101
|
Osadnik H, Schöpfel M, Heidrich E, Mehner D, Lilie H, Parthier C, Risselada HJ, Grubmüller H, Stubbs MT, Brüser T. PspF-binding domain PspA1-144and the PspA·F complex: New insights into the coiled-coil-dependent regulation of AAA+ proteins. Mol Microbiol 2015; 98:743-59. [DOI: 10.1111/mmi.13154] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Hendrik Osadnik
- Institute of Microbiology; Leibniz Universität Hannover; Herrenhäuser Str. 2 Hannover 30419 Germany
| | - Michael Schöpfel
- Institute of Biochemistry and Biotechnology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Straße 3 Halle (Saale) 06120 Germany
| | - Eyleen Heidrich
- Institute of Microbiology; Leibniz Universität Hannover; Herrenhäuser Str. 2 Hannover 30419 Germany
| | - Denise Mehner
- Institute of Microbiology; Leibniz Universität Hannover; Herrenhäuser Str. 2 Hannover 30419 Germany
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Straße 3 Halle (Saale) 06120 Germany
| | - Christoph Parthier
- Institute of Biochemistry and Biotechnology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Straße 3 Halle (Saale) 06120 Germany
| | - H. Jelger Risselada
- Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen 37077 Germany
| | - Helmut Grubmüller
- Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen 37077 Germany
| | - Milton T. Stubbs
- Institute of Biochemistry and Biotechnology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Straße 3 Halle (Saale) 06120 Germany
| | - Thomas Brüser
- Institute of Microbiology; Leibniz Universität Hannover; Herrenhäuser Str. 2 Hannover 30419 Germany
| |
Collapse
|
102
|
Flores-Kim J, Darwin AJ. Regulation of bacterial virulence gene expression by cell envelope stress responses. Virulence 2015; 5:835-51. [PMID: 25603429 DOI: 10.4161/21505594.2014.965580] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The bacterial cytoplasm lies within a multilayered envelope that must be protected from internal and external hazards. This protection is provided by cell envelope stress responses (ESRs), which detect threats and reprogram gene expression to ensure survival. Pathogens frequently need these ESRs to survive inside the host, where their envelopes face dangerous environmental changes and attack from antimicrobial molecules. In addition, some virulence genes have become integrated into ESR regulons. This might be because these genes can protect the cell envelope from damage by host molecules, or it might help ESRs to reduce stress by moderating the assembly of virulence factors within the envelope. Alternatively, it could simply be a mechanism to coordinate the induction of virulence gene expression with entry into the host. Here, we briefly describe some of the bacterial ESRs, followed by examples where they control virulence gene expression in both Gram-negative and Gram-positive pathogens.
Collapse
Key Words
- BFP, bundle-forming pilus
- CAMP, cationic antimicrobial peptide
- CF, cystic fibrosis
- ECF, extracytoplasmic function
- EPEC, enteropathogenic E. coli
- ESR, envelope stress response
- HMV, hypermucoviscosity
- IM, inner membrane
- LPS, lipopolysaccharide
- LTA, lipoteichoic acids
- OM, outer membrane
- OMP, outer membrane protein
- PG, phosphatidylglycerol
- T(2/3/4)SS, type II/III/IV secretion system
- UPEC, uropathogenic E. coli
- WTA, wall teichoic acids
- antimicrobial peptide
- bacterial pathogens
- cell envelope
- gene regulation
- peptidoglycan
- phospholipid
- stress response
- teichoic acid
- virulence gene
Collapse
Affiliation(s)
- Josué Flores-Kim
- a Department of Microbiology ; New York University School of Medicine ; New York , NY USA
| | | |
Collapse
|
103
|
Membrane Stored Curvature Elastic Stress Modulates Recruitment of Maintenance Proteins PspA and Vipp1. mBio 2015; 6:e01188-15. [PMID: 26330516 PMCID: PMC4556811 DOI: 10.1128/mbio.01188-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage shock protein A (PspA), which is responsible for maintaining inner membrane integrity under stress in enterobacteria, and vesicle-inducting protein in plastids 1 (Vipp1), which functions for membrane maintenance and thylakoid biogenesis in cyanobacteria and plants, are similar peripheral membrane-binding proteins. Their homologous N-terminal amphipathic helices are required for membrane binding; however, the membrane features recognized and required for expressing their functionalities have remained largely uncharacterized. Rigorously controlled, in vitro methodologies with lipid vesicles and purified proteins were used in this study and provided the first biochemical and biophysical characterizations of membrane binding by PspA and Vipp1. Both proteins are found to sense stored curvature elastic (SCE) stress and anionic lipids within the membrane. PspA has an enhanced sensitivity for SCE stress and a higher affinity for the membrane than Vipp1. These variations in binding may be crucial for some of the proteins’ differing roles in vivo. Assays probing the transcriptional regulatory function of PspA in the presence of vesicles showed that a relief of transcription inhibition occurs in an SCE stress-specific manner. This in vitro recapitulation of membrane stress-dependent transcription control suggests that the Psp response may be mounted in vivo when a cell’s inner membrane experiences increased SCE stress. All cell types maintain the integrity of their membrane systems. One widely distributed membrane stress response system in bacteria is the phage shock protein (Psp) system. The central component, peripheral membrane protein PspA, which mitigates inner membrane stress in bacteria, has a counterpart, Vipp1, which functions for membrane maintenance and thylakoid biogenesis in plants and photosynthetic bacteria. Membrane association of both these proteins is accepted as playing a pivotal role in their functions. Here we show that direct membrane binding by PspA and Vipp1 is driven by two physio-chemical signals, one of which is membrane stress specific. Our work points to alleviation of membrane stored curvature elastic stress by amphipathic helix insertions as an attractive mechanism for membrane maintenance by PspA and Vipp1. Furthermore, the identification of a physical, stress-related membrane signal suggests a unilateral mechanism that promotes both binding of PspA and induction of the Psp response.
Collapse
|
104
|
Lee CR, Lee JH, Park KS, Jeong BC, Lee SH. Quantitative proteomic view associated with resistance to clinically important antibiotics in Gram-positive bacteria: a systematic review. Front Microbiol 2015; 6:828. [PMID: 26322035 PMCID: PMC4531251 DOI: 10.3389/fmicb.2015.00828] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/27/2015] [Indexed: 11/13/2022] Open
Abstract
The increase of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) poses a worldwide and serious health threat. Although new antibiotics, such as daptomycin and linezolid, have been developed for the treatment of infections of Gram-positive pathogens, the emergence of daptomycin-resistant and linezolid-resistant strains during therapy has now increased clinical treatment failures. In the past few years, studies using quantitative proteomic methods have provided a considerable progress in understanding antibiotic resistance mechanisms. In this review, to understand the resistance mechanisms to four clinically important antibiotics (methicillin, vancomycin, linezolid, and daptomycin) used in the treatment of Gram-positive pathogens, we summarize recent advances in studies on resistance mechanisms using quantitative proteomic methods, and also examine proteins playing an important role in the bacterial mechanisms of resistance to the four antibiotics. Proteomic researches can identify proteins whose expression levels are changed in the resistance mechanism to only one antibiotic, such as LiaH in daptomycin resistance and PrsA in vancomycin resistance, and many proteins simultaneously involved in resistance mechanisms to various antibiotics. Most of resistance-related proteins, which are simultaneously associated with resistance mechanisms to several antibiotics, play important roles in regulating bacterial envelope biogenesis, or compensating for the fitness cost of antibiotic resistance. Therefore, proteomic data confirm that antibiotic resistance requires the fitness cost and the bacterial envelope is an important factor in antibiotic resistance.
Collapse
Affiliation(s)
- Chang-Ro Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University Yongin, South Korea
| |
Collapse
|
105
|
Datta P, Ravi J, Guerrini V, Chauhan R, Neiditch MB, Shell SS, Fortune SM, Hancioglu B, Igoshin O, Gennaro ML. The Psp system of Mycobacterium tuberculosis integrates envelope stress-sensing and envelope-preserving functions. Mol Microbiol 2015; 97:408-22. [PMID: 25899163 PMCID: PMC4642893 DOI: 10.1111/mmi.13037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2015] [Indexed: 12/13/2022]
Abstract
The bacterial envelope integrates essential stress-sensing and adaptive functions; thus, envelope-preserving functions are important for survival. In Gram-negative bacteria, envelope integrity during stress is maintained by the multi-gene Psp response. Mycobacterium tuberculosis was thought to lack the Psp system since it encodes only pspA and no other psp ortholog. Intriguingly, pspA maps downstream from clgR, which encodes a transcription factor regulated by the MprAB-σ(E) envelope-stress-signaling system. clgR inactivation lowered ATP concentration during stress and protonophore treatment-induced clgR-pspA expression, suggesting that these genes express Psp-like functions. We identified a four-gene set - clgR, pspA (rv2744c), rv2743c, rv2742c - that is regulated by clgR and in turn regulates ClgR activity. Regulatory and protein-protein interactions within the set and a requirement of the four genes for functions associated with envelope integrity and surface-stress tolerance indicate that a Psp-like system has evolved in mycobacteria. Among Actinobacteria, the four-gene module occurred only in tuberculous mycobacteria and was required for intramacrophage growth, suggesting links between its function and mycobacterial virulence. Additionally, the four-gene module was required for MprAB-σ(E) stress-signaling activity. The positive feedback between envelope-stress-sensing and envelope-preserving functions allows sustained responses to multiple, envelope-perturbing signals during chronic infection, making the system uniquely suited to tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Pratik Datta
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Janani Ravi
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Valentina Guerrini
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Rinki Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Matthew B. Neiditch
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| | - Scarlet S. Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts 01605
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 021142
| | - Baris Hancioglu
- Department of Bioengineering, Rice University, Houston, Texas 77005
| | - Oleg Igoshin
- Department of Bioengineering, Rice University, Houston, Texas 77005
| | - Maria Laura Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| |
Collapse
|
106
|
Gao F, Wang W, Zhang W, Liu C. α-Helical Domains Affecting the Oligomerization of Vipp1 and Its Interaction with Hsp70/DnaK in Chlamydomonas. Biochemistry 2015. [DOI: 10.1021/acs.biochem.5b00050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Fei Gao
- State
Key Laboratory of Plant Cell and Chromosome Engineering, Institute
of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenyan Wang
- School
of Pharmacy, Yantai University, No. 30 Qingquan Road, Laishan District, Yantai City, Shandong 264005, China
| | - Wenjuan Zhang
- State
Key Laboratory of Plant Cell and Chromosome Engineering, Institute
of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuimin Liu
- State
Key Laboratory of Plant Cell and Chromosome Engineering, Institute
of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
107
|
Schaefer J, Engl C, Zhang N, Lawton E, Buck M. Genome wide interactions of wild-type and activator bypass forms of σ54. Nucleic Acids Res 2015; 43:7280-91. [PMID: 26082500 PMCID: PMC4551910 DOI: 10.1093/nar/gkv597] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/25/2015] [Indexed: 01/05/2023] Open
Abstract
Enhancer-dependent transcription involving the promoter specificity factor σ54 is widely distributed amongst bacteria and commonly associated with cell envelope function. For transcription initiation, σ54-RNA polymerase yields open promoter complexes through its remodelling by cognate AAA+ ATPase activators. Since activators can be bypassed in vitro, bypass transcription in vivo could be a source of emergent gene expression along evolutionary pathways yielding new control networks and transcription patterns. At a single test promoter in vivo bypass transcription was not observed. We now use genome-wide transcription profiling, genome-wide mutagenesis and gene over-expression strategies in Escherichia coli, to (i) scope the range of bypass transcription in vivo and (ii) identify genes which might alter bypass transcription in vivo. We find little evidence for pervasive bypass transcription in vivo with only a small subset of σ54 promoters functioning without activators. Results also suggest no one gene limits bypass transcription in vivo, arguing bypass transcription is strongly kept in check. Promoter sequences subject to repression by σ54 were evident, indicating loss of rpoN (encoding σ54) rather than creating rpoN bypass alleles would be one evolutionary route for new gene expression patterns. Finally, cold-shock promoters showed unusual σ54-dependence in vivo not readily correlated with conventional σ54 binding-sites.
Collapse
Affiliation(s)
- Jorrit Schaefer
- Faculty of Natural Sciences, Division of Cell & Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | - Christoph Engl
- Faculty of Natural Sciences, Division of Cell & Molecular Biology, Imperial College London, London SW7 2AZ, UK Institute for Global Food Security, Queen's University Belfast, Belfast BT9 5BN, UK
| | - Nan Zhang
- Faculty of Natural Sciences, Division of Cell & Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | - Edward Lawton
- Faculty of Natural Sciences, Division of Cell & Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | - Martin Buck
- Faculty of Natural Sciences, Division of Cell & Molecular Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
108
|
Is the cellular and molecular machinery docile in the stationary phase of Escherichia coli? Biochem Soc Trans 2015; 43:168-71. [DOI: 10.1042/bst20140267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The bacterial cell envelope retains a highly dense cytoplasm. The properties of the cytoplasm change with the metabolic state of the cell, the logarithmic phase (log) being highly active and the stationary phase metabolically much slower. Under the differing growth phases, many different types of stress mechanisms are activated in order to maintain cellular integrity. One such response in enterobacteria is the phage shock protein (Psp) response that enables adaptation to the inner membrane (IM) stress. The Psp system consists of a transcriptional activator PspF, negative regulator PspA, signal sensors PspBC, with PspA and PspG acting as effectors. The single molecule imaging of the PspF showed the existence of dynamic communication between the nucleoid-bound states of PspF and membrane via negative regulator PspA and PspBC sensors. The movement of proteins in the cytoplasm of bacterial cells is often by passive diffusion. It is plausible that the dynamics of the biomolecules differs with the state of the cytoplasm depending on the growth phase. Therefore, the Psp response proteins might encounter the densely packed glass-like properties of the cytoplasm in the stationary phase, which can influence their cellular dynamics and function. By comparing the properties of the log and stationary phases, we find that the dynamics of PspF are influenced by the growth phase and may be controlled by the changes in the cytoplasmic fluidity.
Collapse
|
109
|
Flores-Kim J, Darwin AJ. Activity of a bacterial cell envelope stress response is controlled by the interaction of a protein binding domain with different partners. J Biol Chem 2015; 290:11417-30. [PMID: 25802329 DOI: 10.1074/jbc.m114.614107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Indexed: 11/06/2022] Open
Abstract
The bacterial phage shock protein (Psp) system is a highly conserved cell envelope stress response required for virulence in Yersinia enterocolitica and Salmonella enterica. In non-inducing conditions the transcription factor PspF is inhibited by an interaction with PspA. In contrast, PspA associates with the cytoplasmic membrane proteins PspBC during inducing conditions. This has led to the proposal that PspBC exists in an OFF state, which cannot recruit PspA, or an ON state, which can. However, nothing was known about the difference between these two states. Here, we provide evidence that it is the C-terminal domain of Y. enterocolitica PspC (PspC(CT)) that interacts directly with PspA, both in vivo and in vitro. Site-specific photocross-linking revealed that this interaction occurred only during Psp-inducing conditions in vivo. Importantly, we have also discovered that PspC(CT) can interact with the C-terminal domain of PspB (PspC(CT)·PspB(CT)). However, the PspC(CT)·PspB(CT) and PspC(CT)·PspA interactions were mutually exclusive in vitro. Furthermore, in vivo, PspC(CT) contacted PspB(CT) in the OFF state, whereas it contacted PspA in the ON state. These findings provide the first description of the previously proposed PspBC OFF and ON states and reveal that the regulatory switch is centered on a PspC(CT) partner-switching mechanism.
Collapse
Affiliation(s)
- Josué Flores-Kim
- From the Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Andrew J Darwin
- From the Department of Microbiology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
110
|
Yu ZC, Chen XL, Shen QT, Zhao DL, Tang BL, Su HN, Wu ZY, Qin QL, Xie BB, Zhang XY, Yu Y, Zhou BC, Chen B, Zhang YZ. Filamentous phages prevalent in Pseudoalteromonas spp. confer properties advantageous to host survival in Arctic sea ice. ISME JOURNAL 2015; 9:871-81. [PMID: 25303713 PMCID: PMC4817708 DOI: 10.1038/ismej.2014.185] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/30/2022]
Abstract
Sea ice is one of the most frigid environments for marine microbes. In contrast to other ocean ecosystems, microbes in permanent sea ice are space confined and subject to many extreme conditions, which change on a seasonal basis. How these microbial communities are regulated to survive the extreme sea ice environment is largely unknown. Here, we show that filamentous phages regulate the host bacterial community to improve survival of the host in permanent Arctic sea ice. We isolated a filamentous phage, f327, from an Arctic sea ice Pseudoalteromonas strain, and we demonstrated that this type of phage is widely distributed in Arctic sea ice. Growth experiments and transcriptome analysis indicated that this phage decreases the host growth rate, cell density and tolerance to NaCl and H2O2, but enhances its motility and chemotaxis. Our results suggest that the presence of the filamentous phage may be beneficial for survival of the host community in sea ice in winter, which is characterized by polar night, nutrient deficiency and high salinity, and that the filamentous phage may help avoid over blooming of the host in sea ice in summer, which is characterized by polar day, rich nutrient availability, intense radiation and high concentration of H2O2. Thus, while they cannot kill the host cells by lysing them, filamentous phages confer properties advantageous to host survival in the Arctic sea ice environment. Our study provides a foremost insight into the ecological role of filamentous phages in the Arctic sea ice ecosystem.
Collapse
Affiliation(s)
- Zi-Chao Yu
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan, China [2] Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Xiu-Lan Chen
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan, China [2] Marine Biotechnology Research Center, Shandong University, Jinan, China [3] Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan, China
| | - Qing-Tao Shen
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Dian-Li Zhao
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan, China [2] Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Bai-Lu Tang
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan, China [2] Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Hai-Nan Su
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan, China [2] Marine Biotechnology Research Center, Shandong University, Jinan, China [3] Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan, China
| | - Zhao-Yu Wu
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan, China [2] Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Qi-Long Qin
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan, China [2] Marine Biotechnology Research Center, Shandong University, Jinan, China [3] Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan, China
| | - Bin-Bin Xie
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan, China [2] Marine Biotechnology Research Center, Shandong University, Jinan, China [3] Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan, China
| | - Xi-Ying Zhang
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan, China [2] Marine Biotechnology Research Center, Shandong University, Jinan, China [3] Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan, China
| | - Yong Yu
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Bai-Cheng Zhou
- Marine Biotechnology Research Center, Shandong University, Jinan, China
| | - Bo Chen
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Yu-Zhong Zhang
- 1] State Key Laboratory of Microbial Technology, Shandong University, Jinan, China [2] Marine Biotechnology Research Center, Shandong University, Jinan, China [3] Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan, China
| |
Collapse
|
111
|
Phosphate Limitation Induces Drastic Physiological Changes, Virulence-Related Gene Expression, and Secondary Metabolite Production in Pseudovibrio sp. Strain FO-BEG1. Appl Environ Microbiol 2015; 81:3518-28. [PMID: 25769826 DOI: 10.1128/aem.04167-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/09/2015] [Indexed: 12/11/2022] Open
Abstract
Phosphorus is a vital nutrient for living organisms and is obtained by bacteria primarily via phosphate uptake. However, phosphate is often scarcely accessible in nature, and there is evidence that in many areas of the ocean, its concentration limits bacterial growth. Surprisingly, the phosphate starvation response has been extensively investigated in different model organisms (e.g., Escherichia coli), but there is a dearth of studies on heterotrophic marine bacteria. In this work, we describe the response of Pseudovibrio sp. strain FO-BEG1, a metabolically versatile alphaproteobacterium and potential symbiont of marine sponges, to phosphate limitation. We compared the physiology, protein expression, and secondary metabolite production under phosphate-limited conditions to those under phosphate surplus conditions. We observed that phosphate limitation had a pleiotropic effect on the physiology of the strain, triggering cell elongation, the accumulation of polyhydroxyalkanoate, the degradation of polyphosphate, and the exchange of membrane lipids in favor of phosphorus-free lipids such as sulfoquinovosyl diacylglycerols. Many proteins involved in the uptake and degradation of phospho-organic compounds were upregulated, together with subunits of the ABC transport system for phosphate. Under conditions of phosphate limitation, FO-BEG1 secreted compounds into the medium that conferred an intense yellow coloration to the cultures. Among these compounds, we identified the potent antibiotic tropodithietic acid. Finally, toxin-like proteins and other proteins likely involved in the interaction with the eukaryotic host were also upregulated. Altogether, our data suggest that phosphate limitation leads to a pronounced reorganization of FO-BEG1 physiology, involving phosphorus, carbon, and sulfur metabolism; cell morphology; secondary metabolite production; and the expression of virulence-related genes.
Collapse
|
112
|
Buck M, Engl C, Joly N, Jovanovic G, Jovanovic M, Lawton E, McDonald C, Schumacher J, Waite C, Zhang N. In vitro and in vivo methodologies for studying the Sigma 54-dependent transcription. Methods Mol Biol 2015; 1276:53-79. [PMID: 25665558 DOI: 10.1007/978-1-4939-2392-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Here we describe approaches and methods to assaying in vitro the major variant bacterial sigma factor, Sigma 54 (σ(54)), in a purified system. We include the complete transcription system, binding interactions between σ54 and its activators, as well as the self-assembly and the critical ATPase activity of the cognate activators which serve to remodel the closed promoter complexes. We also present in vivo methodologies that are used to study the impact of physiological processes, metabolic states, global signalling networks, and cellular architecture on the control of σ(54)-dependent gene expression.
Collapse
Affiliation(s)
- Martin Buck
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Mai-Prochnow A, Hui JGK, Kjelleberg S, Rakonjac J, McDougald D, Rice SA. 'Big things in small packages: the genetics of filamentous phage and effects on fitness of their host'. FEMS Microbiol Rev 2015; 39:465-87. [PMID: 25670735 DOI: 10.1093/femsre/fuu007] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 12/17/2014] [Indexed: 01/01/2023] Open
Abstract
This review synthesizes recent and past observations on filamentous phages and describes how these phages contribute to host phentoypes. For example, the CTXφ phage of Vibrio cholerae encodes the cholera toxin genes, responsible for causing the epidemic disease, cholera. The CTXφ phage can transduce non-toxigenic strains, converting them into toxigenic strains, contributing to the emergence of new pathogenic strains. Other effects of filamentous phage include horizontal gene transfer, biofilm development, motility, metal resistance and the formation of host morphotypic variants, important for the biofilm stress resistance. These phages infect a wide range of Gram-negative bacteria, including deep-sea, pressure-adapted bacteria. Many filamentous phages integrate into the host genome as prophage. In some cases, filamentous phages encode their own integrase genes to facilitate this process, while others rely on host-encoded genes. These differences are mediated by different sets of 'core' and 'accessory' genes, with the latter group accounting for some of the mechanisms that alter the host behaviours in unique ways. It is increasingly clear that despite their relatively small genomes, these phages exert signficant influence on their hosts and ultimately alter the fitness and other behaviours of their hosts.
Collapse
Affiliation(s)
- Anne Mai-Prochnow
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia
| | - Janice Gee Kay Hui
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia
| | - Staffan Kjelleberg
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Jasna Rakonjac
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Diane McDougald
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Scott A Rice
- The Centre for Marine Bio-Innovation and the School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney NSW 2052, Australia The Singapore Centre on Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| |
Collapse
|
114
|
Jovanovic G, Mehta P, Ying L, Buck M. Anionic lipids and the cytoskeletal proteins MreB and RodZ define the spatio-temporal distribution and function of membrane stress controller PspA in Escherichia coli. Microbiology (Reading) 2014; 160:2374-2386. [DOI: 10.1099/mic.0.078527-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All cell types must maintain the integrity of their membranes. The conserved bacterial membrane-associated protein PspA is a major effector acting upon extracytoplasmic stress and is implicated in protection of the inner membrane of pathogens, formation of biofilms and multi-drug-resistant persister cells. PspA and its homologues in Gram-positive bacteria and archaea protect the cell envelope whilst also supporting thylakoid biogenesis in cyanobacteria and higher plants. In enterobacteria, PspA is a dual function protein negatively regulating the Psp system in the absence of stress and acting as an effector of membrane integrity upon stress. We show that in Escherichia coli the low-order oligomeric PspA regulatory complex associates with cardiolipin-rich, curved polar inner membrane regions. There, cardiolipin and the flotillin 1 homologue YqiK support the PspBC sensors in transducing a membrane stress signal to the PspA-PspF inhibitory complex. After stress perception, PspA high-order oligomeric effector complexes initially assemble in polar membrane regions. Subsequently, the discrete spatial distribution and dynamics of PspA effector(s) in lateral membrane regions depend on the actin homologue MreB and the peptidoglycan machinery protein RodZ. The consequences of loss of cytoplasmic membrane anionic lipids, MreB, RodZ and/or YqiK suggest that the mode of action of the PspA effector is closely associated with cell envelope organization.
Collapse
Affiliation(s)
- Goran Jovanovic
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Parul Mehta
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Liming Ying
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Martin Buck
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
115
|
Cavanagh AT, Wassarman KM. 6S RNA, a Global Regulator of Transcription inEscherichia coli,Bacillus subtilis, and Beyond. Annu Rev Microbiol 2014; 68:45-60. [DOI: 10.1146/annurev-micro-092611-150135] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amy T. Cavanagh
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin 53706;
| | - Karen M. Wassarman
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin 53706;
| |
Collapse
|
116
|
Vörös A, Simm R, Slamti L, McKay MJ, Hegna IK, Nielsen-LeRoux C, Hassan KA, Paulsen IT, Lereclus D, Økstad OA, Molloy MP, Kolstø AB. SecDF as part of the Sec-translocase facilitates efficient secretion of Bacillus cereus toxins and cell wall-associated proteins. PLoS One 2014; 9:e103326. [PMID: 25083861 PMCID: PMC4118872 DOI: 10.1371/journal.pone.0103326] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/26/2014] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to explore the role of SecDF in protein secretion in Bacillus cereus ATCC 14579 by in-depth characterization of a markerless secDF knock out mutant. Deletion of secDF resulted in pleiotropic effects characterized by a moderately slower growth rate, aberrant cell morphology, enhanced susceptibility to xenobiotics, reduced virulence and motility. Most toxins, including food poisoning-associated enterotoxins Nhe, Hbl, and cytotoxin K, as well as phospholipase C were less abundant in the secretome of the ΔsecDF mutant as determined by label-free mass spectrometry. Global transcriptome studies revealed profound transcriptional changes upon deletion of secDF indicating cell envelope stress. Interestingly, the addition of glucose enhanced the described phenotypes. This study shows that SecDF is an important part of the Sec-translocase mediating efficient secretion of virulence factors in the Gram-positive opportunistic pathogen B. cereus, and further supports the notion that B. cereus enterotoxins are secreted by the Sec-system.
Collapse
Affiliation(s)
- Aniko Vörös
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Roger Simm
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Leyla Slamti
- INRA, UMR1319 Micalis, Domaine de La Minière, Guyancourt, France
| | - Matthew J. McKay
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, Australia
| | - Ida K. Hegna
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | | | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Didier Lereclus
- INRA, UMR1319 Micalis, Domaine de La Minière, Guyancourt, France
- AgroParistech, UMR Micalis, Jouy-en-Josas, France
| | - Ole Andreas Økstad
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Mark P. Molloy
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, Australia
| | - Anne-Brit Kolstø
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
117
|
Goodsell DS, Haas D. Visualising microorganisms from molecules to cells. FEMS Microbiol Lett 2014; 356:1-7. [PMID: 25039917 DOI: 10.1111/1574-6968.12485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
10 images from FEMS articles have been selected to show the diversity of visualisation used in microbiology.
Collapse
Affiliation(s)
- David S Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | | |
Collapse
|
118
|
Dissecting Escherichia coli outer membrane biogenesis using differential proteomics. PLoS One 2014; 9:e100941. [PMID: 24967819 PMCID: PMC4072712 DOI: 10.1371/journal.pone.0100941] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/30/2014] [Indexed: 11/19/2022] Open
Abstract
The cell envelope of Gram-negative bacteria is a complex multi-layered structure comprising an inner cytoplasmic membrane and an additional asymmetric lipid bilayer, the outer membrane, which functions as a selective permeability barrier and is essential for viability. Lipopolysaccharide, an essential glycolipid located in the outer leaflet of the outer membrane, greatly contributes to the peculiar properties exhibited by the outer membrane. This complex molecule is transported to the cell surface by a molecular machine composed of seven essential proteins LptABCDEFG that form a transenvelope complex and function as a single device. While advances in understanding the mechanisms that govern the biogenesis of the cell envelope have been recently made, only few studies are available on how bacterial cells respond to severe envelope biogenesis defects on a global scale. Here we report the use of differential proteomics based on Multidimensional Protein Identification Technology (MudPIT) to investigate how Escherichia coli cells respond to a block of lipopolysaccharide transport to the outer membrane. We analysed the envelope proteome of a lptC conditional mutant grown under permissive and non permissive conditions and identified 123 proteins whose level is modulated upon LptC depletion. Most such proteins belong to pathways implicated in cell envelope biogenesis, peptidoglycan remodelling, cell division and protein folding. Overall these data contribute to our understanding on how E. coli cells respond to LPS transport defects to restore outer membrane functionality.
Collapse
|
119
|
Jovanovic M, Lawton E, Schumacher J, Buck M. Interplay among Pseudomonas syringae HrpR, HrpS and HrpV proteins for regulation of the type III secretion system. FEMS Microbiol Lett 2014; 356:201-11. [PMID: 24863420 PMCID: PMC4145663 DOI: 10.1111/1574-6968.12476] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 11/28/2022] Open
Abstract
Pseudomonas syringae pv. tomato DC3000, a plant pathogenic gram-negative bacterium, employs the type III secretion system (T3SS) to cause disease in tomato and Arabidopsis and to induce the hypersensitive response in nonhost plants. The expression of T3SS is regulated by the HrpL extracytoplasmic sigma factor. Expression of HrpL is controlled by transcriptional activators HrpR and HrpS and negative regulator HrpV. In this study, we analysed the organization of HrpRS and HrpV regulatory proteins and interplay between them. We identified one key residue I26 in HrpS required for repression by HrpV. Substitution of I26 in HrpS abolishes its interaction with HrpV and impairs interactions between HrpS and HrpR and the self-association of HrpS. We show that HrpS self-associates and can associate simultaneously with HrpR and HrpV. We now propose that HrpS has a central role in the assembly of the regulatory HrpRSV complex. Deletion analysis of HrpR and HrpS proteins showed that C-terminal parts of HrpR and HrpS confer determinants indispensable for their self-assembly.
Collapse
Affiliation(s)
- Milija Jovanovic
- Department of Life Sciences, Imperial College London, London, UK
| | | | | | | |
Collapse
|
120
|
Tripathy S, Sen R, Padhi SK, Mohanty S, Maiti NK. Upregulation of transcripts for metabolism in diverse environments is a shared response associated with survival and adaptation of Klebsiella pneumoniae in response to temperature extremes. Funct Integr Genomics 2014; 14:591-601. [PMID: 24890397 DOI: 10.1007/s10142-014-0382-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/17/2014] [Accepted: 05/26/2014] [Indexed: 11/28/2022]
Abstract
Klebsiella pneumoniae being ubiquitous in nature encounters wide differences in environmental condition. The organism's abundance in natural water reservoirs exposed to temperature variation forms the basis of its persistence and spread in the soil and other farm produce. In order to investigate the effect of temperature changes on the survival and adaptation of the bacteria, the transcriptional response of K. pneumoniae subjected to low (20 °C) and high (50 °C) temperature shock were executed using Applied Biosystems SOLiD platform. Approximately, 33 and 34% of protein coding genes expressed in response to 20 and 50 °C, respectively, displayed significant up- or downregulation (p < 0.01). Most of the significantly expressed transcripts mapped to metabolism, membrane transport, and cell motility were downregulated at 50 °C, except for protein folding, sorting, and degradation, suggesting that heat stress causes general downregulation of gene expression together with induction of heat shock proteins. While at 20 °C, the transcripts of carbohydrate, lipid, and amino acid metabolism were highly upregulated. Hypothetical proteins as well as canonical heat and cold shock proteins, viz. grpE, clpX, recA, and deaD were upregulated commonly in response to 20 and 50 °C. Significant upregulation of genes encoding ribosomal proteins at 20 and 50 °C possibly suggest their role in the survival of K. pneumoniae cells under low- and high-temperature stress.
Collapse
Affiliation(s)
- S Tripathy
- Microbiology unit, Division of Fish Health Management, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, 751002, India
| | | | | | | | | |
Collapse
|
121
|
Wallrodt I, Jelsbak L, Thomsen LE, Brix L, Lemire S, Gautier L, Nielsen DS, Jovanovic G, Buck M, Olsen JE. Removal of the phage-shock protein PspB causes reduction of virulence in Salmonella enterica serovar Typhimurium independently of NRAMP1. J Med Microbiol 2014; 63:788-795. [DOI: 10.1099/jmm.0.072223-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The phage-shock protein (Psp) system is believed to manage membrane stress in all Enterobacteriaceae and has recently emerged as being important for virulence in several pathogenic species of this phylum. The core of the Psp system consists of the pspA–D operon and the distantly located pspG gene. In Salmonella enterica serovar Typhimurium (S. Typhimurium), it has recently been reported that PspA is essential for systemic infection of mice, but only in NRAMP1+ mice, signifying that attenuation is related to coping with divalent cation starvation in the intracellular environment. In the present study, we investigated the contribution of individual psp genes to virulence of S. Typhimurium. Interestingly, deletion of the whole pspA–D set of genes caused attenuation in both NRAMP1+ and NRAMP1− mice, indicating that one or more of the psp genes contribute to virulence independently of NRAMP1 expression in the host. Investigations of single gene mutants showed that knock out of pspB reduced virulence in both types of mice, while deletion of pspA only caused attenuation in NRAMP1+ mice, and deletion of pspD had a minor effect in NRAMP1− mice, while deletions of either pspC or pspG did not affect virulence. Experiments addressed at elucidating the role of PspB in virulence revealed that PspB is dispensable for uptake to and intracellular replication in cultured macrophages and resistance to complement-induced killing. Furthermore, the Psp system of S. Typhimurium was dispensable during pIV-induced secretin stress. In conclusion, our results demonstrate that removal of PspB reduces virulence in S. Typhimurium independently of host NRAMP1 expression, demonstrating that PspB has roles in intra-host survival distinct from the reported contributions of PspA.
Collapse
Affiliation(s)
- Inke Wallrodt
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Lotte Jelsbak
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Line E. Thomsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Lena Brix
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Sébastien Lemire
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Laurent Gautier
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Dennis S. Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Goran Jovanovic
- Division of Cell and Molecular Biology, Imperial College London, South Kensington, London, UK
| | - Martin Buck
- Division of Cell and Molecular Biology, Imperial College London, South Kensington, London, UK
| | - John E. Olsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
122
|
Landstorfer R, Simon S, Schober S, Keim D, Scherer S, Neuhaus K. Comparison of strand-specific transcriptomes of enterohemorrhagic Escherichia coli O157:H7 EDL933 (EHEC) under eleven different environmental conditions including radish sprouts and cattle feces. BMC Genomics 2014; 15:353. [PMID: 24885796 PMCID: PMC4048457 DOI: 10.1186/1471-2164-15-353] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 03/31/2014] [Indexed: 12/26/2022] Open
Abstract
Background Multiple infection sources for enterohemorrhagic Escherichia coli O157:H7 (EHEC) are known, including animal products, fruit and vegetables. The ecology of this pathogen outside its human host is largely unknown and one third of its annotated genes are still hypothetical. To identify genetic determinants expressed under a variety of environmental factors, we applied strand-specific RNA-sequencing, comparing the SOLiD and Illumina systems. Results Transcriptomes of EHEC were sequenced under 11 different biotic and abiotic conditions: LB medium at pH4, pH7, pH9, or at 15°C; LB with nitrite or trimethoprim-sulfamethoxazole; LB-agar surface, M9 minimal medium, spinach leaf juice, surface of living radish sprouts, and cattle feces. Of 5379 annotated genes in strain EDL933 (genome and plasmid), a surprising minority of only 144 had null sequencing reads under all conditions. We therefore developed a statistical method to distinguish weakly transcribed genes from background transcription. We find that 96% of all genes and 91.5% of the hypothetical genes exhibit a significant transcriptional signal under at least one condition. Comparing SOLiD and Illumina systems, we find a high correlation between both approaches for fold-changes of the induced or repressed genes. The pathogenicity island LEE showed highest transcriptional activity in LB medium, minimal medium, and after treatment with antibiotics. Unique sets of genes, including many hypothetical genes, are highly up-regulated on radish sprouts, cattle feces, or in the presence of antibiotics. Furthermore, we observed induction of the shiga-toxin carrying phages by antibiotics and confirmed active biofilm related genes on radish sprouts, in cattle feces, and on agar plates. Conclusions Since only a minority of genes (2.7%) were not active under any condition tested (null reads), we suggest that the assumption of significant genome over-annotations is wrong. Environmental transcriptomics uncovered hitherto unknown gene functions and unique regulatory patterns in EHEC. For instance, the environmental function of azoR had been elusive, but this gene is highly active on radish sprouts. Thus, NGS-transcriptomics is an appropriate technique to propose new roles of hypothetical genes and to guide future research. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-353) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Klaus Neuhaus
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany.
| |
Collapse
|
123
|
Makarova KS, Anantharaman V, Grishin NV, Koonin EV, Aravind L. CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems. Front Genet 2014; 5:102. [PMID: 24817877 PMCID: PMC4012209 DOI: 10.3389/fgene.2014.00102] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/08/2014] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas adaptive immunity systems of bacteria and archaea insert fragments of virus or plasmid DNA as spacer sequences into CRISPR repeat loci. Processed transcripts encompassing these spacers guide the cleavage of the cognate foreign DNA or RNA. Most CRISPR-Cas loci, in addition to recognized cas genes, also include genes that are not directly implicated in spacer acquisition, CRISPR transcript processing or interference. Here we comprehensively analyze sequences, structures and genomic neighborhoods of one of the most widespread groups of such genes that encode proteins containing a predicted nucleotide-binding domain with a Rossmann-like fold, which we denote CARF (CRISPR-associated Rossmann fold). Several CARF protein structures have been determined but functional characterization of these proteins is lacking. The CARF domain is most frequently combined with a C-terminal winged helix-turn-helix DNA-binding domain and “effector” domains most of which are predicted to possess DNase or RNase activity. Divergent CARF domains are also found in RtcR proteins, sigma-54 dependent regulators of the rtc RNA repair operon. CARF genes frequently co-occur with those coding for proteins containing the WYL domain with the Sm-like SH3 β-barrel fold, which is also predicted to bind ligands. CRISPR-Cas and possibly other defense systems are predicted to be transcriptionally regulated by multiple ligand-binding proteins containing WYL and CARF domains which sense modified nucleotides and nucleotide derivatives generated during virus infection. We hypothesize that CARF domains also transmit the signal from the bound ligand to the fused effector domains which attack either alien or self nucleic acids, resulting, respectively, in immunity complementing the CRISPR-Cas action or in dormancy/programmed cell death.
Collapse
Affiliation(s)
- Kira S Makarova
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health Bethesda, MD, USA
| | - Vivek Anantharaman
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health Bethesda, MD, USA
| | - Nick V Grishin
- Departments of Biophysics and Biochemistry, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Eugene V Koonin
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health Bethesda, MD, USA
| | - L Aravind
- National Library of Medicine, National Center for Biotechnology Information, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
124
|
Domínguez-Escobar J, Wolf D, Fritz G, Höfler C, Wedlich-Söldner R, Mascher T. Subcellular localization, interactions and dynamics of the phage-shock protein-like Lia response in Bacillus subtilis. Mol Microbiol 2014; 92:716-32. [PMID: 24666271 DOI: 10.1111/mmi.12586] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2014] [Indexed: 01/08/2023]
Abstract
The liaIH operon of Bacillus subtilis is the main target of the envelope stress-inducible two-component system LiaRS. Here, we studied the localization, interaction and cellular dynamics of Lia proteins to gain insights into the physiological role of the Lia response. We demonstrate that LiaI serves as the membrane anchor for the phage-shock protein A homologue LiaH. Under non-inducing conditions, LiaI locates in highly motile membrane-associated foci, while LiaH is dispersed throughout the cytoplasm. Under stress conditions, both proteins are strongly induced and colocalize in numerous distinct static spots at the cytoplasmic membrane. This behaviour is independent of MreB and does also not correlate with the stalling of the cell wall biosynthesis machinery upon antibiotic inhibition. It can be induced by antibiotics that interfere with the membrane-anchored steps of cell wall biosynthesis, while compounds that inhibit the cytoplasmic or extracytoplasmic steps do not trigger this response. Taken together, our data are consistent with a model in which the Lia system scans the cytoplasmic membrane for envelope perturbations. Upon their detection, LiaS activates the cognate response regulator LiaR, which in turn strongly induces the liaIH operon. Simultaneously, LiaI recruits LiaH to the membrane, presumably to protect the envelope and counteract the antibiotic-induced damage.
Collapse
Affiliation(s)
- Julia Domínguez-Escobar
- Max Planck Institute of Biochemistry, AG Cellular Dynamics and Cell Patterning, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
125
|
The N-Terminal Amphipathic Helices Determine Regulatory and Effector Functions of Phage Shock Protein A (PspA) in Escherichia coli. J Mol Biol 2014; 426:1498-511. [DOI: 10.1016/j.jmb.2013.12.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/27/2013] [Accepted: 12/12/2013] [Indexed: 11/24/2022]
|
126
|
Babu M, Arnold R, Bundalovic-Torma C, Gagarinova A, Wong KS, Kumar A, Stewart G, Samanfar B, Aoki H, Wagih O, Vlasblom J, Phanse S, Lad K, Yeou Hsiung Yu A, Graham C, Jin K, Brown E, Golshani A, Kim P, Moreno-Hagelsieb G, Greenblatt J, Houry WA, Parkinson J, Emili A. Quantitative genome-wide genetic interaction screens reveal global epistatic relationships of protein complexes in Escherichia coli. PLoS Genet 2014; 10:e1004120. [PMID: 24586182 PMCID: PMC3930520 DOI: 10.1371/journal.pgen.1004120] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/03/2013] [Indexed: 02/02/2023] Open
Abstract
Large-scale proteomic analyses in Escherichia coli have documented the composition and physical relationships of multiprotein complexes, but not their functional organization into biological pathways and processes. Conversely, genetic interaction (GI) screens can provide insights into the biological role(s) of individual gene and higher order associations. Combining the information from both approaches should elucidate how complexes and pathways intersect functionally at a systems level. However, such integrative analysis has been hindered due to the lack of relevant GI data. Here we present a systematic, unbiased, and quantitative synthetic genetic array screen in E. coli describing the genetic dependencies and functional cross-talk among over 600,000 digenic mutant combinations. Combining this epistasis information with putative functional modules derived from previous proteomic data and genomic context-based methods revealed unexpected associations, including new components required for the biogenesis of iron-sulphur and ribosome integrity, and the interplay between molecular chaperones and proteases. We find that functionally-linked genes co-conserved among γ-proteobacteria are far more likely to have correlated GI profiles than genes with divergent patterns of evolution. Overall, examining bacterial GIs in the context of protein complexes provides avenues for a deeper mechanistic understanding of core microbial systems. Genome-wide genetic interaction (GI) screens have been performed in yeast, but no analogous large-scale studies have yet been reported for bacteria. Here, we have used E. coli synthetic genetic array (eSGA) technology developed by our group to quantitatively map GIs to reveal epistatic dependencies and functional cross-talk among ∼600,000 digenic mutant combinations. By combining this epistasis information with functional modules derived by our group's earlier efforts from proteomic and genomic context (GC)-based methods, we identify several unexpected pathway-level dependencies, functional links between protein complexes, and biological roles of uncharacterized bacterial gene products. As part of the study, two of our pathway predictions from GI screens were validated experimentally, where we confirmed the role of these new components in iron-sulphur biogenesis and ribosome integrity. We also extrapolated the epistatic connectivity diagram of E. coli to 233 distantly related γ-proteobacterial species lacking GI information, and identified co-conserved genes and functional modules important for bacterial pathogenesis. Overall, this study describes the first genome-scale map of GIs in gram-negative bacterium, and through integrative analysis with previously derived protein-protein and GC-based interaction networks presents a number of novel insights into the architecture of bacterial pathways that could not have been discerned through either network alone.
Collapse
Affiliation(s)
- Mohan Babu
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
- * E-mail: (MB); (AE)
| | - Roland Arnold
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Cedoljub Bundalovic-Torma
- Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alla Gagarinova
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Keith S. Wong
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ashwani Kumar
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Geordie Stewart
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Bahram Samanfar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Omar Wagih
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - James Vlasblom
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Sadhna Phanse
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Krunal Lad
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | | | - Christopher Graham
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Ke Jin
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Eric Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Ashkan Golshani
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Philip Kim
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | | | - Jack Greenblatt
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - John Parkinson
- Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Emili
- Banting and Best Department of Medical Research, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (MB); (AE)
| |
Collapse
|
127
|
Determination of the self-association residues within a homomeric and a heteromeric AAA+ enhancer binding protein. J Mol Biol 2014; 426:1692-710. [PMID: 24434682 DOI: 10.1016/j.jmb.2014.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/17/2013] [Accepted: 01/06/2014] [Indexed: 11/24/2022]
Abstract
The σ(54)-dependent transcription in bacteria requires specific activator proteins, bacterial enhancer binding protein (bEBP), members of the AAA+ (ATPases Associated with various cellular Activities) protein family. The bEBPs usually form oligomers in order to hydrolyze ATP and make open promoter complexes. The bEBP formed by HrpR and HrpS activates transcription from the σ(54)-dependent hrpL promoter responsible for triggering the Type Three Secretion System in Pseudomonas syringae pathovars. Unlike other bEBPs that usually act as homohexamers, HrpR and HrpS operate as a highly co-dependent heterohexameric complex. To understand the organization of the HrpRS complex and the HrpR and HrpS strict co-dependence, we have analyzed the interface between subunits using the random and directed mutagenesis and available crystal structures of several closely related bEBPs. We identified key residues required for the self-association of HrpR (D32, E202 and K235) with HrpS (D32, E200 and K233), showed that the HrpR D32 and HrpS K233 residues form interacting pairs directly involved in an HrpR-HrpS association and that the change in side-chain length at position 233 in HrpS affects self-association and interaction with the HrpR and demonstrated that the HrpS D32, E200 and K233 are not involved in negative regulation imposed by HrpV. We established that the equivalent residues K30, E200 and E234 in a homo-oligomeric bEBP, PspF, are required for the subunit communication and formation of an oligomeric lock that cooperates with the ATP γ-phosphate sensing PspF residue R227, providing insights into their roles in the heteromeric HrpRS co-complex.
Collapse
|
128
|
Anné J, Vrancken K, Van Mellaert L, Van Impe J, Bernaerts K. Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1750-61. [PMID: 24412306 DOI: 10.1016/j.bbamcr.2013.12.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/26/2013] [Accepted: 12/31/2013] [Indexed: 02/07/2023]
Abstract
Proteins secreted by Gram-positive bacteria are released into the culture medium with the obvious benefit that they usually retain their native conformation. This property makes these host cells potentially interesting for the production of recombinant proteins, as one can take full profit of established protocols for the purification of active proteins. Several state-of-the-art strategies to increase the yield of the secreted proteins will be discussed, using Streptomyces lividans as an example and compared with approaches used in some other host cells. It will be shown that approaches such as increasing expression and translation levels, choice of secretion pathway and modulation of proteins thereof, avoiding stress responses by changing expression levels of specific (stress) proteins, can be helpful to boost production yield. In addition, the potential of multi-omics approaches as a tool to understand the genetic background and metabolic fluxes in the host cell and to seek for new targets for strain and protein secretion improvement is discussed. It will be shown that S. lividans, along with other Gram-positive host cells, certainly plays a role as a production host for recombinant proteins in an economically viable way. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Jozef Anné
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Kristof Vrancken
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Lieve Van Mellaert
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Jan Van Impe
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46 box 2423, B-3001 Leuven, Belgium.
| | - Kristel Bernaerts
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46 box 2423, B-3001 Leuven, Belgium.
| |
Collapse
|
129
|
Mehta P, Jovanovic G, Lenn T, Bruckbauer A, Engl C, Ying L, Buck M. Dynamics and stoichiometry of a regulated enhancer-binding protein in live Escherichia coli cells. Nat Commun 2013; 4:1997. [PMID: 23764692 PMCID: PMC3709507 DOI: 10.1038/ncomms2997] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 05/09/2013] [Indexed: 12/02/2022] Open
Abstract
Bacterial enhancer-dependent transcription systems support major adaptive responses and offer a singular paradigm in gene control analogous to complex eukaryotic systems. Here we report new mechanistic insights into the control of one-membrane stress-responsive bacterial enhancer-dependent system. Using millisecond single-molecule fluorescence microscopy of live cells we determine the localizations, two-dimensional diffusion dynamics and stoichiometries of complexes of the bacterial enhancer-binding ATPase PspF during its action at promoters as regulated by inner membrane interacting negative controller PspA. We establish that a stable repressive PspF–PspA complex is located in the nucleoid, transiently communicating with the inner membrane via PspA. The PspF as a hexamer stably binds only one of the two psp promoters at a time, suggesting that psp promoters will fire asynchronously and cooperative interactions of PspF with the basal transcription complex influence dynamics of the PspF hexamer–DNA complex and regulation of the psp promoters. Cellular adaptive responses require temporal and spatial control of key regulatory protein complexes. Mehta et al. describe the dynamic interaction of a transcriptional activator mediating membrane stress response in E. coli with its negative regulator, the cell membrane and the transcription machinery.
Collapse
Affiliation(s)
- Parul Mehta
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
130
|
Kingston AW, Liao X, Helmann JD. Contributions of the σ(W) , σ(M) and σ(X) regulons to the lantibiotic resistome of Bacillus subtilis. Mol Microbiol 2013; 90:502-18. [PMID: 23980836 PMCID: PMC4067139 DOI: 10.1111/mmi.12380] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2013] [Indexed: 11/28/2022]
Abstract
In Bacillus subtilis, the extracytoplasmic function (ECF) σ factors σ(M) , σ(W) and σ(X) all contribute to resistance against lantibiotics. Nisin, a model lantibiotic, has a dual mode of action: it inhibits cell wall synthesis by binding lipid II, and this complex also forms pores in the cytoplasmic membrane. These activities can be separated in a nisin hinge-region variant (N20P M21P) that binds lipid II, but no longer permeabilizes membranes. The major contribution of σ(M) to nisin resistance is expression of ltaSa, encoding a stress-activated lipoteichoic acid synthase, and σ(X) functions primarily by activation of the dlt operon controlling d-alanylation of teichoic acids. Together, σ(M) and σ(X) regulate cell envelope structure to decrease access of nisin to its lipid II target. In contrast, σ(W) is principally involved in protection against membrane permeabilization as it provides little protection against the nisin hinge region variant. σ(W) contributes to nisin resistance by regulation of a signal peptide peptidase (SppA), phage shock proteins (PspA and YvlC, a PspC homologue) and tellurite resistance related proteins (YceGHI). These defensive mechanisms are also effective against other lantibiotics such as mersacidin, gallidermin and subtilin and comprise an important subset of the intrinsic antibiotic resistome of B. subtilis.
Collapse
Affiliation(s)
| | - Xiaojie Liao
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
131
|
Raivio TL. Everything old is new again: an update on current research on the Cpx envelope stress response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1529-41. [PMID: 24184210 DOI: 10.1016/j.bbamcr.2013.10.018] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
The Cpx envelope stress response (ESR) has been linked to proteins that are integrated into and secreted across the inner membrane for several decades. Initial studies of the cpx locus linked it to alterations in the protein content of both the inner and outer membrane, together with changes in proton motive driven transport and conjugation. Since the mid 1990s, the predominant view of the Cpx envelope stress response has been that it serves to detect and respond to secreted, misfolded proteins in the periplasm. Recent studies in Escherichia coli and other Gram negative organisms highlight a role for the Cpx ESR in specifically responding to perturbations that occur at the inner membrane (IM). It is clear that Cpx adaptation involves a broad suite of changes that encompass many functions in addition to protein folding. Interestingly, recent studies have refocused attention on Cpx-regulated phenotypes that were initially published over 30years ago, including antibiotic resistance and transport across the IM. In this review I will focus on the insights and models that have arisen from recent studies and that may help explain some of the originally published Cpx phenotypes. Although the molecular nature of the inducing signal for the Cpx ESR remains enigmatic, recently solved structures of signaling proteins are yielding testable models concerning the molecular mechanisms behind signaling. The identification of connections between the Cpx ESR and other stress responses in the cell reveals a complex web of interactions that involves Cpx-regulated expression of other regulators as well as small proteins and sRNAs. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Tracy L Raivio
- Department of Biological Sciences, Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
132
|
Zhang N, Gordiyenko Y, Joly N, Lawton E, Robinson CV, Buck M. Subunit dynamics and nucleotide-dependent asymmetry of an AAA(+) transcription complex. J Mol Biol 2013; 426:71-83. [PMID: 24055699 DOI: 10.1016/j.jmb.2013.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/21/2013] [Accepted: 08/24/2013] [Indexed: 01/22/2023]
Abstract
Bacterial enhancer binding proteins (bEBPs) are transcription activators that belong to the AAA(+) protein family. They form higher-order self-assemblies to regulate transcription initiation at stress response and pathogenic promoters. The precise mechanism by which these ATPases utilize ATP binding and hydrolysis energy to remodel their substrates remains unclear. Here we employed mass spectrometry of intact complexes to investigate subunit dynamics and nucleotide occupancy of the AAA(+) domain of one well-studied bEBP in complex with its substrate, the σ(54) subunit of RNA polymerase. Our results demonstrate that the free AAA(+) domain undergoes significant changes in oligomeric states and nucleotide occupancy upon σ(54) binding. Such changes likely correlate with one transition state of ATP and are associated with an open spiral ring formation that is vital for asymmetric subunit function and interface communication. We confirmed that the asymmetric subunit functionality persists for open promoter complex formation using single-chain forms of bEBP lacking the full complement of intact ATP hydrolysis sites. Outcomes reconcile low- and high-resolution structures and yield a partial sequential ATP hydrolysis model for bEBPs.
Collapse
Affiliation(s)
- Nan Zhang
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | - Yuliya Gordiyenko
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Nicolas Joly
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Batiment Buffon, 15 rue Helene Brion, 75205 Paris Cedex 13, France
| | - Edward Lawton
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK.
| | - Martin Buck
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
133
|
Role of filamentous phage SW1 in regulating the lateral flagella of Shewanella piezotolerans strain WP3 at low temperatures. Appl Environ Microbiol 2013; 79:7101-9. [PMID: 24038680 DOI: 10.1128/aem.01675-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Low-temperature ecosystems represent the largest biosphere on Earth, and yet our understanding of the roles of bacteriophages in these systems is limited. Here, the influence of the cold-active filamentous phage SW1 on the phenotype and gene transcription of its host, Shewanella piezotolerans WP3 (WP3), was investigated by construction of a phage-free strain (WP3ΔSW1), which was compared with the wild-type strain. The expression of 49 genes, including 16 lateral flagellar genes, was found to be significantly influenced by SW1 at 4°C, as demonstrated by comparative whole-genome microarray analysis. WP3ΔSW1 was shown to have a higher production of lateral flagella than WP3 and enhanced swarming motility when cultivated on solid agar plates. Besides, SW1 has a remarkable impact on the expression of a variety of host genes in liquid culture, particularly the genes related to the membrane and to the production of lateral flagella. These results suggest that the deep-sea bacterium WP3 might balance the high-energy demands of phage maintenance and swarming motility at low temperatures. The phage SW1 is shown to have a significant influence on the swarming ability of the host and thus may play an important role in adjusting the fitness of the cells in the deep-sea environment.
Collapse
|
134
|
Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance. Proc Natl Acad Sci U S A 2013; 110:14420-5. [PMID: 23946425 DOI: 10.1073/pnas.1308085110] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacterial communication plays an important role in many population-based phenotypes and interspecies interactions, including those in host environments. These interspecies interactions may prove critical to some infectious diseases, and it follows that communication between pathogenic bacteria and commensal bacteria is a subject of growing interest. Recent studies have shown that Escherichia coli uses the signaling molecule indole to increase antibiotic tolerance throughout its population. Here, we show that the intestinal pathogen Salmonella typhimurium increases its antibiotic tolerance in response to indole, even though S. typhimurium does not natively produce indole. Increased antibiotic tolerance can be induced in S. typhimurium by both exogenous indole added to clonal S. typhimurium populations and indole produced by E. coli in mixed-microbial communities. Our data show that indole-induced tolerance in S. typhimurium is mediated primarily by the oxidative stress response and, to a lesser extent, by the phage shock response, which were previously shown to mediate indole-induced tolerance in E. coli. Further, we find that indole signaling by E. coli induces S. typhimurium antibiotic tolerance in a Caenorhabditis elegans model for gastrointestinal infection. These results suggest that the intestinal pathogen S. typhimurium can intercept indole signaling from the commensal bacterium E. coli to enhance its antibiotic tolerance in the host intestine.
Collapse
|
135
|
Wallrodt I, Jelsbak L, Thorndahl L, Thomsen LE, Lemire S, Olsen JE. The putative thiosulfate sulfurtransferases PspE and GlpE contribute to virulence of Salmonella Typhimurium in the mouse model of systemic disease. PLoS One 2013; 8:e70829. [PMID: 23940650 PMCID: PMC3733917 DOI: 10.1371/journal.pone.0070829] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/22/2013] [Indexed: 11/30/2022] Open
Abstract
The phage-shock protein PspE and GlpE of the glycerol 3-phosphate regulon of Salmonella enterica serovar Typhimurium are predicted to belong to the class of thiosulfate sulfurtransferases, enzymes that traffic sulfur between molecules. In the present study we demonstrated that the two genes contribute to S. Typhimurium virulence, as a glpE and pspE double deletion strain showed significantly decreased virulence in a mouse model of systemic infection. However, challenge of cultured epithelial cells and macrophages did not reveal any virulence-associated phenotypes. We hypothesized that their contribution to virulence could be in sulfur metabolism or by contributing to resistance to nitric oxide, oxidative stress, or cyanide detoxification. In vitro studies demonstrated that glpE but not pspE was important for resistance to H2O2. Since the double mutant, which was the one affected in virulence, was not affected in this assay, we concluded that resistance to oxidative stress and the virulence phenotype was most likely not linked. The two genes did not contribute to nitric oxid stress, to synthesis of essential sulfur containing amino acids, nor to detoxification of cyanide. Currently, the precise mechanism by which they contribute to virulence remains elusive.
Collapse
Affiliation(s)
- Inke Wallrodt
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lotte Jelsbak
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lotte Thorndahl
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Line E. Thomsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastien Lemire
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - John E. Olsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
136
|
Darwin AJ. Stress relief during host infection: The phage shock protein response supports bacterial virulence in various ways. PLoS Pathog 2013; 9:e1003388. [PMID: 23853578 PMCID: PMC3708866 DOI: 10.1371/journal.ppat.1003388] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Andrew J Darwin
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America.
| |
Collapse
|
137
|
Lenn T, Leake MC. Experimental approaches for addressing fundamental biological questions in living, functioning cells with single molecule precision. Open Biol 2013; 2:120090. [PMID: 22773951 PMCID: PMC3390795 DOI: 10.1098/rsob.120090] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 05/16/2012] [Indexed: 12/25/2022] Open
Abstract
In recent years, single molecule experimentation has allowed researchers to observe biological processes at the sensitivity level of single molecules in actual functioning, living cells, thereby allowing us to observe the molecular basis of the key mechanistic processes in question in a very direct way, rather than inferring these from ensemble average data gained from traditional molecular and biochemical techniques. In this short review, we demonstrate the impact that the application of single molecule bioscience experimentation has had on our understanding of various cellular systems and processes, and the potential that this approach has for the future to really address very challenging and fundamental questions in the life sciences.
Collapse
Affiliation(s)
- Tchern Lenn
- Lawrence Berkeley National Laboratory, Physical Biosciences Division, 1 Cyclotron Road, Berkeley, CA 94720 , USA
| | | |
Collapse
|
138
|
Response of Acidithiobacillus caldus toward suboptimal pH conditions. Extremophiles 2013; 17:689-96. [DOI: 10.1007/s00792-013-0553-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 05/16/2013] [Indexed: 11/25/2022]
|
139
|
A key hydrophobic patch identified in an AAA⁺ protein essential for its in trans inhibitory regulation. J Mol Biol 2013; 425:2656-69. [PMID: 23659791 PMCID: PMC3791423 DOI: 10.1016/j.jmb.2013.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/11/2013] [Accepted: 04/20/2013] [Indexed: 11/22/2022]
Abstract
Bacterial enhancer binding proteins (bEBPs) are a subclass of the AAA+ (ATPases Associated with various cellular Activities) protein family. They are responsible for σ54-dependent transcription activation during infection and function under many stressful growth conditions. The majority of bEBPs are regulated in their formation of ring-shaped hexameric self-assemblies via an amino-terminal domain through its phosphorylation or ligand binding. In contrast, the Escherichia coli phage shock protein F (PspF) is negatively regulated in trans by phage shock protein A (PspA). Up to six PspA subunits suppress PspF hexamer action. Here, we present biochemical evidence that PspA engages across the side of a PspF hexameric ring. We identify three key binding determinants located in a surface-exposed ‘W56 loop’ of PspF, which form a tightly packed hydrophobic cluster, the ‘YLW’ patch. We demonstrate the profound impact of the PspF W56 loop residues on ATP hydrolysis, the σ54 binding loop 1, and the self-association interface. We infer from single-chain studies that for complete PspF inhibition to occur, more than three PspA subunits need to bind a PspF hexamer with at least two binding to adjacent PspF subunits. By structural modelling, we propose that PspA binds to PspF via its first two helical domains. After PspF binding-induced conformational changes, PspA may then share structural similarities with a bEBP regulatory domain. What is the mechanism of in trans inhibition of oligomeric self-assemblies? Inhibitor initially docks on the AAA+ domain at a hydrophobic patch. Consequently, ATPase and self-association of the AAA+ domain are altered. Inhibitor’s structure mimics the evolutionarily divergent in cis regulatory domain. In trans inhibition of oligomeric AAA+ domains requires multiple contacts.
Collapse
|
140
|
Kamenšek S, Žgur-Bertok D. Global transcriptional responses to the bacteriocin colicin M in Escherichia coli. BMC Microbiol 2013; 13:42. [PMID: 23421615 PMCID: PMC3599342 DOI: 10.1186/1471-2180-13-42] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/18/2013] [Indexed: 01/17/2023] Open
Abstract
Background Bacteriocins are protein antimicrobial agents that are produced by all prokaryotic lineages. Escherichia coli strains frequently produce the bacteriocins known as colicins. One of the most prevalent colicins, colicin M, can kill susceptible cells by hydrolyzing the peptidoglycan lipid II intermediate, which arrests peptidoglycan polymerization steps and provokes cell lysis. Due to the alarming rise in antibiotic resistance and the lack of novel antimicrobial agents, colicin M has recently received renewed attention as a promising antimicrobial candidate. Here the effects of subinhibitory concentrations of colicin M on whole genome transcription in E. coli were investigated, to gain insight into its ecological role and for purposes related to antimicrobial therapy. Results Transcriptome analysis revealed that exposure to subinhibitory concentrations of colicin M altered expression of genes involved in envelope, osmotic and other stresses, including genes of the CreBC two-component system, exopolysaccharide production and cell motility. Nonetheless, there was no induction of biofilm formation or genes involved in mutagenesis. Conclusion At subinhibitory concentrations colicin M induces an adaptive response primarily to protect the bacterial cells against envelope stress provoked by peptidoglycan damage. Among the first induced were genes of the CreBC two-component system known to promote increased resistance against colicins M and E2, providing novel insight into the ecology of colicin M production in natural environments. While an adaptive response was induced nevertheless, colicin M application did not increase biofilm formation, nor induce SOS genes, adverse effects that can be provoked by a number of traditional antibiotics, providing support for colicin M as a promising antimicrobial agent.
Collapse
Affiliation(s)
- Simona Kamenšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | | |
Collapse
|
141
|
The Cpx stress response system potentiates the fitness and virulence of uropathogenic Escherichia coli. Infect Immun 2013; 81:1450-9. [PMID: 23429541 DOI: 10.1128/iai.01213-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Strains of uropathogenic Escherichia coli (UPEC) are the primary cause of urinary tract infections, representing one of the most widespread and successful groups of pathogens on the planet. To colonize and persist within the urinary tract, UPEC must be able to sense and respond appropriately to environmental stresses, many of which can compromise the bacterial envelope. The Cpx two-component envelope stress response system is comprised of the inner membrane histidine kinase CpxA, the cytosolic response regulator CpxR, and the periplasmic auxiliary factor CpxP. Here, by using deletion mutants along with mouse and zebrafish infection models, we show that the Cpx system is critical to the fitness and virulence of two reference UPEC strains, the cystitis isolate UTI89 and the urosepsis isolate CFT073. Specifically, deletion of the cpxRA operon impaired the ability of UTI89 to colonize the murine bladder and greatly reduced the virulence of CFT073 during both systemic and localized infections within zebrafish embryos. These defects coincided with diminished host cell invasion by UTI89 and increased sensitivity of both strains to complement-mediated killing and the aminoglycoside antibiotic amikacin. Results obtained with the cpxP deletion mutants were more complicated, indicating variable strain-dependent and niche-specific requirements for this well-conserved auxiliary factor.
Collapse
|
142
|
Otters S, Braun P, Hubner J, Wanner G, Vothknecht UC, Chigri F. The first α-helical domain of the vesicle-inducing protein in plastids 1 promotes oligomerization and lipid binding. PLANTA 2013; 237:529-40. [PMID: 23053543 DOI: 10.1007/s00425-012-1772-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 05/20/2023]
Abstract
The vesicle-inducing protein in plastids 1 (Vipp1) is an essential component for thylakoid biogenesis in cyanobacteria and chloroplasts. Vipp1 proteins share significant structural similarity with their evolutionary ancestor PspA (bacterial phage shock protein A), namely a predominantly α-helical structure, the formation of oligomeric high molecular weight complexes (HMW-Cs) and a tight association with membranes. Here, we elucidated domains of Vipp1 from Arabidopsis thaliana involved in homo-oligomerization as well as association with chloroplast inner envelope membranes. We could show that the 21 N-terminal amino acids of Vipp1, which form the first α-helix of the protein, are essential for assembly of the 2 MDa HMW-C but are not needed for formation of smaller subcomplexes. Interestingly, removal of this domain also interferes with association of the Vipp1 protein to the inner envelope. Fourier transform infrared spectroscopy of recombinant Vipp1 further indicates that Escherichia coli lipids bind tightly enough that they can be co-purified with the protein. This feature also depends on the presence of the first helix, which strongly supports an interaction of lipids with the Vipp1 HMW-C but not with smaller subcomplexes. Therefore, Vipp1 oligomerization appears to be a prerequisite for its membrane association. Our results further highlight structural differences between Vipp1 and PspA, which might be important in regard to their different function in thylakoid biogenesis and bacterial stress response, respectively.
Collapse
Affiliation(s)
- Stephanie Otters
- Department of Biology I, Botany, LMU Munich, Großhaderner Strasse 2-4, Planegg-Martinsried, Munich, Germany
| | | | | | | | | | | |
Collapse
|
143
|
The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription. Microbiol Mol Biol Rev 2013; 76:497-529. [PMID: 22933558 DOI: 10.1128/mmbr.00006-12] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial enhancer binding proteins (bEBPs) are transcriptional activators that assemble as hexameric rings in their active forms and utilize ATP hydrolysis to remodel the conformation of RNA polymerase containing the alternative sigma factor σ(54). We present a comprehensive and detailed summary of recent advances in our understanding of how these specialized molecular machines function. The review is structured by introducing each of the three domains in turn: the central catalytic domain, the N-terminal regulatory domain, and the C-terminal DNA binding domain. The role of the central catalytic domain is presented with particular reference to (i) oligomerization, (ii) ATP hydrolysis, and (iii) the key GAFTGA motif that contacts σ(54) for remodeling. Each of these functions forms a potential target of the signal-sensing N-terminal regulatory domain, which can act either positively or negatively to control the activation of σ(54)-dependent transcription. Finally, we focus on the DNA binding function of the C-terminal domain and the enhancer sites to which it binds. Particular attention is paid to the importance of σ(54) to the bacterial cell and its unique role in regulating transcription.
Collapse
|
144
|
Yamaguchi S, Reid DA, Rothenberg E, Darwin AJ. Changes in Psp protein binding partners, localization and behaviour upon activation of the Yersinia enterocolitica phage shock protein response. Mol Microbiol 2013; 87:656-71. [PMID: 23290031 DOI: 10.1111/mmi.12122] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2012] [Indexed: 11/30/2022]
Abstract
PspA, -B and -C regulate the bacterial phage shock protein stress response by controlling the PspF transcription factor. Here, we have developed complementary approaches to study the behaviour of these proteins at their endogenous levels in Yersinia enterocolitica. First, we observed GFP-tagged versions with an approach that resolves individual protein complexes in live cells. This revealed that PspA, -B and -C share common behaviours, including a striking contrast before and after induction. In uninduced cells, PspA, -B and -C were highly mobile and widely distributed. However, induction reduced mobility and the proteins became more organized. Combining mCherry- and GFP-tagged proteins also revealed that PspA colocalizes with PspB and PspC into large stationary foci, often located close to the pole of induced cells. In addition, co-immunoprecipitation assays provided the first direct evidence supporting the model that PspA switches binding partners from PspF to PspBC upon induction. Together, these data suggest that PspA, -B and -C do not stably interact and are highly mobile before induction, perhaps sampling the status of the membrane and each other. However, an inducing signal promotes PspABC complex formation and their relocation to discrete parts of the membrane, which might then be important for mitigating envelope stress.
Collapse
Affiliation(s)
- Saori Yamaguchi
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
145
|
Tundo GR, Sbardella D, Ciaccio C, Bianculli A, Orlandi A, Desimio MG, Arcuri G, Coletta M, Marini S. Insulin-degrading enzyme (IDE): a novel heat shock-like protein. J Biol Chem 2012. [PMID: 23188819 DOI: 10.1074/jbc.m112.393108] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-degrading enzyme (IDE) is a highly conserved zinc metallopeptidase that is ubiquitously distributed in human tissues, and particularly abundant in the brain, liver, and muscles. IDE activity has been historically associated with insulin and β-amyloid catabolism. However, over the last decade, several experimental findings have established that IDE is also involved in a wide variety of physiopathological processes, including ubiquitin clearance and Varicella Zoster Virus infection. In this study, we demonstrate that normal and malignant cells exposed to different stresses markedly up-regulate IDE in a heat shock protein (HSP)-like fashion. Additionally, we focused our attention on tumor cells and report that (i) IDE is overexpressed in vivo in tumors of the central nervous system (CNS); (ii) IDE-silencing inhibits neuroblastoma (SHSY5Y) cell proliferation and triggers cell death; (iii) IDE inhibition is accompanied by a decrease of the poly-ubiquitinated protein content and co-immunoprecipitates with proteasome and ubiquitin in SHSY5Y cells. In this work, we propose a novel role for IDE as a heat shock protein with implications in cell growth regulation and cancer progression, thus opening up an intriguing hypothesis of IDE as an anticancer target.
Collapse
Affiliation(s)
- Grazia Raffaella Tundo
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, I-00133, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Westphal K, Langklotz S, Thomanek N, Narberhaus F. A trapping approach reveals novel substrates and physiological functions of the essential protease FtsH in Escherichia coli. J Biol Chem 2012; 287:42962-71. [PMID: 23091052 DOI: 10.1074/jbc.m112.388470] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proteolysis is a universal strategy to rapidly adjust the amount of regulatory and metabolic proteins to cellular demand. FtsH is the only membrane-anchored and essential ATP-dependent protease in Escherichia coli. Among the known functions of FtsH are the control of the heat shock response by proteolysis of the transcription factor RpoH (σ(32)) and its essential role in lipopolysaccharide biosynthesis by degradation of the two key enzymes LpxC and KdtA. Here, we identified new FtsH substrates by using a proteomic-based substrate trapping approach. An FtsH variant (FtsH(trap)) carrying a single amino acid exchange in the proteolytic center was expressed and purified in E. coli. FtsH(trap) is devoid of its proteolytic activity but fully retains ATPase activity allowing for unfolding and translocation of substrates into the inactivated proteolytic chamber. Proteins associated with FtsH(trap) and wild-type FtsH (FtsH(WT)) were purified, separated by two-dimensional PAGE, and subjected to mass spectrometry. Over-representation of LpxC in the FtsH(trap) preparation validated the trapping strategy. Four novel FtsH substrates were identified. The sulfur delivery protein IscS and the d-amino acid dehydrogenase DadA were degraded under all tested conditions. The formate dehydrogenase subunit FdoH and the yet uncharacterized YfgM protein were subject to growth condition-dependent regulated proteolysis. Several lines of evidence suggest that YfgM serves as negative regulator of the RcsB-dependent stress response pathway, which must be degraded under stress conditions. The proteins captured by FtsH(trap) revealed previously unknown biological functions of the physiologically most important AAA(+) protease in E. coli.
Collapse
Affiliation(s)
- Kai Westphal
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | | | | | | |
Collapse
|
147
|
Genome expression analysis of nonproliferating intracellular Salmonella enterica serovar Typhimurium unravels an acid pH-dependent PhoP-PhoQ response essential for dormancy. Infect Immun 2012; 81:154-65. [PMID: 23090959 DOI: 10.1128/iai.01080-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Genome-wide expression analyses have provided clues on how Salmonella proliferates inside cultured macrophages and epithelial cells. However, in vivo studies show that Salmonella does not replicate massively within host cells, leaving the underlying mechanisms of such growth control largely undefined. In vitro infection models based on fibroblasts or dendritic cells reveal limited proliferation of the pathogen, but it is presently unknown whether these phenomena reflect events occurring in vivo. Fibroblasts are distinctive, since they represent a nonphagocytic cell type in which S. enterica serovar Typhimurium actively attenuates intracellular growth. Here, we show in the mouse model that S. Typhimurium restrains intracellular growth within nonphagocytic cells positioned in the intestinal lamina propria. This response requires a functional PhoP-PhoQ system and is reproduced in primary fibroblasts isolated from the mouse intestine. The fibroblast infection model was exploited to generate transcriptome data, which revealed that ∼2% (98 genes) of the S. Typhimurium genome is differentially expressed in nongrowing intracellular bacteria. Changes include metabolic reprogramming to microaerophilic conditions, induction of virulence plasmid genes, upregulation of the pathogenicity islands SPI-1 and SPI-2, and shutdown of flagella production and chemotaxis. Comparison of relative protein levels of several PhoP-PhoQ-regulated functions (PagN, PagP, and VirK) in nongrowing intracellular bacteria and extracellular bacteria exposed to diverse PhoP-PhoQ-inducing signals denoted a regulation responding to acidic pH. These data demonstrate that S. Typhimurium restrains intracellular growth in vivo and support a model in which dormant intracellular bacteria could sense vacuolar acidification to stimulate the PhoP-PhoQ system for preventing intracellular overgrowth.
Collapse
|
148
|
Abstract
The DedA protein family is a highly conserved and ancient family of membrane proteins with representatives in most sequenced genomes, including those of bacteria, archaea, and eukarya. The functions of the DedA family proteins remain obscure. However, recent genetic approaches have revealed important roles for certain bacterial DedA family members in membrane homeostasis. Bacterial DedA family mutants display such intriguing phenotypes as cell division defects, temperature sensitivity, altered membrane lipid composition, elevated envelope-related stress responses, and loss of proton motive force. The DedA family is also essential in at least two species of bacteria: Borrelia burgdorferi and Escherichia coli. Here, we describe the phylogenetic distribution of the family and summarize recent progress toward understanding the functions of the DedA membrane protein family.
Collapse
|
149
|
Flores-Kim J, Darwin AJ. Links between type III secretion and extracytoplasmic stress responses in Yersinia. Front Cell Infect Microbiol 2012; 2:125. [PMID: 23087910 PMCID: PMC3467454 DOI: 10.3389/fcimb.2012.00125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/24/2012] [Indexed: 11/13/2022] Open
Abstract
The cell envelope of pathogenic bacteria is a barrier against host environmental conditions and immunity molecules, as well as the site where many virulence factors are assembled. Extracytoplasmic stress responses (ESRs) have evolved to help maintain its integrity in conditions where it might be compromised. These ESRs also have important links to the production of envelope-associated virulence systems by the bacteria themselves. One such virulence factor is the type III secretion system (T3SS), the first example of which was provided by the pathogenic Yersinia. This article reviews the reported links between four different ESRs and T3SS function in Yersinia. Components of three of these ESRs affect the function and/or regulation of two different T3SSs. The response regulator of the Rcs ESR is involved in positive regulation of the Ysa-Ysp T3SS found in the highly pathogenic 1B biogroup of Y. enterocolitica. Conversely, the response regulator of the Y. pseudotuberculosis Cpx ESR can down-regulate production of the Ysc-Yop T3SS, and at least one other envelope virulence factor (invasin), by direct repression. Also in Y. pseudotuberculosis, there is some evidence suggesting that an intact RpoE ESR might be important for normal Yersinia outer proteins (Yop) production and secretion. Besides these regulatory links between ESRs and T3SSs, perhaps the most striking connection between T3SS function and an ESR is that between the phage shock protein (Psp) and Ysc-Yop systems of Y. enterocolitica. The Psp response does not affect the regulation or function of the Ysc-Yop system. Instead, Ysc-Yop T3SS production induces the Psp system, which then mitigates T3SS-induced envelope stress. Consequently, the Y. enterocolitica Psp system is essential when the Ysc-Yop T3SS is produced.
Collapse
Affiliation(s)
- Josué Flores-Kim
- Department of Microbiology, New York University School of Medicine New York, NY, USA
| | | |
Collapse
|
150
|
Multiple envelope stress response pathways are activated in an Escherichia coli strain with mutations in two members of the DedA membrane protein family. J Bacteriol 2012; 195:12-24. [PMID: 23042993 DOI: 10.1128/jb.00762-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have reported that simultaneous deletion of two Escherichia coli genes, yqjA and yghB, encoding related and conserved inner membrane proteins belonging to the DedA protein family results in a number of intriguing phenotypes, including temperature sensitivity at 42°C, altered membrane lipid composition, and cell division defects. We sought to characterize these and other phenotypes in an effort to establish a function for this protein family in E. coli. Here, using reporter assays, we show that the major envelope stress response pathways Cpx, Psp, Bae, and Rcs are activated in strain BC202 (W3110; ΔyqjA ΔyghB) at the permissive growth temperature of 30°C. We previously demonstrated that 10 mM Mg(2+), 400 mM NaCl, and overexpression of tatABC are capable of restoring normal growth to BC202 at elevated growth temperatures. Deletion of the cpxR gene from BC202 results in the loss of the ability of these supplements to restore growth at 42°C. Additionally, we report that the membrane potential of BC202 is significantly reduced and that cell division and growth can be restored either by expression of the multidrug transporter MdfA from a multicopy plasmid or by growth at pH 6.0. Together, these results suggest that the DedA family proteins YqjA and YghB are required for general envelope maintenance and homeostasis of the proton motive force under a variety of growth conditions.
Collapse
|