101
|
Zenteno-Rojas A, Martínez-Romero E, Castañeda-Valbuena D, Rincón-Molina CI, Ruíz-Valdiviezo VM, Meza-Gordillo R, Villalobos-Maldonado JJ, Vences-Guzmán MÁ, Rincón-Rosales R. Structure and diversity of native bacterial communities in soils contaminated with polychlorinated biphenyls. AMB Express 2020; 10:124. [PMID: 32651884 PMCID: PMC7351888 DOI: 10.1186/s13568-020-01058-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/02/2020] [Indexed: 11/20/2022] Open
Abstract
Persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) are a group of high-risk synthetic substances for human and environmental health. Currently, the study of sites contaminated by the spillage of equipment PCBs containing have been considered targeted areas for the study of bacterial communities with potential for PCBs degradation. There in isolation of bacterial strains is vital for use in biodegradable processes, such as bacterial bioaugmentation, which accelerates the development of phenomena such as natural attenuation of contaminated sites. The objective of this study was to assess biodiversity of bacteria contained in anthropogenic contaminated soils (HS and HP) with PCBs compared to a control sample without contaminant and the modified forest (F) and agricultural (A) soil in the laboratory with 100 mg L−1 PCB. For the analysis of 16S rRNA genes amplified from DNA extracted from the soils evaluated, the latest generation of Illumina Miseq and Sanger sequencing for the cultivable strains were detected. The bacteria identified as the most abundant bacterial phyla for HS and HP soil was Proteobacteria (56.7%) and Firmicutes (22.9%), which decreased in F and A soils. The most abundant bacterial genera were Burkholderia, Bacillus, Acinetobacter, Comamonas and Cupriavidus. Several species identified in this study, such as Bacillus cereus, Burkholderia cepacia, Comamonas testosteroni and Acinetobacter pittii have been reported as PCBs degraders. Finally, by means of a principal component analysis (PCA), a correlation between the physical and chemical characteristics of the soils in relation to the relative abundances of the bacteria identified was obtained. The C/N ratio was directly related to the control soil (without contaminant), while SOM maintained a relationship with F and A soils and the bacterial abundances were directly related to Hs and Hp soils due to the presence of aroclor 1260. Bacteria with the ability to tolerate high concentrations of this pollutant are considered for future use in biostimulation and bioaugmentation processes in contaminated soils.
Collapse
|
102
|
Sachithanandam V, Saravanane N, Chandrasekar K, Karthick P, Lalitha P, Sai Elangovan S, Sudhakar M. Microbial diversity from the continental shelf regions of the Eastern Arabian Sea: A metagenomic approach. Saudi J Biol Sci 2020; 27:2065-2075. [PMID: 32714031 PMCID: PMC7376189 DOI: 10.1016/j.sjbs.2020.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 01/15/2023] Open
Abstract
The marine microbiome is a complex and least-understood habitat, which play a significant role in global biogeochemical cycles. The present study reported the culture-independent assessment of microbial diversity from the Arabian Sea (AS) sediments (from Gujarat to Malabar; at 30 m depth) by using metagenome sequence analysis. Our results elucidated that bacterial communities in the Malabar coastal region are highly diverse than the Gujarat coast. Moreover, Statistical analysis (Spearman rank correlation) showed a significant correlation co-efficient value (r = P < 0.001) between microbial communities and physicochemical parameters (salinity and dissolved oxygen) in the water column. A total of 39 bacterial phyla were recorded from the eastern side of AS, of which six phyla Proteobacteria, Bacteroidetes, Actinobacteria, Cyanobacteria, Firmicutes, and Planctomycetes were found to be the most dominant group. The most dominant genus from Valapad region (Malabar Coast) was found to be Halomonas sp., while other regions were dominated with Psychrobacter pulmonis. The subsequent Principal Coordinate Analysis (PCoA) showed 99.53% variance, which suggests that, highly distinct microbial communities at Valapad (Malabar Coast) sampling location than other sites. Moreover, the microbial metabolic activity analysis revealed the important functions of microbial communities in the AS are hydrocarbon degradation, polymer degradation, nutrient oxidation and sulphate reduction (biodegradation process). Further extended studies are needed to be carried out for better understanding the functional diversity of microbial communities from the marine sediments.
Collapse
Affiliation(s)
- V Sachithanandam
- Department of Ocean Studies and Marine Biology, Pondicherry University, Andaman Campus, Port Blair 744 112, India.,National Centre for Sustainable Coastal Management, Ministry of Environment, Forest & Climate Change, Chennai 600 025, India
| | - N Saravanane
- Centre for Marine Living Resources & Ecology, Ministry of Earth Sciences, Government of India, Kochi 682 037, India
| | - K Chandrasekar
- Centre for Marine Living Resources & Ecology, Ministry of Earth Sciences, Government of India, Kochi 682 037, India
| | - P Karthick
- Department of Ocean Studies and Marine Biology, Pondicherry University, Andaman Campus, Port Blair 744 112, India
| | - P Lalitha
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest & Climate Change, Chennai 600 025, India
| | - S Sai Elangovan
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Goa, India
| | - M Sudhakar
- Centre for Marine Living Resources & Ecology, Ministry of Earth Sciences, Government of India, Kochi 682 037, India
| |
Collapse
|
103
|
Doane MP, Morris MM, Papudeshi B, Allen L, Pande D, Haggerty JM, Johri S, Turnlund AC, Peterson M, Kacev D, Nosal A, Ramirez D, Hovel K, Ledbetter J, Alker A, Avalos J, Baker K, Bhide S, Billings E, Byrum S, Clemens M, Demery AJ, Lima LFO, Gomez O, Gutierrez O, Hinton S, Kieu D, Kim A, Loaiza R, Martinez A, McGhee J, Nguyen K, Parlan S, Pham A, Price-Waldman R, Edwards RA, Dinsdale EA. The skin microbiome of elasmobranchs follows phylosymbiosis, but in teleost fishes, the microbiomes converge. MICROBIOME 2020; 8:93. [PMID: 32534596 PMCID: PMC7293782 DOI: 10.1186/s40168-020-00840-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/15/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND The vertebrate clade diverged into Chondrichthyes (sharks, rays, and chimeras) and Osteichthyes fishes (bony fishes) approximately 420 mya, with each group accumulating vast anatomical and physiological differences, including skin properties. The skin of Chondrichthyes fishes is covered in dermal denticles, whereas Osteichthyes fishes are covered in scales and are mucous rich. The divergence time among these two fish groups is hypothesized to result in predictable variation among symbionts. Here, using shotgun metagenomics, we test if patterns of diversity in the skin surface microbiome across the two fish clades match predictions made by phylosymbiosis theory. We hypothesize (1) the skin microbiome will be host and clade-specific, (2) evolutionary difference in elasmobranch and teleost will correspond with a concomitant increase in host-microbiome dissimilarity, and (3) the skin structure of the two groups will affect the taxonomic and functional composition of the microbiomes. RESULTS We show that the taxonomic and functional composition of the microbiomes is host-specific. Teleost fish had lower average microbiome within clade similarity compared to among clade comparison, but their composition is not different among clade in a null based model. Elasmobranch's average similarity within clade was not different than across clade and not different in a null based model of comparison. In the comparison of host distance with microbiome distance, we found that the taxonomic composition of the microbiome was related to host distance for the elasmobranchs, but not the teleost fishes. In comparison, the gene function composition was not related to the host-organism distance for elasmobranchs but was negatively correlated with host distance for teleost fishes. CONCLUSION Our results show the patterns of phylosymbiosis are not consistent across both fish clades, with the elasmobranchs showing phylosymbiosis, while the teleost fish are not. The discrepancy may be linked to alternative processes underpinning microbiome assemblage, including possible historical host-microbiome evolution of the elasmobranchs and convergent evolution in the teleost which filter specific microbial groups. Our comparison of the microbiomes among fishes represents an investigation into the microbial relationships of the oldest divergence of extant vertebrate hosts and reveals that microbial relationships are not consistent across evolutionary timescales. Video abstract.
Collapse
Affiliation(s)
- Michael P Doane
- Sydney Institute of Marine Science, Mosman, NSW, Australia
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Megan M Morris
- Biology Department, San Diego State University, San Diego, CA, USA
- Department Biology, Stanford University, Stanford, California, USA
| | - Bhavya Papudeshi
- National Center for Genome Analysis Support, Indiana University, San Diego, Indiana, USA
| | - Lauren Allen
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Dnyanada Pande
- Computer Sciences Department, San Diego State University, San Diego, CA, USA
| | - John M Haggerty
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Shaili Johri
- Biology Department, San Diego State University, San Diego, CA, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Abigail C Turnlund
- Biology Department, San Diego State University, San Diego, CA, USA
- Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, Queens, USA
| | | | - Dovi Kacev
- Scripps Institute of Oceanography, University of California-San Diego, La Jolla, California, USA
| | - Andy Nosal
- Scripps Institute of Oceanography, University of California-San Diego, La Jolla, California, USA
- Department of Environmental and Ocean Sciences, University of San Diego, San Diego, CA, USA
| | - Deni Ramirez
- Whale Shark Mexico, ConCiencia Mexico AC, La Paz, BC, USA
| | - Kevin Hovel
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Julia Ledbetter
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Amanda Alker
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Jackeline Avalos
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Kristi Baker
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Shruti Bhide
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Emma Billings
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Steven Byrum
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Molly Clemens
- Biology Department, San Diego State University, San Diego, CA, USA
| | | | | | - Oscar Gomez
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Omar Gutierrez
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Selena Hinton
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Donald Kieu
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Angie Kim
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Rebeca Loaiza
- Biology Department, San Diego State University, San Diego, CA, USA
| | | | - Jordan McGhee
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Kristine Nguyen
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Sabrina Parlan
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Amanda Pham
- Biology Department, San Diego State University, San Diego, CA, USA
| | - Rosalyn Price-Waldman
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Robert A Edwards
- Biology Department, San Diego State University, San Diego, CA, USA
- Viral Information Institute, San Diego State University, San Diego, CA, USA
| | - Elizabeth A Dinsdale
- Biology Department, San Diego State University, San Diego, CA, USA.
- Viral Information Institute, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
104
|
Wang B, Zheng X, Zhang H, Xiao F, Gu H, Zhang K, He Z, Liu X, Yan Q. Bacterial community responses to tourism development in the Xixi National Wetland Park, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137570. [PMID: 32135287 DOI: 10.1016/j.scitotenv.2020.137570] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
A large number of urban wetland parks have been established, but knowledge about the effects of tourism development on the microbial diversity and ecosystem functioning remains limited. This study aimed to clarify the responses of bacterial communities to tourism development targeted the Xixi National Wetland Park, China. By analyzing the diversity, composition, assembly pattern, and environmental drivers of bacterial communities, we found that tourism development considerably affected the water quality, which further decreased the α-diversity but increased the β-diversity in open areas for landscaping and recreation. Specifically, there was higher Simpson dissimilarity across functional wetland areas, indicating that species replacement mainly explained β-diversity patterns of bacterial communities. RDA analysis and ecological processes quantification further suggested that TOC and TC were the major factors in the open areas driving bacterial communities in water and sediment, respectively. Also, typical anti-disturbance taxa (Gammaproteobacteria) and potential pathogens (Bacillus) were enriched in the wetlands under more anthropogenic disturbances. Findings of the present study highlighted the effects of tourism development on bacterial communities resulted in obvious spatial variation in the Xixi National Wetland Park. This study gives us useful information for ecological assessments of urban wetlands, and further can provide references in making appropriate strategies to manage wetland ecosystems.
Collapse
Affiliation(s)
- Binhao Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Xiafei Zheng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Fanshu Xiao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Hang Gu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Keke Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xiang Liu
- Hangzhou Xixi National Wetland Park Research Center for Ecological Science, Hangzhou 310030, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
105
|
Tamburini E, Doni L, Lussu R, Meloni F, Cappai G, Carucci A, Casalone E, Mastromei G, Vitali F. Impacts of Anthropogenic Pollutants on Benthic Prokaryotic Communities in Mediterranean Touristic Ports. Front Microbiol 2020; 11:1234. [PMID: 32655521 PMCID: PMC7326019 DOI: 10.3389/fmicb.2020.01234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/14/2020] [Indexed: 02/04/2023] Open
Abstract
Ports and marinas are central nodes in transport network and play a strategic role in coastal development. They receive pollution from land-based sources, marine traffic and port infrastructures on one side and constitute a potential pollution source for the adjacent coastal areas on the other. The aim of the present study was to evaluate the effects of organic and inorganic co-contamination on the prokaryotic communities in sediments from three Mediterranean ports. The structure and composition of the bacterial and archaeal communities were assessed by targeted metagenomic analysis of the 16S rRNA gene, and the links of prokaryotic communities with environmental and pollution variables were investigated. The harbors presented pronounced site-specificity in the environmental properties and pollution status. Consistently, the structure of archaeal and bacterial communities in surface sediments exhibited a strong spatial variation among the three investigated ports. On the contrary, a wide overlap in composition of prokaryotic assemblages among sites was found, but local variation in the community composition and loss of prokaryotic diversity was highlighted in a heavily impacted port sector near a shipyard. We provided evidences that organic matter, metals and PAHs as well as temperature and salinity play a strong role in structuring benthic bacterial communities significantly contributing to the understanding of their responses to anthropogenic perturbations in marine coastal areas. Among metals, copper was recognized as strongly associated with the observed changes in bacterial assemblages. Overall, this study provides the first assessment of the effects exerted by multiple organic and inorganic contaminations on benthic prokaryotes in ports over a large spatial scale and designates bacterial community as a candidate tool for the monitoring of the sediment quality status in harbors.
Collapse
Affiliation(s)
- Elena Tamburini
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Lapo Doni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Department of Biology, University of Florence, Florence, Italy
| | - Raffaela Lussu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Federico Meloni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giovanna Cappai
- Department of Civil-Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
| | - Alessandra Carucci
- Department of Civil-Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy
| | - Enrico Casalone
- Department of Biology, University of Florence, Florence, Italy
| | | | - Francesco Vitali
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy
| |
Collapse
|
106
|
Zhang B, Li Y, Xiang SZ, Yan Y, Yang R, Lin MP, Wang XM, Xue YL, Guan XY. Sediment Microbial Communities and Their Potential Role as Environmental Pollution Indicators in Xuande Atoll, South China Sea. Front Microbiol 2020; 11:1011. [PMID: 32523570 PMCID: PMC7261833 DOI: 10.3389/fmicb.2020.01011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/24/2020] [Indexed: 11/13/2022] Open
Abstract
In this study, 39 sediment samples were collected from Qilian Island, Iltis Bank, and Yongxing Island in Xuande Atoll in the South China Sea (SCS), and the microbial community structures and distribution were analyzed. The microbial community was influenced by both natural environmental factors and human activities. The abundance of genera Vibrio and Pseudoalteromonas, which are associated with pathogenicity and pollutant degradation, were significantly higher in Qilian Island than in Yongxing Island and Iltis Bank, suggesting possible contamination of Qilian Island area through human activities. Pathogenic or typical pollutants-degrading bacteria were found to be negatively correlated with most of the commonly occurring bacterial populations in marine sediment, and these bacteria were more likely to appear in the sediment of deep water layer. This co-occurrence pattern may be due to bacterial adaptation to environmental changes such as depth and contaminations from human activities, including garbage disposal, farming, and oil spills from ships. The findings of this study could help in understanding the potential influences of human activities on the ecosystem at the microbial level.
Collapse
Affiliation(s)
- Biao Zhang
- School of Ocean Sciences, China University of Geosciences, Beijing, China
| | - Yan Li
- School of Ocean Sciences, China University of Geosciences, Beijing, China
| | - Shi-Zheng Xiang
- School of Ocean Sciences, China University of Geosciences, Beijing, China
| | - Yu Yan
- School of Ocean Sciences, China University of Geosciences, Beijing, China
| | - Rui Yang
- School of Ocean Sciences, China University of Geosciences, Beijing, China
| | - Meng-Ping Lin
- School of Ocean Sciences, China University of Geosciences, Beijing, China
| | - Xue-Mu Wang
- Marine Geological Survey Institute of Hainan Province, Haikou, China
| | - Yu-Long Xue
- Marine Geological Survey Institute of Hainan Province, Haikou, China
| | - Xiang-Yu Guan
- School of Ocean Sciences, China University of Geosciences, Beijing, China.,Hebei Marine Resource Survey Center, Qinhuangdao, China
| |
Collapse
|
107
|
Knapik K, Bagi A, Krolicka A, Baussant T. Metatranscriptomic Analysis of Oil-Exposed Seawater Bacterial Communities Archived by an Environmental Sample Processor (ESP). Microorganisms 2020; 8:E744. [PMID: 32429288 PMCID: PMC7284936 DOI: 10.3390/microorganisms8050744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/17/2022] Open
Abstract
The use of natural marine bacteria as "oil sensors" for the detection of pollution events can be suggested as a novel way of monitoring oil occurrence at sea. Nucleic acid-based devices generically called genosensors are emerging as potentially promising tools for in situ detection of specific microbial marker genes suited for that purpose. Functional marker genes are particularly interesting as targets for oil-related genosensing but their identification remains a challenge. Here, seawater samples, collected in tanks with oil addition mimicking a realistic oil spill scenario, were filtered and archived by the Environmental Sample Processor (ESP), a fully robotized genosensor, and the samples were then used for post-retrieval metatranscriptomic analysis. After extraction, RNA from ESP-archived samples at start, Day 4 and Day 7 of the experiment was used for sequencing. Metatranscriptomics revealed that several KEGG pathways were significantly enriched in samples exposed to oil. However, these pathways were highly expressed also in the non-oil-exposed water samples, most likely as a result of the release of natural organic matter from decaying phytoplankton. Temporary peaks of aliphatic alcohol and aldehyde dehydrogenases and monoaromatic ring-degrading enzymes (e.g., ben, box, and dmp clusters) were observed on Day 4 in both control and oil-exposed and non-exposed tanks. Few alkane 1-monooxygenase genes were upregulated on oil, mostly transcribed by families Porticoccaceae and Rhodobacteraceae, together with aromatic ring-hydroxylating dioxygenases, mostly transcribed by Rhodobacteraceae. Few transcripts from obligate hydrocarbonoclastic genera of Alcanivorax, Oleispira and Cycloclasticus were significantly enriched in the oil-treated exposed tank in comparison to control the non-exposed tank, and these were mostly transporters and genes involved in nitrogen and phosphorous acquisition. This study highlights the importance of seasonality, i.e., phytoplankton occurrence and senescence leading to organic compound release which can be used preferentially by bacteria over oil compounds, delaying the latter process. As a result, such seasonal effect can reduce the sensitivity of genosensing tools employing bacterial functional genes to sense oil. A better understanding of the use of natural organic matter by bacteria involved in oil-biodegradation is needed to develop an array of functional markers enabling the rapid and specific in situ detection of anthropogenic pollution.
Collapse
Affiliation(s)
| | | | | | - Thierry Baussant
- NORCE Environment, NORCE Norwegian Research Centre AS, 4070 Randaberg, Norway; (K.K.); (A.B.); (A.K.)
| |
Collapse
|
108
|
Wang H, Yang X, Chen Q, Su JQ, Mulla SI, Rashid A, Hu A, Yu CP. Response of prokaryotic communities to extreme precipitation events in an urban coastal lagoon: A case study of Yundang lagoon, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135937. [PMID: 31841847 DOI: 10.1016/j.scitotenv.2019.135937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Increasing extreme precipitation events (EPEs) can induce biogeochemical disturbances in the coastal lagoon ecosystems. Very little is known about the response of prokaryotic communities to such influences, which are the key components mediating the biogeochemical cycling in lagoons. Here 16S rRNA gene amplicon sequencing and high-through quantitative PCR (HT-qPCR) were employed to investigate the distribution of prokaryotic communities and fecal indicator genes in the surface waters of Yundang lagoon, Xiamen, China during EPEs, respectively. Prokaryotic communities from rainwaters, influents (IFs) and effluents (EFs) from a nearby wastewater treatment plant were also characterised. The results indicated a significant variation in the composition of lagoon prokaryotic communities compared with rainwaters, IFs and EFs. Multivariate and phylogenetic signal analyses revealed that environmental filtering, mainly controlled by salinity, was the major ecological process responsible for the temporal succession of lagoon prokaryotic communities during EPEs. Moreover, the pollution indicator taxa (based on amplicon sequencing) and fecal indicator genes (based on HT-qPCR) demonstrated that EPEs may induce sewage overflows and fecal pollution (mainly from humans and dogs), resulting in an increase in the relative abundance of pollution indicator taxa and genes in Yundang lagoon. Network analysis illustrated that the number of network edges and keystone species decreased along the sampling times, implying that EPEs-induced disturbances may affect prokaryotic species associations. Taken together, this study provides an enhanced understanding of the responses of lagoon prokaryotic communities to EPEs-induced disturbances.
Collapse
Affiliation(s)
- Hongjie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyong Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Qingfu Chen
- Yundang Lake Management Center, Xiamen, Fujian 361004, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Sikandar I Mulla
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; Department of Biochemistry, School of Applied Sciences, Reva University, Bangalore 560 064, India
| | - Azhar Rashid
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; Nuclear Institute for Food and Agriculture, Tarnab, Peshawar, Pakistan
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China.
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
109
|
Insights on aquatic microbiome of the Indian Sundarbans mangrove areas. PLoS One 2020; 15:e0221543. [PMID: 32097429 PMCID: PMC7041844 DOI: 10.1371/journal.pone.0221543] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Anthropogenic perturbations have strong impact on water quality and ecological health of mangrove areas of Indian Sundarbans. Diversity in microbial community composition is important causes for maintaining the health of the mangrove ecosystem. However, microbial communities of estuarine water in Indian Sundarbans mangrove areas and environmental determinants that contribute to those communities were seldom studied. METHODS Nevertheless, this study attempted first to report bacterial and archaeal communities simultaneously in the water from Matla River and Thakuran River of Maipith coastal areas more accurately using 16S rRNA gene-based amplicon approaches. Attempt also been made to assess the capability of the environmental parameters for explaining the variation in microbial community composition. RESULTS Our investigation indicates the dominancy of halophilic marine bacteria from families Flavobacteriaceae and OM1 clade in the water with lower nutrient load collected from costal regions of a small Island of Sundarban Mangroves (ISM). At higher eutrophic conditions, changes in bacterial communities in Open Marine Water (OMW) were detected, where some of the marine hydrocarbons degrading bacteria under families Oceanospirillaceae and Spongiibacteraceae were dominated. While most abundant bacterial family Rhodobacteracea almost equally (18% of the total community) dominated in both sites. Minor variation in the composition of archaeal community was also observed between OMW and ISM. Redundancy analysis indicates a combination of total nitrogen and dissolved inorganic nutrients for OMW and for ISM, salinity and total nitrogen was responsible for explaining the changes in their respective microbial community composition. CONCLUSIONS Our study contributes the first conclusive overview on how do multiple environmental/anthropogenic stressors (salinity, pollution, eutrophication, land-use) affect the Sundarban estuary water and consequently the microbial communities in concert. However, systematic approaches with more samples for evaluating the effect of environmental pollutions on mangrove microbial communities are recommended.
Collapse
|
110
|
|
111
|
Xuan L, Sheng Z, Lu J, Qiu Q, Chen J, Xiong J. Bacterioplankton community responses and the potential ecological thresholds along disturbance gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:134015. [PMID: 31470324 DOI: 10.1016/j.scitotenv.2019.134015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 05/28/2023]
Abstract
Increasing intensity and frequency of coastal pollutions are the trajectory to be expected due to anthropogenic pressures. However, it is still unclear how and to what extent bacterioplankton communities respond to the two factors, despite the functional importance of bacterioplankton in biogeochemical cycles. In this study, significant organic pollution index (OPI) and offshore distance gradients, as respective proxies of disturbance intensity and disturbance frequency, were detected in a regional scale across the East China Sea. A multiple regression on matrices (MRM) revealed that the biogeography of bacterioplankton community depended on spatial scale, which was governed by local characters. Bacterioplankton community compositions (BCCs) were primarily governed by the conjointly direct (-0.28) and indirect (-0.48) effects of OPI, while offshore distance contributed a large indirectly effect (0.52). A SEGMENTED analysis depicted non-linear responses of BCCs to increasing disturbance intensity and disturbance frequency, as evidenced by significant tipping points. This was also true for the dominant bacterial phyla. Notably, we screened 30 OPI-discriminatory taxa that could quantitatively diagnose coastal OPI levels, with an overall 79.3% accuracy. Collectively, the buffer capacity of bacterioplankton communities to increasing disturbance intensity and disturbance frequency is limited, of which the significant tipping points afford a warning line for coastal management. In addition, coastal pollution level can be accurately diagnosed by a few OPI-discriminatory taxa.
Collapse
Affiliation(s)
- Lixia Xuan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Zheliang Sheng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiaqi Lu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qiongfen Qiu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jinbo Xiong
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
112
|
Pace A, Dipineto L, Fioretti A, Hochscheid S. Loggerhead sea turtles as sentinels in the western Mediterranean: antibiotic resistance and environment-related modifications of Gram-negative bacteria. MARINE POLLUTION BULLETIN 2019; 149:110575. [PMID: 31550577 DOI: 10.1016/j.marpolbul.2019.110575] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/18/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Sea turtles possess relevant characteristics to serve as sentinel species for monitoring the health of marine ecosystems, which is currently threatened. This study examined 35 loggerhead turtles from the western Mediterranean, focusing on the oral and cloacal prevalence of aerobic Gram-negative bacteria, their antibiotic resistance and the influence of several variables linked both to the animal and the environment (i.e. estimated life stage; area, season and cause of recovery; plastic ingestion). Conventional bacteriology methods led to the isolation of bacterial families commonly regarded as opportunistic pathogens (i.e. Aeromonadaceae; Enterobacteriaceae; Pseudomonadaceae; Shewanellaceae; Vibrionaceae), but pointing out sea turtles as carriers of potential zoonotic agents. The high rates of antibiotic resistance, here detected, raise important concerns on the dissemination of this phenomenon in marine environments. Moreover, several of the examined variables showed a significant influence on the prevalence of bacterial families, strengthening the role of sea turtles as mirrors of their ecosystems.
Collapse
Affiliation(s)
- Antonino Pace
- Department of Veterinary Medicine and Animal Productions, University Federico II, Via Delpino 1, 80137 Naples, Italy; Marine Turtle Research Centre, Stazione Zoologica Anton Dohrn, Via Nuova Macello 16, 80055 Portici, NA, Italy.
| | - Ludovico Dipineto
- Department of Veterinary Medicine and Animal Productions, University Federico II, Via Delpino 1, 80137 Naples, Italy.
| | - Alessandro Fioretti
- Department of Veterinary Medicine and Animal Productions, University Federico II, Via Delpino 1, 80137 Naples, Italy.
| | - Sandra Hochscheid
- Marine Turtle Research Centre, Stazione Zoologica Anton Dohrn, Via Nuova Macello 16, 80055 Portici, NA, Italy.
| |
Collapse
|
113
|
Lu M, Luo X, Jiao JJ, Li H, Wang X, Gao J, Zhang X, Xiao K. Nutrients and heavy metals mediate the distribution of microbial community in the marine sediments of the Bohai Sea, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113069. [PMID: 31541809 DOI: 10.1016/j.envpol.2019.113069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
The Bohai Sea, one of the largest marginal seas in China, is extensively influenced by human and industrial activities. The pollutant loads from anthropogenic activities have induced severe ecological problems. The study investigates the physicochemical characteristics of seawater and sediments in Bohai Bay and Laizhou Bay of the Bohai Sea. The diversity and composition of microbial community in sediments are analyzed by 16S rRNA gene amplicon sequencing. The sequencing results present 16 phyla and 31 classes from the samples. Proteobacteria constituted a dominant phylum, of which the classes of Gamma-, Delta-, and Epsilon-are predominant sub-divisions. Nitrogen, phosphorus, and sulfur cycling related microbes present high abundance in both bays. The metabolism of organic matters is the main factor that influences the distribution of microbial communities in Bohai Bay, while the inflow of Yellow River is the dominant factor that influences the distribution of microbial communities in Laizhou Bay. Sulfur oxidizing process is expected to be positively influenced by heavy metals, while ammonia (NH4+) oxidizing process is prone to be negatively affected by heavy metals in both bays. Microbial communities in the offshore sediments of Laizhou Bay and the majority microbial communities in Bohai Bay sediments are subject to similar predominant controlling factors. This phenomenon is likely ascribed to ocean circulation. The results of this study can provide constructive guidelines on ecosystem management of marginal seas in Bohai and elsewhere.
Collapse
Affiliation(s)
- Meiqing Lu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China; Department of Earth Sciences, The University of Hong Kong, 999077, PR China; The University of Hong Kong, Shenzhen Research Institute (SIRI), Shenzhen, 518057, PR China; The University of Hong Kong-Zhejiang Institute of Research and Innovation (HKU-ZIRI), Hangzhou, 311305, PR China
| | - Xin Luo
- Department of Earth Sciences, The University of Hong Kong, 999077, PR China
| | - Jiu Jimmy Jiao
- Department of Earth Sciences, The University of Hong Kong, 999077, PR China
| | - Hailong Li
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China.
| | - Xuejing Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Jingyan Gao
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Xiaolang Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China; Department of Earth Sciences, The University of Hong Kong, 999077, PR China
| | - Kai Xiao
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| |
Collapse
|
114
|
Liang Y, Zhang Y, Zhou C, Li H, Kang X, Wang L, Song J, Jiao N. Cumulative impact of long-term intensive mariculture on total and active bacterial communities in the core sediments of the Ailian Bay, North China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:1212-1224. [PMID: 31466202 DOI: 10.1016/j.scitotenv.2019.07.200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
The exponential growth of off-shore mariculture worldwide over the last 20 years has had significant impact on coastal sediment biogeochemistry. However, there are no long-term records of the cumulative impacts of mariculture on the benthic bacterial community. Here, total (DNA) and active (RNA) bacterial community compositions were characterized using MiSeq sequencing of 16S rRNA gene in four core sediments of the Ailian Bay, one of the typical intensive mariculture areas in China with more than fifty-year history of kelp and scallop cultivation. The γ-Proteobacteria, δ-Proteobacteria, Acidobacteria and Acitinobacteria were more abundant in the total bacterial communities, while β-Proteobacteria, Anaerolineae, Clostridia, Spirochaetes and Cyanobacteria were enriched in the active bacterial communities. Significant differences were observed between total and active benthic bacterial communities. The influences of different mariculture modes on the total bacterial communities were more significant than those on the active bacterial communities. Only limited groups of the total bacterial communities were significant influenced by the cumulative effects of the long-term mariculture. The bacterial genera with the function in the sulfide cycling and organic consumption were enriched in the total bacterial population of the integrated multi-trophic aquaculture (IMTA) areas. The variations of both total and active bacterial communities were significantly influenced by grain sizes, total organic carbon and nutrients. Both total and active bacterial communities exhibited a slightly stronger response to environmental factors than to spatial (distance) factors. The effects of mutualism might dominate the total and active bacterial networks in the Ailian Bay. The present study demonstrated that the cumulative influences of the long-term and intensive IMTA mariculture on total benthic bacterial communities in the sub-surface sediments of the Ailian Bay were stronger than those on the active benthic bacterial communities, which provided some insights into the potential ecological roles of specific taxa in the sediments of the IMTA ecosystems.
Collapse
Affiliation(s)
- Yantao Liang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Chao Zhou
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Hongmei Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xuming Kang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Long Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Jinming Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Nianzhi Jiao
- Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| |
Collapse
|
115
|
Microbiota fingerprints within the oral cavity of cetaceans as indicators for population biomonitoring. Sci Rep 2019; 9:13679. [PMID: 31548611 PMCID: PMC6757053 DOI: 10.1038/s41598-019-50139-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
The composition of mammalian microbiota has been related with the host health status. In this study, we assessed the oral microbiome of 3 cetacean species most commonly found stranded in Iberian Atlantic waters (Delphinus delphis, Stenella coeruleoalba and Phocoena phocoena), using 16S rDNA-amplicon metabarcoding. All oral microbiomes were dominated by Proteobacteria, Firmicutes, Bacteroidetes and Fusobacteria bacteria, which were also predominant in the oral cavity of Tursiops truncatus. A Constrained Canonical Analysis (CCA) showed that the major factors shaping the composition of 38 oral microbiomes (p-value < 0.05) were: (i) animal species and (ii) age class, segregating adults and juveniles. The correlation analysis also grouped the microbiomes by animal stranding location and health status. Similar discriminatory patterns were detected using the data from a previous study on Tursiops truncatus, indicating that this correlation approach may facilitate data comparisons between different studies on several cetacean species. This study identified a total of 15 bacterial genera and 27 OTUs discriminating between the observed CCA groups, which can be further explored as microbiota fingerprints to develop (i) specific diagnostic assays for cetacean population conservation and (ii) bio-monitoring approaches to assess the health of marine ecosystems from the Iberian Atlantic basin, using cetaceans as bioindicators.
Collapse
|
116
|
Cao J, Sanganyado E, Liu W, Zhang W, Liu Y. Decolorization and detoxification of Direct Blue 2B by indigenous bacterial consortium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 242:229-237. [PMID: 31048228 DOI: 10.1016/j.jenvman.2019.04.067] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/13/2019] [Accepted: 04/18/2019] [Indexed: 05/27/2023]
Abstract
Azo dyes are widely used in the textile industry despite being poorly biodegradable and highly toxic. Hence, azo dyes need to be removed from effluent prior to environmental discharge. Microbial communities are efficient for the degradation and mineralization of azo dyes. However, little is known about the functional microbial communities responsible for the degradation process. In this study, a novel indigenous bacteria consortium was developed for characterizing the functional microbial communities involved in the degradation of a sulfonated azo dye, Direct Blue 2B (DB2) in a simple batch reactor. The optimal temperature, pH, and salinity for the decolorization process were 38.70 °C, pH 7.57, and 20.10 g L-1 NaCl, respectively. The effect of the operating conditions on microbial community structure were determined using high-throughput Illumina HiSeq sequencing. Gammaproteobacteria, Betaproteobacteria, and Bacilli were dominant under most of the operating conditions. At pH above 8 and NaCl concentration above 30 g L-1, Firmicutes relative abundance did not significantly change suggesting tolerance towards alkaline and hypersaline environments. Tritium aestivum and Glycine max seed germination following exposure to YHK treated DB2 solution was above 80% compared to 50% in untreated DB2 solution. The YHK consortium decolorized dyes structurally different from DB2 such as trimethyl phenyl and direct dyes. The results of this study offer valuable data on improving optimization of dye biodegradation processes and the capability of YHK in in situ bioremediation.
Collapse
Affiliation(s)
- Jiling Cao
- Marine Biology Institute, College of Science, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Edmond Sanganyado
- Marine Biology Institute, College of Science, Shantou University, Shantou, Guangdong, 515063, PR China.
| | - Wenhua Liu
- Marine Biology Institute, College of Science, Shantou University, Shantou, Guangdong, 515063, PR China.
| | - Wei Zhang
- Marine Biology Institute, College of Science, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Ying Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
117
|
Zhuang M, Sanganyado E, Li P, Liu W. Distribution of microbial communities in metal-contaminated nearshore sediment from Eastern Guangdong, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:482-492. [PMID: 31026695 DOI: 10.1016/j.envpol.2019.04.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Nearshore environments are a critical transitional zone that connects the marine and terrestrial/freshwater ecosystems. The release of anthropogenic chemicals into nearshore ecosystems pose a human and environmental health risk. We investigated the microbial diversity, abundance and function in metal-contaminated sediments collected from the Rongjiang, Hanjiang and Lianjiang River estuaries and adjacent coastal areas using high throughput sequencing. The concentration of nutrients (NO3-N, NO2-N, NH4-N, PO4-P) and metal (Cu, Zn, Cd, Pb, As, Hg) contaminants were higher at the mouth of the rivers compared to the coastal lines, and this was confirmed using cluster analysis. Estimates obtained using geoaccumulation index showed that about 38.9% of the sites were contaminated with Pb and the pollution load index showed that sediment from the mouth of Hanjiang River Estuary was moderately polluted with metals. In the nearshore sediment samples collected, Proteobacteria, Bacteroidetes, Planctomycetes, Chloroflexi, Acidobacteria were the dominant phylum with relative abundances of 46.6%, 8.05%, 6.47%, 5.26%, and 4.59%, respectively. There was no significant correlation between environmental variables and microbial abundance and diversity except for total organic carbon (TOC) (diversity; r = 0.569, p < 0.05) and Cr (diversity; r = 0.581, p < 0.05). At phyla level, Nitrospirae had a significant negative correlation with all metals except Cr, while OD1 had a significant positive correlation with all the metals. Overall, changes in nearshore sediment microbial communities by environmental factors were observed, and these may affect biogeochemical cycling.
Collapse
Affiliation(s)
- Mei Zhuang
- Marine Biology Institute, Shantou University, Shantou, Guangdong Province, China
| | - Edmond Sanganyado
- Marine Biology Institute, Shantou University, Shantou, Guangdong Province, China
| | - Ping Li
- Marine Biology Institute, Shantou University, Shantou, Guangdong Province, China
| | - Wenhua Liu
- Marine Biology Institute, Shantou University, Shantou, Guangdong Province, China.
| |
Collapse
|
118
|
Jordaan K, Comeau AM, Khasa DP, Bezuidenhout CC. An integrated insight into the response of bacterial communities to anthropogenic contaminants in a river: A case study of the Wonderfonteinspruit catchment area, South Africa. PLoS One 2019; 14:e0216758. [PMID: 31112559 PMCID: PMC6528982 DOI: 10.1371/journal.pone.0216758] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/26/2019] [Indexed: 01/03/2023] Open
Abstract
Bacterial communities in human-impacted rivers and streams are exposed to multiple anthropogenic contaminants, which can eventually lead to biodiversity loss and function. The Wonderfonteinspruit catchment area is impacted by operational and abandoned gold mines, farms, and formal and informal settlements. In this study, we used 16S rRNA gene high-throughput sequencing to characterize bacterial communities in the lower Wonderfonteinspruit and their response to various contaminant sources. The results showed that composition and structure of bacterial communities differed significantly (P<0.05) between less (downstream) and more (upstream) polluted sites. The taxonomic and functional gene dissimilarities significantly correlated with each other, while downstream sites had more distinct functional genes. The relative abundance of Proteobacteria, Bacteroidetes and Actinobacteria was higher at upstream sites, while Acidobacteria, Cyanobacteria, Firmicutes and Verrucomicrobia were prominent at downstream sites. In addition, upstream sites were rich in genera pathogenic and/or potentially pathogenic to humans. Multivariate and correlation analyses suggest that bacterial diversity was significantly (P<0.05) impacted by pH and heavy metals (cobalt, arsenic, chromium, nickel and uranium). A significant fraction (~14%) of the compositional variation was explained by a combination of anthropogenic inputs, of which mining (~6%) was the main contributor to bacterial community variation. Network analysis indicated that bacterial communities had non-random inter- and intra-phyla associations and that the main taxa showed both positive and negative linkages to environmental parameters. Our results suggest that species sorting, due to environmental parameters, was the main process that structured bacterial communities. Furthermore, upstream sites had higher relative abundances of genes involved in xenobiotic degradation, suggesting stronger removal of polycyclic aromatic hydrocarbons and other organic compounds. This study provides insights into the influences of anthropogenic land use on bacterial community structure and functions in the lower Wonderfonteinspruit.
Collapse
Affiliation(s)
- K. Jordaan
- Unit for Environmental Sciences and Management, Microbiology, North-West University, South Africa, Potchefstroom, South Africa
- * E-mail:
| | - A. M. Comeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - D. P. Khasa
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - C. C. Bezuidenhout
- Unit for Environmental Sciences and Management, Microbiology, North-West University, South Africa, Potchefstroom, South Africa
| |
Collapse
|
119
|
Yan Z, Hao Z, Wu H, Jiang H, Yang M, Wang C. Co-occurrence patterns of the microbial community in polycyclic aromatic hydrocarbon-contaminated riverine sediments. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:99-108. [PMID: 30594728 DOI: 10.1016/j.jhazmat.2018.12.071] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/16/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Understanding environmental and spatial gradient influences on sediment microbial communities, especially the communities of highly contaminated subsurface sediments, has received great attention with respect to natural attenuation and bioremediation. Here, we investigated the spatial variation and the co-occurrence patterns of microbial communities in polycyclic aromatic hydrocarbon (PAH)-contaminated riverine sediments by using spatial-series 16S rRNA gene data. The results showed that species from the surface and subsurface sediment samples tended to show greater co-occurrence patterns and facilitative interactions in the sediment microbial community as environmental severity increased. Microorganisms in the heavier PAH-contaminated sediment have stronger relationships and are more centrally clustered within the network compared to microorganisms in the lower PAH-contaminated sediment. The core communities harbored the keystone species (Dechloromonas, Crenothrix, Desulfuromonadales, Xanthomonadales, Anaerolineaceae and Dehalococcoidales), which responded to changes in the environmental and spatial gradients. The sediment PAH concentrations, ferrous iron and vertical distance were identified as the main drivers in determining the bacterial community assembly. The keystone species were linked to PAHs biodegradation coupled with iron cycling in sediments and could orchestrate core communities to perform ecosystem processes. Overall, these findings provide new insight into microbial community assembly and contribute to harnessing their functions in ecosystems for bioremediation.
Collapse
Affiliation(s)
- Zaisheng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zheng Hao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huifang Wu
- College of Urban Construction, Nanjing University of Technology, Nanjing, 211816, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Mingzhong Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Urban Construction, Nanjing University of Technology, Nanjing, 211816, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
120
|
Hess-Erga OK, Moreno-Andrés J, Enger Ø, Vadstein O. Microorganisms in ballast water: Disinfection, community dynamics, and implications for management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:704-716. [PMID: 30677936 DOI: 10.1016/j.scitotenv.2018.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Increasing concerns have accelerated the development of international regulations and methods for ballast water management to limit the introduction of non-indigenous species. The transport of microorganisms with ballast water has received scientific attention in recent years. However, few studies have focused on the importance of organisms smaller than 10 μm in diameter. In this work, we review the effects of ballast water transport, disinfection, and the release of microorganisms on ecosystem processes with a special focus on heterotrophic bacteria. It is important to evaluate both direct and indirect effects of ballast water treatment systems, such as the generation of easily degradable substrates and the subsequent regrowth of heterotrophic microorganisms in ballast tanks. Disinfection of water can alter the composition of bacterial communities through selective recolonization in the ballast water or the recipient water, and thereby affects bacterial driven functions that are important for the marine food web. Dissolved organic matter quality and quantity and the ecosystem status of the treated water can also be affected by the disinfection method used. These side effects of disinfection should be further investigated in a broader context and in different scales (laboratory studies, large-scale facilities, and on the ships).
Collapse
Affiliation(s)
- Ole-Kristian Hess-Erga
- NTNU Norwegian University of Science and Technology, Department of Biotechnology and Food Science, 7491 Trondheim, Norway
| | - Javier Moreno-Andrés
- Department of Environmental Technologies, University of Cádiz, INMAR-Marine Research Institute, Camepus Universitario Puerto Real, 11510 Puerto Real, Cádiz, Spain
| | - Øivind Enger
- Sarsia Seed AS, Postboks 7150, 5020 Bergen, Norway
| | - Olav Vadstein
- NTNU Norwegian University of Science and Technology, Department of Biotechnology and Food Science, 7491 Trondheim, Norway.
| |
Collapse
|
121
|
Lurgi M, Thomas T, Wemheuer B, Webster NS, Montoya JM. Modularity and predicted functions of the global sponge-microbiome network. Nat Commun 2019; 10:992. [PMID: 30824706 PMCID: PMC6397258 DOI: 10.1038/s41467-019-08925-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 02/08/2019] [Indexed: 11/10/2022] Open
Abstract
Defining the organisation of species interaction networks and unveiling the processes behind their assembly is fundamental to understanding patterns of biodiversity, community stability and ecosystem functioning. Marine sponges host complex communities of microorganisms that contribute to their health and survival, yet the mechanisms behind microbiome assembly are largely unknown. We present the global marine sponge-microbiome network and reveal a modular organisation in both community structure and function. Modules are linked by a few sponge species that share microbes with other species around the world. Further, we provide evidence that abiotic factors influence the structuring of the sponge microbiome when considering all microbes present, but biotic interactions drive the assembly of more intimately associated 'core' microorganisms. These findings suggest that both ecological and evolutionary processes are at play in host-microbe network assembly. We expect mechanisms behind microbiome assembly to be consistent across multicellular hosts throughout the tree of life.
Collapse
Affiliation(s)
- Miguel Lurgi
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS-Paul Sabatier University, 09200, Moulis, France.
| | - Torsten Thomas
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bernd Wemheuer
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, 4816, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jose M Montoya
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS-Paul Sabatier University, 09200, Moulis, France
| |
Collapse
|
122
|
Gong B, Huang H, Peng C, Wang J, Ma J, Liu X, Ouyang S, Huang SL, Wu H. The microbiomic and environmental analysis of sediments in the Indo-Pacific humpback dolphin (Sousa chinensis) habitat in the Northern Beibu Gulf, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6957-6970. [PMID: 30644049 DOI: 10.1007/s11356-018-3976-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
The northern Beibu Gulf is one of the major habitats for the Indo-Pacific humpback dolphin (Sousa chinensis) in China. In this habitat, the core distribution zone of humpback dolphins was confined to the Sanniang Bay (SNB) and Dafengjiang River Estuary (DRE) areas. In our present research, the sediments of 14 sampling sites across the SNB and DRE waters were collected and further conducted for microbiomic and environmental analysis to explore the ecosystem characteristics of major humpback dolphin habitats in Northern Beibu Gulf. The environmental condition includes ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N), dissolved reactive phosphorus (DRP), sulfur content in the form of sulfuric acid (SO42--S), Fe, and heavy metals (including Cu, Zn, Cd, Pb, and As). The composition of the bacterial community was characterized by 16S ribosomal DNA analysis of the V3-V4 regions using the Illumina-based sequencing platform. The environmental characteristic of the nutrient elements and heavy metals indicated that SNB suffered more anthropogenic impact than DRE. The comparably higher concentration of NH4+-N, NO3--N, DRP, Pb, and Cd in the SNB region was detected. The comparably higher nutrients in the SNB may have resulted in higher biomass and lower dissolved oxygen (DO) profile, which was further proved by Landsat thermal image data. The microbiome analysis showed that the DRE region was oligotrophic and SNB reflected an anaerobic environment in the sediments. Environmental factors rather than the spatial distance determined the similarity of bacterial community among different sites. Ecological associations between environmental, oceanographic, and bacterial characteristics were illustrated, which exhibited strong mutual associations. Our findings presented a feasibility that integrates empirical and remote sensing data to distinguish ecological features and evaluate ecosystem healthiness for the humpback dolphin habitats.
Collapse
Affiliation(s)
- Bin Gong
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou, 535000, China
- The Key Laboratory of Coastal Science and Engineering, Qinzhou, 535000, Guangxi, China
| | - Hu Huang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou, 535000, China
| | - Chongwei Peng
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535000, China
| | - Jingzhen Wang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou, 535000, China
| | - Jixian Ma
- Marine Environment Monitoring Center, Qinzhou Oceanic Administration, Qinzhou, 535000, China
| | - Xiangxu Liu
- Marine Environment Monitoring Center, Qinzhou Oceanic Administration, Qinzhou, 535000, China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| | - Shiang-Lin Huang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535000, China.
- Guanxi Beibu Gulf Marine Research Center, Guanxi Academy of Sciences, Nanning, 530007, Guanxi, China.
- College of Science, Shantou University, Shantou, 515000, China.
| | - Haiping Wu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535000, China.
| |
Collapse
|
123
|
Laganà P, Caruso G, Corsi I, Bergami E, Venuti V, Majolino D, La Ferla R, Azzaro M, Cappello S. Do plastics serve as a possible vector for the spread of antibiotic resistance? First insights from bacteria associated to a polystyrene piece from King George Island (Antarctica). Int J Hyg Environ Health 2019; 222:89-100. [DOI: 10.1016/j.ijheh.2018.08.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 11/25/2022]
|
124
|
Birrer SC, Dafforn KA, Sun MY, Williams RBH, Potts J, Scanes P, Kelaher BP, Simpson SL, Kjelleberg S, Swarup S, Steinberg P, Johnston EL. Using meta‐omics of contaminated sediments to monitor changes in pathways relevant to climate regulation. Environ Microbiol 2018; 21:389-401. [DOI: 10.1111/1462-2920.14470] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Simone C. Birrer
- Evolution and Ecology Research Centre is equivalent School of BEES, University of New South Wales Sydney NSW 2052 Australia
- The Sydney Institute of Marine Science Mosman NSW 2088 Australia
| | - Katherine A. Dafforn
- Department of Environmental Sciences Macquarie University North Ryde NSW 2109 Australia
| | - Melanie Y. Sun
- Evolution and Ecology Research Centre is equivalent School of BEES, University of New South Wales Sydney NSW 2052 Australia
- The Sydney Institute of Marine Science Mosman NSW 2088 Australia
| | - Rohan B. H. Williams
- Singapore Centre for Environmental Life Sciences Engineering Nanyang Technological University 637551 Singapore
| | - Jaimie Potts
- NSW Office of Environment and Heritage Lidcombe NSW 2141 Australia
| | - Peter Scanes
- NSW Office of Environment and Heritage Lidcombe NSW 2141 Australia
| | - Brendan P. Kelaher
- National Marine Science Centre and Centre for Coastal Biogeochemistry Research Southern Cross University Coffs Harbour NSW 2450 Australia
| | | | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering Nanyang Technological University 637551 Singapore
- Centre of Marine Bio‐Innovation School of BEES, University of New South Wales Sydney NSW 2052 Australia
| | - Sanjay Swarup
- Singapore Centre for Environmental Life Sciences Engineering Nanyang Technological University 637551 Singapore
| | - Peter Steinberg
- Department of Environmental Sciences Macquarie University North Ryde NSW 2109 Australia
- Centre of Marine Bio‐Innovation School of BEES, University of New South Wales Sydney NSW 2052 Australia
| | - Emma L. Johnston
- Evolution and Ecology Research Centre is equivalent School of BEES, University of New South Wales Sydney NSW 2052 Australia
- The Sydney Institute of Marine Science Mosman NSW 2088 Australia
| |
Collapse
|
125
|
Verhoeven JTP, Salvo F, Knight R, Hamoutene D, Dufour SC. Temporal Bacterial Surveillance of Salmon Aquaculture Sites Indicates a Long Lasting Benthic Impact With Minimal Recovery. Front Microbiol 2018; 9:3054. [PMID: 30631310 PMCID: PMC6315143 DOI: 10.3389/fmicb.2018.03054] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/27/2018] [Indexed: 12/30/2022] Open
Abstract
Coastal aquaculture has experienced substantial growth in the last few decades and associated impacts on natural environments are of increasing importance. Understanding both the effects of aquaculture on marine ecosystems and the processes of recovery during fallowing periods is crucial for the development of a more environmentally sustainable industry. Because bacteria are sensitive to environmental change, surveying fluctuations in bacterial communities is a promising tool for monitoring the status of benthic environments. Here, we used 16S rRNA gene high-throughput sequencing to characterize bacterial communities in flocculent matter samples collected over a period of 3 years and at various distances from cages (0–200 meters) at production and fallow (3–35 months) salmon aquaculture sites in southern Newfoundland to evaluate the environmental impact of aquaculture on predominantly hard-bottom substrates. Bacterial composition analysis revealed four clusters, three of which (defined as “recently disturbed,” “intermediate impact,” and “high impact”) differed markedly from a fourth “low impact” cluster that contained far-field samples collected >500 m from cages. Samples within the high impact group were most often collected directly under cages, whereas those in the intermediate impact group were mainly sampled from 20 to 40 m from cages. Large scale phylum shifts (increases of Bacteroidetes, Firmicutes, Spirochaetes, and decreases in Proteobacteria and Epsilonbacteraeota) and a decline in bacterial diversity were observed in the high impact cluster, indicating significant ecological change. Samples from sites of different fallow duration were found in the high impact cluster, indicating a lack of recovery, even after 35 months of fallowing. Finally, we identified 28 genera as bacterial biomarkers, specific to one or more clusters, including genera associated with organically enriched environments and previously reported in the context of aquaculture impacts. Tracking the relative abundance of biomarkers in relation to different lengths of fallowing in the three more impacted clusters showed that these markers remained significantly above low impact cluster levels at all times, further pointing toward incomplete recovery. Our results suggest that coastal aquaculture on hard-bottom substrates is prone to long lasting impacts on bacterial communities, especially below cages, and that effects can be accurately tracked using bacterial community profiles or specific biomarkers.
Collapse
Affiliation(s)
- Joost T P Verhoeven
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Flora Salvo
- Aquaculture, Biotechnology and Aquatic Animal Health Section, Fisheries and Oceans Canada, Northwest Atlantic Fisheries Center, St. John's, NL, Canada
| | - Robyn Knight
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Dounia Hamoutene
- Aquaculture, Biotechnology and Aquatic Animal Health Section, Fisheries and Oceans Canada, Northwest Atlantic Fisheries Center, St. John's, NL, Canada
| | - Suzanne C Dufour
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
126
|
Deep-sea anthropogenic macrodebris harbours rich and diverse communities of bacteria and archaea. PLoS One 2018; 13:e0206220. [PMID: 30485275 PMCID: PMC6261660 DOI: 10.1371/journal.pone.0206220] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/09/2018] [Indexed: 02/01/2023] Open
Abstract
The deep sea is the largest biome on earth, and microbes dominate in biomass and abundance. Anthropogenic litter is now almost ubiquitous in this biome, and its deposition creates new habitats and environments, including for microbial assemblages. With the ever increasing accumulation of this debris, it is timely to identify and describe the bacterial and archaeal communities that are able to form biofilms on macrodebris in the deep sea. Using 16S rRNA gene high throughput sequencing, we show for the first time the composition of bacteria and archaea on macrodebris collected from the deep sea. Our data suggest differences in the microbial assemblage composition across litter of different materials including metal, rubber, glass, fabric and plastic. These results imply that anthropogenic macrodebris provide diverse habitats for bacterial and archaeal biofilms and each may harbour distinct microbial communities.
Collapse
|
127
|
Nho SW, Abdelhamed H, Paul D, Park S, Mauel MJ, Karsi A, Lawrence ML. Taxonomic and Functional Metagenomic Profile of Sediment From a Commercial Catfish Pond in Mississippi. Front Microbiol 2018; 9:2855. [PMID: 30524416 PMCID: PMC6262407 DOI: 10.3389/fmicb.2018.02855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/06/2018] [Indexed: 11/19/2022] Open
Abstract
Metagenomic analyses of microbial communities from aquatic sediments are relatively few, and there are no reported metagenomic studies on sediment from inland ponds used for aquaculture. Catfish ponds in the southeastern U.S. are eutrophic systems. They are fertilized to enhance algae growth and encourage natural food production, and catfish are fed with commercial feed from spring to fall. As result, catfish pond sediment (CPS) contains a very dense, diverse microbial community that has significant effects on the physiochemical parameters of pond dynamics. Here we conducted an in-depth metagenomic analysis of the taxonomic and metabolic capabilities of a catfish pond sediment microbiome from a southeastern U.S. aquaculture farm in Mississippi using Illumina next-generation sequencing. A total of 3.3 Gbp of sequence was obtained, 25,491,518 of which encoded predicted protein features. The pond sediment was dominated by Proteobacteria sequences, followed by Bacteroidetes, Firmicutes, Chloroflexi, and Actinobacteria. Enzyme pathways for methane metabolism/methanogenesis, denitrification, and sulfate reduction appeared nearly complete in the pond sediment metagenome profile. In particular, a large number of Deltaproteobacteria sequences and genes encoding anaerobic functional enzymes were found. This is the first study to characterize a catfish pond sediment microbiome, and it is expected to be useful for characterizing specific changes in microbial flora in response to production practices. It will also provide insight into the taxonomic diversity and metabolic capabilities of microbial communities in aquaculture. Furthermore, comparison with other environments (i.e., river and marine sediments) will reveal habitat-specific characteristics and adaptations caused by differences in nutrients, vegetation, and environmental stresses.
Collapse
Affiliation(s)
- Seong Won Nho
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Hossam Abdelhamed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Debarati Paul
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Seongbin Park
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Michael J Mauel
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Mark L Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
128
|
Pearman JK, Afandi F, Hong P, Carvalho S. Plankton community assessment in anthropogenic-impacted oligotrophic coastal regions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31017-31030. [PMID: 30182317 DOI: 10.1007/s11356-018-3072-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Microbial planktonic communities are critical components of marine biogeochemical pathways. Despite this, there is still limited knowledge on the dynamics of this group in warm and oligotrophic waters. We used high-throughput sequencing to characterise the bacterial (16S rRNA) and eukaryotic (18S rRNA) microbial plankton communities in two regions under the influence of anthropogenic impacts (a port and sewage outflow) and a coastal region with no direct anthropogenic disturbances in the central Red Sea. Overall, bacterial and eukaryotic components responded in a similar way to the environmental conditions. Community composition and structure were more sensitive than alpha diversity measures to environmental impacts. With the exception of eukaryotes, for which the number of OTU differed significantly between sampling periods in all the regions, environmental changes associated with anthropogenic pressures seem to be better reflected by variations in the relative dominance of microbial groups. For example, elevated proportional abundances of nitrifying and sewage-/faecal-related bacteria at the impacted sites were observed compared with the coastal region. The recently developed microgAMBI also appeared to correlate well with the level of anthropogenic impact the regions experienced, showing the potential to be applied in oligotrophic waters.
Collapse
Affiliation(s)
- John K Pearman
- Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Fidan Afandi
- Bioecology Department, Ecology and Soil Science, Baku State University, Academic Zahid Xalilov Street, 23, 1148, Baku, Absheron Economic Region AZ, Azerbaijan
| | - Peiying Hong
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Susana Carvalho
- Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
129
|
Ghosh A, Bhadury P. Exploring biogeographic patterns of bacterioplankton communities across global estuaries. Microbiologyopen 2018; 8:e00741. [PMID: 30303297 PMCID: PMC6528645 DOI: 10.1002/mbo3.741] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 11/16/2022] Open
Abstract
Estuaries provide an ideal niche to study structure and function of bacterioplankton communities owing to the presence of a multitude of environmental stressors. Bacterioplankton community structures from nine global estuaries were compared to understand their broad‐scale biogeographic patterns. Bacterioplankton community structure from four estuaries of Sundarbans, namely Mooriganga, Thakuran, Matla, and Harinbhanga, was elucidated using Illumina sequencing. Bacterioplankton communities from these estuaries were compared against available bacterioplankton sequence data from Columbia, Delaware, Jiulong, Pearl, and Hangzhou estuaries. All nine estuaries were dominated by Proteobacteria. Other abundant phyla included Bacteroidetes, Firmicutes, Acidobacteria, Actinobacteria, Cyanobacteria, Planctomycetes, and Verrucomicrobia. The abundant bacterial phyla showed a ubiquitous presence across the estuaries. At class level, the overwhelming abundance of Gammaproteobacteria in the estuaries of Sundarbans and Columbia estuary clearly stood out amidst high abundance of Alphaproteobacteria observed in the other estuaries. Abundant bacterial families including Rhodobacteriaceae, Shingomonadaceae, Acidobacteriaceae, Vibrionaceae, and Xanthomondaceae also showed ubiquitous presence in the studied estuaries. However, rare taxa including Chloroflexi, Tenericutes, Nitrospirae, and Deinococcus‐Thermus showed clear site‐specific distribution patterns. Such distribution patterns were also reinstated by nMDS ordination plots. Such clustering patterns could hint toward the potential role of environmental parameters and substrate specificity which could result in distinct bacterioplankton communities at specific sites. The ubiquitous presence of abundant bacterioplankton groups along with their strong correlation with surface water temperature and dissolved nutrient concentrations indicates the role of such environmental parameters in shaping bacterioplankton community structure in estuaries. Overall, studies on biogeographic patters of bacterioplankton communities can provide interesting insights into ecosystem functioning and health of global estuaries.
Collapse
Affiliation(s)
- Anwesha Ghosh
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Punyasloke Bhadury
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| |
Collapse
|
130
|
Birrer SC, Dafforn KA, Simpson SL, Kelaher BP, Potts J, Scanes P, Johnston EL. Interactive effects of multiple stressors revealed by sequencing total (DNA) and active (RNA) components of experimental sediment microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:1383-1394. [PMID: 29801231 DOI: 10.1016/j.scitotenv.2018.05.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 06/08/2023]
Abstract
Coastal waterways are increasingly exposed to multiple stressors, e.g. contaminants that can be delivered via pulse or press exposures. Therefore, it is crucial that ecological impacts can be differentiated among stressors to manage ecosystem threats. We investigated microbial community development in sediments exposed to press and pulse stressors. Press exposures were created with in situ mesocosm sediments containing a range of 'metal' concentrations (sediment contaminated with multiple metal(loid)s) and organic enrichment (fertiliser), while the pulse exposure was simulated by a single dose of organic fertiliser. All treatments and exposure concentrations were crossed in a fully factorial field experiment. We used amplicon sequencing to compare the sensitivity of the 1) total (DNA) and active (RNA) component of 2) bacterial (16S rRNA) and eukaryotic (18S rRNA) communities to contaminant exposures. Overall microbial community change was greater when exposed to press than pulse stressors, with the bacterial community responding more strongly than the eukaryotes. The total bacterial community represents a more time-integrated measure of change and proved to be more sensitive to multiple stressors than the active community. Metals and organic enrichment treatments interacted such that the effect of metals was weaker when the sediment was organically enriched. Taxa-level analyses revealed that press enrichment resulted in potential functional changes, mainly involving nitrogen cycling. Furthermore, enrichment generally reduced the abundance of active eukaryotes in the sediment. As well as demonstrating interactive impacts of metals and organic enrichment, this study highlights the sensitivity of next-generation sequencing for ecosystem biomonitoring of interacting stressors and identifies opportunities for more targeted application.
Collapse
Affiliation(s)
- Simone C Birrer
- Applied Marine and Estuarine Ecology Lab, School of BEES, University of New South Wales, Sydney 2052, NSW, Australia; The Sydney Institute of Marine Science, Mosman 2088, NSW, Australia.
| | - Katherine A Dafforn
- The Sydney Institute of Marine Science, Mosman 2088, NSW, Australia; Department of Environmental Sciences, Macquarie University, North Ryde NSW 2109, Australia
| | | | - Brendan P Kelaher
- National Marine Science Centre and Centre for Coastal Biogeochemistry Research, Southern Cross University, Coffs Harbour 2450, NSW, Australia
| | - Jaimie Potts
- NSW Office of Environment and Heritage, Lidcombe 2141, NSW, Australia
| | - Peter Scanes
- NSW Office of Environment and Heritage, Lidcombe 2141, NSW, Australia
| | - Emma L Johnston
- Applied Marine and Estuarine Ecology Lab, School of BEES, University of New South Wales, Sydney 2052, NSW, Australia; The Sydney Institute of Marine Science, Mosman 2088, NSW, Australia
| |
Collapse
|
131
|
Zhang Y, Wu R, Zhang Y, Wang G, Li K. Impact of nutrient addition on diversity and fate of fecal bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:717-726. [PMID: 29727839 DOI: 10.1016/j.scitotenv.2018.04.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Understanding the variations in the microorganisms associated with human fecal pollution in different types of water is necessary to manage water quality and predict human health risks. Using an Illumina sequencing method, we investigated variations in the fecal bacteria originating from fresh human feces and their decay trends in nutrient-supplemented water and natural river water. Nutrient addition contributed to the growth of heterotrophic bacteria like Comamonadaceae, Cytophagaceae, and Sphingobacteriaceae, but led to lower concentrations for Bacteroidaceae, Lachnospiraceae, and Ruminococcaceae. This result suggests that the utilization of nutrients by high-activity bacteria may suppress other bacteria via depletion of the available nutrient resources. As we did not observe proliferation of Bacteroidales, Lactobacillales, Clostridiales, or Ruminococcaceae in either supplemented or river water, we consider these groups suitable for use as indicators to determine the level of fecal pollution. Moreover, we tested the persistence of Bacteroidales markers, including general-Bacteroidales marker GenBac and human-specific Bacteroidales marker qHS601, by quantitative PCR. We observed similar trends in the decay of the Bacteroidales markers GenBac and qHS601 in the nutrient-supplemented water and natural river water, and the high R2 values of the GenBac (R2nutrient-supplemented = 0.93, R2natural river = 0.81) and qHS601 (R2nutrient-supplemented = 0.93, R2natural river = 0.91) suggests they are a good fit for the first-order decay model. We also found stronger correlations between the markers and potential pathogenic anaerobes in the different types of water, demonstrating the validity of the use of GenBac and qHS601 from Bacteroidales for the identification of human-associated pollution sources.
Collapse
Affiliation(s)
- Yang Zhang
- College of Resources and Environment Engineering, Wuhan University of Technology, Wuhan 430070, PR China; South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510530, PR China
| | - Renren Wu
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510530, PR China; The key Laboratory of Water and Air Pollution Control of Guangdong Province, Guangzhou 510530, PR China.
| | - Yimin Zhang
- College of Resources and Environment Engineering, Wuhan University of Technology, Wuhan 430070, PR China; College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| | - Guang Wang
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510530, PR China; The key Laboratory of Water and Air Pollution Control of Guangdong Province, Guangzhou 510530, PR China
| | - Kaiming Li
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510530, PR China; The key Laboratory of Water and Air Pollution Control of Guangdong Province, Guangzhou 510530, PR China
| |
Collapse
|
132
|
Kiran GS, Sekar S, Ramasamy P, Thinesh T, Hassan S, Lipton AN, Ninawe AS, Selvin J. Marine sponge microbial association: Towards disclosing unique symbiotic interactions. MARINE ENVIRONMENTAL RESEARCH 2018; 140:169-179. [PMID: 29935729 DOI: 10.1016/j.marenvres.2018.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/01/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Sponges are sessile benthic filter-feeding animals, which harbor numerous microorganisms. The enormous diversity and abundance of sponge associated bacteria envisages sponges as hot spots of microbial diversity and dynamics. Many theories were proposed on the ecological implications and mechanism of sponge-microbial association, among these, the biosynthesis of sponge derived bioactive molecules by the symbiotic bacteria is now well-indicated. This phenomenon however, is not exhibited by all marine sponges. Based on the available reports, it has been well established that the sponge associated microbial assemblages keep on changing continuously in response to environmental pressure and/or acquisition of microbes from surrounding seawater or associated macroorganisms. In this review, we have discussed nutritional association of sponges with its symbionts, interaction of sponges with other eukaryotic organisms, dynamics of sponge microbiome and sponge-specific microbial symbionts, sponge-coral association etc.
Collapse
Affiliation(s)
- G Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry, 605014, India
| | - Sivasankari Sekar
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Pasiyappazham Ramasamy
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | | | - Saqib Hassan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Anuj Nishanth Lipton
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - A S Ninawe
- Department of Biotechnology, Ministry of Science and Technology, New Delhi, India
| | - Joseph Selvin
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
133
|
Abundant and Rare Bacterioplankton in Freshwater Lakes Subjected to Different Levels of Tourism Disturbances. WATER 2018. [DOI: 10.3390/w10081075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Anthropogenic disturbances have a negative impact on lake ecosystems, such as water environmental degradation. Bacterioplankton communities are essential components in lakes and consist of a few abundant species and several rare taxa. However, little is known about the community diversity and composition of abundant and rare bacterioplankton subjected to different levels of anthropogenic disturbances. In this study, water samples were collected from twelve freshwater lakes located around the city of Nanjing, China. Both Illumina MiSeq sequencing and multivariate statistical analysis were employed to determine the bacterioplankton community composition and its relation to environmental variables. The results indicated that tourism disturbances (mostly sewage discharge and tourist activities) altered the community structure of both abundant and rare bacterioplankton by changing water physicochemical characteristics. Alpha diversity of both abundant and rare taxa did not differ among different anthropogenic disturbance lakes (p > 0.05). Rare bacterial taxa possessed higher alpha diversity than abundant taxa, though rare taxa occupied a tiny portion of abundance (4.5%). Redundancy analysis demonstrated that dissolved organic carbon (DOC) was the most significant correlation variable for constraining the variation of abundant taxa, whereas total phosphorus (TP), ammonium nitrogen (NH4+-N), and chlorophyll-a (Chl-a) were the most dominant environmental factors constraining the rare taxa, indicating abundant and rare taxa may have different ecological niches.
Collapse
|
134
|
Degradation of petroleum hydrocarbons and treatment of refinery wastewater under saline condition by a halophilic bacterial consortium enriched from marine environment (Red Sea), Jeddah, Saudi Arabia. 3 Biotech 2018; 8:276. [PMID: 29872607 DOI: 10.1007/s13205-018-1296-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/20/2018] [Indexed: 01/05/2023] Open
Abstract
A halophilic bacterial consortium was enriched from Red Sea saline water and sediment samples collected from Abhor, Jeddah, Saudi Arabia. The consortium potentially degraded different low (above 90% for phenanthrene and fluorene) and high (69 ± 1.4 and 56 ± 1.8% at 50 and 100 mg/L of pyrene) molecular weight polycyclic aromatic hydrocarbons (PAHs) at different concentrations under saline condition (40 g/L NaCl concentration). The cell hydrophobicity (91° ± 1°) and biosurfactant production (30 mN/m) confirmed potential bacterial cell interaction with PAHs to facilitate biodegradation process. Co-metabolic study with phenanthrene as co-substrate during pyrene degradation recorded 90% degradation in 12 days. The consortium in continuous stirred tank reactor with petroleum refinery wastewater showed complete and 90% degradation of low and high molecular weight PAHs, respectively. The reactor study also revealed 94 ± 1.8% chemical oxygen demand removal by the halophilic consortium under saline condition (40 g/L NaCl concentration). The halophilic bacterial strains present in the consortium were identified as Ochrobactrum halosaudis strain CEES1 (KX377976), Stenotrophomonas maltophilia strain CEES2 (KX377977), Achromobacter xylosoxidans strain CEES3 (KX377978) and Mesorhizobium halosaudis strain CEES4 (KX377979). Thus, the promising halophilic consortium was highly recommended to be employed in petroleum saline wastewater treatment process.
Collapse
|
135
|
Campa MF, Techtmann SM, Gibson CM, Zhu X, Patterson M, Garcia de Matos Amaral A, Ulrich N, Campagna SR, Grant CJ, Lamendella R, Hazen TC. Impacts of Glutaraldehyde on Microbial Community Structure and Degradation Potential in Streams Impacted by Hydraulic Fracturing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5989-5999. [PMID: 29683652 DOI: 10.1021/acs.est.8b00239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The environmental impacts of hydraulic fracturing, particularly those of surface spills in aquatic ecosystems, are not fully understood. The goals of this study were to (1) understand the effect of previous exposure to hydraulic fracturing fluids on aquatic microbial community structure and (2) examine the impacts exposure has on biodegradation potential of the biocide glutaraldehyde. Microcosms were constructed from hydraulic fracturing-impacted and nonhydraulic fracturing-impacted streamwater within the Marcellus shale region in Pennsylvania. Microcosms were amended with glutaraldehyde and incubated aerobically for 56 days. Microbial community adaptation to glutaraldehyde was monitored using 16S rRNA gene amplicon sequencing and quantification by qPCR. Abiotic and biotic glutaraldehyde degradation was measured using ultra-performance liquid chromatography--high resolution mass spectrometry and total organic carbon. It was found that nonhydraulic fracturing-impacted microcosms biodegraded glutaraldehyde faster than the hydraulic fracturing-impacted microcosms, showing a decrease in degradation potential after exposure to hydraulic fracturing activity. Hydraulic fracturing-impacted microcosms showed higher richness after glutaraldehyde exposure compared to unimpacted streams, indicating an increased tolerance to glutaraldehyde in hydraulic fracturing impacted streams. Beta diversity and differential abundance analysis of sequence count data showed different bacterial enrichment for hydraulic fracturing-impacted and nonhydraulic fracturing-impacted microcosms after glutaraldehyde addition. These findings demonstrated a lasting effect on microbial community structure and glutaraldehyde degradation potential in streams impacted by hydraulic fracturing operations.
Collapse
Affiliation(s)
- Maria Fernanda Campa
- Bredesen Center for Interdisciplinary Research and Graduate Education , University of Tennessee , Knoxville , Tennessee 37996 , United States
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
| | - Stephen M Techtmann
- Department of Biological Sciences , Michigan Technological University , Houghton , Michigan 49931 , United States
| | - Caleb M Gibson
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Xiaojuan Zhu
- Office of Information Technology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Megan Patterson
- Department of Microbiology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | | | - Nikea Ulrich
- Department of Biology , Juniata College , Huntingdon , Pennsylvania 16652 , United States
| | - Shawn R Campagna
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
- Biological and Small Molecule Mass Spectrometry Core , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Christopher J Grant
- Department of Biology , Juniata College , Huntingdon , Pennsylvania 16652 , United States
| | - Regina Lamendella
- Department of Biology , Juniata College , Huntingdon , Pennsylvania 16652 , United States
| | - Terry C Hazen
- Bredesen Center for Interdisciplinary Research and Graduate Education , University of Tennessee , Knoxville , Tennessee 37996 , United States
- Department of Microbiology , University of Tennessee , Knoxville , Tennessee 37996 , United States
- Department of Civil and Environmental Engineering , University of Tennessee , Knoxville , Tennessee 37996-1605 , United States
- Earth & Planetary Sciences , University of Tennessee , Knoxville , Tennessee 37996 , United States
- Biosciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
- Institute for a Secure and Sustainable Environment , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
136
|
Oyibo JN, Wegwu MO, Uwakwe AA, Osuoha JO. Analysis of total petroleum hydrocarbons, polycyclic aromatic hydrocarbons and risk assessment of heavy metals in some selected finfishes at Forcados Terminal, Delta State, Nigeria. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.enmm.2017.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
137
|
Manyi-Loh C, Mamphweli S, Meyer E, Okoh A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018; 23:E795. [PMID: 29601469 PMCID: PMC6017557 DOI: 10.3390/molecules23040795] [Citation(s) in RCA: 742] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/14/2018] [Accepted: 03/02/2018] [Indexed: 01/08/2023] Open
Abstract
Due to the increased demand of animal protein in developing countries, intensive farming is instigated, which results in antibiotic residues in animal-derived products, and eventually, antibiotic resistance. Antibiotic resistance is of great public health concern because the antibiotic-resistant bacteria associated with the animals may be pathogenic to humans, easily transmitted to humans via food chains, and widely disseminated in the environment via animal wastes. These may cause complicated, untreatable, and prolonged infections in humans, leading to higher healthcare cost and sometimes death. In the said countries, antibiotic resistance is so complex and difficult, due to irrational use of antibiotics both in the clinical and agriculture settings, low socioeconomic status, poor sanitation and hygienic status, as well as that zoonotic bacterial pathogens are not regularly cultured, and their resistance to commonly used antibiotics are scarcely investigated (poor surveillance systems). The challenges that follow are of local, national, regional, and international dimensions, as there are no geographic boundaries to impede the spread of antibiotic resistance. In addition, the information assembled in this study through a thorough review of published findings, emphasized the presence of antibiotics in animal-derived products and the phenomenon of multidrug resistance in environmental samples. This therefore calls for strengthening of regulations that direct antibiotic manufacture, distribution, dispensing, and prescription, hence fostering antibiotic stewardship. Joint collaboration across the world with international bodies is needed to assist the developing countries to implement good surveillance of antibiotic use and antibiotic resistance.
Collapse
Affiliation(s)
- Christy Manyi-Loh
- Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Sampson Mamphweli
- Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Edson Meyer
- Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| | - Anthony Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape, South Africa.
| |
Collapse
|
138
|
Stoeck T, Frühe L, Forster D, Cordier T, Martins CIM, Pawlowski J. Environmental DNA metabarcoding of benthic bacterial communities indicates the benthic footprint of salmon aquaculture. MARINE POLLUTION BULLETIN 2018; 127:139-149. [PMID: 29475645 DOI: 10.1016/j.marpolbul.2017.11.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/29/2017] [Indexed: 06/08/2023]
Abstract
We evaluated benthic bacterial communities as bioindicators in environmental impact assessments of salmon aquaculture, a rapidly growing sector of seafood industry. Sediment samples (n=72) were collected from below salmon cages towards distant reference sites. Bacterial community profiles inferred from DNA metabarcodes were compared to reference data from standard macrofauna biomonitoring surveys of the same samples. Deltaproteobacteria were predominant in immediate vicinity of the salmon cages. Along the transect, significant shifts in bacterial community structures were observed with Gammaproteobacteria dominating the less-impacted sites. Alpha- and beta-diversity measures of bacterial communities correlated significantly with macrofauna diversity metrics and with five ecological status indices. Benthic bacterial communities mirror the reaction of macrofauna bioindicators to environmental disturbances caused by salmon farming. The implementation of bacterial eDNA metabarcoding in future Strategic Framework Directives is an alternative cost-effective high-throughput biomonitoring solution, providing a basis for management strategies in a matter of days rather than months.
Collapse
Affiliation(s)
- Thorsten Stoeck
- University of Kaiserslautern, Ecology Group, D-67663 Kaiserslautern, Germany.
| | - Larissa Frühe
- University of Kaiserslautern, Ecology Group, D-67663 Kaiserslautern, Germany
| | - Dominik Forster
- University of Kaiserslautern, Ecology Group, D-67663 Kaiserslautern, Germany
| | - Tristan Cordier
- University of Geneva, Department of Genetics and Evolution, 1211 Geneva, Switzerland
| | | | - Jan Pawlowski
- University of Geneva, Department of Genetics and Evolution, 1211 Geneva, Switzerland; ID-Gene ecodiagnostics Ltd. 1228 Plan-les-Ouates, Switzerland
| |
Collapse
|
139
|
Hornick KM, Buschmann AH. Insights into the diversity and metabolic function of bacterial communities in sediments from Chilean salmon aquaculture sites. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1317-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
140
|
Ding Q, Huang X, Hu H, Hong M, Zhang D, Wang K. Impact of pyrene and cadmium co-contamination on prokaryotic community in coastal sediment microcosms. CHEMOSPHERE 2017; 188:320-328. [PMID: 28888120 DOI: 10.1016/j.chemosphere.2017.08.124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Acute ecological impacts of co-contamination of polycyclic aromatic hydrocarbons (PAHs) and heavy metals on diversity and composition of coastal benthic prokaryotes were unclear. We took pyrene (Pyr) and cadmium (Cd) as the representatives and mimicked an eight-week exposure of moderate and high levels of Pyr, Cd and their mixtures. 16S rRNA amplicon sequencing was used to investigate interaction of the contaminants in temporal succession of prokaryotes. Generally, concentrations of Pyr and HCl-extractable Cd in the sediments were stable over time. Effects and interaction of Pyr and Cd on prokaryotic α-diversity were temporally- and dose-dependent with a decreasing trend in richness and Shannon index under various contamination regimes, particularly in the single-Cd contaminated groups at the early stage. Temporal variability and Pyr-induced pattern in prokaryotic composition were observed. However, Pyr and Cd showed a persistent interaction in prokaryotic composition after 7 days, altering successional trajectories of communities. The communities under Pyr contamination regardless of Cd could be at a developing stage for an active PAH-degrading community with appearance of a pioneer Cycloclasticus phylotype, persistently showing a strong correlation with Pyr level. The associations of phylotypes and Cd level were short-lived and weak, corresponding to the overall resistance of prokaryotic composition to Cd. In the high-throughput sequencing era, using microcosm experiment, we renewed the knowledge about how prokaryotes vary in terms of α-diversity, composition and specific taxa in response to co-contamination of model contaminants at a temporal scale.
Collapse
Affiliation(s)
- Qifang Ding
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Xiaolin Huang
- Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Hanjing Hu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Man Hong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Demin Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Kai Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315211, China.
| |
Collapse
|
141
|
Xie X, He Z, Hu X, Yin H, Liu X, Yang Y. Large-scale seaweed cultivation diverges water and sediment microbial communities in the coast of Nan'ao Island, South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:97-108. [PMID: 28437776 DOI: 10.1016/j.scitotenv.2017.03.233] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/25/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
Seaweed cultivation not only provides economy benefits, but also remediates the environment contaminated by mariculture of animals (e.g., fish, shrimps). However, the response of microbial communities to seaweed cultivation is poorly understood. In this study, we analyzed the diversity, composition, and structure of water and sediment microbial communities at a seaweed, Gracilaria lemaneiformis, cultivation zone and a control zone near Nan'ao Island, South China Sea by MiSeq sequencing of 16S rRNA gene amplicons. We found that large-scale cultivation of G. lemaneiformis increased dissolved oxygen (DO) and pH but decreased inorganic nutrients, possibly due to nutrient uptake, photosynthesis and other physiological processes of G. lemaneiformis. These environmental changes significantly (adonis, P<0.05) shifted the microbial community composition and structure of both water column and sediment samples in the G. lemaneiformis cultivation zone, compared to the control zone. Also, certain microbial taxa associated with seaweed, such as Arenibacter, Croceitalea, Glaciecola, Leucothrix and Maribacter were enriched at the cultivation zone. In addition, we have proposed a conceptual model to summarize the results in this study and guide future studies on relationships among seaweed processes, microbial communities and their environments. Thus, this study not only provides new insights into our understanding the effect of G. lemaneiformis cultivation on microbial communities, but also guides future studies on coastal ecosystems.
Collapse
Affiliation(s)
- Xinfei Xie
- Institute of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, China; Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Zhili He
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA; School of Environmental Science and Engineering, Environmental Microbiome Research Center, Sun Yat-Sen University, Guangzhou, China.
| | - Xiaojuan Hu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yufeng Yang
- Institute of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, China.
| |
Collapse
|
142
|
Dang H, Chen CTA. Ecological Energetic Perspectives on Responses of Nitrogen-Transforming Chemolithoautotrophic Microbiota to Changes in the Marine Environment. Front Microbiol 2017; 8:1246. [PMID: 28769878 PMCID: PMC5509916 DOI: 10.3389/fmicb.2017.01246] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/20/2017] [Indexed: 11/15/2022] Open
Abstract
Transformation and mobilization of bioessential elements in the biosphere, lithosphere, atmosphere, and hydrosphere constitute the Earth’s biogeochemical cycles, which are driven mainly by microorganisms through their energy and material metabolic processes. Without microbial energy harvesting from sources of light and inorganic chemical bonds for autotrophic fixation of inorganic carbon, there would not be sustainable ecosystems in the vast ocean. Although ecological energetics (eco-energetics) has been emphasized as a core aspect of ecosystem analyses and microorganisms largely control the flow of matter and energy in marine ecosystems, marine microbial communities are rarely studied from the eco-energetic perspective. The diverse bioenergetic pathways and eco-energetic strategies of the microorganisms are essentially the outcome of biosphere-geosphere interactions over evolutionary times. The biogeochemical cycles are intimately interconnected with energy fluxes across the biosphere and the capacity of the ocean to fix inorganic carbon is generally constrained by the availability of nutrients and energy. The understanding of how microbial eco-energetic processes influence the structure and function of marine ecosystems and how they interact with the changing environment is thus fundamental to a mechanistic and predictive understanding of the marine carbon and nitrogen cycles and the trends in global change. By using major groups of chemolithoautotrophic microorganisms that participate in the marine nitrogen cycle as examples, this article examines their eco-energetic strategies, contributions to carbon cycling, and putative responses to and impacts on the various global change processes associated with global warming, ocean acidification, eutrophication, deoxygenation, and pollution. We conclude that knowledge gaps remain despite decades of tremendous research efforts. The advent of new techniques may bring the dawn to scientific breakthroughs that necessitate the multidisciplinary combination of eco-energetic, biogeochemical and “omics” studies in this field.
Collapse
Affiliation(s)
- Hongyue Dang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China
| | - Chen-Tung A Chen
- Department of Oceanography, National Sun Yat-sen UniversityKaohsiung, Taiwan
| |
Collapse
|
143
|
Kaestli M, Skillington A, Kennedy K, Majid M, Williams D, McGuinness K, Munksgaard N, Gibb K. Spatial and Temporal Microbial Patterns in a Tropical Macrotidal Estuary Subject to Urbanization. Front Microbiol 2017; 8:1313. [PMID: 28751882 PMCID: PMC5507994 DOI: 10.3389/fmicb.2017.01313] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/28/2017] [Indexed: 12/02/2022] Open
Abstract
Darwin Harbour in northern Australia is an estuary in the wet-dry tropics subject to increasing urbanization with localized water quality degradation due to increased nutrient loads from urban runoff and treated sewage effluent. Tropical estuaries are poorly studied compared to temperate systems and little is known about the microbial community-level response to nutrients. We aimed to examine the spatial and temporal patterns of the bacterial community and its association with abiotic factors. Since Darwin Harbour is macrotidal with strong seasonal patterns and mixing, we sought to determine if a human impact signal was discernible in the microbiota despite the strong hydrodynamic forces. Adopting a single impact–double reference design, we investigated the bacterial community using next-generation sequencing of the 16S rRNA gene from water and sediment from reference creeks and creeks affected by effluent and urban runoff. Samples were collected over two years during neap and spring tides, in the dry and wet seasons. Temporal drivers, namely seasons and tides had the strongest relationship to the water microbiota, reflecting the macrotidal nature of the estuary and its location in the wet-dry tropics. The neap-tide water microbiota provided the clearest spatial resolution while the sediment microbiota reflected current and past water conditions. Differences in patterns of the microbiota between different parts of the harbor reflected the harbor's complex hydrodynamics and bathymetry. Despite these variations, a microbial signature was discernible relating to specific effluent sources and urban runoff, and the composite of nutrient levels accounted for the major part of the explained variation in the microbiota followed by salinity. Our results confirm an overall good water quality but they also reflect the extent of some hypereutrophic areas. Our results show that the microbiota is a sensitive indicator to assess ecosystem health even in this dynamic and complex ecosystem.
Collapse
Affiliation(s)
- Mirjam Kaestli
- Research Institute for the Environment and Livelihoods, Charles Darwin UniversityDarwin, NT, Australia
| | - Anna Skillington
- Research Institute for the Environment and Livelihoods, Charles Darwin UniversityDarwin, NT, Australia
| | | | - Matthew Majid
- Aquatic Health Unit, Department of Environment and Natural Resources, Northern Territory GovernmentDarwin, NT, Australia
| | - David Williams
- Australian Institute of Marine ScienceDarwin, NT, Australia
| | - Keith McGuinness
- Research Institute for the Environment and Livelihoods, Charles Darwin UniversityDarwin, NT, Australia
| | - Niels Munksgaard
- Research Institute for the Environment and Livelihoods, Charles Darwin UniversityDarwin, NT, Australia
| | - Karen Gibb
- Research Institute for the Environment and Livelihoods, Charles Darwin UniversityDarwin, NT, Australia
| |
Collapse
|
144
|
Wang Y, Zhang R, He Z, Van Nostrand JD, Zheng Q, Zhou J, Jiao N. Functional Gene Diversity and Metabolic Potential of the Microbial Community in an Estuary-Shelf Environment. Front Microbiol 2017; 8:1153. [PMID: 28680420 PMCID: PMC5478683 DOI: 10.3389/fmicb.2017.01153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 06/07/2017] [Indexed: 01/28/2023] Open
Abstract
Microbes play crucial roles in various biogeochemical processes in the ocean, including carbon (C), nitrogen (N), and phosphorus (P) cycling. Functional gene diversity and the structure of the microbial community determines its metabolic potential and therefore its ecological function in the marine ecosystem. However, little is known about the functional gene composition and metabolic potential of bacterioplankton in estuary areas. The East China Sea (ECS) is a dynamic marginal ecosystem in the western Pacific Ocean that is mainly affected by input from the Changjiang River and the Kuroshio Current. Here, using a high-throughput functional gene microarray (GeoChip), we analyzed the functional gene diversity, composition, structure, and metabolic potential of microbial assemblages in different ECS water masses. Four water masses determined by temperature and salinity relationship showed different patterns of functional gene diversity and composition. Generally, functional gene diversity [Shannon–Weaner’s H and reciprocal of Simpson’s 1/(1-D)] in the surface water masses was higher than that in the bottom water masses. The different presence and proportion of functional genes involved in C, N, and P cycling among the bacteria of the different water masses showed different metabolic preferences of the microbial populations in the ECS. Genes involved in starch metabolism (amyA and nplT) showed higher proportion in microbial communities of the surface water masses than of the bottom water masses. In contrast, a higher proportion of genes involved in chitin degradation was observed in microorganisms of the bottom water masses. Moreover, we found a higher proportion of nitrogen fixation (nifH), transformation of hydroxylamine to nitrite (hao) and ammonification (gdh) genes in the microbial communities of the bottom water masses compared with those of the surface water masses. The spatial variation of microbial functional genes was significantly correlated with salinity, temperature, and chlorophyll based on canonical correspondence analysis, suggesting a significant influence of hydrologic conditions on water microbial communities. Our data provide new insights into better understanding of the functional potential of microbial communities in the complex estuarine-coastal environmental gradient of the ECS.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Marine Environmental Science, Xiamen UniversityXiamen, China.,Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen UniversityXiamen, China.,Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| | - Zhili He
- Institute for Environmental Genomics and Institute for Energy and the Environment and Department of Microbiology and Plant Biology, University of Oklahoma, NormanOK, United States
| | - Joy D Van Nostrand
- Institute for Environmental Genomics and Institute for Energy and the Environment and Department of Microbiology and Plant Biology, University of Oklahoma, NormanOK, United States
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, Xiamen UniversityXiamen, China.,Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| | - Jizhong Zhou
- Institute for Environmental Genomics and Institute for Energy and the Environment and Department of Microbiology and Plant Biology, University of Oklahoma, NormanOK, United States.,Earth Sciences Division, Lawrence Berkeley National Laboratory, BerkeleyCA, United States.,School of Environment, Tsinghua UniversityBeijing, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen UniversityXiamen, China.,Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| |
Collapse
|
145
|
Troussellier M, Escalas A, Bouvier T, Mouillot D. Sustaining Rare Marine Microorganisms: Macroorganisms As Repositories and Dispersal Agents of Microbial Diversity. Front Microbiol 2017; 8:947. [PMID: 28611749 PMCID: PMC5447324 DOI: 10.3389/fmicb.2017.00947] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/11/2017] [Indexed: 12/14/2022] Open
Abstract
Recent analyses revealed that most of the biodiversity observed in marine microbial communities is represented by organisms with low abundance but, nonetheless essential for ecosystem dynamics and processes across both temporal and spatial scales. Surprisingly, few studies have considered the effect of macroorganism–microbe interactions on the ecology and distribution dynamics of rare microbial taxa. In this review, we synthesize several lines of evidence that these relationships cannot be neglected any longer. First, we provide empirical support that the microbiota of macroorganisms represents a significant part of marine bacterial biodiversity and that host-microbe interactions benefit to certain microbial populations which are part of the rare biosphere (i.e., opportunistic copiotrophic organisms). Second, we reveal the major role that macroorganisms may have on the dispersal and the geographic distribution of microbes. Third, we introduce an innovative and integrated view of the interactions between microbes and macroorganisms, namely sustaining the rares, which suggests that macroorganisms favor the maintenance of marine microbial diversity and are involved in the regulation of its richness and dynamics. Finally, we show how this hypothesis complements existing theories in microbial ecology and offers new perspectives about the importance of macroorganisms for the microbial biosphere, particularly the rare members.
Collapse
Affiliation(s)
- Marc Troussellier
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université MontpellierMontpellier, France
| | - Arthur Escalas
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, NormanOK, United States
| | - Thierry Bouvier
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université MontpellierMontpellier, France
| | - David Mouillot
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université MontpellierMontpellier, France.,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, TownsvilleQLD, Australia
| |
Collapse
|
146
|
Effect of Sewage and Industrial Effluents on Bacterial and Archaeal Communities of Creek Sediments in the Taihu Basin. WATER 2017. [DOI: 10.3390/w9060373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
147
|
Borrero-Santiago AR, Bautista-Chamizo E, DelValls TÁ, Riba I. A possible CO 2 leakage event: Can the marine microbial community be recovered? MARINE POLLUTION BULLETIN 2017; 117:380-385. [PMID: 28202276 DOI: 10.1016/j.marpolbul.2017.02.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/24/2017] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
Bacterial communities have been studied to a much lesser degree than macrofauna in the case of a CO2 release. The resistance capacity of marine bacteria is well known, but their possible responses and their ability to recover after a CO2 release has not been investigated. Therefore, this work evaluated the responses of a marine bacterial community after 96h of CO2 exposure under diverse pH treatments (7.8 as control without CO2, 7.0, 6.5, and 6.0) and 24h after CO2 exposure. Results showed that the respiration activity and the diversity of the community were affected in all pH treatments. However, after 24h without CO2 enrichment, the respiration activity and diversity increased, showing a partial recovery. Consequently, bacterial responses have the potential to be used as a monitoring tool for risk assessment related to carbon capture and storage techniques or in any similar CO2 enrichment situations.
Collapse
Affiliation(s)
- A R Borrero-Santiago
- UNESCO/UNITWIN Wicop. Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz. Av. República Saharaui S/N. Polígono Río San Pedro s/n, Puerto Real 11510, Cádiz, Spain.
| | - E Bautista-Chamizo
- UNESCO/UNITWIN Wicop. Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz. Av. República Saharaui S/N. Polígono Río San Pedro s/n, Puerto Real 11510, Cádiz, Spain
| | - T Á DelValls
- UNESCO/UNITWIN Wicop. Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz. Av. República Saharaui S/N. Polígono Río San Pedro s/n, Puerto Real 11510, Cádiz, Spain
| | - I Riba
- UNESCO/UNITWIN Wicop. Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz. Av. República Saharaui S/N. Polígono Río San Pedro s/n, Puerto Real 11510, Cádiz, Spain
| |
Collapse
|
148
|
Thiele S, Richter M, Balestra C, Glöckner FO, Casotti R. Taxonomic and functional diversity of a coastal planktonic bacterial community in a river-influenced marine area. Mar Genomics 2017; 32:61-69. [DOI: 10.1016/j.margen.2016.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/22/2016] [Accepted: 12/28/2016] [Indexed: 01/19/2023]
|
149
|
Kerwin AH, Nyholm SV. Symbiotic bacteria associated with a bobtail squid reproductive system are detectable in the environment, and stable in the host and developing eggs. Environ Microbiol 2017; 19:1463-1475. [DOI: 10.1111/1462-2920.13665] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/07/2016] [Accepted: 01/02/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Allison H. Kerwin
- Department of Molecular and Cell Biology; University of Connecticut; CT 06269 USA
| | - Spencer V. Nyholm
- Department of Molecular and Cell Biology; University of Connecticut; CT 06269 USA
| |
Collapse
|
150
|
Lymperopoulou DS, Dobbs FC. Bacterial Diversity in Ships' Ballast Water, Ballast-Water Exchange, and Implications for Ship-Mediated Dispersal of Microorganisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1962-1972. [PMID: 28135081 DOI: 10.1021/acs.est.6b03108] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Using next-generation DNA sequencing of the 16S rRNA gene, we analyzed the composition and diversity of bacterial assemblages in ballast water from tanks of 17 commercial ships arriving to Hampton Roads, Virginia (USA) following voyages in the North Atlantic Ocean. Amplicon sequencing analysis showed the heterogeneous assemblages were (1) dominated by Alpha- and Gammaproteobacteria, Bacteroidetes, and unclassified Bacteria; (2) temporally distinct (June vs August/September); and (3) highly fidelitous among replicate samples. Whether tanks were exchanged at sea or not, their bacterial assemblages differed from those of local, coastal water. Compositional data suggested at-sea exchange did not fully flush coastal Bacteria from all tanks; there were several instances of a genetic geographic signal. Quantitative PCR yielded no Escherichia coli and few instances of Vibrio species. Salinity, but not ballast-water age or temperature, contributed significantly to bacterial diversity. Whether anthropogenic mixing of marine Bacteria restructures their biogeography remains to be tested.
Collapse
Affiliation(s)
- Despoina S Lymperopoulou
- Department of Plant and Microbial Biology, University of California-Berkeley , 331 Koshland Hall, Berkeley, California 94720, United States
| | - Fred C Dobbs
- Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University , 4600 Elkhorn Avenue, Norfolk, Virginia 23529, United States
| |
Collapse
|