tong
- grid.258151.a 0000 0001 0708 1323 State Key Laboratory of Food Science and Technology Jiangnan University Wuxi People’s Republic of China
- grid.258151.a 0000 0001 0708 1323 School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi People’s Republic of China
| | - Hailin Yang
- The Key Laboratory of Industrial Biotechnology Ministry of Education Wuxi People’s Republic of China
- grid.258151.a 0000 0001 0708 1323 School of Biotechnology Jiangnan University 1800 Lihu Road Wuxi People’s Republic of China
- grid.258151.a 0000 0001 0708 1323 Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education Wuxi People’s Republic of China
| |
Collapse
|
122
|
Cui YX, Biswal BK, van Loosdrecht MCM, Chen GH, Wu D. Long term performance and dynamics of microbial biofilm communities performing sulfur-oxidizing autotrophic denitrification in a moving-bed biofilm reactor. WATER RESEARCH 2019; 166:115038. [PMID: 31505308 DOI: 10.1016/j.watres.2019.115038] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Sulfide-oxidizing autotrophic denitrification (SOAD) implemented in a moving-bed biofilm reactor (MBBR) is a promising alternative to conventional heterotrophic denitrification in mainstream biological nitrogen removal. The sulfide-oxidation intermediate - elemental sulfur - is crucial for the kinetic and microbial properties of the sulfur-oxidizing bacterial communities, but its role is yet to be studied in depth. Hence, to investigate the performance and microbial communities of the aforementioned new biosystem, we operated for a long term a laboratory-scale (700 d) SOAD MBBR to treat synthetic saline domestic sewage, with an increase of the surface loading rate from 8 to 50 mg N/(m2·h) achieved by shortening the hydraulic retention time from 12 h to 2 h. The specific reaction rates of the reactor were eventually increased up to 0.37 kg N/(m3·d) and 0.73 kg S/(m3·d) for nitrate reduction and sulfide oxidation with no significant sulfur elemental accumulation. Two sulfur-oxidizing bacterial (SOB) clades, Sox-independent SOB (SOBI) and Sox-dependent SOB (SOBII), were responsible for indirect two-step sulfur oxidation (S2-→S0→SO42-) and direct one-step sulfur oxidation (S2-→SO42-), respectively. The SOBII biomass-specific electron transfer capacity could be around 2.5 times greater than that of SOBI (38 mmol e-/(gSOBII·d) versus 15 mmol e-/(gSOBI·d)), possibly resulting in the selection of SOBII over SOBI under stress conditions (such as a shorter HRT). Further studies on the methods and mechanism of selecting of SOBII over SOBI in biofilm reactors are recommended. Overall, the findings shed light on the design and operation of MBBR-based SOAD processes for mainstream biological denitrification.
Collapse
Affiliation(s)
- Yan-Xiang Cui
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), The Hong Kong University of Science and Technology, Hong Kong China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), The Hong Kong University of Science and Technology, Hong Kong China
| | | | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), The Hong Kong University of Science and Technology, Hong Kong China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Water Technology Center, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch), The Hong Kong University of Science and Technology, Hong Kong China; Shenzhen Research Institute, Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology, Guangdong, China.
| |
Collapse
|
123
|
Prabha R, Singh DP, Gupta S, Gupta VK, El-Enshasy HA, Verma MK. Rhizosphere Metagenomics of Paspalum scrobiculatum L. (Kodo Millet) Reveals Rhizobiome Multifunctionalities. Microorganisms 2019; 7:microorganisms7120608. [PMID: 31771141 PMCID: PMC6956225 DOI: 10.3390/microorganisms7120608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022] Open
Abstract
Multifunctionalities linked with the microbial communities associated with the millet crop rhizosphere has remained unexplored. In this study, we are analyzing microbial communities inhabiting rhizosphere of kodo millet and their associated functions and its impact over plant growth and survival. Metagenomics of Paspalum scrobiculatum L.(kodo millet) rhizopshere revealed taxonomic communities with functional capabilities linked to support growth and development of the plants under nutrient-deprived, semi-arid and dry biotic conditions. Among 65 taxonomically diverse phyla identified in the rhizobiome, Actinobacteria were the most abundant followed by the Proteobacteria. Functions identified for different genes/proteins led to revelations that multifunctional rhizobiome performs several metabolic functions including carbon fixation, nitrogen, phosphorus, sulfur, iron and aromatic compound metabolism, stress response, secondary metabolite synthesis and virulence, disease, and defense. Abundance of genes linked with N, P, S, Fe and aromatic compound metabolism and phytohormone synthesis—along with other prominent functions—clearly justifies growth, development, and survival of the plants under nutrient deprived dry environment conditions. The dominance of actinobacteria, the known antibiotic producing communities shows that the kodo rhizobiome possesses metabolic capabilities to defend themselves against biotic stresses. The study opens avenues to revisit multi-functionalities of the crop rhizosphere for establishing link between taxonomic abundance and targeted functions that help plant growth and development in stressed and nutrient deprived soil conditions. It further helps in understanding the role of rhizosphere microbiome in adaptation and survival of plants in harsh abiotic conditions.
Collapse
Affiliation(s)
- Ratna Prabha
- Chhattisgarh Swami Vivekananda Technical University, Bhilai, Chhattisgarh 491107, India; (R.P.); (M.K.V.)
| | - Dhananjaya P. Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Indian Council of Agricultural Research, Kushmaur, Maunath Bhanjan 275101, UP, India
- Correspondence:
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock 18057, Germany;
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia;
| | - Hesham A. El-Enshasy
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Johor, Malaysia;
| | - Mukesh K. Verma
- Chhattisgarh Swami Vivekananda Technical University, Bhilai, Chhattisgarh 491107, India; (R.P.); (M.K.V.)
| |
Collapse
|
124
|
Zheng Y, Zhou Z, Ye X, Huang J, Jiang L, Chen G, Chen L, Wang Z. Identifying microbial community evolution in membrane bioreactors coupled with anaerobic side-stream reactor, packing carriers and ultrasonication for sludge reduction by linear discriminant analysis. BIORESOURCE TECHNOLOGY 2019; 291:121920. [PMID: 31382094 DOI: 10.1016/j.biortech.2019.121920] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
An anoxic/oxic membrane bioreactor (AO-MBR), an anaerobic side-stream reactor (ASSR) coupled MBRs (A-MBRs), an A-MBR with carriers packed in ASSR (AP-MBR) and an AP-MBR with sludge ultrasonicated before ASSR (AUP-MBR) were operated for 261 d to investigate effects of ASSR, packing carriers and ultrasonication on sludge reduction and microbial population. Sludge reduction efficiencies of A-MBR, AP-MBR and AUP-MBR were 36.2%, 46.4% and 51.4%, respectively. Packing carriers and ultrasonication both enhanced hydrolysis by stimulating activities of α-glucosidase and protease, while uncoupling metabolism was enhanced greatly by packing carriers but slightly by ultrasonication. Linear discriminant analysis of effect size (LEfSe) results showed that packing carriers promoted the growth of hydrolytic and fermentative bacteria in bulk sludge, and enriched anaerobes and fermentative bacteria on the surface of carriers. Ultrasonication screened ultrasonication-resistant bacteria, and created an anaerobic environment beneficial to hydrolytic and fermentative bacteria.
Collapse
Affiliation(s)
- Yue Zheng
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiaofang Ye
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jing Huang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lingyan Jiang
- Shanghai Chengtou Wastewater Treatment Co Ltd, Shanghai 201203, China
| | - Guang Chen
- Shanghai Chengtou Wastewater Treatment Co Ltd, Shanghai 201203, China
| | - Liuyu Chen
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
125
|
Oshiki M, Fukushima T, Kawano S, Kasahara Y, Nakagawa J. Thiocyanate Degradation by a Highly Enriched Culture of the Neutrophilic Halophile Thiohalobacter sp. Strain FOKN1 from Activated Sludge and Genomic Insights into Thiocyanate Metabolism. Microbes Environ 2019; 34:402-412. [PMID: 31631078 PMCID: PMC6934394 DOI: 10.1264/jsme2.me19068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Thiocyanate (SCN-) is harmful to a wide range of organisms, and its removal is essential for environmental protection. A neutrophilic halophile capable of thiocyanate degradation, Thiohalobacter sp. strain FOKN1, was highly enriched (relative abundance; 98.4%) from activated sludge collected from a bioreactor receiving thiocyanate-rich wastewater. The enrichment culture degraded 3.38 mM thiocyanate within 140 h, with maximum activity at pH 8.8, 37°C, and 0.18 M sodium chloride. Thiocyanate degradation was inhibited by 30 mg L-1 phenol, but not by thiosulfate. Microbial thiocyanate degradation is catalyzed by thiocyanate dehydrogenase, while limited information is currently available on the molecular mechanisms underlying thiocyanate degradation by the thiocyanate dehydrogenase of neutrophilic halophiles. Therefore, (meta)genomic and proteomic analyses of enrichment cultures were performed to elucidate the whole genome sequence and proteome of Thiohalobacter sp. strain FOKN1. The 3.23-Mb circular Thiohalobacter sp. strain FOKN1 genome was elucidated using a PacBio RSII sequencer, and the expression of 914 proteins was identified by tandem mass spectrometry. The Thiohalobacter sp. strain FOKN1 genome had a gene encoding thiocyanate dehydrogenase, which was abundant in the proteome, suggesting that thiocyanate is degraded by thiocyanate dehydrogenase to sulfur and cyanate. The sulfur formed may be oxidized to sulfate by the sequential oxidation reactions of dissimilatory sulfite reductase, adenosine-5'-phosphosulfate reductase, and dissimilatory ATP sulfurylase. Although the Thiohalobacter sp. strain FOKN1 genome carried a gene encoding cyanate lyase, its protein expression was not detectable. The present study advances the understanding of the molecular mechanisms underlying thiocyanate degradation by the thiocyanate dehydrogenase of neutrophilic halophiles.
Collapse
Affiliation(s)
- Mamoru Oshiki
- Department of Civil Engineering, National Institute of Technology, Nagaoka College
| | - Toshikazu Fukushima
- Advanced Technology Research Laboratories, Research & Development, Nippon Steel Corporation
| | - Shuichi Kawano
- Department of Computer and Network Engineering Graduate School of Informatics and Engineering, The University of Electro-Communications
| | | | - Junichi Nakagawa
- Advanced Technology Research Laboratories, Research & Development, Nippon Steel Corporation
| |
Collapse
|
126
|
Koziaeva V, Dziuba M, Leão P, Uzun M, Krutkina M, Grouzdev D. Genome-Based Metabolic Reconstruction of a Novel Uncultivated Freshwater Magnetotactic coccus " Ca. Magnetaquicoccus inordinatus" UR-1, and Proposal of a Candidate Family " Ca. Magnetaquicoccaceae". Front Microbiol 2019; 10:2290. [PMID: 31632385 PMCID: PMC6783814 DOI: 10.3389/fmicb.2019.02290] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022] Open
Abstract
Magnetotactic bacteria are widely represented microorganisms that have the ability to synthesize magnetosomes. The magnetotactic cocci of the order Magnetococcales are the most frequently identified, but their classification remains unclear due to the low number of cultivated representatives. This paper reports the analysis of an uncultivated magnetotactic coccus UR-1 collected from the Uda River (in eastern Siberia). Genome analyses of this bacterium and comparison to the available Magnetococcales genomes identified a novel species called "Ca. Magnetaquicoccus inordinatus," and a delineated candidate family "Ca. Magnetaquicoccaceae" within the order Magnetococcales is proposed. We used average amino acid identity values <55-56% and <64-65% as thresholds for the separation of families and genera, respectively, within the order Magnetococcales. Analyses of the genome sequence of UR-1 revealed a potential ability for a chemolithoautotrophic lifestyle, with the oxidation of a reduced sulfur compound and carbon assimilation by rTCA. A nearly complete magnetosome genome island, containing a set of mam and mms genes, was also identified. Further comparative analyses of the magnetosome genes showed vertical inheritance as well as horizontal gene transfer as the evolutionary drivers of magnetosome biomineralization genes in strains of the order Magnetococcales.
Collapse
Affiliation(s)
- Veronika Koziaeva
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia
| | - Marina Dziuba
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Pedro Leão
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Uzun
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Krutkina
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia
| | - Denis Grouzdev
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, Moscow, Russia
| |
Collapse
|
127
|
Cui YX, Guo G, Ekama GA, Deng YF, Chui HK, Chen GH, Wu D. Elucidating the biofilm properties and biokinetics of a sulfur-oxidizing moving-bed biofilm for mainstream nitrogen removal. WATER RESEARCH 2019; 162:246-257. [PMID: 31279316 DOI: 10.1016/j.watres.2019.02.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
The sulfide-oxidizing autotrophic denitrification (SOAD) process offers a feasible alternative to mainstream heterotrophic denitrification in treating domestic sewage with insufficient organics. Previously SOAD has been successfully applied in a moving-bed biofilm reactor (MBBR). However, the biofilm properties and biokinetics are still not thoroughly understood. The present study was therefore designed to investigate these features of sulfur-oxidizing biofilms (SOBfs) cultivated in a lab-scale MBBR under stable operation for over a year. The biofilms developed were 160 μm thick, had an uneven and porous surface on which elemental sulfur (S0) accumulated, and the SOB biomass was highly diverse. The bioprocess kinetics were evaluated through 12 batch experiments. The results were interpreted by adopting a two-step sulfide oxidation model (sulfide→S0 and S0→ sulfate) with all specific rates having a linear regression coefficient of R2 > 0.9. Moreover, the inhibitory kinetic analysis revealed that 1) the maximum treatment capacity (about 480 mg S/(m2·h) and 80 mg N/(m2·h)) was observed at low sulfide level (40 mg S/L), while higher sulfide level (60-150 mg S/L) showed increasing inhibition on the oxidation of both sulfide and sulfur and denitrification. 2) The denitritation activity decreased by up to 43% when free nitrous acid reached a maximum of 8.6 μg N/L, whereas the oxidation of sulfide and sulfur did not have any significant effect. Interestingly, two physiologically diverse SOB groups were found in this special biofilm. The mechanisms of the cooperation and competition for electron donors and acceptors between these two SOB clades are proposed. The results of this study greatly enhance our understanding of the design and optimization of SOAD-MBBR for mainstream nitrogen removal.
Collapse
Affiliation(s)
- Yan-Xiang Cui
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Fok Ying Tung Graduate School and Shenzhen Research Institute, The Hong Kong University of Science and Technology, Guangdong, China
| | - Gang Guo
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - George A Ekama
- Water Research Group, Department of Civil Engineering, University of Cape Town, Cape Town, South Africa
| | - Yang-Fan Deng
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ho-Kwong Chui
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Fok Ying Tung Graduate School and Shenzhen Research Institute, The Hong Kong University of Science and Technology, Guangdong, China
| | - Di Wu
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Fok Ying Tung Graduate School and Shenzhen Research Institute, The Hong Kong University of Science and Technology, Guangdong, China.
| |
Collapse
|
128
|
Rameez MJ, Pyne P, Mandal S, Chatterjee S, Alam M, Bhattacharya S, Mondal N, Sarkar J, Ghosh W. Two pathways for thiosulfate oxidation in the alphaproteobacterial chemolithotroph Paracoccus thiocyanatus SST. Microbiol Res 2019; 230:126345. [PMID: 31585234 DOI: 10.1016/j.micres.2019.126345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/08/2019] [Accepted: 09/21/2019] [Indexed: 02/02/2023]
Abstract
Chemolithotrophic bacteria oxidize various sulfur species for energy and electrons, thereby operationalizing biogeochemical sulfur cycles in nature. The best-studied pathway of bacterial sulfur-chemolithotrophy involves direct oxidation of thiosulfate (S2O32-) to sulfate (SO42-) without any free intermediate. This pathway mediated by SoxXAYZBCD is apparently the exclusive mechanism of thiosulfate oxidation in facultatively chemolithotrophic alphaproteobacteria. Here we explore the molecular mechanisms of sulfur oxidation in the thiosulfate- and tetrathionate(S4O62-)-oxidizing alphaproteobacterium Paracoccus thiocyanatus SST, and compare them with the prototypical Sox process of Paracoccus pantotrophus. Our results reveal a unique case where an alphaproteobacterium has Sox as its secondary pathway of thiosulfate oxidation converting ∼10% of the thiosulfate supplied, whilst ∼90% of the substrate is oxidized via a pathway that produces tetrathionate as an intermediate. Sulfur oxidation kinetics of a deletion mutant showed that thiosulfate-to-tetrathionate conversion, in SST, is catalyzed by a thiosulfate dehydrogenase (TsdA) homolog that has far-higher substrate-affinity than the Sox system of this bacterium, which in turn is also less efficient than the P. pantotrophus Sox. Deletion of soxB abolished sulfate-formation from thiosulfate/tetrathionate, while thiosulfate-to-tetrathionate conversion remained unperturbed. Physiological studies revealed the involvement of glutathione in SST tetrathionate oxidation. However, zero impact of the insertional mutation of a thiol dehydrotransferase (thdT) homolog, together with the absence of sulfite as an intermediate, indicated that SST tetrathionate oxidation is mechanistically novel, and distinct from its betaproteobacterial counterpart mediated by glutathione, ThdT, SoxBCD and sulfite:acceptor oxidoreductase. The present findings highlight extensive functional diversification of sulfur-oxidizing enzymes across phylogenetically close, as well as distant, bacteria.
Collapse
Affiliation(s)
- Moidu Jameela Rameez
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Prosenjit Pyne
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Subhrangshu Mandal
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Sumit Chatterjee
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Masrure Alam
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | | | - Nibendu Mondal
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Jagannath Sarkar
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India.
| |
Collapse
|
129
|
Tran P, Ramachandran A, Khawasik O, Beisner BE, Rautio M, Huot Y, Walsh DA. Microbial life under ice: Metagenome diversity and in situ activity of Verrucomicrobia in seasonally ice-covered Lakes. Environ Microbiol 2019; 20:2568-2584. [PMID: 29921005 DOI: 10.1111/1462-2920.14283] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/15/2018] [Indexed: 01/25/2023]
Abstract
Northern lakes are ice-covered for a large part of the year, yet our understanding of microbial diversity and activity during winter lags behind that of the ice-free period. In this study, we investigated under-ice diversity and metabolism of Verrucomicrobia in seasonally ice-covered lakes in temperate and boreal regions of Quebec, Canada using 16S rRNA sequencing, metagenomics and metatranscriptomics. Verrucomicrobia, particularly the V1, V3 and V4 subdivisions, were abundant during ice-covered periods. A diversity of Verrucomicrobia genomes were reconstructed from Quebec lake metagenomes. Several genomes were associated with the ice-covered period and were represented in winter metatranscriptomes, supporting the notion that Verrucomicrobia are metabolically active under ice. Verrucomicrobia transcriptome analysis revealed a range of metabolisms potentially occurring under ice, including carbohydrate degradation, glycolate utilization, scavenging of chlorophyll degradation products, and urea use. Genes for aerobic sulfur and hydrogen oxidation were expressed, suggesting chemolithotrophy may be an adaptation to conditions where labile carbon may be limited. The expression of genes for flagella biosynthesis and chemotaxis was detected, suggesting Verrucomicrobia may be actively sensing and responding to winter nutrient pulses, such as phytoplankton blooms. These results increase our understanding on the diversity and metabolic processes occurring under ice in northern lakes ecosystems.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Patricia Tran
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B 1R6, Canada.,Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Montréal, Québec, Canada
| | - Arthi Ramachandran
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B 1R6, Canada
| | - Ola Khawasik
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B 1R6, Canada
| | - Beatrix E Beisner
- Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Montréal, Québec, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, Québec, Canada
| | - Milla Rautio
- Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Montréal, Québec, Canada.,Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Québec, Canada
| | - Yannick Huot
- Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Montréal, Québec, Canada.,Département de Géomatique Appliquée, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - David A Walsh
- Department of Biology, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B 1R6, Canada.,Groupe de Recherche Interuniversitaire en Limnologie et Environnement Aquatique (GRIL), Montréal, Québec, Canada
| |
Collapse
|
130
|
Yang L, Zhao D, Yang J, Wang W, Chen P, Zhang S, Yan L. Acidithiobacillus thiooxidans and its potential application. Appl Microbiol Biotechnol 2019; 103:7819-7833. [PMID: 31463545 DOI: 10.1007/s00253-019-10098-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 11/26/2022]
Abstract
Acidithiobacillus thiooxidans (A. thiooxidans) is a widespread, mesophilic, obligately aerobic, extremely acidophilic, rod-shaped, and chemolithoautotrophic gram-negative gammaproteobacterium. It can obtain energy and electrons from the oxidation of reducible sulfur, and it can fix carbon dioxide and assimilate nitrate, nitrite, and ammonium to satisfy carbon and nitrogen requirement. This bacterium exists as different genomovars and its genome size range from 3.02 to 3.97 Mb. Here, we highlight the recent advances in the understanding of the general biological features of A. thiooxidans, as well as the genetic diversity and the sulfur oxidation pathway system. Additionally, the potential applications of A. thiooxidans were summarized including the recycling of metals from metal-bearing ores, electric wastes, and sludge, the improvement of alkali-salinity soils, and the removal of sulfur from sulfur-containing solids and gases.
Collapse
Affiliation(s)
- Lei Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Jian Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou, 730020, People's Republic of China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| |
Collapse
|
131
|
Vavourakis CD, Mehrshad M, Balkema C, van Hall R, Andrei AŞ, Ghai R, Sorokin DY, Muyzer G. Metagenomes and metatranscriptomes shed new light on the microbial-mediated sulfur cycle in a Siberian soda lake. BMC Biol 2019; 17:69. [PMID: 31438955 PMCID: PMC6704655 DOI: 10.1186/s12915-019-0688-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/09/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The planetary sulfur cycle is a complex web of chemical reactions that can be microbial-mediated or can occur spontaneously in the environment, depending on the temperature and pH. Inorganic sulfur compounds can serve as energy sources for specialized prokaryotes and are important substrates for microbial growth in general. Here, we investigate dissimilatory sulfur cycling in the brine and sediments of a southwestern Siberian soda lake characterized by an extremely high pH and salinity, combining meta-omics analyses of its uniquely adapted highly diverse prokaryote communities with biogeochemical profiling to identify key microbial players and expand our understanding of sulfur cycling under haloalkaline conditions. RESULTS Peak microbial activity was found in the top 4 cm of the sediments, a layer with a steep drop in oxygen concentration and redox potential. The majority of sulfur was present as sulfate or iron sulfide. Thiosulfate was readily oxidized by microbes in the presence of oxygen, but oxidation was partially inhibited by light. We obtained 1032 metagenome-assembled genomes, including novel population genomes of characterized colorless sulfur-oxidizing bacteria (SOB), anoxygenic purple sulfur bacteria, heterotrophic SOB, and highly active lithoautotrophic sulfate reducers. Surprisingly, we discovered the potential for nitrogen fixation in a new genus of colorless SOB, carbon fixation in a new species of phototrophic Gemmatimonadetes, and elemental sulfur/sulfite reduction in the "Candidatus Woesearchaeota." Polysulfide/thiosulfate and tetrathionate reductases were actively transcribed by various (facultative) anaerobes. CONCLUSIONS The recovery of over 200 genomes that encoded enzymes capable of catalyzing key reactions in the inorganic sulfur cycle indicates complete cycling between sulfate and sulfide at moderately hypersaline and extreme alkaline conditions. Our results suggest that more taxonomic groups are involved in sulfur dissimilation than previously assumed.
Collapse
Affiliation(s)
- Charlotte D Vavourakis
- Microbial Systems Ecology, Department of Freshwater and Marine Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, the Netherlands
| | - Maliheh Mehrshad
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Cherel Balkema
- Microbial Systems Ecology, Department of Freshwater and Marine Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, the Netherlands
| | - Rutger van Hall
- Department of Ecosystem & Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Adrian-Ştefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russian Federation
- Department of Biotechnology, Environmental Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, the Netherlands.
| |
Collapse
|
132
|
Abstract
Bacterial communities’ composition, activity and robustness determines the effectiveness of biofiltration units for the desulfurization of biogas. It is therefore important to get a better understanding of the bacterial communities that coexist in biofiltration units under different operational conditions for the removal of H2S, the main reduced sulfur compound to eliminate in biogas. This review presents the main characteristics of sulfur-oxidizing chemotrophic bacteria that are the base of the biological transformation of H2S to innocuous products in biofilters. A survey of the existing biofiltration technologies in relation to H2S elimination is then presented followed by a review of the microbial ecology studies performed to date on biotrickling filter units for the treatment of H2S in biogas under aerobic and anoxic conditions.
Collapse
|
133
|
Differences in Microbial Communities and Pathogen Survival Between a Covered and Uncovered Anaerobic Lagoon. ENVIRONMENTS 2019. [DOI: 10.3390/environments6080091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Anaerobic lagoons are a critical component of confined swine feeding operations. These structures can be modified, using a synthetic cover, to enhance their ability to capture the emission of ammonia and other malodorous compounds. Very little has been done to assess the potential of these covers to alter lagoon biological properties. Alterations in the physicochemical makeup can impact the biological properties, most notably, the pathogenic populations. To this aim, we performed a seasonal study of two commercial swine operations, one with a conventional open lagoon, the other which employed a permeable, synthetic cover. Results indicated that lagoon fecal coliforms, and Escherichia coli were significantly influenced by sampling location (lagoon vs house) and lagoon type (open vs. covered), while Enterococcus sp. were influenced by sampling location only. Comparisons against environmental variables revealed that fecal coliforms (r2 = 0.40), E. coli (r2 = 0.58), and Enterococcus sp. (r2 = 0.25) significantly responded to changes in pH. Deep 16S sequencing of lagoon and house bacterial and archaeal communities demonstrated grouping by both sampling location and lagoon type, with several environmental variables correlating to microbial community differences. Overall, these results demonstrate that permeable synthetic covers play a role in changing the lagoon microclimate, impacting lagoon physicochemical and biological properties.
Collapse
|
134
|
Guo G, Ekama GA, Wang Y, Dai J, Biswal BK, Chen G, Wu D. Advances in sulfur conversion-associated enhanced biological phosphorus removal in sulfate-rich wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2019; 285:121303. [PMID: 30952535 DOI: 10.1016/j.biortech.2019.03.142] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Recently an innovative sulfur conversion-associated enhanced biological phosphorus removal (S-EBPR) process has been developed for treating sulfate-rich wastewater. This process has successfully integrated sulfur (S), carbon (C), nitrogen (N) and P cycles for simultaneous metabolism or removal of C, N and P; moreover this new process relies on the synergy among the slow-growing sulfate-reducing bacteria and sulfur-oxidizing bacteria, hence generating little excess sludge. To elucidate this new process, researchers have investigated the microorganisms proliferated in the system, identified the biochemical pathways and assessed the impact of operational and environmental factors on process performance as well as trials on process optimization. This paper for the first time reviews the recent advances that have been achieved, particularly relating to the areas of S-EBPR microbiology and biochemistry, as well as the effects of environmental factors (e.g., electron donors/acceptors, pH, temperature, etc.). Moreover, future directions for researches and applications are proposed.
Collapse
Affiliation(s)
- Gang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China; Department of Civil & Environmental Engineering; Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China
| | - George A Ekama
- Water Research Group, Department of Civil Engineering, University of Cape Town, Cape Town, South Africa
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Ji Dai
- Department of Civil & Environmental Engineering; Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Basanta Kumar Biswal
- Department of Civil & Environmental Engineering; Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Guanghao Chen
- Department of Civil & Environmental Engineering; Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China
| | - Di Wu
- Department of Civil & Environmental Engineering; Hong Kong Branch of the Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China.
| |
Collapse
|
135
|
Kiragosyan K, Klok JB, Keesman KJ, Roman P, Janssen AJ. Development and validation of a physiologically based kinetic model for starting up and operation of the biological gas desulfurization process under haloalkaline conditions. WATER RESEARCH X 2019; 4:100035. [PMID: 31334497 PMCID: PMC6614595 DOI: 10.1016/j.wroa.2019.100035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 05/14/2023]
Abstract
Hydrogen sulfide is a toxic and corrosive gas that must be removed from gaseous hydrocarbon streams prior to combustion. This paper describes a gas biodesulfurization process where sulfur-oxidizing bacteria (SOB) facilitate sulfide conversion to both sulfur and sulfate. In order to optimize the formation of sulfur, it is crucial to understand the relations between the SOB microbial composition, kinetics of biological and abiotic sulfide oxidation and the effects on the biodesulfurization process efficiency. Hence, a physiologically based kinetic model was developed for four different inocula. The resulting model can be used as a tool to evaluate biodesulfurization process performance. The model relies on a ratio of two key enzymes involved in the sulfide oxidation process, i.e., flavocytochrome c and sulfide-quinone oxidoreductase (FCC and SQR). The model was calibrated by measuring biological sulfide oxidation rates for different inocula obtained from four full-scale biodesulfurization installations fed with gases from various industries. Experimentally obtained biological sulfide oxidation rates showed dissimilarities between the tested biomasses which could be explained by assuming distinctions in the key-enzyme ratios. Hence, we introduce a new model parameter α to whereby α describes the ratio between the relative expression levels of FCC and SQR enzymes. Our experiments show that sulfur production is the highest at low α values.
Collapse
Affiliation(s)
- Karine Kiragosyan
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
- Environmental Technology, Wageningen University, P.O. Box 17, 6700, AA, Wageningen, the Netherlands
- Corresponding author. Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands.
| | - Johannes B.M. Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
- Environmental Technology, Wageningen University, P.O. Box 17, 6700, AA, Wageningen, the Netherlands
- Paqell B.V., Reactorweg 301, 3542, AD, Utrecht, the Netherlands
| | - Karel J. Keesman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
- Biobased Chemistry & Technology, Wageningen University, P.O. Box 17, 6700, AA, Wageningen, the Netherlands
| | - Pawel Roman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
| | - Albert J.H. Janssen
- Environmental Technology, Wageningen University, P.O. Box 17, 6700, AA, Wageningen, the Netherlands
- Shell, Oostduinlaan 2, 2596, M the Hague, the Netherlands
| |
Collapse
|
136
|
Metagenome-Assembled Genome Sequence of Sulfuricurvum sp. Strain IAE1, Isolated from a 4-Chlorophenol-Degrading Consortium. Microbiol Resour Announc 2019; 8:8/31/e00296-19. [PMID: 31371533 PMCID: PMC6675981 DOI: 10.1128/mra.00296-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The draft genome sequence of Sulfuricurvum sp. strain IAE1 was assembled and annotated from the metagenome of an anaerobically grown 4-chlorophenol-degrading consortium. The draft genome size is 2,338,235 bp with a G+C content of 52.6%.
Collapse
|
137
|
Exposure to different arsenic species drives the establishment of iron- and sulfur-oxidizing bacteria on rice root iron plaques. World J Microbiol Biotechnol 2019; 35:117. [DOI: 10.1007/s11274-019-2690-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022]
|
138
|
Kiragosyan K, van Veelen P, Gupta S, Tomaszewska-Porada A, Roman P, Timmers PHA. Development of quantitative PCR for the detection of Alkalilimnicola ehrlichii, Thioalkalivibrio sulfidiphilus and Thioalkalibacter halophilus in gas biodesulfurization processes. AMB Express 2019; 9:99. [PMID: 31278455 PMCID: PMC6611852 DOI: 10.1186/s13568-019-0826-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/29/2019] [Indexed: 12/14/2022] Open
Abstract
Chemolithoautotrophic sulfur-oxidizing bacteria (SOB) are crucial key players in biotechnological processes to remove hydrogen sulfide from sour gas streams. Several different haloalkaliphilic SOB have been detected and isolated from lab- and full-scale facilities, which all performed differently considering end product yields (sulfur and sulfate) and conversion rates. Understanding and regulating bacterial community dynamics in biodesulfurization processes will enable optimization of the process operation. We developed quantitative PCR (qPCR) assays to quantify haloalkaliphilic sulfur-oxidizing gammaproteobacterial species Alkalilimnicola ehrlichii, Thioalkalivibrio sulfidiphilus, and Thioalkalibacter halophilus that dominate bacterial communities of biodesulfurization lab- and full-scale installations at haloalkaline conditions. The specificity and PCR efficiency of novel primer sets were evaluated using pure cultures of these target species. We further validated the qPCR assays by quantification of target organisms in five globally distributed full-scale biodesulfurization installations. The qPCR assays perform a sensitive and accurate quantification of Alkalilimnicola ehrlichii, Thioalkalivibrio sulfidiphilus and Thioalkalibacter halophilus, thus providing rapid and valuable insights into process performance and SOB growth dynamics in gas biodesulfurization systems.
Collapse
Affiliation(s)
- Karine Kiragosyan
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands.
- Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
| | - Pieter van Veelen
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - Suyash Gupta
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Agnieszka Tomaszewska-Porada
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - Pawel Roman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - Peer H A Timmers
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
- Laboratory of Microbiology, Wageningen University, P.O. Box 8033, 6700 EH, Wageningen, The Netherlands
| |
Collapse
|
139
|
Seah BKB, Antony CP, Huettel B, Zarzycki J, Schada von Borzyskowski L, Erb TJ, Kouris A, Kleiner M, Liebeke M, Dubilier N, Gruber-Vodicka HR. Sulfur-Oxidizing Symbionts without Canonical Genes for Autotrophic CO 2 Fixation. mBio 2019; 10:e01112-19. [PMID: 31239380 PMCID: PMC6593406 DOI: 10.1128/mbio.01112-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/23/2019] [Indexed: 01/25/2023] Open
Abstract
Since the discovery of symbioses between sulfur-oxidizing (thiotrophic) bacteria and invertebrates at hydrothermal vents over 40 years ago, it has been assumed that autotrophic fixation of CO2 by the symbionts drives these nutritional associations. In this study, we investigated "Candidatus Kentron," the clade of symbionts hosted by Kentrophoros, a diverse genus of ciliates which are found in marine coastal sediments around the world. Despite being the main food source for their hosts, Kentron bacteria lack the key canonical genes for any of the known pathways for autotrophic carbon fixation and have a carbon stable isotope fingerprint that is unlike other thiotrophic symbionts from similar habitats. Our genomic and transcriptomic analyses instead found metabolic features consistent with growth on organic carbon, especially organic and amino acids, for which they have abundant uptake transporters. All known thiotrophic symbionts have converged on using reduced sulfur to gain energy lithotrophically, but they are diverse in their carbon sources. Some clades are obligate autotrophs, while many are mixotrophs that can supplement autotrophic carbon fixation with heterotrophic capabilities similar to those in Kentron. Here we show that Kentron bacteria are the only thiotrophic symbionts that appear to be entirely heterotrophic, unlike all other thiotrophic symbionts studied to date, which possess either the Calvin-Benson-Bassham or the reverse tricarboxylic acid cycle for autotrophy.IMPORTANCE Many animals and protists depend on symbiotic sulfur-oxidizing bacteria as their main food source. These bacteria use energy from oxidizing inorganic sulfur compounds to make biomass autotrophically from CO2, serving as primary producers for their hosts. Here we describe a clade of nonautotrophic sulfur-oxidizing symbionts, "Candidatus Kentron," associated with marine ciliates. They lack genes for known autotrophic pathways and have a carbon stable isotope fingerprint heavier than other symbionts from similar habitats. Instead, they have the potential to oxidize sulfur to fuel the uptake of organic compounds for heterotrophic growth, a metabolic mode called chemolithoheterotrophy that is not found in other symbioses. Although several symbionts have heterotrophic features to supplement primary production, in Kentron they appear to supplant it entirely.
Collapse
Affiliation(s)
| | | | - Bruno Huettel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jan Zarzycki
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Angela Kouris
- Energy Bioengineering and Geomicrobiology Group, University of Calgary, Calgary, Alberta, Canada
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | | |
Collapse
|
140
|
Cui YX, Biswal BK, Guo G, Deng YF, Huang H, Chen GH, Wu D. Biological nitrogen removal from wastewater using sulphur-driven autotrophic denitrification. Appl Microbiol Biotechnol 2019; 103:6023-6039. [DOI: 10.1007/s00253-019-09935-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/06/2023]
|
141
|
Roy C, Bakshi U, Rameez MJ, Mandal S, Haldar PK, Pyne P, Ghosh W. Phylogenomics of an uncultivated, aerobic and thermophilic, photoheterotrophic member of Chlorobia sheds light into the evolution of the phylum Chlorobi. Comput Biol Chem 2019; 80:206-216. [DOI: 10.1016/j.compbiolchem.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 11/28/2022]
|
142
|
Low frequency Raman Spectroscopy for micron-scale and in vivo characterization of elemental sulfur in microbial samples. Sci Rep 2019; 9:7971. [PMID: 31138888 PMCID: PMC6538736 DOI: 10.1038/s41598-019-44353-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/14/2019] [Indexed: 11/08/2022] Open
Abstract
Elemental sulfur (S(0)) is an important intermediate of the sulfur cycle and is generated by chemical and biological sulfide oxidation. Raman spectromicroscopy can be applied to environmental samples for the detection of S(0), as a practical non-destructive micron-scale method for use on wet material and living cells. Technical advances in filter materials enable the acquisition of ultra-low frequency (ULF) Raman measurements in the 10–100 cm−1 range using a single-stage spectrometer. Here we demonstrate the potency of ULF Raman spectromicroscopy to harness the external vibrational modes of previously unrecognized S(0) structures present in environmental samples. We investigate the chemical and structural nature of intracellular S(0) granules stored within environmental mats of sulfur-oxidizing γ-Proteobacteria (Thiothrix). In vivo intracellular ULF scans indicate the presence of amorphous cyclooctasulfur (S8), clarifying enduring uncertainties regarding the content of microbial sulfur storage globules. Raman scattering of extracellular sulfur clusters in Thiothrix mats furthermore reveals an unexpected abundance of metastable β-S8 and γ-S8, in addition to the stable α-S8 allotrope. We propose ULF Raman spectroscopy as a powerful method for the micron-scale determination of S(0) structure in natural and laboratory systems, with a promising potential to shine new light on environmental microbial and chemical sulfur cycling mechanisms.
Collapse
|
143
|
Abstract
The availability of renewable energy technologies is increasing dramatically across the globe thanks to their growing maturity. However, large scale electrical energy storage and retrieval will almost certainly be a required in order to raise the penetration of renewable sources into the grid. No present energy storage technology has the perfect combination of high power and energy density, low financial and environmental cost, lack of site restrictions, long cycle and calendar lifespan, easy materials availability, and fast response time. Engineered electroactive microbes could address many of the limitations of current energy storage technologies by enabling rewired carbon fixation, a process that spatially separates reactions that are normally carried out together in a photosynthetic cell and replaces the least efficient with non-biological equivalents. If successful, this could allow storage of renewable electricity through electrochemical or enzymatic fixation of carbon dioxide and subsequent storage as carbon-based energy storage molecules including hydrocarbons and non-volatile polymers at high efficiency. In this article we compile performance data on biological and non-biological component choices for rewired carbon fixation systems and identify pressing research and engineering challenges.
Collapse
|
144
|
A combined approach of 16S rRNA and a functional marker gene, soxB to reveal the diversity of sulphur-oxidising bacteria in thermal springs. Arch Microbiol 2019; 201:951-967. [PMID: 31025055 DOI: 10.1007/s00203-019-01666-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/05/2019] [Accepted: 04/19/2019] [Indexed: 10/27/2022]
Abstract
With the advent of new molecular tools, new taxa of sulphur-oxidising bacteria (SOB) in diverse environments are being discovered. However, there is a significant gap of knowledge about the ecology and diversity of SOB in thermal springs. Here, the species diversity and phylogenetic affiliations of SOB were investigated using 16S rRNA and functional gene marker, soxB in thermal springs of Thane district of Maharashtra, India. Most SOB detected by 16S rDNA sequences belong to different operational taxonomic units (OTU's): Firmicutes, α-, β-, γ-Proteobacteria and Actinobacteria with the dominance of first class. However, the soxB gene clone library sequences had shown affiliation with the β-, γ- and α-Proteobacteria. β-Proteobacteria-related sequences were dominant, with 53.3% clones belonging to genus Hydrogenophaga. The thiosulphate oxidation assay carried out for different isolates having distinct identity showed the mean sulphate-sulphur production from 117.86 ± 0.50 to 218.82 ± 2.56 mg SO4-S l-1 after 9 days of incubation. Also, sulphur oxidation by the genus Nitratireductor, Caldimonas, Geobacillus, Paenibacillus, Brevibacillus, Tristrella and Chelatococcus has been reported for the first time that reveals ecological widening over which thiotrophs are distributed.
Collapse
|
145
|
Spietz RL, Lundeen RA, Zhao X, Nicastro D, Ingalls AE, Morris RM. Heterotrophic carbon metabolism and energy acquisition in Candidatus Thioglobus singularis strain PS1, a member of the SUP05 clade of marine Gammaproteobacteria. Environ Microbiol 2019; 21:2391-2401. [PMID: 30951247 DOI: 10.1111/1462-2920.14623] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/30/2022]
Abstract
A hallmark of the SUP05 clade of marine Gammaproteobacteria is the ability to use energy obtained from reduced inorganic sulfur to fuel autotrophic fixation of carbon using RuBisCo. However, some SUP05 also have the genetic potential for heterotrophic growth, raising questions about the roles of SUP05 in the marine carbon cycle. We used genomic reconstructions, physiological growth experiments and proteomics to characterize central carbon and energy metabolism in Candidatus Thioglobus singularis strain PS1, a representative from the SUP05 clade that has the genetic potential for autotrophy and heterotrophy. Here, we show that the addition of individual organic compounds and 0.2 μm filtered diatom lysate significantly enhanced the growth of this bacterium. This positive growth response to organic substrates, combined with expression of a complete TCA cycle, heterotrophic pathways for carbon assimilation, and methylotrophic pathways for energy conversion demonstrate strain PS1's capacity for heterotrophic growth. Further, our inability to verify the expression of RuBisCO suggests that carbon fixation was not critical for growth. These results highlight the metabolic diversity of the SUP05 clade that harbours both primary producers and consumers of organic carbon in the oceans and expand our understanding of specific pathways of organic matter oxidation by the heterotrophic SUP05.
Collapse
Affiliation(s)
- Rachel L Spietz
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Rachel A Lundeen
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Xiaowei Zhao
- Department of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniela Nicastro
- Department of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Robert M Morris
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
146
|
Yang JY, Yang T, Wang XY, Wang YT, Liu MX, Chen ML, Yu YL, Wang JH. A Novel Three-Dimensional Nanosensing Array for the Discrimination of Sulfur-Containing Species and Sulfur Bacteria. Anal Chem 2019; 91:6012-6018. [DOI: 10.1021/acs.analchem.9b00476] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jian-Yu Yang
- Research Center for Analytical Sciences, Department of Chemistry, Colleges of Sciences, Box 332, Northeastern University, Shenyang 110819, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, Colleges of Sciences, Box 332, Northeastern University, Shenyang 110819, China
| | - Xiao-Yan Wang
- Research Center for Analytical Sciences, Department of Chemistry, Colleges of Sciences, Box 332, Northeastern University, Shenyang 110819, China
| | - Yi-Ting Wang
- Research Center for Analytical Sciences, Department of Chemistry, Colleges of Sciences, Box 332, Northeastern University, Shenyang 110819, China
| | - Meng-Xian Liu
- Research Center for Analytical Sciences, Department of Chemistry, Colleges of Sciences, Box 332, Northeastern University, Shenyang 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, Colleges of Sciences, Box 332, Northeastern University, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, Colleges of Sciences, Box 332, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, Colleges of Sciences, Box 332, Northeastern University, Shenyang 110819, China
| |
Collapse
|
147
|
Diao M, Huisman J, Muyzer G. Spatio-temporal dynamics of sulfur bacteria during oxic--anoxic regime shifts in a seasonally stratified lake. FEMS Microbiol Ecol 2019. [PMID: 29528404 PMCID: PMC5939864 DOI: 10.1093/femsec/fiy040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria drive major transformations in the sulfur cycle, and play vital roles in oxic--anoxic transitions in lakes and coastal waters. However, information on the succession of these sulfur bacteria in seasonally stratified lakes using molecular biological techniques is scarce. Here, we used 16S rRNA gene amplicon sequencing to study the spatio-temporal dynamics of sulfur bacteria during oxic--anoxic regime shifts in Lake Vechten. Oxygen and sulfate were mixed throughout the water column in winter and early spring. Meanwhile, SRB, green sulfur bacteria (GSB), purple sulfur bacteria (PSB), and colorless sulfur bacteria (CSB) exclusively inhabited the sediment. After the water column stratified, oxygen and nitrate concentrations decreased in the hypolimnion and various SRB species expanded into the anoxic hypolimnion. Consequently, sulfate was reduced to sulfide, stimulating the growth of PSB and GSB in the metalimnion and hypolimnion during summer stratification. When hypoxia spread throughout the water column during fall turnover, SRB and GSB vanished from the water column, whereas CSB (mainly Arcobacter) and PSB (Lamprocystis) became dominant and oxidized the accumulated sulfide under micro-aerobic conditions. Our results support the view that, once ecosystems have become anoxic and sulfidic, a large oxygen influx is needed to overcome the anaerobic sulfur cycle and bring the ecosystems back into their oxic state.
Collapse
Affiliation(s)
- Muhe Diao
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Gerard Muyzer
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
148
|
Tarabas ОV, Hnatush SО, Мoroz ОМ. The usage of nitrogen compounds by purple non-sulfur bacteria of the Rhodopseudomonas genus. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In this article, we characterized the regularities of oxidation of nitrite ions by phototropic purple non-sulfur bacteria Rhodopseudomonas yavorovii IMV B-7620, which were isolated from the water of Yavorivske Lake (Lviv Region, Ukraine). The bacteria were cultivated anaerobically at the light intensity of 200 lux and aerobically without illumination for 13 days in the modified ATCC No. 1449 medium. The concentration of nitrite ions was determined turbidimetrically by the turbidity of the solution by method of diazotization of sulfanilic acid by the nitrite ions and the interaction of the formed salt with n-(l-naphtyl)ethylenediamine dihydrochloride. The concentration of nitrate ions was determined turbidimetrically by the turbidity of the solution by method of diazotization. Zinc powder was used as a reducing agent. Efficiency of oxidation of 0.7–5.6 mM nitrite ions as electron donors by these bacteria was 100–7%, on the 10-th day of cultivation. It was established that nitrate ions were accumulated in the medium as a result of oxidation of nitrite ions by bacteria. The largest biomass (1.6 g/L) bacteria accumulated on the thirteenth day of growth in a medium with 2.8 mM NO2–. We found that R. yavorovii can use nitrate ions and urea as the only source of nitrogen for phototrophic growth. At a concentration of 1.9 mM ammonium chloride, sodium nitrite and urea in the cultivation medium, the biomass of bacteria was 1.2, 0.8, 1.0 g/L, respectively. The ability of the studied microorganisms to oxidize nitrite ions and to use nitrate ions indicates the significant impact of purple non-sulfur bacteria on the redistribution of streams of nitrogen compounds in ecosystems and the essential role of these microorganisms in the nitrogen biogeochemical cycle.
Collapse
|
149
|
Xie M, Alsina MA, Yuen J, Packman AI, Gaillard JF. Effects of resuspension on the mobility and chemical speciation of zinc in contaminated sediments. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:300-308. [PMID: 30384239 DOI: 10.1016/j.jhazmat.2018.10.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/29/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Identifying and quantifying the processes governing the mobilization of metals during resuspension events is key to assessing long-term metals efflux from sediments and associated ecological impacts. We investigated the effects of sediment resuspension on the mobilization and chemical speciation of zinc in two-week-long batch experiments using metal-contaminated sediments from Lake DePue (IL, USA). Measurements of dissolved zinc and sulfate allowed us to characterize the kinetics of metal sulfide dissolution and the resulting net release of zinc to the aqueous phase. X-ray absorption spectroscopy (XAS) provided direct insights into the chemical speciation of iron and zinc and their dynamic transformations during resuspension. While ZnS rapidly oxidized during resuspension, dissolved zinc increased only after two days of resuspension. We proposed a kinetic model to explain changes in the chemical speciation of zinc during these experiments as constrained by the dissolved species concentrations and chemical speciation as informed by XAS. Only 15% of the zinc mobilized was released to the aqueous phase while the remaining fraction repartitioned the solid phase either as a carbonate precipitate or as a sorbed species. Our results show that zinc sorption onto particle surfaces and reprecipitation of zinc minerals limit zinc solubility during resuspension of metal-sulfide sediments.
Collapse
Affiliation(s)
- Minwei Xie
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3109, USA; Marine Environmental Laboratory, Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, 518000, China.
| | - Marco A Alsina
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3109, USA; Department of Construction Engineering and Management, Faculty of Engineering, University of Talca, Curicó, Chile
| | - Jeffrey Yuen
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3109, USA
| | - Aaron I Packman
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3109, USA
| | - Jean-François Gaillard
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3109, USA.
| |
Collapse
|
150
|
Berben T, Overmars L, Sorokin DY, Muyzer G. Diversity and Distribution of Sulfur Oxidation-Related Genes in Thioalkalivibrio, a Genus of Chemolithoautotrophic and Haloalkaliphilic Sulfur-Oxidizing Bacteria. Front Microbiol 2019; 10:160. [PMID: 30837958 PMCID: PMC6382920 DOI: 10.3389/fmicb.2019.00160] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Soda lakes are saline alkaline lakes characterized by high concentrations of sodium carbonate/bicarbonate which lead to a stable elevated pH (>9), and moderate to extremely high salinity. Despite this combination of extreme conditions, biodiversity in soda lakes is high, and the presence of diverse microbial communities provides a driving force for highly active biogeochemical cycles. The sulfur cycle is one of the most important of these and bacterial sulfur oxidation is dominated by members of the obligately chemolithoautotrophic genus Thioalkalivibrio. Currently, 10 species have been described in this genus, but over one hundred isolates have been obtained from soda lake samples. The genomes of 75 strains were sequenced and annotated previously, and used in this study to provide a comprehensive picture of the diversity and distribution of genes related to dissimilatory sulfur metabolism in Thioalkalivibrio. Initially, all annotated genes in 75 Thioalkalivibrio genomes were placed in ortholog groups and filtered by bi-directional best BLAST analysis. Investigation of the ortholog groups containing genes related to sulfur oxidation showed that flavocytochrome c (fcc), the truncated sox system, and sulfite:quinone oxidoreductase (soe) are present in all strains, whereas dissimilatory sulfite reductase (dsr; which catalyzes the oxidation of elemental sulfur) was found in only six strains. The heterodisulfide reductase system (hdr), which is proposed to oxidize sulfur to sulfite in strains lacking both dsr and soxCD, was detected in 73 genomes. Hierarchical clustering of strains based on sulfur gene repertoire correlated closely with previous phylogenomic analysis. The phylogenetic analysis of several sulfur oxidation genes showed a complex evolutionary history. All in all, this study presents a comprehensive investigation of sulfur metabolism-related genes in cultivated Thioalkalivibrio strains and provides several avenues for future research.
Collapse
Affiliation(s)
- Tom Berben
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Lex Overmars
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Dimitry Y Sorokin
- Winogradsky Institute for Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|