101
|
Appelberg KS, Wallet MA, Taylor JP, Cash MN, Sleasman JW, Goodenow MM. HIV-1 Infection Primes Macrophages Through STAT Signaling to Promote Enhanced Inflammation and Viral Replication. AIDS Res Hum Retroviruses 2017; 33:690-702. [PMID: 28142265 DOI: 10.1089/aid.2016.0273] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophages play important roles in HIV-1 pathogenesis as targets for viral replication and mediators of chronic inflammation. Similar to IFNγ-priming, HIV-1 primes macrophages, resulting in hyperresponsiveness to subsequent toll-like receptor (TLR) stimulation and increased inflammatory cytokine production. However, the specific molecular mechanism of HIV-1 priming and whether cells must be productively infected or if uninfected bystander cells also are primed by HIV-1 remains unclear. To explore these questions, human macrophages were primed by IFNγ or infected with HIV-1 before activation by TLR ligands. Transcriptome profiling by microarray revealed a gene expression profile for IFNγ-primed cells that was further modulated by the addition of lipopolysaccharide (LPS). HIV-1 infection elicited a gene expression profile that correlated strongly with the profile induced by IFNγ (r = .679, p = .003). Similar to IFNγ, HIV-1 enhanced TLR ligand-induced tumor necrosis factor (TNF) protein expression and release. Increased TNF production was limited to productively infected cells. Specific signal transducer and activator of transcription (STAT)1 and STAT3 inhibitors suppressed HIV-1-mediated enhancement of TLR-induced TNF expression as well as HIV-1 replication. These findings indicate that viral replication and inflammation are linked through a common IFNγ-like, STAT-dependent pathway and that HIV-1-induced STAT1 and STAT3 signaling are involved in both inflammation and HIV-1 replication. Systemic innate immune activation is a hallmark of active HIV-1 replication. Our study shows that inflammation may develop as a consequence of HIV-1 triggering STAT-IFN pathways to support viral replication.
Collapse
Affiliation(s)
- K. Sofia Appelberg
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Mark A. Wallet
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Jared P. Taylor
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Melanie N. Cash
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - John W. Sleasman
- Division of Allergy, Department of Pediatrics, Immunology, and Pulmonary Medicine, School of Medicine, Duke University, Durham, North Carolina
| | - Maureen M. Goodenow
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
102
|
Rangaraju S, Raza SA, Pennati A, Deng Q, Dammer EB, Duong D, Pennington MW, Tansey MG, Lah JJ, Betarbet R, Seyfried NT, Levey AI. A systems pharmacology-based approach to identify novel Kv1.3 channel-dependent mechanisms in microglial activation. J Neuroinflammation 2017. [PMID: 28651603 PMCID: PMC5485721 DOI: 10.1186/s12974-017-0906-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Kv1.3 potassium channels regulate microglial functions and are overexpressed in neuroinflammatory diseases. Kv1.3 blockade may selectively inhibit pro-inflammatory microglia in neurological diseases but the molecular and cellular mechanisms regulated by Kv1.3 channels are poorly defined. METHODS We performed immunoblotting and flow cytometry to confirm Kv1.3 channel upregulation in lipopolysaccharide (LPS)-activated BV2 microglia and in brain mononuclear phagocytes freshly isolated from LPS-treated mice. Quantitative proteomics was performed on BV2 microglia treated with control, LPS, ShK-223 (highly selective Kv1.3 blocker), and LPS+ShK-223. Gene ontology (GO) analyses of Kv1.3-dependent LPS-regulated proteins were performed, and the most representative proteins and GO terms were validated. Effects of Kv1.3-blockade on LPS-activated BV2 microglia were studied in migration, focal adhesion formation, reactive oxygen species production, and phagocytosis assays. In vivo validation of protein changes and predicted molecular pathways were performed in a model of systemic LPS-induced neuroinflammation, employing antigen presentation and T cell proliferation assays. Informed by pathway analyses of proteomic data, additional mechanistic experiments were performed to identify early Kv1.3-dependent signaling and transcriptional events. RESULTS LPS-upregulated cell surface Kv1.3 channels in BV2 microglia and in microglia and CNS-infiltrating macrophages isolated from LPS-treated mice. Of 144 proteins differentially regulated by LPS (of 3141 proteins), 21 proteins showed rectification by ShK-223. Enriched cellular processes included MHCI-mediated antigen presentation (TAP1, EHD1), cell motility, and focal adhesion formation. In vitro, ShK-223 decreased LPS-induced focal adhesion formation, reversed LPS-induced inhibition of migration, and inhibited LPS-induced upregulation of EHD1, a protein involved in MHCI trafficking. In vivo, intra-peritoneal ShK-223 inhibited LPS-induced MHCI expression by CD11b+CD45low microglia without affecting MHCI expression or trafficking of CD11b+CD45high macrophages. ShK-223 inhibited LPS-induced MHCI-restricted antigen presentation to ovalbumin-specific CD8+ T cells both in vitro and in vivo. Kv1.3 co-localized with the LPS receptor complex and regulated LPS-induced early serine (S727) STAT1 phosphorylation. CONCLUSIONS We have unraveled novel molecular and functional roles for Kv1.3 channels in pro-inflammatory microglial activation, including a Kv1.3 channel-regulated pathway that facilitates MHCI expression and MHCI-dependent antigen presentation by microglia to CD8+ T cells. We also provide evidence for neuro-immunomodulation by systemically administered ShK peptides. Our results further strengthen the therapeutic candidacy of microglial Kv1.3 channels in neurologic diseases.
Collapse
Affiliation(s)
- Srikant Rangaraju
- Department of Neurology, Emory University, 615 Michael Street, Suite 525, Atlanta, GA, 30322, USA.
| | - Syed Ali Raza
- Department of Neurology, Emory University, 615 Michael Street, Suite 525, Atlanta, GA, 30322, USA
| | - Andrea Pennati
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53726, USA
| | - Qiudong Deng
- Department of Biochemistry, Emory University, 615 Michael Street, Suite 525, Atlanta, GA, 30322, USA
| | - Eric B Dammer
- Department of Neurology, Emory University, 615 Michael Street, Suite 525, Atlanta, GA, 30322, USA
| | - Duc Duong
- Department of Biochemistry, Emory University, 615 Michael Street, Suite 525, Atlanta, GA, 30322, USA
| | | | - Malu G Tansey
- Department of Physiology, Emory University, 615 Michael Street, Suite 525, Atlanta, GA, 30322, USA
| | - James J Lah
- Department of Neurology, Emory University, 615 Michael Street, Suite 525, Atlanta, GA, 30322, USA
| | - Ranjita Betarbet
- Department of Neurology, Emory University, 615 Michael Street, Suite 525, Atlanta, GA, 30322, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University, 615 Michael Street, Suite 525, Atlanta, GA, 30322, USA
| | - Allan I Levey
- Department of Neurology, Emory University, 615 Michael Street, Suite 525, Atlanta, GA, 30322, USA
| |
Collapse
|
103
|
Goropevšek A, Gorenjak M, Gradišnik S, Dai K, Holc I, Hojs R, Krajnc I, Pahor A, Avčin T. Increased Levels of STAT1 Protein in Blood CD4 T Cells from Systemic Lupus Erythematosus Patients Are Associated with Perturbed Homeostasis of Activated CD45RA -FOXP3 hi Regulatory Subset and Follow-Up Disease Severity. J Interferon Cytokine Res 2017; 37:254-268. [PMID: 28256939 DOI: 10.1089/jir.2016.0040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In murine systemic lupus erythematosus (SLE), aberrant regulation of interferon (IFN)-alpha-STAT1 signaling and perturbed homeostasis of CD4+FOXP3+ regulatory T cells (Tregs) were described. In the present study, STAT1 signaling and circulating Treg subsets were assessed by flow cytometry in 39 SLE patients and their potential association with disease course was examined during long-term follow-up. Levels of STAT1 protein as measured by median fluorescence intensity (MFI) were significantly increased in SLE CD4 T cells when compared with rheumatoid arthritis patients and healthy controls and were positively correlated with disease activity. The highest STAT1 MFI was found in CD45RA-FOXP3hi-activated Treg (aTreg) subset, which demonstrated the highest STAT1 phosphorylation responses among SLE CD4 T cells and significant decrease in proliferation marker Ki-67 expression after IFN-alpha stimulation. Percentage of Ki-67+ aTregs was significantly decreased in SLE patients and was negatively correlated with CD4 T cell STAT1 MFI. A subgroup of SLE patients characterized by lower aTreg counts experienced more severe relapsing disease course during 1,000 days of follow-up. Mean CD4 T cell STAT1 MFI in follow-up samples from SLE patients was negatively correlated with mean of follow-up aTreg counts. Our findings indicate that augmented STAT1 signaling may be involved in perturbed aTreg homeostasis, which could represent a possible marker of SLE disease severity.
Collapse
Affiliation(s)
- Aleš Goropevšek
- 1 Department of Laboratory Diagnostics, University Medical Centre Maribor , Maribor, Slovenia
| | - Maksimiljan Gorenjak
- 1 Department of Laboratory Diagnostics, University Medical Centre Maribor , Maribor, Slovenia
| | - Suzana Gradišnik
- 2 Department of Rheumatology, University Medical Centre Maribor , Maribor, Slovenia
| | - Klara Dai
- 2 Department of Rheumatology, University Medical Centre Maribor , Maribor, Slovenia
| | - Iztok Holc
- 2 Department of Rheumatology, University Medical Centre Maribor , Maribor, Slovenia
| | - Radovan Hojs
- 3 Department of Nephrology, University Medical Centre Maribor , Maribor, Slovenia
| | - Ivan Krajnc
- 4 Faculty of Medicine, University of Maribor , Maribor, Slovenia
| | - Artur Pahor
- 2 Department of Rheumatology, University Medical Centre Maribor , Maribor, Slovenia
| | - Tadej Avčin
- 5 Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Center Ljubljana , Ljubljana, Slovenia
- 6 Faculty of Medicine, University of Ljubljana , Ljubljana, Slovenia
| |
Collapse
|
104
|
Gain-of-Function Mutation of Tristetraprolin Impairs Negative Feedback Control of Macrophages In Vitro yet Has Overwhelmingly Anti-Inflammatory Consequences In Vivo. Mol Cell Biol 2017; 37:MCB.00536-16. [PMID: 28265004 PMCID: PMC5440651 DOI: 10.1128/mcb.00536-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/25/2017] [Indexed: 12/20/2022] Open
Abstract
The mRNA-destabilizing factor tristetraprolin (TTP) binds in a sequence-specific manner to the 3' untranslated regions of many proinflammatory mRNAs and recruits complexes of nucleases to promote rapid mRNA turnover. Mice lacking TTP develop a severe, spontaneous inflammatory syndrome characterized by the overexpression of tumor necrosis factor and other inflammatory mediators. However, TTP also employs the same mechanism to inhibit the expression of the potent anti-inflammatory cytokine interleukin 10 (IL-10). Perturbation of TTP function may therefore have mixed effects on inflammatory responses, either increasing or decreasing the expression of proinflammatory factors via direct or indirect mechanisms. We recently described a knock-in mouse strain in which the substitution of 2 amino acids of the endogenous TTP protein renders it constitutively active as an mRNA-destabilizing factor. Here we investigate the impact on the IL-10-mediated anti-inflammatory response. It is shown that the gain-of-function mutation of TTP impairs IL-10-mediated negative feedback control of macrophage function in vitro However, the in vivo effects of TTP mutation are uniformly anti-inflammatory despite the decreased expression of IL-10.
Collapse
|
105
|
Genetic polymorphism of interleukin-10 (-A592C) among oral cancer with squamous cell carcinoma. Arch Oral Biol 2017; 77:18-22. [DOI: 10.1016/j.archoralbio.2016.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 12/14/2016] [Accepted: 12/27/2016] [Indexed: 11/22/2022]
|
106
|
Alamuru-Yellapragada NP, Vundyala S, Behera S, Parsa KVL. LPS depletes PHLPP levels in macrophages through the inhibition of SP1 dependent transcriptional regulation. Biochem Biophys Res Commun 2017; 486:533-538. [PMID: 28322791 DOI: 10.1016/j.bbrc.2017.03.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/17/2017] [Indexed: 11/18/2022]
Abstract
We have previously reported that bacterial endotoxin LPS attenuates expression of PHLPP, a ser/thr phosphatase, at both transcript and protein levels in different immune cells, however the underlying molecular mechanism is unknown and is of significant interest. Here, in line with the decreased transcript levels upon LPS treatment, we observed that LPS caused significant reduction in PHLPP promoter activity. We observed that SP1, a transcription factor frequently associated with inflammation, was recruited to the PHLPP promoter region. Ectopic expression of SP1 enhanced both transcript and protein levels of PHLPP while knockdown of SP1 or pharmacological inhibition of SP1 DNA binding by mithramycin reduced PHLPP expression. Moreover, over-expression of SP1 co-activators CBP/p300 augmented SP1 driven PHLPP promoter activity. Of note, LPS treatment depleted SP1 and CBP protein levels due to which recruitment of SP1 to PHLPP promoter was reduced. Further, we found that re-introduction of SP1 restored promoter activity and transcript levels of PHLPP in LPS stimulated cells. Collectively, our data revealed the molecular mechanism underlying the regulation of PHLPP expression during LPS induced macrophage inflammatory response.
Collapse
Affiliation(s)
- Neeraja P Alamuru-Yellapragada
- Department of Biology, Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, Telangana, India
| | - Sanghamitra Vundyala
- Department of Biology, Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, Telangana, India
| | - Soma Behera
- Department of Biology, Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, Telangana, India
| | - Kishore V L Parsa
- Department of Biology, Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, Telangana, India.
| |
Collapse
|
107
|
Shinde P, Liu W, Ménoret A, Luster AD, Vella AT. Optimal CD4 T cell priming after LPS-based adjuvanticity with CD134 costimulation relies on CXCL9 production. J Leukoc Biol 2017; 102:57-69. [PMID: 28432083 DOI: 10.1189/jlb.1a0616-261rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 03/29/2017] [Accepted: 04/02/2017] [Indexed: 12/29/2022] Open
Abstract
LPS is a powerful adjuvant, and although LPS-mediated TLR4 signaling has been exquisitely delineated, the in vivo mechanism of how TLR4 responses impact T cell priming is far less clear. Besides costimulation, TNF and type 1 IFN are dominant cytokines released after TLR4 activation and can shape T cell responses, but other downstream factors have not been examined extensively. Depending on context, we show that IFNαR1 blockade resulted in minor to major effects on specific CD4 T cell clonal expansion. To help explain these differences, it was hypothesized that IFNαR1 blockade would inhibit specific T cell migration by reducing chemokine receptor signaling, but specific CD4 T cells from IFNαR1-blocked mice were readily able to migrate in response to specific chemokines. Next, we examined downstream factors and found that type 1 IFN signaling was necessary for chemokine production, even when mice were immunized with specific Ag with LPS and CD134 costimulation. IFNαR1 signaling promoted CXCL9 and CXCL10 synthesis, suggesting that these chemokines might be involved in the LPS and CD134 costimulation response. After immunization, we show that CXCL9 blockade inhibited CD4 T cell accumulation in the liver but also in LNs, even in the presence of elevated serum IFN-β levels. Thus, whereas type 1 IFN might have direct effects on primed CD4 T cells, the downstream chemokines that play a role during migration also impact accumulation. In sum, CXCL9 production is a key benchmark for productive CD4 T cell vaccination strategies.
Collapse
Affiliation(s)
- Paurvi Shinde
- Department of Immunology, School of Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - Wenhai Liu
- Department of Immunology, School of Medicine, University of Connecticut Health, Farmington, Connecticut, USA
| | - Antoine Ménoret
- Department of Immunology, School of Medicine, University of Connecticut Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut School of Medicine, Farmington, Connecticut, USA; and
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony T Vella
- Department of Immunology, School of Medicine, University of Connecticut Health, Farmington, Connecticut, USA;
| |
Collapse
|
108
|
Hirsch I, Janovec V, Stranska R, Bendriss-Vermare N. Cross Talk between Inhibitory Immunoreceptor Tyrosine-Based Activation Motif-Signaling and Toll-Like Receptor Pathways in Macrophages and Dendritic Cells. Front Immunol 2017; 8:394. [PMID: 28439271 PMCID: PMC5383719 DOI: 10.3389/fimmu.2017.00394] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/21/2017] [Indexed: 01/12/2023] Open
Abstract
The innate immune cells sense microbial infection and self-ligands by pathogen recognition receptors (PRRs), such as toll-like receptors (TLRs) and regulatory receptors (RRs), associated with immunoreceptor tyrosine-based activation motif (ITAM). Rapid activation and concerted action of PRRs signaling and feedback inhibitory mechanisms must be engaged to ensure the host defense functions and to prevent cytotoxicity associated with excessive activation. ITAM-associated RRs can generate stimulatory or, paradoxically, inhibitory signals. The network of ITAM-associated RR, together with TLR-signaling pathways, are responsible for immunogenic or tolerogenic responses of macrophages and dendritic cells to their microenvironment. In macrophages, TLR4 signaling is inhibited by low-avidity ligation of ITAM-associated receptors, while high-avidity ligation of ITAM-associated receptors results in potentiation of TLR4 signaling together with resistance to extracellular cytokine microenvironment signals. In contrast to macrophages, TLR7/9 signaling in plasmacytoid DCs (pDCs) is inhibited by high-avidity ligation of ITAM-associated RR, while low-avidity ligation does not show any effect. Surprisingly, interference of ITAM-associated receptor signaling with TLR pathways has not been reported in conventional dendritic cells. Here, we present an overview of molecular mechanisms acting at the crossroads of TLR and ITAM-signaling pathways and address the question of how the high-avidity engagement of the ITAM-associated receptors in pDCs inhibits TLR7/9 signaling. Cellular context and spatiotemporal engagement of ITAM- and TLR-signaling pathways are responsible for different outcomes of macrophage versus pDC activation. While the cross-regulation of cytokine and TLR signaling, together with antigen presentation, are the principal functions of ITAM-associated RR in macrophages, the major role of these receptors in pDCs seems to be related to inhibition of cytokine production and reestablishment of a tolerogenic state following pDC activation. Pharmacologic targeting of TLR and ITAM signaling could be an attractive new therapeutic approach for treatment of chronic infections, cancer, and autoimmune and inflammatory diseases related to pDCs.
Collapse
Affiliation(s)
- Ivan Hirsch
- Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Molecular Genetics, ASCR, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry, ASCR, Prague, Czech Republic.,Cancer Research Center Marseille, INSERM U 1068, CNRS, UMR7258, Marseille, France.,Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Vaclav Janovec
- Faculty of Science, Charles University, Prague, Czech Republic.,Institute of Molecular Genetics, ASCR, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry, ASCR, Prague, Czech Republic
| | - Ruzena Stranska
- Cancer Research Center Marseille, INSERM U 1068, CNRS, UMR7258, Marseille, France.,Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Nathalie Bendriss-Vermare
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
109
|
Structural analysis and insight into Zika virus NS5 mediated interferon inhibition. INFECTION GENETICS AND EVOLUTION 2017; 51:143-152. [PMID: 28365387 DOI: 10.1016/j.meegid.2017.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/03/2017] [Accepted: 03/25/2017] [Indexed: 11/20/2022]
Abstract
The Zika virus outbreak in 2015-2016 is the largest of its kind for which WHO declared a Public Health Emergency of International Concerns. No FDA approved drug is available for the treatment of the viral infection. The interaction of flavivirus NS5 protein with SIAH2 ubiquitin ligase has been previously known. NS5 of Zika virus has been implicated in the degradation of STAT2 protein, which activates interferon-stimulated antiviral activity. Based on our proposition that NS5 utilizes SIAH2-mediated proteasomal degradation of STAT2, an in-silico study was carried out to characterize the protein-protein interactions between NS5, SIAH2 and STAT2 proteins. The aim of our study was to identify the amino acid residues of NS5 involved in IFN antagonism as well as to find the association between NS5, SIAH2 and STAT2 to predict the interaction pattern of these proteins. Analysis proposed that NS5 recruits SIAH2 for the ubiquitination-dependent degradation of STAT2. NS5 residues involved in interaction with SIAH2 and/or STAT2 were found to be mostly conserved across related flaviviruses. These are novel findings regarding the Zika virus and require confirmation through experimental approaches.
Collapse
|
110
|
Bouillez A, Rajabi H, Jin C, Samur M, Tagde A, Alam M, Hiraki M, Maeda T, Hu X, Adeegbe D, Kharbanda S, Wong KK, Kufe D. MUC1-C integrates PD-L1 induction with repression of immune effectors in non-small-cell lung cancer. Oncogene 2017; 36:4037-4046. [PMID: 28288138 PMCID: PMC5509481 DOI: 10.1038/onc.2017.47] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/15/2016] [Accepted: 02/01/2017] [Indexed: 12/20/2022]
Abstract
Immunotherapeutic approaches, particularly PD-1/PD-L1 blockade, have improved the treatment of non-small cell lung cancer (NSCLC), supporting the premise that evasion of immune destruction is of importance for NSCLC progression. However, the signals responsible for upregulation of PD-L1 in NSCLC cells and whether they are integrated with the regulation of other immune-related genes are not known. Mucin 1 (MUC1) is aberrantly overexpressed in NSCLC, activates the NF-κB p65→ZEB1 pathway and confers a poor prognosis. The present studies demonstrate that MUC1-C activates PD-L1 expression in NSCLC cells. We show that MUC1-C increases NF-κB p65 occupancy on the CD274/PD-L1 promoter and thereby drives CD274 transcription. Moreover, we demonstrate that MUC1-C-induced activation of NF-κB→ZEB1 signaling represses the TLR9, IFNG, MCP-1 and GM-CSF genes, and that this signature is associated with decreases in overall survival. In concert with these results, targeting MUC1-C in NSCLC tumors suppresses PD-L1 and induces these effectors of innate and adaptive immunity. These findings support a previously unrecognized central role for MUC1-C in integrating PD-L1 activation with suppression of immune effectors and poor clinical outcome.
Collapse
Affiliation(s)
- A Bouillez
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - H Rajabi
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - C Jin
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Samur
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - A Tagde
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Alam
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Hiraki
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - T Maeda
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - X Hu
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - D Adeegbe
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S Kharbanda
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - K-K Wong
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - D Kufe
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
111
|
Choi K, Komurov K, Fletcher JS, Jousma E, Cancelas JA, Wu J, Ratner N. An inflammatory gene signature distinguishes neurofibroma Schwann cells and macrophages from cells in the normal peripheral nervous system. Sci Rep 2017; 7:43315. [PMID: 28256556 PMCID: PMC5335359 DOI: 10.1038/srep43315] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 01/25/2017] [Indexed: 12/31/2022] Open
Abstract
Neurofibromas are benign peripheral nerve tumors driven by NF1 loss in Schwann cells (SCs). Macrophages are abundant in neurofibromas, and macrophage targeted interventions may have therapeutic potential in these tumors. We generated gene expression data from fluorescence-activated cell sorted (FACS) SCs and macrophages from wild-type and mutant nerve and neurofibroma to identify candidate pathways involved in SC-macrophage cross-talk. While in 1-month-old Nf1 mutant nerve neither SCs nor macrophages significantly differed from their normal counterparts, both macrophages and SCs showed significantly altered cytokine gene expression in neurofibromas. Computationally reconstructed SC-macrophage molecular networks were enriched for inflammation-associated pathways. We verified that neurofibroma SC conditioned medium contains macrophage chemo-attractants including colony stimulation factor 1 (CSF1). Network analysis confirmed previously implicated pathways and predict novel paracrine and autocrine loops involving cytokines, chemokines, and growth factors. Network analysis also predicted a central role for decreased type-I interferon signaling. We validated type-I interferon expression in neurofibroma by protein profiling, and show that treatment of neurofibroma-bearing mice with polyethylene glycolyated (PEGylated) type-I interferon-α2b reduces the expression of many cytokines overexpressed in neurofibroma. These studies reveal numerous potential targetable interactions between Nf1 mutant SCs and macrophages for further analyses.
Collapse
Affiliation(s)
- Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Kakajan Komurov
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jonathan S. Fletcher
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Edwin Jousma
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jose A. Cancelas
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
- Hoxworth Blood Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
112
|
Brennan K, Koenig JL, Gentles AJ, Sunwoo JB, Gevaert O. Identification of an atypical etiological head and neck squamous carcinoma subtype featuring the CpG island methylator phenotype. EBioMedicine 2017; 17:223-236. [PMID: 28314692 PMCID: PMC5360591 DOI: 10.1016/j.ebiom.2017.02.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is broadly classified into HNSCC associated with human papilloma virus (HPV) infection, and HPV negative HNSCC, which is typically smoking-related. A subset of HPV negative HNSCCs occur in patients without smoking history, however, and these etiologically 'atypical' HNSCCs disproportionately occur in the oral cavity, and in female patients, suggesting a distinct etiology. To investigate the determinants of clinical and molecular heterogeneity, we performed unsupervised clustering to classify 528 HNSCC patients from The Cancer Genome Atlas (TCGA) into putative intrinsic subtypes based on their profiles of epigenetically (DNA methylation) deregulated genes. HNSCCs clustered into five subtypes, including one HPV positive subtype, two smoking-related subtypes, and two atypical subtypes. One atypical subtype was particularly genomically stable, but featured widespread gene silencing associated with the 'CpG island methylator phenotype' (CIMP). Further distinguishing features of this 'CIMP-Atypical' subtype include an antiviral gene expression profile associated with pro-inflammatory M1 macrophages and CD8+ T cell infiltration, CASP8 mutations, and a well-differentiated state corresponding to normal SOX2 copy number and SOX2OT hypermethylation. We developed a gene expression classifier for the CIMP-Atypical subtype that could classify atypical disease features in two independent patient cohorts, demonstrating the reproducibility of this subtype. Taken together, these findings provide unprecedented evidence that atypical HNSCC is molecularly distinct, and postulates the CIMP-Atypical subtype as a distinct clinical entity that may be caused by chronic inflammation.
Collapse
Affiliation(s)
- K Brennan
- Department of Medicine, Stanford University, United States
| | - J L Koenig
- Department of Medicine, Stanford University, United States
| | - A J Gentles
- Department of Medicine, Stanford University, United States
| | - J B Sunwoo
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, United States
| | - O Gevaert
- Department of Medicine, Stanford University, United States.
| |
Collapse
|
113
|
Worzfeld T, Pogge von Strandmann E, Huber M, Adhikary T, Wagner U, Reinartz S, Müller R. The Unique Molecular and Cellular Microenvironment of Ovarian Cancer. Front Oncol 2017; 7:24. [PMID: 28275576 PMCID: PMC5319992 DOI: 10.3389/fonc.2017.00024] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
The reciprocal interplay of cancer cells and host cells is an indispensable prerequisite for tumor growth and progression. Cells of both the innate and adaptive immune system, in particular tumor-associated macrophages (TAMs) and T cells, as well as cancer-associated fibroblasts enter into a malicious liaison with tumor cells to create a tumor-promoting and immunosuppressive tumor microenvironment (TME). Ovarian cancer, the most lethal of all gynecological malignancies, is characterized by a unique TME that enables specific and efficient metastatic routes, impairs immune surveillance, and mediates therapy resistance. A characteristic feature of the ovarian cancer TME is the role of resident host cells, in particular activated mesothelial cells, which line the peritoneal cavity in huge numbers, as well as adipocytes of the omentum, the preferred site of metastatic lesions. Another crucial factor is the peritoneal fluid, which enables the transcoelomic spread of tumor cells to other pelvic and peritoneal organs, and occurs at more advanced stages as a malignancy-associated effusion. This ascites is rich in tumor-promoting soluble factors, extracellular vesicles and detached cancer cells as well as large numbers of T cells, TAMs, and other host cells, which cooperate with resident host cells to support tumor progression and immune evasion. In this review, we summarize and discuss our current knowledge of the cellular and molecular interactions that govern this interplay with a focus on signaling networks formed by cytokines, lipids, and extracellular vesicles; the pathophysiologial roles of TAMs and T cells; the mechanism of transcoelomic metastasis; and the cell type selective processing of signals from the TME.
Collapse
Affiliation(s)
- Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), Philipps University, Marburg, Germany; Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Magdalena Huber
- Institute of Medical Microbiology and Hygiene, Biomedical Research Center, Philipps University , Marburg , Germany
| | - Till Adhikary
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital of Giessen and Marburg (UKGM) , Marburg , Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Center for Tumor Biology and Immunology (ZTI), Philipps University , Marburg , Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| |
Collapse
|
114
|
De S, Manna A, Kundu S, De Sarkar S, Chatterjee U, Sen T, Chattopadhyay S, Chatterjee M. Allylpyrocatechol Attenuates Collagen-Induced Arthritis via Attenuation of Oxidative Stress Secondary to Modulation of the MAPK, JAK/STAT, and Nrf2/HO-1 Pathways. J Pharmacol Exp Ther 2017; 360:249-259. [PMID: 27856937 DOI: 10.1124/jpet.116.238444] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/16/2016] [Indexed: 03/08/2025] Open
Abstract
Rheumatoid arthritis (RA), an inflammatory autoimmune disorder, is characterized by synovial hyperplasia and bony destruction. The pathogenesis of RA includes redox dysregulation, concomitant with increased levels of proinflammatory mediators. As the ability of allylpyrocatechol (APC), a phytoconstituent of Piper betle leaves, to alleviate oxidative stress has been demonstrated in patients with RA, its antiarthritic activity was evaluated in an animal model of arthritis, and the underlying mechanism(s) of action clarified. The animal model was established by immunizing rats with bovine collagen type II (CII) followed by lipopolysaccharide, along with a booster dose of CII on day 15. Rats were treated with APC or methotrexate (MTX) from days 11 to 27, when paw edema, radiography, histopathology, and markers of inflammation were evaluated. The pro/antiinflammatory signaling pathways were studied in a RAW264.7 macrophage cell line. Allylpyrocatechol (APC) prevented the progression of arthritis as was evident from the reduction in paw edema, and attenuation of damage to bones and cartilage shown by radiography and histopathology. Additionally, there was reduction in the levels of proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] and restoration of the redox balance. Importantly, MTX ameliorated the features of arthritis but not the associated oxidative stress. In RAW264.7, APC inhibited generation of nitric oxide and proinflammatory cytokines (TNF-α, IL-6, and IL-12p40), and modulated the phosphorylation of proinflammatory (extracellular signal-regulated kinase 1/2, stress-activated protein kinase/c-Jun N-terminal protein kinase, and Janus kinase/signal transducers and activators of transcription) and cytoprotective (nuclear factor erythroid 2-related factor 2, heme oxygenase-1) signaling pathways. Taken together, APC controlled the development of arthritis, possibly via modulation of signaling pathways, and deserves further consideration as a therapy for RA.
Collapse
Affiliation(s)
- Soumita De
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India (S.D., A.M., S.K., S.D.S., M.C.); Department of Pathology, Institute of Postgraduate Medical Education and Research, Kolkata, India (U.C.); School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India (T.S.); Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India (S.C.)
| | - Alak Manna
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India (S.D., A.M., S.K., S.D.S., M.C.); Department of Pathology, Institute of Postgraduate Medical Education and Research, Kolkata, India (U.C.); School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India (T.S.); Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India (S.C.)
| | - Sunanda Kundu
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India (S.D., A.M., S.K., S.D.S., M.C.); Department of Pathology, Institute of Postgraduate Medical Education and Research, Kolkata, India (U.C.); School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India (T.S.); Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India (S.C.)
| | - Sritama De Sarkar
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India (S.D., A.M., S.K., S.D.S., M.C.); Department of Pathology, Institute of Postgraduate Medical Education and Research, Kolkata, India (U.C.); School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India (T.S.); Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India (S.C.)
| | - Uttara Chatterjee
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India (S.D., A.M., S.K., S.D.S., M.C.); Department of Pathology, Institute of Postgraduate Medical Education and Research, Kolkata, India (U.C.); School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India (T.S.); Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India (S.C.)
| | - Tuhinadri Sen
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India (S.D., A.M., S.K., S.D.S., M.C.); Department of Pathology, Institute of Postgraduate Medical Education and Research, Kolkata, India (U.C.); School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India (T.S.); Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India (S.C.)
| | - Subrata Chattopadhyay
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India (S.D., A.M., S.K., S.D.S., M.C.); Department of Pathology, Institute of Postgraduate Medical Education and Research, Kolkata, India (U.C.); School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India (T.S.); Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India (S.C.)
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India (S.D., A.M., S.K., S.D.S., M.C.); Department of Pathology, Institute of Postgraduate Medical Education and Research, Kolkata, India (U.C.); School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India (T.S.); Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India (S.C.)
| |
Collapse
|
115
|
Murira A, Lamarre A. Type-I Interferon Responses: From Friend to Foe in the Battle against Chronic Viral Infection. Front Immunol 2016; 7:609. [PMID: 28066419 PMCID: PMC5165262 DOI: 10.3389/fimmu.2016.00609] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022] Open
Abstract
Type I interferons (IFN-I) have long been heralded as key contributors to effective antiviral responses. More widely understood in the context of acute viral infection, the role of this pleiotropic cytokine has been characterized as triggering antiviral states in cells and potentiating adaptive immune responses. Upon induction in the innate immune response, IFN-I triggers the expression of interferon-stimulated genes (ISGs), which upregulate the effector function of immune cells (e.g., dendritic cells, B cells, and T cells) toward successful resolution of infections. However, emerging lines of evidence reveal that viral persistence in the course of chronic infections could be driven by deleterious immunomodulatory effects upon sustained IFN-I expression. In this setting, elevation of IFN-I and ISGs is directly correlated to viral persistence and elevated viral loads. It is important to note that the correlation among IFN-I expression, ISGs, and viral persistence may be a cause or effect of chronic infection and this is an important distinction to make toward establishing the dichotomous nature of IFN-I responses. The aim of this mini review is to (i) summarize the interaction between IFN-I and downstream effector responses and therefore (ii) delineate the function of this cytokine on positive and negative immunoregulation in chronic infection. This is a significant consideration given the current therapeutic administration of IFN-I in chronic viral infections whose therapeutic significance is projected to continue despite emergence of increasingly efficacious antiviral regimens. Furthermore, elucidation of the interplay between virus and the antiviral response in the context of IFN-I will elucidate avenues toward more effective therapeutic and prophylactic measures against chronic viral infections.
Collapse
Affiliation(s)
- Armstrong Murira
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier , Laval, QC , Canada
| | - Alain Lamarre
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier , Laval, QC , Canada
| |
Collapse
|
116
|
Lubaki NM, Younan P, Santos RI, Meyer M, Iampietro M, Koup RA, Bukreyev A. The Ebola Interferon Inhibiting Domains Attenuate and Dysregulate Cell-Mediated Immune Responses. PLoS Pathog 2016; 12:e1006031. [PMID: 27930745 PMCID: PMC5145241 DOI: 10.1371/journal.ppat.1006031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022] Open
Abstract
Ebola virus (EBOV) infections are characterized by deficient T-lymphocyte responses, T-lymphocyte apoptosis and lymphopenia. We previously showed that disabling of interferon-inhibiting domains (IIDs) in the VP24 and VP35 proteins effectively unblocks maturation of dendritic cells (DCs) and increases the secretion of cytokines and chemokines. Here, we investigated the role of IIDs in adaptive and innate cell-mediated responses using recombinant viruses carrying point mutations, which disabled IIDs in VP24 (EBOV/VP24m), VP35 (EBOV/VP35m) or both (EBOV/VP35m/VP24m). Peripheral blood mononuclear cells (PBMCs) from cytomegalovirus (CMV)-seropositive donors were inoculated with the panel of viruses and stimulated with CMV pp65 peptides. Disabling of the VP35 IID resulted in increased proliferation and higher percentages of CD4+ T cells secreting IFNγ and/or TNFα. To address the role of aberrant DC maturation in the IID-mediated suppression of T cell responses, CMV-stimulated DCs were infected with the panel of viruses and co-cultured with autologous T-lymphocytes. Infection with EBOV/VP35m infection resulted in a significant increase, as compared to wt EBOV, in proliferating CD4+ cells secreting IFNγ, TNFα and IL-2. Experiments with expanded CMV-specific T cells demonstrated their increased activation following co-cultivation with CMV-pulsed DCs pre-infected with EBOV/VP24m, EBOV/VP35m and EBOV/VP35m/VP24m, as compared to wt EBOV. Both IIDs were found to block phosphorylation of TCR complex-associated adaptors and downstream signaling molecules. Next, we examined the effects of IIDs on the function of B cells in infected PBMC. Infection with EBOV/VP35m and EBOV/VP35m/VP24m resulted in significant increases in the percentages of phenotypically distinct B-cell subsets and plasma cells, as compared to wt EBOV, suggesting inhibition of B cell function and differentiation by VP35 IID. Finally, infection with EBOV/VP35m increased activation of NK cells, as compared to wt EBOV. These results demonstrate a global suppression of cell-mediated responses by EBOV IIDs and identify the role of DCs in suppression of T-cell responses.
Collapse
Affiliation(s)
- Ndongala Michel Lubaki
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Patrick Younan
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rodrigo I. Santos
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michelle Meyer
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mathieu Iampietro
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Richard A. Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander Bukreyev
- Department of Pathology, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, the University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, the University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
117
|
Armand P, Shipp MA, Ribrag V, Michot JM, Zinzani PL, Kuruvilla J, Snyder ES, Ricart AD, Balakumaran A, Rose S, Moskowitz CH. Programmed Death-1 Blockade With Pembrolizumab in Patients With Classical Hodgkin Lymphoma After Brentuximab Vedotin Failure. J Clin Oncol 2016; 34:3733-3739. [PMID: 27354476 PMCID: PMC5791838 DOI: 10.1200/jco.2016.67.3467] [Citation(s) in RCA: 524] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Purpose Classical Hodgkin lymphoma (HL) frequently exhibits genetic alterations leading to overexpression of the programmed death-1 (PD-1) ligands, suggesting a possible vulnerability to PD-1 blockade. The phase Ib study KEYNOTE-013 (NCT01953692) tested the safety and efficacy of the anti-PD-1 antibody pembrolizumab in patients with hematologic malignancies. Based on its genetics, HL was included as an independent cohort. Methods We enrolled patients with relapsed or refractory HL whose disease progressed on or after treatment with brentuximab vedotin. Patients received pembrolizumab, 10 mg/kg every 2 weeks, until disease progression occurred. Response to treatment was assessed at week 12 and every 8 weeks thereafter. Principal end points were safety and complete remission (CR) rate. Results Thirty-one patients were enrolled; 55% had more than four lines of prior therapy, and 71% had relapsed after autologous stem cell transplantation. Five patients (16%) experienced grade 3 drug-related adverse events (AEs); there were no grade 4 AEs or deaths related to treatment. The CR rate was 16% (90% CI, 7% to 31%). In addition, 48% of patients achieved a partial remission, for an overall response rate of 65% (90% CI, 48% to 79%). Most of the responses (70%) lasted longer than 24 weeks (range, 0.14+ to 74+ weeks), with a median follow-up of 17 months. The progression-free survival rate was 69% at 24 weeks and 46% at 52 weeks. Biomarker analyses demonstrated a high prevalence of PD-L1 and PD-L2 expression, treatment-induced expansion of T cells and natural killer cells, and activation of interferon-γ, T-cell receptor, and expanded immune-related signaling pathways. Conclusions Pembrolizumab was associated with a favorable safety profile. Pembrolizumab treatment induced favorable responses in a heavily pretreated patient cohort, justifying further studies.
Collapse
Affiliation(s)
- Philippe Armand
- Philippe Armand and Margaret A. Shipp, Dana-Farber Cancer Institute, Boston, MA; Vincent Ribrag and Jean-Marie Michot, Institut Gustave Roussy, Villejuif, France; Pier Luigi Zinzani, Institute of Hematology Seràgnoli, University of Bologna, Bologna, Italy; John Kuruvilla, Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario, Canada; Ellen S. Snyder, Alejandro D. Ricart, Arun Balakumaran, and Shelonitda Rose, Merck, Kenilworth, NJ; and Craig H. Moskowitz, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Margaret A. Shipp
- Philippe Armand and Margaret A. Shipp, Dana-Farber Cancer Institute, Boston, MA; Vincent Ribrag and Jean-Marie Michot, Institut Gustave Roussy, Villejuif, France; Pier Luigi Zinzani, Institute of Hematology Seràgnoli, University of Bologna, Bologna, Italy; John Kuruvilla, Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario, Canada; Ellen S. Snyder, Alejandro D. Ricart, Arun Balakumaran, and Shelonitda Rose, Merck, Kenilworth, NJ; and Craig H. Moskowitz, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vincent Ribrag
- Philippe Armand and Margaret A. Shipp, Dana-Farber Cancer Institute, Boston, MA; Vincent Ribrag and Jean-Marie Michot, Institut Gustave Roussy, Villejuif, France; Pier Luigi Zinzani, Institute of Hematology Seràgnoli, University of Bologna, Bologna, Italy; John Kuruvilla, Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario, Canada; Ellen S. Snyder, Alejandro D. Ricart, Arun Balakumaran, and Shelonitda Rose, Merck, Kenilworth, NJ; and Craig H. Moskowitz, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jean-Marie Michot
- Philippe Armand and Margaret A. Shipp, Dana-Farber Cancer Institute, Boston, MA; Vincent Ribrag and Jean-Marie Michot, Institut Gustave Roussy, Villejuif, France; Pier Luigi Zinzani, Institute of Hematology Seràgnoli, University of Bologna, Bologna, Italy; John Kuruvilla, Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario, Canada; Ellen S. Snyder, Alejandro D. Ricart, Arun Balakumaran, and Shelonitda Rose, Merck, Kenilworth, NJ; and Craig H. Moskowitz, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pier Luigi Zinzani
- Philippe Armand and Margaret A. Shipp, Dana-Farber Cancer Institute, Boston, MA; Vincent Ribrag and Jean-Marie Michot, Institut Gustave Roussy, Villejuif, France; Pier Luigi Zinzani, Institute of Hematology Seràgnoli, University of Bologna, Bologna, Italy; John Kuruvilla, Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario, Canada; Ellen S. Snyder, Alejandro D. Ricart, Arun Balakumaran, and Shelonitda Rose, Merck, Kenilworth, NJ; and Craig H. Moskowitz, Memorial Sloan Kettering Cancer Center, New York, NY
| | - John Kuruvilla
- Philippe Armand and Margaret A. Shipp, Dana-Farber Cancer Institute, Boston, MA; Vincent Ribrag and Jean-Marie Michot, Institut Gustave Roussy, Villejuif, France; Pier Luigi Zinzani, Institute of Hematology Seràgnoli, University of Bologna, Bologna, Italy; John Kuruvilla, Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario, Canada; Ellen S. Snyder, Alejandro D. Ricart, Arun Balakumaran, and Shelonitda Rose, Merck, Kenilworth, NJ; and Craig H. Moskowitz, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ellen S. Snyder
- Philippe Armand and Margaret A. Shipp, Dana-Farber Cancer Institute, Boston, MA; Vincent Ribrag and Jean-Marie Michot, Institut Gustave Roussy, Villejuif, France; Pier Luigi Zinzani, Institute of Hematology Seràgnoli, University of Bologna, Bologna, Italy; John Kuruvilla, Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario, Canada; Ellen S. Snyder, Alejandro D. Ricart, Arun Balakumaran, and Shelonitda Rose, Merck, Kenilworth, NJ; and Craig H. Moskowitz, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alejandro D. Ricart
- Philippe Armand and Margaret A. Shipp, Dana-Farber Cancer Institute, Boston, MA; Vincent Ribrag and Jean-Marie Michot, Institut Gustave Roussy, Villejuif, France; Pier Luigi Zinzani, Institute of Hematology Seràgnoli, University of Bologna, Bologna, Italy; John Kuruvilla, Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario, Canada; Ellen S. Snyder, Alejandro D. Ricart, Arun Balakumaran, and Shelonitda Rose, Merck, Kenilworth, NJ; and Craig H. Moskowitz, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Arun Balakumaran
- Philippe Armand and Margaret A. Shipp, Dana-Farber Cancer Institute, Boston, MA; Vincent Ribrag and Jean-Marie Michot, Institut Gustave Roussy, Villejuif, France; Pier Luigi Zinzani, Institute of Hematology Seràgnoli, University of Bologna, Bologna, Italy; John Kuruvilla, Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario, Canada; Ellen S. Snyder, Alejandro D. Ricart, Arun Balakumaran, and Shelonitda Rose, Merck, Kenilworth, NJ; and Craig H. Moskowitz, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Shelonitda Rose
- Philippe Armand and Margaret A. Shipp, Dana-Farber Cancer Institute, Boston, MA; Vincent Ribrag and Jean-Marie Michot, Institut Gustave Roussy, Villejuif, France; Pier Luigi Zinzani, Institute of Hematology Seràgnoli, University of Bologna, Bologna, Italy; John Kuruvilla, Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario, Canada; Ellen S. Snyder, Alejandro D. Ricart, Arun Balakumaran, and Shelonitda Rose, Merck, Kenilworth, NJ; and Craig H. Moskowitz, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Craig H. Moskowitz
- Philippe Armand and Margaret A. Shipp, Dana-Farber Cancer Institute, Boston, MA; Vincent Ribrag and Jean-Marie Michot, Institut Gustave Roussy, Villejuif, France; Pier Luigi Zinzani, Institute of Hematology Seràgnoli, University of Bologna, Bologna, Italy; John Kuruvilla, Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario, Canada; Ellen S. Snyder, Alejandro D. Ricart, Arun Balakumaran, and Shelonitda Rose, Merck, Kenilworth, NJ; and Craig H. Moskowitz, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
118
|
Greenlee-Wacker MC, Nauseef WM. IFN-γ targets macrophage-mediated immune responses toward Staphylococcus aureus. J Leukoc Biol 2016; 101:751-758. [PMID: 27707882 DOI: 10.1189/jlb.4a1215-565rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 09/01/2016] [Accepted: 09/08/2016] [Indexed: 12/20/2022] Open
Abstract
Infections, especially with Staphylococcus aureus (SA), commonly cause morbidity and mortality in patients with chronic granulomatous disease (CGD), a condition characterized by a defective phagocyte oxidase. IFN-γ reduces the frequency and consequences of infection in CGD by mechanisms that remain unknown. As IFN-γ promotes bacterial killing, efferocytosis of effete polymorphonuclear neutrophils (PMN), and cytokine production in macrophages-the same macrophage effector functions that are impaired in response to SA-we hypothesized that IFN-γ may reverse these defects and thereby, augment macrophage control of SA during infection. IFN-γ primed activation of the NADPH oxidase in a time-dependent manner, enhanced killing of ingested SA independent of any effects on phagocytosis, and increased binding of SA-laden neutrophils (PMN-SA) to macrophages. However, IFN-γ did not increase the percentage of apoptotic PMN or PMN-SA internalized by macrophages. Under conditions in which viable SA were eliminated, PMN-SA primed the inflammasome for subsequent activation by silica but did not induce IL-1β production by macrophages. IFN-γ enhanced IL-6 production in response to SA or PMN-SA but did not increase inflammasome activation in response to either agonist. In summary, IFN-γ augmented direct killing of SA by macrophages, promoted engagement of PMN-SA, and enhanced macrophage-mediated cytokine responses that could collectively augment control of SA infection. Together, these findings support the hypothesis that IFN-γ improves responsiveness of macrophages to SA and provides insights into the mechanism of the clinical benefits of IFN-γ.
Collapse
Affiliation(s)
| | - William M Nauseef
- Inflammation Program and Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, and Veterans Affairs Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
119
|
Smith TD, Tse MJ, Read EL, Liu WF. Regulation of macrophage polarization and plasticity by complex activation signals. Integr Biol (Camb) 2016; 8:946-55. [PMID: 27492191 PMCID: PMC5148158 DOI: 10.1039/c6ib00105j] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Macrophages are versatile cells of the immune system that play an important role in both advancing and resolving inflammation. Macrophage activation has been described as a continuum, and different stimuli lead to M1, M2, or mixed phenotypes. In addition, macrophages expressing markers associated with both M1 and M2 function are observed in vivo. Using flow cytometry, we examine how macrophage populations respond to combined M1 and M2 activation signals, presented either simultaneously or sequentially. We demonstrate that macrophages exposed to a combination of LPS, IFN-γ, IL-4, and IL-13 acquire a mixed activation state, with individual cells expressing both M1 marker CD86 and M2 marker CD206 instead of polarizing to discrete phenotypes. Over time, co-stimulated macrophages lose expression of CD86 and display increased expression of CD206. In addition, we find that exposure to LPS/IFN-γ potentiates the subsequent response to IL-4/IL-13, whereas pre-polarization with IL-4/IL-13 inhibits the response to LPS/IFN-γ. Mathematical modeling of candidate regulatory networks indicates that a complex inter-dependence of M1- and M2-associated pathways underlies macrophage activation. Specifically, a mutual inhibition motif was not by itself sufficient to reproduce the temporal marker expression data; incoherent feed-forward of M1 activation as well as both inhibition and activation of M2 by M1 were required. Together these results corroborate a continuum model of macrophage activation and demonstrate that phenotypic markers evolve with time and with exposure to complex signals.
Collapse
Affiliation(s)
- Tim D Smith
- Department of Biomedical Engineering, University of California, 2412 Engineering Hall, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
120
|
Diverse macrophages polarization in tumor microenvironment. Arch Pharm Res 2016; 39:1588-1596. [PMID: 27562774 DOI: 10.1007/s12272-016-0820-y] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/18/2016] [Indexed: 12/22/2022]
Abstract
Macrophages are traditional innate immune cells that play critical roles in the clearance of pathogens and the maintenance of tissue homeostasis. Accumulating evidence proves that macrophages affect cancer initiation and malignancy. Macrophages can be categorized into two extreme subsets, classically activated (M1) and alternatively activated (M2) macrophages based on their distinct functional abilities in response to microenvironmental stimuli. In a tumor microenvironment, tumor associated macrophages (TAMs) are considered to be of the polarized M2 phenotype that enhances tumor progression and represent a poor prognosis. Furthermore, TAMs enhance tumor angiogenesis, growth, metastasis, and immunosuppression by secreting a series of cytokines, chemokines, and proteases. The regulation of macrophage polarization is considered to be a potential future therapy for cancer management.
Collapse
|
121
|
Manchanda H, Seidel N, Blaess MF, Claus RA, Linde J, Slevogt H, Sauerbrei A, Guthke R, Schmidtke M. Differential Biphasic Transcriptional Host Response Associated with Coevolution of Hemagglutinin Quasispecies of Influenza A Virus. Front Microbiol 2016; 7:1167. [PMID: 27536272 PMCID: PMC4971777 DOI: 10.3389/fmicb.2016.01167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/13/2016] [Indexed: 01/20/2023] Open
Abstract
Severe influenza associated with strong symptoms and lung inflammation can be caused by intra-host evolution of quasispecies with aspartic acid or glycine in hemagglutinin position 222 (HA-222D/G; H1 numbering). To gain insights into the dynamics of host response to this coevolution and to identify key mechanisms contributing to copathogenesis, the lung transcriptional response of BALB/c mice infected with an A(H1N1)pdm09 isolate consisting HA-222D/G quasispecies was analyzed from days 1 to 12 post infection (p.i). At day 2 p.i. 968 differentially expressed genes (DEGs) were detected. The DEG number declined to 359 at day 4 and reached 1001 at day 7 p.i. prior to recovery. Interestingly, a biphasic expression profile was shown for the majority of these genes. Cytokine assays confirmed these results on protein level exemplarily for two key inflammatory cytokines, interferon gamma and interleukin 6. Using a reverse engineering strategy, a regulatory network was inferred to hypothetically explain the biphasic pattern for selected DEGs. Known regulatory interactions were extracted by Pathway Studio 9.0 and integrated during network inference. The hypothetic gene regulatory network revealed a positive feedback loop of Ifng, Stat1, and Tlr3 gene signaling that was triggered by the HA-G222 variant and correlated with a clinical symptom score indicating disease severity.
Collapse
Affiliation(s)
- Himanshu Manchanda
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell InstituteJena, Germany; Department of Virology and Antiviral Therapy, Jena University HospitalJena, Germany
| | - Nora Seidel
- Department of Virology and Antiviral Therapy, Jena University Hospital Jena, Germany
| | - Markus F Blaess
- Integrated Research and Treatment Center - Center for Sepsis Control and Care, Jena University HospitalJena, Germany; Department of Anaesthesiology and Intensive Care Medicine, Research Unit Experimental Anesthesiology, Jena University HospitalJena, Germany
| | - Ralf A Claus
- Integrated Research and Treatment Center - Center for Sepsis Control and Care, Jena University HospitalJena, Germany; Department of Anaesthesiology and Intensive Care Medicine, Research Unit Experimental Anesthesiology, Jena University HospitalJena, Germany
| | - Joerg Linde
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena, Germany
| | - Hortense Slevogt
- Centre of Innovation Competence (ZIK) Septomics, Jena University Hospital Jena, Germany
| | - Andreas Sauerbrei
- Department of Virology and Antiviral Therapy, Jena University Hospital Jena, Germany
| | - Reinhard Guthke
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena, Germany
| | - Michaela Schmidtke
- Department of Virology and Antiviral Therapy, Jena University Hospital Jena, Germany
| |
Collapse
|
122
|
Thorburn AN, Tseng HY, Donovan C, Hansbro NG, Jarnicki AG, Foster PS, Gibson PG, Hansbro PM. TLR2, TLR4 AND MyD88 Mediate Allergic Airway Disease (AAD) and Streptococcus pneumoniae-Induced Suppression of AAD. PLoS One 2016; 11:e0156402. [PMID: 27309732 PMCID: PMC4911048 DOI: 10.1371/journal.pone.0156402] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 05/15/2016] [Indexed: 12/25/2022] Open
Abstract
Background Exposure to non-pathogenic Streptococcus pneumoniae and vaccination are inversely associated with asthma. Studies in animal models demonstrate that airway administration of S. pneumoniae (live or killed), or its vaccines or components, suppresses the characteristic features of asthma in mouse models of allergic airway disease (AAD). These components could be developed into immunoregulatory therapies. S. pneumoniae components are recognized by Toll-like receptors (TLR) 2 and TLR4, and both induce inflammatory cell responses through the adaptor protein myeloid differentiation primary response gene 88 (MyD88). The involvement of TLR2, TLR4 and MyD88 in the pathogenesis of AAD and asthma is incompletely understood, and has not been studied in S. pneumoniae-mediated suppression of AAD. We investigated the role of TLR2, TLR4 and MyD88 in the development of AAD and S. pneumoniae-mediated suppression of AAD. Methods and Findings OVA-induced AAD and killed S. pneumoniae-mediated suppression of AAD were assessed in wild-type, TLR2-/-, TLR4-/-, TLR2/4-/- and MyD88-/- BALB/c mice. During OVA-induced AAD, TLR2, TLR4 and MyD88 were variously involved in promoting eosinophil accumulation in bronchoalveolar lavage fluid and blood, and T-helper type (Th)2 cytokine release from mediastinal lymph node T cells and splenocytes. However, all were required for the induction of airways hyperresponsiveness (AHR). In S. pneumoniae-mediated suppression of AAD, TLR2, TLR4 and MyD88 were variously involved in the suppression of eosinophilic and splenocyte Th2 responses but all were required for the reduction in AHR. Conclusions These results highlight important but complex roles for TLR2, TLR4 and MyD88 in promoting the development of OVA-induced AAD, but conversely in the S. pneumoniae-mediated suppression of AAD, with consistent and major contributions in both the induction and suppression of AHR. Thus, TLR signaling is likely required for both the development of asthma and the suppression of asthma by S. pneumoniae, and potentially other immunoregulatory therapies.
Collapse
Affiliation(s)
- Alison N. Thorburn
- The Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Hsin-Yi Tseng
- The Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Chantal Donovan
- The Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Nicole G. Hansbro
- The Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Andrew G. Jarnicki
- The Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Paul S. Foster
- The Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter G. Gibson
- The Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Philip M. Hansbro
- The Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
- * E-mail:
| |
Collapse
|
123
|
Carrega P, Campana S, Bonaccorsi I, Ferlazzo G. The Yin and Yang of Innate Lymphoid Cells in Cancer. Immunol Lett 2016; 179:29-35. [PMID: 27296768 DOI: 10.1016/j.imlet.2016.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/10/2016] [Indexed: 12/30/2022]
Abstract
The recent appreciation of novel subsets of innate lymphoid cells (ILCs) as important regulators of tissue homeostasis, inflammation and repair, raise questions regarding the presence and role of these cells in cancer tissues. In addition to natural killer and fetal lymphoid tissue inducer (LTi) cells, the ILC family comprises non-cytolytic, cytokine-producing cells that are classified into ILC1, ILC2 and ILC3 based on phenotypic and functional characteristics. Differently from natural killer cells, which are the prototypical members of ILC1 and whose role in tumors is better established, the involvement of other ILC subsets in cancer progression or resistance is still fuzzy and in several instances controversial, since current studies indicate both context-dependent beneficial or pathogenic effects. Here, we review the current knowledge regarding the involvement of these novel ILC subsets in the context of tumor immunology, highlighting how ILC subsets might behave either as friends or foes.
Collapse
Affiliation(s)
- Paolo Carrega
- Istituto G. Gaslini, Genova 16148, Italy; Cell Factory UniMe, University of Messina, 98125, Italy
| | - Stefania Campana
- Laboratory of Immunology and Biotherapy, University of Messina, 98125, Italy
| | - Irene Bonaccorsi
- Laboratory of Immunology and Biotherapy, University of Messina, 98125, Italy
| | - Guido Ferlazzo
- Cell Factory UniMe, University of Messina, 98125, Italy; Laboratory of Immunology and Biotherapy, University of Messina, 98125, Italy; Cell Therapy Program, Azienda Ospedaliera Universitaria Policlinico Gaetano Martino, Messina 98125, Italy.
| |
Collapse
|
124
|
The local environment orchestrates mucosal decidual macrophage differentiation and substantially inhibits HIV-1 replication. Mucosal Immunol 2016; 9:634-46. [PMID: 26349662 DOI: 10.1038/mi.2015.87] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/27/2015] [Indexed: 02/04/2023]
Abstract
Macrophages from the decidua basalis (dM), the main uterine mucosa during pregnancy, are weakly permissive to HIV-1 infection. Here, we investigated the mechanisms underlying this natural control. We show, by using freshly purified decidual macrophages and ex vivo human decidual explants, that the local decidual environment influences dM differentiation and naturally protects these cells from HIV-1 infection. Interferon (IFN)-γ, present in the decidual tissue, contributes to maintenance of the dM phenotype and restricts HIV-1 infection by mechanisms involving the cyclin-dependent kinase inhibitor p21Cip1/Waf1. We also found that activation of Toll-like receptors 7 and 8 expressed by dM reinforces the low permissivity of dM to HIV-1 by restricting viral replication and inducing secretion of cytokines in the decidual environment, including IFN-γ, that shape dM plasticity. A major challenge for HIV-1 eradication is to control infection of tissue-resident macrophages in the female reproductive tract. Our findings provide clues to the development of novel strategies to prevent HIV-1 macrophage infection.
Collapse
|
125
|
Hamidzadeh K, Mosser DM. Purinergic Signaling to Terminate TLR Responses in Macrophages. Front Immunol 2016; 7:74. [PMID: 26973651 PMCID: PMC4773587 DOI: 10.3389/fimmu.2016.00074] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/15/2016] [Indexed: 12/20/2022] Open
Abstract
Macrophages undergo profound physiological alterations when they encounter pathogen-associated molecular patterns (PAMPs). These alterations can result in the elaboration of cytokines and mediators that promote immune responses and contribute to the clearance of pathogens. These innate immune responses by myeloid cells are transient. The termination of these secretory responses is not due to the dilution of stimuli, but rather to the active downregulation of innate responses induced by the very PAMPs that initiated them. Here, we describe a purinergic autoregulatory program whereby TLR-stimulated macrophages control their activation state. In this program, TLR-stimulated macrophages undergo metabolic alterations that result in the production of ATP and its release through membrane pannexin channels. This purine nucleotide is rapidly hydrolyzed to adenosine by ectoenzymes on the macrophage surface, CD39 and CD73. Adenosine then signals through the P1 class of seven transmembrane receptors to induce a regulatory state that is characterized by the downregulation of inflammatory cytokines and the production of anti-inflammatory cytokines and growth factors. This purinergic autoregulatory system mitigates the collateral damage that would be caused by the prolonged activation of macrophages and rather allows the macrophage to maintain homeostasis. The transient activation of macrophages can be prolonged by treating macrophages with IFN-γ. IFN-γ-treated macrophages become less sensitive to the regulatory effects of adenosine, allowing them to sustain macrophage activation for the duration of an adaptive immune response.
Collapse
Affiliation(s)
- Kajal Hamidzadeh
- Department of Cell Biology and Molecular Genetics, The Maryland Pathogen Research Institute, University of Maryland , College Park, MD , USA
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics, The Maryland Pathogen Research Institute, University of Maryland , College Park, MD , USA
| |
Collapse
|
126
|
van Beek JJP, Martens AWJ, Bakdash G, de Vries IJM. Innate Lymphoid Cells in Tumor Immunity. Biomedicines 2016; 4:biomedicines4010007. [PMID: 28536374 PMCID: PMC5344245 DOI: 10.3390/biomedicines4010007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 12/27/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a group of immune cells of the lymphoid lineage that do not possess antigen specificity. The group includes natural killer (NK) cells, lymphoid tissue inducer (LTi) cells and the recently identified ILC1s, ILC2s and ILC3s. Although the role of NK cells in the context of cancer has been well established, the involvement of other ILC subsets in cancer progression and resistance is just emerging. Here, we review the literature on the role of the different ILC subsets in tumor immunity and discuss its implications for cancer treatment and monitoring.
Collapse
Affiliation(s)
- Jasper J P van Beek
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands.
| | - Anne W J Martens
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands.
| | - Ghaith Bakdash
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands.
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands.
- Department of Medical Oncology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
127
|
Chmielewski S, Piaszyk-Borychowska A, Wesoly J, Bluyssen HAR. STAT1 and IRF8 in Vascular Inflammation and Cardiovascular Disease: Diagnostic and Therapeutic Potential. Int Rev Immunol 2015; 35:434-454. [DOI: 10.3109/08830185.2015.1087519] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Stefan Chmielewski
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
- Department of Nephrology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Anna Piaszyk-Borychowska
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Hans A. R. Bluyssen
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
128
|
IFN-γ Priming Effects on the Maintenance of Effector Memory CD4(+) T Cells and on Phagocyte Function: Evidences from Infectious Diseases. J Immunol Res 2015; 2015:202816. [PMID: 26509177 PMCID: PMC4609814 DOI: 10.1155/2015/202816] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/03/2015] [Indexed: 12/19/2022] Open
Abstract
Although it has been established that effector memory CD4+ T cells play an important role in the protective immunity against chronic infections, little is known about the exact mechanisms responsible for their functioning and maintenance, as well as their effects on innate immune cells. Here we review recent data on the role of IFN-γ priming as a mechanism affecting both innate immune cells and effector memory CD4+ T cells. Suboptimal concentrations of IFN-γ are seemingly crucial for the optimization of innate immune cell functions (including phagocytosis and destruction of reminiscent pathogens), as well as for the survival and functioning of effector memory CD4+ T cells. Thus, IFN-γ priming can thus be considered an important bridge between innate and adaptive immunity.
Collapse
|
129
|
Cohen HB, Ward A, Hamidzadeh K, Ravid K, Mosser DM. IFN-γ Prevents Adenosine Receptor (A2bR) Upregulation To Sustain the Macrophage Activation Response. THE JOURNAL OF IMMUNOLOGY 2015; 195:3828-37. [PMID: 26355158 DOI: 10.4049/jimmunol.1501139] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/04/2015] [Indexed: 12/23/2022]
Abstract
The priming of macrophages with IFN-γ prior to TLR stimulation results in enhanced and prolonged inflammatory cytokine production. In this study, we demonstrate that, following TLR stimulation, macrophages upregulate the adenosine 2b receptor (A2bR) to enhance their sensitivity to immunosuppressive extracellular adenosine. This upregulation of A2bR leads to the induction of macrophages with an immunoregulatory phenotype and the downregulation of inflammation. IFN-γ priming of macrophages selectively prevents the induction of the A2bR in macrophages to mitigate sensitivity to adenosine and to prevent this regulatory transition. IFN-γ-mediated A2bR blockade leads to a prolonged production of TNF-α and IL-12 in response to TLR ligation. The pharmacologic inhibition or the genetic deletion of the A2bR results in a hyperinflammatory response to TLR ligation, similar to IFN-γ treatment of macrophages. Conversely, the overexpression of A2bR on macrophages blunts the IFN-γ effects and promotes the development of immunoregulatory macrophages. Thus, we propose a novel mechanism whereby IFN-γ contributes to host defense by desensitizing macrophages to the immunoregulatory effects of adenosine. This mechanism overcomes the transient nature of TLR activation, and prolongs the antimicrobial state of the classically activated macrophage. This study may offer promising new targets to improve the clinical outcome of inflammatory diseases in which macrophage activation is dysregulated.
Collapse
Affiliation(s)
- Heather B Cohen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, College Park, MD 20742; and
| | - Amanda Ward
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, College Park, MD 20742; and
| | - Kajal Hamidzadeh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, College Park, MD 20742; and
| | - Katya Ravid
- School of Medicine, Boston University, Boston, MA 02118
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; Maryland Pathogen Research Institute, College Park, MD 20742; and
| |
Collapse
|
130
|
Kim HS, Kim DC, Kim HM, Kwon HJ, Kwon SJ, Kang SJ, Kim SC, Choi GE. STAT1 deficiency redirects IFN signalling toward suppression of TLR response through a feedback activation of STAT3. Sci Rep 2015; 5:13414. [PMID: 26299368 PMCID: PMC4547106 DOI: 10.1038/srep13414] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/27/2015] [Indexed: 01/14/2023] Open
Abstract
Interferons (IFNs) potentiate macrophage activation typically via a STAT1-dependent pathway. Recent studies suggest a functioning of STAT1-independent pathway in the regulation of gene expression by IFN-γ, thus pointing to the diversity in cellular responses to IFNs. Many functions of IFNs rely on cross-regulation of the responses to exogenous inflammatory mediators such as TLR ligands. Here we investigated the contribution of STAT1-independent pathway to macrophage activation and its underlying mechanism in the context of combined stimulation of IFN and TLR. We found that TLR-induced production of inflammatory cytokines (TNF-α, IL-12) was not simply nullified but was significantly suppressed by signaling common to IFN-γ and IFN-β in STAT1-null macrophages. Such a shift in the suppression of TLR response correlated with a sustained STAT3 activation and attenuation of NF-κB signaling. Using a JAK2/STAT3 pathway inhibitor or STAT3-specific siRNA, blocking STAT3 in that context restored TNF-α production and NF-κB signaling, thus indicating a functional cross-regulation among STAT1, STAT3, and NF-κB. Our results suggest that STAT1 deficiency reprograms IFN signaling from priming toward suppression of TLR response via feedback regulation of STAT3, which may provide a new insight into the host defense response against microbial pathogens in a situation of STAT1 deficiency.
Collapse
Affiliation(s)
- Hun Sik Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Korea.,Cellular Dysfunction Research Center, University of Ulsan College of Medicine, Seoul 138-736, Korea.,Department of Microbiology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Dong Chan Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Hong-Mi Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Hyung-Joon Kwon
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Korea.,Cellular Dysfunction Research Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Soon Jae Kwon
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Suk-Jo Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Korea
| | - Go-Eun Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Korea.,Cellular Dysfunction Research Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| |
Collapse
|
131
|
Wu C, Molavi O, Zhang H, Gupta N, Alshareef A, Bone KM, Gopal K, Wu F, Lewis JT, Douglas DN, Kneteman NM, Lai R. STAT1 is phosphorylated and downregulated by the oncogenic tyrosine kinase NPM-ALK in ALK-positive anaplastic large-cell lymphoma. Blood 2015; 126:336-45. [PMID: 25921060 DOI: 10.1182/blood-2014-10-603738] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 04/24/2015] [Indexed: 02/05/2023] Open
Abstract
The tumorigenicity of most cases of ALK-positive anaplastic large-cell lymphoma (ALK+ ALCL) is driven by the oncogenic fusion protein NPM-ALK in a STAT3-dependent manner. Because it has been shown that STAT3 can be inhibited by STAT1 in some experimental models, we hypothesized that the STAT1 signaling pathway is defective in ALK+ ALCL, thereby leaving the STAT3 signaling unchecked. Compared with normal T cells, ALK+ ALCL tumors consistently expressed a low level of STAT1. Inhibition of the ubiquitin-proteasome pathway appreciably increased STAT1 expression in ALK+ ALCL cells. Furthermore, we found evidence that NPM-ALK binds to and phosphorylates STAT1, thereby promoting its proteasomal degradation in a STAT3-dependent manner. If restored, STAT1 is functionally intact in ALK+ ALCL cells, because it effectively upregulated interferon-γ, induced apoptosis/cell-cycle arrest, potentiated the inhibitory effects of doxorubicin, and suppressed tumor growth in vivo. STAT1 interfered with the STAT3 signaling by decreasing STAT3 transcriptional activity/DNA binding and its homodimerization. The importance of the STAT1/STAT3 functional interaction was further highlighted by the observation that short interfering RNA knockdown of STAT1 significantly decreased apoptosis induced by STAT3 inhibition. Thus, STAT1 is a tumor suppressor in ALK+ ALCL. Phosphorylation and downregulation of STAT1 by NPM-ALK represent other mechanisms by which this oncogenic tyrosine kinase promotes tumorigenesis.
Collapse
MESH Headings
- Anaplastic Lymphoma Kinase
- Animals
- Apoptosis
- Blotting, Western
- Case-Control Studies
- Cell Proliferation
- Cell Transformation, Neoplastic
- Down-Regulation
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Interferon-gamma
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Mice
- Mice, SCID
- Phosphorylation
- Proteasome Endopeptidase Complex/metabolism
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- RNA, Small Interfering/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- STAT1 Transcription Factor/antagonists & inhibitors
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/metabolism
- STAT3 Transcription Factor/antagonists & inhibitors
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Tumor Cells, Cultured
- Ubiquitin/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chengsheng Wu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Ommoleila Molavi
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada; Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, East Azerbaijan Province, Iran
| | - Haifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Nidhi Gupta
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Abdulraheem Alshareef
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Kathleen M Bone
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Fang Wu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | | | | | | | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada; Department of Oncology, University of Alberta, Edmonton, AB, Canada; and DynaLIFE Dx Medical Laboratories, Edmonton, AB, Canada
| |
Collapse
|
132
|
Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol 2015; 16:838-849. [PMID: 26147685 PMCID: PMC4509841 DOI: 10.1038/ni.3205] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 05/19/2015] [Indexed: 12/14/2022]
Abstract
Interferon-γ (IFN-γ) primes macrophages for enhanced inflammatory activation by Toll-like receptors (TLRs) and microbial killing, but little is known about the regulation of cell metabolism or mRNA translation during priming. We found that IFN-γ regulates human macrophage metabolism and translation by targeting the kinases mTORC1 and MNK that both converge on the selective regulator of translation initiation eIF4E. Physiological downregulation of mTORC1 by IFN-γ was associated with autophagy and translational suppression of repressors of inflammation such as HES1. Genome-wide ribosome profiling in TLR2-stimulated macrophages revealed that IFN-γ selectively modulates the macrophage translatome to promote inflammation, further reprogram metabolic pathways, and modulate protein synthesis. These results add IFN-γ-mediated metabolic reprogramming and translational regulation as key components of classical inflammatory macrophage activation.
Collapse
|
133
|
Marroqui L, Lopes M, dos Santos RS, Grieco FA, Roivainen M, Richardson SJ, Morgan NG, Op de Beeck A, Eizirik DL. Differential cell autonomous responses determine the outcome of coxsackievirus infections in murine pancreatic α and β cells. eLife 2015; 4:e06990. [PMID: 26061776 PMCID: PMC4480275 DOI: 10.7554/elife.06990] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/08/2015] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by loss of pancreatic β cells via apoptosis while neighboring α cells are preserved. Viral infections by coxsackieviruses (CVB) may contribute to trigger autoimmunity in T1D. Cellular permissiveness to viral infection is modulated by innate antiviral responses, which vary among different cell types. We presently describe that global gene expression is similar in cytokine-treated and virus-infected human islet cells, with up-regulation of gene networks involved in cell autonomous immune responses. Comparison between the responses of rat pancreatic α and β cells to infection by CVB5 and 4 indicate that α cells trigger a more efficient antiviral response than β cells, including higher basal and induced expression of STAT1-regulated genes, and are thus better able to clear viral infections than β cells. These differences may explain why pancreatic β cells, but not α cells, are targeted by an autoimmune response during T1D. DOI:http://dx.doi.org/10.7554/eLife.06990.001 Type 1 diabetes is caused by a person's immune system attacking the cells in their pancreas that produce insulin. This eventually kills off so many of these cells—known as beta cells—that the pancreas is unable to make enough insulin. As a result, individuals with type 1 diabetes must inject insulin to help their bodies process sugars. One of the mysteries of type 1 diabetes is why the beta cells in the pancreas are killed by the immune system while neighboring alpha cells, which produce the hormone glucagon, are spared. Scientists suspect a combination of genetic and environmental factors contributes to type 1 diabetes. Certain viruses, including one called Coxsackievirus, appear to trigger type 1 diabetes in susceptible individuals. Other factors may also make these individuals more likely to develop the disease. For example, they may ‘express’ genes that are thought to increase the risk of type 1 diabetes, many of which control how the immune system responds to viral infections. These genes may make susceptible individuals experience excessive inflammation, because inflammation is what ultimately kills off the beta cells. Now, Marroqui, Lopes, dos Santos et al. provide evidence that suggests why the alpha cells are spared the immune onslaught in type 1 diabetes. In initial experiments, clusters of cells—known as islets—from the human pancreas were either exposed to small proteins that cause inflammation or infected with the Coxsakievirus. Both events caused a similar increase in the expression of particular immune response genes in the islets. This indicates that these islet cells are able to react to the virus and trigger a first line of defense, which will be further boosted when the immune system is subsequently called into action. Islets contain both alpha and beta cells, and so further experiments on alpha and beta cells from rats investigated whether the two cell types respond differently when infected by the Coxsakievirus. The results revealed that alpha cells boost the expression of the genes needed to clear the virus to a greater extent than the beta cells, and so respond more efficiently to the virus. Therefore, an infection is more likely to establish itself in the beta cells and consequently trigger inflammation and the immune system's attack on the cells. These observations explain one of the puzzling questions in the diabetes field and reinforce the possibility that a long-standing viral infection in beta cells—which seem to have a limited capacity to clear viral infections—may be one of the mechanisms leading to progressive beta cell destruction in type 1 diabetes. This knowledge will help in the search for ways to protect beta cells against both viral infections and the consequent immune assault. DOI:http://dx.doi.org/10.7554/eLife.06990.002
Collapse
Affiliation(s)
- Laura Marroqui
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Miguel Lopes
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Reinaldo S dos Santos
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabio A Grieco
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Merja Roivainen
- National Institute for Health and Welfare, Helsinki, Finland
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Noel G Morgan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Anne Op de Beeck
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
134
|
Daghestani HN, Pieper CF, Kraus VB. Soluble macrophage biomarkers indicate inflammatory phenotypes in patients with knee osteoarthritis. Arthritis Rheumatol 2015; 67:956-65. [PMID: 25544994 PMCID: PMC4441094 DOI: 10.1002/art.39006] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/19/2014] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To evaluate the ability of the macrophage markers CD163 and CD14 to predict different osteoarthritis (OA) phenotypes defined by severity of joint inflammation, radiographic features and progression, and joint pain. METHODS We evaluated 2 different cohorts totaling 184 patients with radiographic knee OA. These included 25 patients from a cross-sectional imaging study for whom there were data on activated macrophages in the knee joint, and 159 patients (134 with 3-year longitudinal data) from the longitudinal Prediction of Osteoarthritis Progression study. Multivariable linear regression models with generalized estimating equations were used to assess the association of CD163 and CD14 in synovial fluid (SF) and blood with OA phenotypic outcomes. Models were adjusted for age, sex, and body mass index. P values less than or equal to 0.05 were considered significant. RESULTS SF CD14, SF CD163, and serum CD163 were associated with the abundance of activated macrophages in the knee joint capsule and synovium. SF CD14 was positively associated with severity of joint space narrowing and osteophytes in both cohorts. SF and plasma CD14 were positively associated with self-reported knee pain severity in the imaging study. Both SF CD14 and SF CD163 were positively associated with osteophyte progression. CONCLUSION Soluble macrophage biomarkers reflected the abundance of activated macrophages and appeared to mediate structural progression (CD163 and CD14) and pain (CD14) in OA knees. These data support the central role of inflammation as a determinant of OA severity, progression risk, and clinical symptoms, and they suggest a means of readily identifying a subset of patients with an active inflammatory state and worse prognosis.
Collapse
|
135
|
Baratono SR, Chu N, Richman LP, Behrens EM. Toll-like receptor 9 and interferon-γ receptor signaling suppress the B-cell fate of uncommitted progenitors in mice. Eur J Immunol 2015; 45:1313-25. [PMID: 25639361 DOI: 10.1002/eji.201445319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/26/2014] [Accepted: 01/29/2015] [Indexed: 01/12/2023]
Abstract
Systemic inflammatory response syndrome describes a heterogeneous group of cytokine storm disorders, with different immunogens and cytokines leading to variations in organ pathology. The severe inflammation generated by the cytokine storm results in widespread organ pathology including alterations in T- and B-lymphocyte counts. This study explores the roles of TLR9 and IFN-γR stimulation in decreasing T- and B-cell lymphopoiesis in a mouse model of hyperinflammation. We demonstrate that early B-cell lymphopoiesis is severely compromised during TLR9- and IFN-γ-driven hyperinflammation from the Ly-6D(+) common lymphoid progenitor stage onwards with different effects inhibiting development at multiple stages. We show that TLR9 signaling directly decreases in vitro B-cell yields while increasing T-cell yields. IFN-γ also directly inhibits B-cell and T-cell differentiation in vitro as well as when induced by TLR9 in vivo. Microarray and RT-PCR analysis of Ly-6D(-) common lymphoid progenitors point to HOXa9 and EBF-1 as transcription factors altered by TLR9-induced inflammation. Our work demonstrates both cellular and molecular targets that lead to diminished B-cell lymphopoiesis in sustained TLR9- and IFN-γ-driven inflammation that may be relevant in a number of infectious and autoimmune/inflammatory settings.
Collapse
Affiliation(s)
- Sheena R Baratono
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Niansheng Chu
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lee P Richman
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Edward M Behrens
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
136
|
Rashidi N, Mirahmadian M, Jeddi-Tehrani M, Rezania S, Ghasemi J, Kazemnejad S, Mirzadegan E, Vafaei S, Kashanian M, Rasoulzadeh Z, Zarnani AH. Lipopolysaccharide- and Lipoteichoic Acid-mediated Pro-inflammatory Cytokine Production and Modulation of TLR2, TLR4 and MyD88 Expression in Human Endometrial Cells. J Reprod Infertil 2015; 16:72-81. [PMID: 25927023 PMCID: PMC4386089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 12/28/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Toll-like receptor (TLR)-mediated inflammatory processes are supposed to be involved in pathophysiology of spontaneous abortion and preterm labor. Here, we investigated functional responses of human endometrial stromal cells (ESCs) and whole endometrial cells (WECs) to lipopolysaccharide (LPS) and lipoteichoic acid (LTA). METHODS Endometrial tissues were obtained from 15 cycling women who underwent laparoscopic tubal ligation. Modulation of TLR2, TLR4 and MyD88 expression and production of pro-inflammatory cytokines by WECs and ESCs in response to LPS and LTA were assessed. RESULTS WECs and ESCs expressed significant levels of TLR4 and MyD88 transcripts but, unlike WECs, ESCs failed to express TLR2 gene. Regardless of positive results of Western blotting, ESCs did not express TLR4 at their surface as judged by flow cytometry. Immunofluorescent staining revealed intracellular localization of TLR4 with predominant perinuclear pattern. LPS stimulation marginally increased TLR4 gene expression in both cell types, whereas such treatment significantly upregulated MyD88 gene expression after 8 hr (p < 0.05). At the protein level, however, LPS activation significantly increased TLR4 expression by ESCs (p < 0.05). LTA stimulation of WECs was accompanied with non-significant increase of TLR2 and MyD88 transcripts. LPS and LTA stimulation of WECs caused significant production of IL-6 and IL-8 in a dose-dependent manner (p < 0.05). Similarly, ESCs produced significant amounts of IL-6, IL-8 and also TNF-α in response to LPS activation (p < 0.05). CONCLUSION Our results provided further evidence of initiation of inflammatory processes following endometrial TLR activation by bacterial components which could potentially be harmful to developing fetus.
Collapse
Affiliation(s)
- Nesa Rashidi
- Immunology Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahroo Mirahmadian
- Immunology Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Simin Rezania
- Biophysics Institute, Medical University of Graz, Graz, Austria
| | - Jamileh Ghasemi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ebrahim Mirzadegan
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Sedigheh Vafaei
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Maryam Kashanian
- Department of Obstetrics and Gynecology, Shahid Akbar-Abadi Hospital, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Rasoulzadeh
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran,Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran,Corresponding Author: Amir-Hassan Zarnani, Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran. P.O. Box: 19615-1177. E-mail:,
| |
Collapse
|
137
|
STAT1-dependent signal integration between IFNγ and TLR4 in vascular cells reflect pro-atherogenic responses in human atherosclerosis. PLoS One 2014; 9:e113318. [PMID: 25478796 PMCID: PMC4257532 DOI: 10.1371/journal.pone.0113318] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/24/2014] [Indexed: 12/31/2022] Open
Abstract
Signal integration between IFNγ and TLRs in immune cells has been associated with the host defense against pathogens and injury, with a predominant role of STAT1. We hypothesize that STAT1-dependent transcriptional changes in vascular cells involved in cross-talk between IFNγ and TLR4, reflect pro-atherogenic responses in human atherosclerosis. Genome-wide investigation identified a set of STAT1-dependent genes that were synergistically affected by interactions between IFNγ and TLR4 in VSMCs. These included the chemokines Cxcl9, Ccl12, Ccl8, Ccrl2, Cxcl10 and Ccl5, adhesion molecules Cd40, Cd74, and antiviral and antibacterial genes Rsad2, Mx1, Oasl1, Gbp5, Nos2, Batf2 and Tnfrsf11a. Among the amplified genes was also Irf8, of which Ccl5 was subsequently identified as a new pro-inflammatory target in VSMCs and ECs. Promoter analysis predicted transcriptional cooperation between STAT1, IRF1, IRF8 and NFκB, with the novel role of IRF8 providing an additional layer to the overall complexity. The synergistic interactions between IFNγ and TLR4 also resulted in increased T-cell migration and impaired aortic contractility in a STAT1-dependent manner. Expression of the chemokines CXCL9 and CXCL10 correlated with STAT1 phosphorylation in vascular cells in plaques from human carotid arteries. Moreover, using data mining of human plaque transcriptomes, expression of a selection of these STAT1-dependent pro-atherogenic genes was found to be increased in coronary artery disease (CAD) and carotid atherosclerosis. Our study provides evidence to suggest that in ECs and VSMCs STAT1 orchestrates a platform for cross-talk between IFNγ and TLR4, and identifies a STAT1-dependent gene signature that reflects a pro-atherogenic state in human atherosclerosis.
Collapse
|
138
|
Yanai H, Taniguchi T. Nucleic acid sensing and beyond: virtues and vices of high-mobility group box 1. J Intern Med 2014; 276:444-53. [PMID: 25041239 DOI: 10.1111/joim.12285] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High-mobility group box 1 (HMGB1) was first described as an architectural chromatin-binding protein. Today, a wealth of evidence indicates that this protein is very versatile and serves an amazing assortment of roles in the nucleus, cytoplasm and extracellular milieu. As a result, HMGB1 is fast becoming recognized as a key regulator of protective and pathological immune responses. Whilst acknowledging the many functions of HMGB1 and its family members, we focus this review on their role as broad effectors of immune responses mediated by nucleic acids. In addition, we touch upon the recent progress in determining the in vivo role of HMGB1 as revealed by the study of mice conditionally null for the Hmgb1 gene.
Collapse
Affiliation(s)
- H Yanai
- Department of Molecular Immunology, Institute of Industrial Science, Max Planck-The University of Tokyo Center for Integrative Inflammology, The University of Tokyo, Tokyo, Japan; Core Research for Evolution Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | | |
Collapse
|
139
|
Hayes EM, Tsaousi A, Di Gregoli K, Jenkinson SR, Bond AR, Johnson JL, Bevan L, Thomas AC, Newby AC. Classical and Alternative Activation and Metalloproteinase Expression Occurs in Foam Cell Macrophages in Male and Female ApoE Null Mice in the Absence of T and B Lymphocytes. Front Immunol 2014; 5:537. [PMID: 25389425 PMCID: PMC4211548 DOI: 10.3389/fimmu.2014.00537] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/10/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Rupture of advanced atherosclerotic plaques accounts for most life-threatening myocardial infarctions. Classical (M1) and alternative (M2) macrophage activation could promote atherosclerotic plaque progression and rupture by increasing production of proteases, including matrix metalloproteinases (MMPs). Lymphocyte-derived cytokines may be essential for generating M1 and M2 phenotypes in plaques, although this has not been rigorously tested until now. METHODS AND RESULTS We validated the expression of M1 markers (iNOS and COX-2) and M2 markers (arginase-1, Ym-1, and CD206) and then measured MMP mRNA levels in mouse macrophages during classical and alternative activation in vitro. We then compared mRNA expression of these genes ex vivo in foam cells from subcutaneous granulomas in fat-fed immune-competent ApoE knockout (KO) and immune-compromised ApoE/Rag-1 double-KO mice, which lack all T and B cells. Furthermore, we performed immunohistochemistry in subcutaneous granulomas and in aortic root and brachiocephalic artery atherosclerotic plaques to measure the extent of M1/M2 marker and MMP protein expression in vivo. Classical activation of mouse macrophages with bacterial lipopolysaccharide in vitro increased MMPs-13, -14, and -25 but decreased MMP-19 and TIMP-2 mRNA expressions. Alternative activation with IL-4 increased MMP-19 expression. Foam cells in subcutaneous granulomas expressed all M1/M2 markers and MMPs at ex vivo mRNA and in vivo protein levels, irrespective of Rag-1 genotype. There were also similar percentages of foam cell macrophages (FCMs) carrying M1/M2 markers and MMPs in atherosclerotic plaques from ApoE KO and ApoE/Rag-1 double-KO mice. CONCLUSION Classical and alternative activation leads to distinct MMP expression patterns in mouse macrophages in vitro. M1 and M2 polarization in vivo occurs in the absence of T and B lymphocytes in either granuloma or plaque FCMs.
Collapse
Affiliation(s)
- Elaine Mo Hayes
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol , UK
| | - Aikaterini Tsaousi
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol , UK
| | - Karina Di Gregoli
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol , UK
| | - S Rhiannon Jenkinson
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol , UK
| | - Andrew R Bond
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol , UK
| | - Jason L Johnson
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol , UK
| | - Laura Bevan
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol , UK
| | - Anita C Thomas
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol , UK
| | - Andrew C Newby
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol , UK
| |
Collapse
|
140
|
Choi KS, Scorpio DG, Dumler JS. Stat1 negatively regulates immune-mediated injury with Anaplasma phagocytophilum infection. THE JOURNAL OF IMMUNOLOGY 2014; 193:5088-98. [PMID: 25305312 DOI: 10.4049/jimmunol.1401381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human granulocytic anaplasmosis (HGA) is caused by the obligate intracellular bacterium Anaplasma phagocytophilum. Our data previously demonstrated that A. phagocytophilum induces an immunopathologic response by activating IFN-γ production through the Stat1 signaling pathway. In this study, we investigated the broader role of Stat1 signaling in the host response to infection with A. phagocytophilum. In Stat1 knockout (KO) compared with wild-type mice, A. phagocytophilum infection was more highly pathogenic as characterized by the unanticipated development of clinical signs in mice including markedly increased splenomegaly, more severe inflammatory splenic and hepatic histopathology, >100-fold higher blood and splenic bacterial loads, and more elevated proinflammatory cytokine/chemokine responses in serum. CD4(+) and CD8(+) T lymphocyte populations were significantly expanded in spleens of A. phagocytophilum-infected Stat1 KO mice compared with wild-type mice. The leukocyte infiltrates in the livers and spleens of A. phagocytophilum-infected Stat1 KO mice also contained expansions in neutrophil and monocyte/macrophage populations. Importantly, A. phagocytophilum-infected Stat1 KO mice did not demonstrate induction of inducible NO synthase in splenocytes. These results show that Stat1 plays an important role in controlling bacterial loads but also by unexpectedly providing an undefined mechanism for dampening of the immunopathologic response observed with A. phagocytophilum infection.
Collapse
Affiliation(s)
- Kyoung-Seong Choi
- Department of Animal Biotechnology, College of Animal Science, Kyungpook National University, Sangju 742-711, Republic of Korea; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Diana G Scorpio
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts and Nevis, West Indies
| | - J Stephen Dumler
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; Department of Pathology, University of Maryland, Baltimore, MD 21201; and Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
141
|
Bsibsi M, Peferoen LAN, Holtman IR, Nacken PJ, Gerritsen WH, Witte ME, van Horssen J, Eggen BJL, van der Valk P, Amor S, van Noort JM. Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathol 2014; 128:215-29. [PMID: 24997049 DOI: 10.1007/s00401-014-1317-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 01/08/2023]
Abstract
Activated microglia and macrophages play a key role in driving demyelination during multiple sclerosis (MS), but the factors responsible for their activation remain poorly understood. Here, we present evidence for a dual-trigger role of IFN-γ and alpha B-crystallin (HSPB5) in this context. In MS-affected brain tissue, accumulation of the molecular chaperone HSPB5 by stressed oligodendrocytes is a frequent event. We have shown before that this triggers a TLR2-mediated protective response in surrounding microglia, the molecular signature of which is widespread in normal-appearing brain tissue during MS. Here, we show that IFN-γ, which can be released by infiltrated T cells, changes the protective response of microglia and macrophages to HSPB5 into a robust pro-inflammatory classical response. Exposure of cultured microglia and macrophages to IFN-γ abrogated subsequent IL-10 induction by HSPB5, and strongly promoted HSPB5-triggered release of TNF-α, IL-6, IL-12, IL-1β and reactive oxygen and nitrogen species. In addition, high levels of CXCL9, CXCL10, CXL11, several guanylate-binding proteins and the ubiquitin-like protein FAT10 were induced by combined activation with IFN-γ and HSPB5. As immunohistochemical markers for microglia and macrophages exposed to both IFN-γ and HSPB5, these latter factors were found to be selectively expressed in inflammatory infiltrates in areas of demyelination during MS. In contrast, they were absent from activated microglia in normal-appearing brain tissue. Together, our data suggest that inflammatory demyelination during MS is selectively associated with IFN-γ-induced re-programming of an otherwise protective response of microglia and macrophages to the endogenous TLR2 agonist HSPB5.
Collapse
Affiliation(s)
- Malika Bsibsi
- Delta Crystallon, Zernikedreef 9, 2333, CK Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Infantino V, Iacobazzi V, Menga A, Avantaggiati ML, Palmieri F. A key role of the mitochondrial citrate carrier (SLC25A1) in TNFα- and IFNγ-triggered inflammation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1217-1225. [PMID: 25072865 DOI: 10.1016/j.bbagrm.2014.07.013] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/02/2014] [Accepted: 07/18/2014] [Indexed: 12/20/2022]
Abstract
The chronic induction of inflammation underlies multiple pathological conditions, including metabolic, autoimmune disorders and cancer. The mitochondrial citrate carrier (CIC), encoded by the SLC25A1 gene, promotes the export of citrate from the mitochondria to the cytoplasm, a process that profoundly influences energy balance in the cells. We have previously shown that SLC25A1 is a target gene for lipopolysaccharide signaling and promotes the production of inflammatory mediators. We now demonstrate that SLC25A1 is induced at the transcriptional level by two key pro-inflammatory cytokines, tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ), and such induction involves the activity of the nuclear factor kappa B and STAT1 transcription factors. By studying the down-stream events following SLC25A1 activation during signals that mimic inflammation, we demonstrate that CIC is required for regulating the levels of nitric oxide and of prostaglandins by TNFα or IFNγ. Importantly, we show that the citrate exported from mitochondria via CIC and its downstream metabolic intermediate, acetyl-coenzyme A, are necessary for TNFα or IFNγ to induce nitric oxide and prostaglandin production. These findings provide the first line of evidence that the citrate export pathway, via CIC, is central for cytokine-induced inflammatory signals and shed new light on the relationship between energy metabolism and inflammation.
Collapse
Affiliation(s)
- Vittoria Infantino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy.,Department of Science, University of Basilicata, via N. Sauro 85, 85100 Potenza, Italy
| | - Vito Iacobazzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Alessio Menga
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Maria Laura Avantaggiati
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
143
|
Sikorski K, Chmielewski S, Olejnik A, Wesoly JZ, Heemann U, Baumann M, Bluyssen H. STAT1 as a central mediator of IFNγ and TLR4 signal integration in vascular dysfunction. JAKSTAT 2014; 1:241-9. [PMID: 24058779 PMCID: PMC3670280 DOI: 10.4161/jkst.22469] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is characterized by early endothelial dysfunction and altered vascular smooth muscle cells (VSMCs) contractility. The forming atheroma is a site of excessive production of cytokines and inflammatory ligands by various cell types that mediate inflammation and immune responses. Key factors contributing to early stages of plaque development are IFNγ and TLR4. This review provides insight in the differential STAT1-dependent signal integration between IFNγ and TLR4 signals in vascular cells and atheroma interacting immune cells. This results in increased leukocyte attraction and adhesion and VSMC proliferation and migration, which are important characteristics of EC dysfunction and early triggers of atherosclerosis.
Collapse
Affiliation(s)
- Krzysztof Sikorski
- Department of Human Molecular Genetics; Institute of Molecular Biology and Biotechnology; Faculty of Biology; Adam Mickiewicz University; Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
144
|
Lee SY, Yoon BY, Kim JI, Heo YM, Woo YJ, Park SH, Kim HY, Kim SI, Cho ML. Interleukin-17 increases the expression of Toll-like receptor 3 via the STAT3 pathway in rheumatoid arthritis fibroblast-like synoviocytes. Immunology 2014; 141:353-61. [PMID: 24708416 DOI: 10.1111/imm.12196] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 10/10/2013] [Accepted: 10/18/2013] [Indexed: 01/08/2023] Open
Abstract
We examined the effect of interleukin-17 (IL-17) on the expression of Toll-like receptors (TLRs) in fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) and osteoarthritis (OA). We investigated the region downstream of IL-17 for TLR expression. We also investigated the downstream signals responsible for the effect of IL-17 in TLR expression. Levels of IL-17 protein in the serum and synovial fluid of RA and OA patients were measured by ELISA. The IL-17 mRNA expression in peripheral blood mononuclear cells and synovial fluid mononuclear cells was measured by RT-PCR. RA and OA FLS were incubated with IL-17 and/or IL-23 for 24 hr. To block the signal transducer and activator of transcription 3 (STAT3) pathway, FLS were treated with S3I-201 before incubation with IL-17 and IL-23. Synovial tissue samples from RA and OA patients were stained with antibodies to IL-17, TLR2, TLR3, TLR4, STAT3 and phospho-STAT3. Levels of IL-17 protein were higher in the serum and synovial fluid from RA patients compared with those from OA patients. The IL-17 mRNA expression in synovial fluid monocytes was also higher in RA than in OA patients. Immunohistochemical staining showed greater expression of IL-17, TLR2, TLR3 and TLR4 in synovial samples from RA compared with OA patients. Interleukin-17 increased the expression of TLR2, TLR3 and TLR4 in RA FLS; IL-23 augmented the IL-17-induced expression of TLR2, TLR3 and TLR4 in RA FLS. Blocking STAT3 with S3I-201 reduced IL-17-induced TLR3 expression in RA FLS. Our results suggest that IL-17 is a major cytokine in pathogenesis on RA. The IL-17 influences the innate immune system by increasing the synovial expression of TLR2, TLR3 and TLR4. We may control TLR3 expression via the STAT3 pathway in RA FLS.
Collapse
Affiliation(s)
- Seon-Yeong Lee
- Rheumatism Research Centre, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Degboé Y, Fruchon S, Baron M, Nigon D, Turrin CO, Caminade AM, Poupot R, Cantagrel A, Davignon JL. Modulation of pro-inflammatory activation of monocytes and dendritic cells by aza-bis-phosphonate dendrimer as an experimental therapeutic agent. Arthritis Res Ther 2014; 16:R98. [PMID: 24745366 PMCID: PMC4060464 DOI: 10.1186/ar4546] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 04/01/2014] [Indexed: 12/16/2022] Open
Abstract
Introduction Our objective was to assess the capacity of dendrimer aza-bis-phosphonate (ABP) to modulate phenotype of monocytes (Mo) and monocytes derived dendritic cells (MoDC) activated in response to toll-like receptor 4 (TLR4) and interferon γ (IFN- γ) stimulation. Methods Mo (n = 12) and MoDC (n = 11) from peripheral blood of healthy donors were prepared. Cells were preincubated or not for 1 hour with dendrimer ABP, then incubated with lipopolysaccharide (LPS; as a TLR4 ligand) and (IFN-γ) for 38 hours. Secretion of tumor necrosis factor α (TNFα), interleukin (IL) -1, IL-6, IL-12, IL-10 and IL-23 in the culture medium was measured by enzyme-linked immunosorbent assay (ELISA) and Cytokine Bead Array. Differentiation and subsequent maturation of MoDC from nine donors in the presence of LPS were analyzed by flow cytometry using CD80, CD86, CD83 and CD1a surface expression as markers. Results Mo and MoDC were orientated to a pro-inflammatory state. In activated Mo, TNFα, IL-1β and IL-23 levels were significantly lower after prior incubation with dendrimer ABP. In activated MoDC, dendrimer ABP promoted IL-10 secretion while decreasing dramatically the level of IL-12. TNFα and IL-6 secretion were significantly lower in the presence of dendrimer ABP. LPS driven maturation of MoDC was impaired by dendrimer ABP treatment, as attested by the significantly lower expression of CD80 and CD86. Conclusion Our data indicate that dendrimer ABP possesses immunomodulatory properties on human Mo and MoDC, in TLR4 + IFN-γ stimulation model, by inducing M2 alternative activation of Mo and promoting tolerogenic MoDC.
Collapse
|
146
|
Sangphech N, Osborne BA, Palaga T. Notch signaling regulates the phosphorylation of Akt and survival of lipopolysaccharide-activated macrophages via regulator of G protein signaling 19 (RGS19). Immunobiology 2014; 219:653-60. [PMID: 24775271 DOI: 10.1016/j.imbio.2014.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/29/2014] [Accepted: 03/29/2014] [Indexed: 11/19/2022]
Abstract
Macrophages play critical roles in innate immune defense by sensing microbes using pattern-recognition receptors. Lipopolysaccharide (LPS) stimulates macrophages via TLR, which leads to activation of downstream signaling cascades. In this study, we investigated the roles of a conserved signaling pathway, Notch signaling, in regulating the downstream signaling cascades of the LPS/TLR4 pathways in macrophages. Using a phospho-proteomic approach and a gamma-secretase inhibitor (GSI) to suppress the processing and activation of Notch signaling, we identified regulator of G protein signaling 19 (RGS19) as a target protein whose phosphorylation was affected by GSI treatment. RGS19 is a guanosine triphosphatase (GTPase)-activating protein that functions to negatively regulate G protein-coupled receptors via Gαi/Gαq-linked signaling. Stimulation of RAW264.7 cells with LPS increased the level of the phosphorylated form of RGS19, while LPS stimulation in the presence of GSI decreased its level. GSI treatment did not alter the mRNA level of rgs19. Treatment with GSI or silencing of rgs19 in macrophages impaired the phosphorylation of Akt Thr(308) upon LPS stimulation. Furthermore, targeted deletion of a DNA-binding protein and binding partner of the Notch receptor, RBP-Jκ/CSL, in macrophages resulted in delayed and decreased Akt phosphorylation. Because the PI3K/Akt pathway regulates cell survival in various cell types, the cell cycle and cell death were assayed upon GSI treatment, phosphatidylinositol 3 kinase (PI3K) inhibitor treatment or silencing of rgs19. GSI treatment resulted in decreased cell populations in the G1 and S phases, while it increased the cell population of cell death. Similarly, silencing of rgs19 resulted in a decreased cell population in the G1 phase and an increased cell population in the subG1 phase. Inhibition of Akt phosphorylation by PI3K inhibitor in LPS-stimulated macrophages increased cell population in G1 phase, suggesting a possible cell cycle arrest. Taken together, these results indicate that Notch signaling positively regulates phosphorylation of Akt, possibly via phosphorylation of RGS19, and inhibition of both molecules affects the cell survival and cell cycle of macrophages upon LPS stimulation.
Collapse
Affiliation(s)
- Naunpun Sangphech
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Tanapat Palaga
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
147
|
Mossalayi MD, Rambert J, Renouf E, Micouleau M, Mérillon JM. Grape polyphenols and propolis mixture inhibits inflammatory mediator release from human leukocytes and reduces clinical scores in experimental arthritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:290-297. [PMID: 24055518 DOI: 10.1016/j.phymed.2013.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/01/2013] [Accepted: 08/09/2013] [Indexed: 06/02/2023]
Abstract
Polyphenols from red fruits and bee-derived propolis (PR) are bioactive natural products in various in vitro and in vivo models. The present study shows that hematotoxicity-free doses of grape polyphenols (GPE) and PR differentially decreased the secretion of pro-inflammatory cytokines from activated human peripheral blood leucocytes. While GPE inhibited the monocytes/macrophage response, propolis decreased both monokines and interferon γ (IFNγ) production. When used together, their distinct effects lead to the attenuation of all inflammatory mediators, as supported by a significant modulation of the transcriptomic profile of pro-inflammatory genes in human leukocytes. To enforce in vitro data, GPE+PR were tested for their ability to improve clinical scores and cachexia in chronic rat adjuvant-induced arthritis (AA). Extracts significantly reduced arthritis scores and cachexia, and this effect was more significant in animals receiving continuous low doses compared to those receiving five different high doses. Animals treated daily had significantly better clinical scores than corticoid-treated rats. Together, these findings indicate that the GPE+PR combination induces potent anti-inflammatory activity due to their complementary immune cell modulation.
Collapse
Affiliation(s)
- M D Mossalayi
- Univ. de Bordeaux, Laboratoire d'Immunologie, INSERM U1035, Faculté de Pharmacie, F-33076 Bordeaux, France
| | - J Rambert
- Univ. de Bordeaux, Laboratoire d'Immunologie, INSERM U1035, Faculté de Pharmacie, F-33076 Bordeaux, France
| | - E Renouf
- Univ. de Bordeaux, ISVV, Polyphénols Biotech, Groupe d'Etude des Substances Végétales à Activité Biologique, EA 3675, F-33140 Villenave d'Ornon, France
| | - M Micouleau
- Univ. de Bordeaux, ISVV, Polyphénols Biotech, Groupe d'Etude des Substances Végétales à Activité Biologique, EA 3675, F-33140 Villenave d'Ornon, France
| | - J M Mérillon
- Univ. de Bordeaux, ISVV, Polyphénols Biotech, Groupe d'Etude des Substances Végétales à Activité Biologique, EA 3675, F-33140 Villenave d'Ornon, France.
| |
Collapse
|
148
|
Ferreira AE, Sisti F, Sônego F, Wang S, Filgueiras LR, Brandt S, Serezani APM, Du H, Cunha FQ, Alves-Filho JC, Serezani CH. PPAR-γ/IL-10 axis inhibits MyD88 expression and ameliorates murine polymicrobial sepsis. THE JOURNAL OF IMMUNOLOGY 2014; 192:2357-65. [PMID: 24489087 DOI: 10.4049/jimmunol.1302375] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polymicrobial sepsis induces organ failure and is accompanied by overwhelming inflammatory response and impairment of microbial killing. Peroxisome proliferator-activated receptor (PPAR)-γ is a nuclear receptor with pleiotropic effects on lipid metabolism, inflammation, and cell proliferation. The insulin-sensitizing drugs thiazolidinediones (TZDs) are specific PPAR-γ agonists. TZDs exert anti-inflammatory actions in different disease models, including polymicrobial sepsis. The TZD pioglitazone, which has been approved by the U.S. Food and Drug Administration, improves sepsis outcome; however, the molecular programs that mediate its effect have not been determined. In a murine model of sepsis, we now show that pioglitazone treatment improves microbial clearance and enhances neutrophil recruitment to the site of infection. We also observed reduced proinflammatory cytokine production and high IL-10 levels in pioglitazone-treated mice. These effects were associated with a decrease in STAT-1-dependent expression of MyD88 in vivo and in vitro. IL-10R blockage abolished PPAR-γ-mediated inhibition of MyD88 expression. These data demonstrate that the primary mechanism by which pioglitazone protects against polymicrobial sepsis is through the impairment of MyD88 responses. This appears to represent a novel regulatory program. In this regard, pioglitazone provides advantages as a therapeutic tool, because it improves different aspects of host defense during sepsis, ultimately enhancing survival.
Collapse
Affiliation(s)
- Ana Elisa Ferreira
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Yang Y, Yang WS, Yu T, Yi YS, Park JG, Jeong D, Kim JH, Oh JS, Yoon K, Kim JH, Cho JY. Novel anti-inflammatory function of NSC95397 by the suppression of multiple kinases. Biochem Pharmacol 2014; 88:201-15. [PMID: 24468133 DOI: 10.1016/j.bcp.2014.01.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/11/2014] [Accepted: 01/16/2014] [Indexed: 12/11/2022]
Abstract
NSC95397 (2,3-bis-[(2-hydroxyethyl)thio]-1,4-naphthoquinone) is a CDC25 inhibitor with anti-cancer properties. Since the anti-inflammatory activity of this compound has not yet been explored, the aim of this study was to examine whether this compound is able to modulate the inflammatory process. Toll like receptor (TLR)-mediated inflammatory responses were induced by lipopolysaccharide (LPS), a TLR4 ligand, and pam3CSK, a TLR2 ligand, in peritoneal macrophages and RAW264.7. The molecular mechanism of NSC95397's anti-inflammatory activity was studied using immunoblotting analysis, nuclear fractionation, immunoprecipitation, overexpression strategies, luciferase reporter gene assays, and kinase assays. NSC95397 dose-dependently suppressed the production of nitric oxide (NO), tumor necrosis factor (TNF)-α, and prostaglandin (PG)E2, and diminished the mRNA expression of inflammatory genes such as inducible NO synthase (iNOS), cyclooxygenase (COX)-2, interferon (IFN)-β, and TNF-α in peritoneal macrophages and RAW264.7 cells that were stimulated by LPS and pam3CSK. This compound also clearly blocked the activation of NF-κB (p65), AP-1 (c-Fos/c-Jun), and IRF-3 in LPS-treated RAW264.7 cells and TRIF- and MyD88-overexpressing HEK293 cells. In addition, biochemical and molecular approaches revealed that this compound targeted AKT, IKKα/β, MKK7, and TBK1. Therefore, these results suggest that the anti-inflammatory function of NSC95397 can be attributed to its inhibition of multiple targets such as AKT, IKKα/β, MKK7, and TBK1.
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Woo Seok Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Tao Yu
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Young-Su Yi
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jae Gwang Park
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Deok Jeong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jeong Su Oh
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Keejung Yoon
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
150
|
Liang Y, Xu WD, Yang XK, Fang XY, Liu YY, Ni J, Qiu LJ, Hui P, Cen H, Leng RX, Pan HF, Ye DQ. Association of signaling transducers and activators of transcription 1 and systemic lupus erythematosus. Autoimmunity 2014; 47:141-5. [PMID: 24437638 DOI: 10.3109/08916934.2013.873415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Systemic lupus erythematosus (SLE) is complex autoimmune disease which involves various facets of the immune system. Signaling transducers and activators of transcription 1 (STAT1) belongs to the family of STAT transcription factors that mediate various biological responses. Recently, studies in both experimental animal models of lupus and patients with SLE have revealed expression and activation of STAT1 is closely associated with the pathogenesis of SLE. Moreover, increased production of interferons (IFNs) and aberrant activation of IFNs signaling, which is mechanistically linked to increased level of STAT1, are crucial for the development of SLE. Therefore, we will focus on the association of STAT1 and SLE based on recent understandings to render more information about the mechanisms of STAT1 might perform in. Hopefully, the information obtained will lead to a better understanding of the development and pathogenesis of systemic autoimmune diseases, as well as its clinical implications and therapeutic potential.
Collapse
Affiliation(s)
- Yan Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University , Hefei, Anhui , PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|