101
|
Davies BA, Norgan AP, Payne JA, Schulz ME, Nichols MD, Tan JA, Xu Z, Katzmann DJ. Vps4 stimulatory element of the cofactor Vta1 contacts the ATPase Vps4 α7 and α9 to stimulate ATP hydrolysis. J Biol Chem 2014; 289:28707-18. [PMID: 25164817 DOI: 10.1074/jbc.m114.580696] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The endosomal sorting complexes required for transport (ESCRTs) function in a variety of membrane remodeling processes including multivesicular body sorting, abscission during cytokinesis, budding of enveloped viruses, and repair of the plasma membrane. Vps4 ATPase activity modulates ESCRT function and is itself modulated by its cofactor Vta1 and its substrate ESCRT-III. The carboxyl-terminal Vta1/SBP-1/Lip5 (VSL) domain of Vta1 binds to the Vps4 β-domain to promote Vps4 oligomerization-dependent ATP hydrolysis. Additionally, the Vps4 stimulatory element (VSE) of Vta1 contributes to enhancing Vps4 oligomer ATP hydrolysis. The VSE is also required for Vta1-dependent stimulation of Vps4 by ESCRT-III subunits. However, the manner by which the Vta1 VSE contributes to Vps4 activation is unknown. Existing structural data were used to generate a model of the Vta1 VSE in complex with Vps4. This model implicated residues within the small ATPase associated with various activities (AAA) domain, specifically α-helices 7 and 9, as relevant contact sites. Rational generation of Vps4 mutants defective for VSE-mediated stimulation, as well as intergenic compensatory mutations, support the validity of this model. These findings have uncovered the Vps4 surface responsible for coordinating ESCRT-III-stimulated Vta1 input during ESCRT function and identified a novel mechanism of Vps4 stimulation.
Collapse
Affiliation(s)
- Brian A Davies
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Andrew P Norgan
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Johanna A Payne
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Mary E Schulz
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, the Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | - Micah D Nichols
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, Byron High School, Byron, Minnesota 55920, and
| | - Jason A Tan
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Zhaohui Xu
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - David J Katzmann
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905,
| |
Collapse
|
102
|
Cai Y, Zhuang X, Gao C, Wang X, Jiang L. The Arabidopsis Endosomal Sorting Complex Required for Transport III Regulates Internal Vesicle Formation of the Prevacuolar Compartment and Is Required for Plant Development. PLANT PHYSIOLOGY 2014; 165:1328-1343. [PMID: 24812106 PMCID: PMC4081340 DOI: 10.1104/pp.114.238378] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We have established an efficient transient expression system with several vacuolar reporters to study the roles of endosomal sorting complex required for transport (ESCRT)-III subunits in regulating the formation of intraluminal vesicles of prevacuolar compartments (PVCs)/multivesicular bodies (MVBs) in plant cells. By measuring the distributions of reporters on/within the membrane of PVC/MVB or tonoplast, we have identified dominant negative mutants of ESCRT-III subunits that affect membrane protein degradation from both secretory and endocytic pathways. In addition, induced expression of these mutants resulted in reduction in luminal vesicles of PVC/MVB, along with increased detection of membrane-attaching vesicles inside the PVC/MVB. Transgenic Arabidopsis (Arabidopsis thaliana) plants with induced expression of ESCRT-III dominant negative mutants also displayed severe cotyledon developmental defects with reduced cell size, loss of the central vacuole, and abnormal chloroplast development in mesophyll cells, pointing out an essential role of the ESCRT-III complex in postembryonic development in plants. Finally, membrane dissociation of ESCRT-III components is important for their biological functions and is regulated by direct interaction among Vacuolar Protein Sorting-Associated Protein20-1 (VPS20.1), Sucrose Nonfermenting7-1, VPS2.1, and the adenosine triphosphatase VPS4/SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1.
Collapse
Affiliation(s)
- Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., X.Z., C.G., X.W., L.J.); andChinese University of Hong Kong Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., X.Z., C.G., X.W., L.J.); andChinese University of Hong Kong Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Caiji Gao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., X.Z., C.G., X.W., L.J.); andChinese University of Hong Kong Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Xiangfeng Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., X.Z., C.G., X.W., L.J.); andChinese University of Hong Kong Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.C., X.Z., C.G., X.W., L.J.); andChinese University of Hong Kong Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| |
Collapse
|
103
|
Babst M. Quality control: quality control at the plasma membrane: one mechanism does not fit all. ACTA ACUST UNITED AC 2014; 205:11-20. [PMID: 24733583 PMCID: PMC3987138 DOI: 10.1083/jcb.201310113] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The plasma membrane quality control system of eukaryotic cells is able to recognize and degrade damaged cell surface proteins. Recent studies have identified two mechanisms involved in the recognition of unfolded transmembrane proteins. One system uses chaperones to detect unfolded cytoplasmic domains of transmembrane proteins, whereas the second mechanism relies on an internal quality control system of the protein, which can trigger degradation when the protein deviates from the folded state. Both quality control mechanisms are key to prevent proteotoxic effects at the cell surface and to ensure cell integrity.
Collapse
Affiliation(s)
- Markus Babst
- Department of Biology, Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
104
|
Calistri A, Munegato D, Carli I, Parolin C, Palù G. The ubiquitin-conjugating system: multiple roles in viral replication and infection. Cells 2014; 3:386-417. [PMID: 24805990 PMCID: PMC4092849 DOI: 10.3390/cells3020386] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/17/2022] Open
Abstract
Through the combined action of ubiquitinating and deubiquitinating enzymes, conjugation of ubiquitin to a target protein acts as a reversible post-translational modification functionally similar to phosphorylation. Indeed, ubiquitination is more and more recognized as a central process for the fine regulation of many cellular pathways. Due to their nature as obligate intracellular parasites, viruses rely on the most conserved host cell machineries for their own replication. Thus, it is not surprising that members from almost every viral family are challenged by ubiquitin mediated mechanisms in different steps of their life cycle and have evolved in order to by-pass or exploit the cellular ubiquitin conjugating system to maximize their chance to establish a successful infection. In this review we will present several examples of the complex interplay that links viruses and the ubiquitin conjugation machinery, with a special focus on the mechanisms evolved by the human immunodeficiency virus to escape from cellular restriction factors and to exit from infected cells.
Collapse
Affiliation(s)
- Arianna Calistri
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Denis Munegato
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Ilaria Carli
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, via Gabelli 63, Padova 35121, Italy.
| |
Collapse
|
105
|
Abstract
Enveloped viruses escape infected cells by budding through limiting membranes. In the decade since the discovery that HIV recruits cellular ESCRT (endosomal sorting complexes required for transport) machinery to facilitate viral budding, this pathway has emerged as the major escape route for enveloped viruses. In cells, the ESCRT pathway catalyzes analogous membrane fission events required for the abscission stage of cytokinesis and for a series of "reverse topology" vesiculation events. Studies of enveloped virus budding are therefore providing insights into the complex cellular mechanisms of cell division and membrane protein trafficking (and vice versa). Here, we review how viruses mimic cellular recruiting signals to usurp the ESCRT pathway, discuss mechanistic models for ESCRT pathway functions, and highlight important research frontiers.
Collapse
Affiliation(s)
- Jörg Votteler
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA
| | | |
Collapse
|
106
|
Aoyama N, Yamakawa T, Sasamura T, Yoshida Y, Ohori M, Okubo H, Iida E, Sasaki N, Ueda R, Matsuno K. Loss- and gain-of-function analyses of vacuolar protein sorting 2 in Notch signaling of Drosophila melanogaster. Genes Genet Syst 2014; 88:45-57. [PMID: 23676709 DOI: 10.1266/ggs.88.45] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Notch signaling is an evolutionarily conserved mechanism that controls many cell-fate specifications through local cell-cell interactions. The core mechanisms of Notch activation and its subsequent intracellular signaling are well understood. Various cellular functions are required for the activation and regulation of Notch signaling. Among them, the endocytosis of Notch and its ligands is important for the activation and suppression of Notch signaling. The endosomal sorting complex required for transport (ESCRT) proteins are required to sort ubiquitinated membrane proteins, such as Notch, into early endosomes. A loss-of-function allele of vacuolar protein sorting 2 (vps2), which encodes a component of ESCRT-III, has been reported. However, this vps2 mutant still produces the N-terminal half of the protein, and its phenotypes were studied in only a few organs. Here, we generated the first null mutant allele of Drosophila vps2, designated vps2², to better understand the function of this gene. In Drosophila wing imaginal discs homozygous for the vps2² allele, early endosomes and multivesicular bodies (MVBs) were enlarged, and Notch and Delta accumulated inside them. As reported for the previous vps2 mutant, the epithelium grew excessively under this condition. We further studied the roles of vps2 by RNA interference-knockdown. These experiments revealed that a partial reduction of vps2 attenuated Notch signaling; in contrast, the loss-of-function vps2 mutant is reported to up-regulate the Notch signaling in eye imaginal disc cells. These results suggest that Notch signaling can be up- or down-regulated, depending on the level of vps2 expression. Finally, we found that vps2 overexpression also resulted in early-endosome enlargement and the accumulation of Notch and Delta. In these cells, a portion of the Vps2 protein was detected in MVBs and colocalized with Notch. These data indicate that the expression of vps2 must be precisely regulated to maintain the normal structure of early endosomes.
Collapse
Affiliation(s)
- Naoki Aoyama
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki,Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Schuh AL, Audhya A. The ESCRT machinery: from the plasma membrane to endosomes and back again. Crit Rev Biochem Mol Biol 2014; 49:242-61. [PMID: 24456136 DOI: 10.3109/10409238.2014.881777] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The manipulation and reorganization of lipid bilayers are required for diverse cellular processes, ranging from organelle biogenesis to cytokinetic abscission, and often involves transient membrane disruption. A set of membrane-associated proteins collectively known as the endosomal sorting complex required for transport (ESCRT) machinery has been implicated in membrane scission steps, which transform a single, continuous bilayer into two distinct bilayers, while simultaneously segregating cargo throughout the process. Components of the ESCRT pathway, which include 5 distinct protein complexes and an array of accessory factors, each serve discrete functions. This review focuses on the molecular mechanisms by which the ESCRT proteins facilitate cargo sequestration and membrane remodeling and highlights their unique roles in cellular homeostasis.
Collapse
Affiliation(s)
- Amber L Schuh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health , Madison, WI , USA
| | | |
Collapse
|
108
|
Piper RC, Dikic I, Lukacs GL. Ubiquitin-dependent sorting in endocytosis. Cold Spring Harb Perspect Biol 2014; 6:6/1/a016808. [PMID: 24384571 DOI: 10.1101/cshperspect.a016808] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
When ubiquitin (Ub) is attached to membrane proteins on the plasma membrane, it directs them through a series of sorting steps that culminate in their delivery to the lumen of the lysosome where they undergo complete proteolysis. Ubiquitin is recognized by a series of complexes that operate at a number of vesicle transport steps. Ubiquitin serves as a sorting signal for internalization at the plasma membrane and is the major signal for incorporation into intraluminal vesicles of multivesicular late endosomes. The sorting machineries that catalyze these steps can bind Ub via a variety of Ub-binding domains. At the same time, many of these complexes are themselves ubiquitinated, thus providing a plethora of potential mechanisms to regulate their activity. Here we provide an overview of how membrane proteins are selected for ubiquitination and deubiquitination within the endocytic pathway and how that ubiquitin signal is interpreted by endocytic sorting machineries.
Collapse
Affiliation(s)
- Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242
| | | | | |
Collapse
|
109
|
Korbei B, Moulinier-Anzola J, De-Araujo L, Lucyshyn D, Retzer K, Khan MA, Luschnig C. Arabidopsis TOL proteins act as gatekeepers for vacuolar sorting of PIN2 plasma membrane protein. Curr Biol 2013; 23:2500-5. [PMID: 24316203 DOI: 10.1016/j.cub.2013.10.036] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/20/2013] [Accepted: 10/15/2013] [Indexed: 01/25/2023]
Abstract
Controlling variations in plasma membrane (PM) protein abundance is of utmost importance for development in higher plants. For modulating PM protein activity, endocytosed proteins can be either cycled between PM and endosomes or sorted for their irreversible inactivation to lysosomes/vacuoles. Cargo ubiquitination triggers vacuolar delivery for degradation, which is controlled by Endosomal Sorting Complex Required for Transport (ESCRT). Essential parts of this machinery are conserved across kingdoms, but determinants liable for initial recognition and concentration of ubiquitinated cargo have not been identified in plants. Here, we describe members of an Arabidopsis TOL (TOM1-LIKE) family as ubiquitin binding proteins that act redundantly in control of plant morphogenesis. Specifically, tol mutant combinations exhibit defects that reflect alterations in responses mediated by the phytohormone auxin. Consistently, we provide evidence for a role of TOLs in recognition and further endocytic sorting of a PIN-FORMED (PIN)-type auxin carrier protein at the PM, modulating dynamic auxin distribution and associated growth responses. Such TOL-dependent vacuolar sorting depends on cargo ubiquitination and coincides with dynamic rearrangements in TOL distribution. Collectively, these findings lead us to suggest a function for TOLs early in the passage of endocytosed ubiquitinated PM cargo, acting as gatekeepers for degradative protein sorting to the vacuole.
Collapse
Affiliation(s)
- Barbara Korbei
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria.
| | - Jeanette Moulinier-Anzola
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria
| | - Lucinda De-Araujo
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria
| | - Doris Lucyshyn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria
| | - Katarzyna Retzer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria
| | - Muhammad A Khan
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria.
| |
Collapse
|
110
|
Nakamura N. Ubiquitination regulates the morphogenesis and function of sperm organelles. Cells 2013; 2:732-50. [PMID: 24709878 PMCID: PMC3972651 DOI: 10.3390/cells2040732] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/12/2013] [Accepted: 11/29/2013] [Indexed: 11/29/2022] Open
Abstract
It is now understood that protein ubiquitination has diverse cellular functions in eukaryotes. The molecular mechanism and physiological significance of ubiquitin-mediated processes have been extensively studied in yeast, Drosophila and mammalian somatic cells. Moreover, an increasing number of studies have emphasized the importance of ubiquitination in spermatogenesis and fertilization. The dysfunction of various ubiquitin systems results in impaired sperm development with abnormal organelle morphology and function, which in turn is highly associated with male infertility. This review will focus on the emerging roles of ubiquitination in biogenesis, function and stability of sperm organelles in mammals.
Collapse
Affiliation(s)
- Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
111
|
Mageswaran SK, Dixon MG, Curtiss M, Keener JP, Babst M. Binding to any ESCRT can mediate ubiquitin-independent cargo sorting. Traffic 2013; 15:212-29. [PMID: 24148098 DOI: 10.1111/tra.12135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/18/2013] [Accepted: 10/18/2013] [Indexed: 11/28/2022]
Abstract
The ESCRT (endosomal sorting complex required for transport) machinery is known to sort ubiquitinated transmembrane proteins into vesicles that bud into the lumen of multivesicular bodies (MVBs). Although the ESCRTs themselves are ubiquitinated they are excluded from the intraluminal vesicles and recycle back to the cytoplasm for further rounds of sorting. To obtain insights into the rules that distinguish ESCRT machinery from cargo we analyzed the trafficking of artificial ESCRT-like protein fusions. These studies showed that lowering ESCRT-binding affinity converts a protein from behaving like ESCRT machinery into cargo of the MVB pathway, highlighting the close relationship between machinery and the cargoes they sort. Furthermore, our findings give insights into the targeting of soluble proteins into the MVB pathway and show that binding to any of the ESCRTs can mediate ubiquitin-independent MVB sorting.
Collapse
Affiliation(s)
- Shrawan Kumar Mageswaran
- Center for Cell and Genome Science and Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | | | | | | | | |
Collapse
|
112
|
Luttge BG, Panchal P, Puri V, Checkley MA, Freed EO. Mutations in the feline immunodeficiency virus envelope glycoprotein confer resistance to a dominant-negative fragment of Tsg101 by enhancing infectivity and cell-to-cell virus transmission. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1143-52. [PMID: 24036228 DOI: 10.1016/j.bbamem.2013.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 08/04/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
The Pro-Ser-Ala-Pro (PSAP) motif in the p2 domain of feline immunodeficiency virus (FIV) Gag is required for efficient virus release, virus replication, and Gag binding to the ubiquitin-E2-variant (UEV) domain of Tsg101. As a result of this direct interaction, expression of an N-terminal fragment of Tsg101 containing the UEV domain (referred to as TSG-5') inhibits FIV release. In these respects, the FIV p2(Gag) PSAP motif is analogous to the PTAP motif of HIV-1 p6(Gag). To evaluate the feasibility of a late domain-targeted inhibition of virus replication, we created an enriched Crandell-Rees feline kidney (CRFK) cell line (T5'(hi)) that stably expresses high levels of TSG-5'. Here we show that mutations in either the V3 loop or the second heptad repeat (HR2) domain of the FIV envelope glycoprotein (Env) rescue FIV replication in T5'(hi) cells without increasing FIV release efficiency. TSG-5'-resistance mutations in Env enhance virion infectivity and the cell-cell spread of FIV when diffusion is limited using a semi-solid growth medium. These findings show that mutations in functional domains of Env confer TSG-5'-resistance, which we propose enhances specific infectivity and the cell-cell transmission of virus to counteract inefficient virus release. This article is part of a Special Issue entitled: Viral Membrane Proteins-Channels for Cellular Networking.
Collapse
Affiliation(s)
- Benjamin G Luttge
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Prashant Panchal
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Vinita Puri
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Mary Ann Checkley
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
113
|
Wang H, Li S, Li H, Li C, Guan K, Luo G, Yu L, Wu R, Zhang X, Wang J, Zhou J. SGEF enhances EGFR stability through delayed EGFR trafficking from early to late endosomes. Carcinogenesis 2013; 34:1976-1983. [DOI: doi.org/10.1093/carcin/bgt157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023] Open
|
114
|
Wang H, Li S, Li H, Li C, Guan K, Luo G, Yu L, Wu R, Zhang X, Wang J, Zhou J. SGEF enhances EGFR stability through delayed EGFR trafficking from early to late endosomes. Carcinogenesis 2013; 34:1976-1983. [PMID: 23661635 DOI: 10.1093/carcin/bgt157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Previously, we demonstrated an elevated SH3-containing guanine nucleotide exchange factor (SGEF) expression in clinical specimens with prostate cancer and implicated the role of SGEF in prostate tumorigenesis. However, the molecular mechanism behind the SGEF regulation of prostate cancer development is not known. In this study, we show that SGEF expression delays epidermal growth factor receptor (EGFR) degradation in prostate cancer cells and is independent from its guanine nucleotide exchange factor (GEF) function. We further show that the delayed degradation is due to a delay in EGFR trafficking from early to late endosomes and not to a decrease in EGFR ubiquitination. Finally, we show that depletion of SGEF significantly inhibits epidermal growth factor-induced EGFR signaling cascade and cell migration in the prostate cancer cells. We report for the first time an SGEF function for RhoG that excludes GEF and the ability of SGEF to enhance EGFR stability and signaling by delaying its lysosomal sorting and degradation. This could be one mechanism by which SGEF contributes to prostate cancer progression.
Collapse
Affiliation(s)
- Hongtao Wang
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, 27 Taiping Road, Haidian, Beijing 100850, China and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Sette P, Nagashima K, Piper RC, Bouamr F. Ubiquitin conjugation to Gag is essential for ESCRT-mediated HIV-1 budding. Retrovirology 2013; 10:79. [PMID: 23895345 PMCID: PMC3751857 DOI: 10.1186/1742-4690-10-79] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/24/2013] [Indexed: 01/05/2023] Open
Abstract
Background HIV-1 relies on the host ESCRTs for release from cells. HIV-1 Gag engages ESCRTs by directly binding TSG101 or Alix. ESCRTs also sort ubiquitinated membrane proteins through endosomes to facilitate their lysosomal degradation. The ability of ESCRTs to recognize and process ubiquitinated proteins suggests that ESCRT-dependent viral release may also be controlled by ubiquitination. Although both Gag and ESCRTs undergo some level of ubiquitination, definitive demonstration that ubiquitin is required for viral release is lacking. Here we suppress ubiquitination at viral budding sites by fusing the catalytic domain of the Herpes Simplex UL36 deubiquitinating enzyme (DUb) onto TSG101, Alix, or Gag. Results Expressing DUb-TSG101 suppressed Alix-independent HIV-1 release and viral particles remained tethered to the cell surface. DUb-TSG101 had no effect on budding of MoMLV or EIAV, two retroviruses that rely on the ESCRT machinery for exit. Alix-dependent virus release such as EIAV’s, and HIV-1 lacking access to TSG101, was instead dramatically blocked by co-expressing DUb-Alix. Finally, Gag-DUb was unable to support virus release and dominantly interfered with release of wild type HIV-1. Fusion of UL36 did not effect interactions with Alix, TSG101, or Gag and all of the inhibitory effects of UL36 fusion were abolished when its catalytic activity was ablated. Accordingly, Alix, TSG101 and Gag fused to inactive UL36 functionally replaced their unfused counterparts. Interestingly, coexpression of the Nedd4-2s ubiquitin ligase suppressed the ability of DUb-TSG101 to inhibit HIV-1 release while also restoring detectable Gag ubiquitination at the membrane. Similarly, incorporation of Gag-Ub fusion proteins into virions lifted DUb-ESCRT inhibitory effect. In contrast, Nedd4-2s did not suppress the inhibition mediated by Gag-DUb despite restoring robust ubiquitination of TSG101/ESCRT-I at virus budding sites. Conclusions These studies demonstrate a necessary and natural role for ubiquitin in ESCRT-dependent viral release and indicate a critical role for ubiquitination of Gag rather than ubiquitination of ESCRTs themselves.
Collapse
Affiliation(s)
- Paola Sette
- Viral Budding Unit, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Dr, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
116
|
Norgan AP, Davies BA, Azmi IF, Schroeder AS, Payne JA, Lynch GM, Xu Z, Katzmann DJ. Relief of autoinhibition enhances Vta1 activation of Vps4 via the Vps4 stimulatory element. J Biol Chem 2013; 288:26147-26156. [PMID: 23880759 DOI: 10.1074/jbc.m113.494112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The endosomal sorting complexes required for transport (ESCRTs) impact multiple cellular processes including multivesicular body sorting, abscission, and viral budding. The AAA-ATPase Vps4 is required for ESCRT function, and its full activity is dependent upon the co-factor Vta1. The Vta1 carboxyl-terminal Vta1 SBP1 Lip5 (VSL) domain stimulates Vps4 function by facilitating oligomerization of Vps4 into its active state. Here we report the identification of the Vps4 stimulatory element (VSE) within Vta1 that is required for additional stimulation of Vps4 activity in vitro and in vivo. VSE activity is autoinhibited in a manner dependent upon the unstructured linker region joining the amino-terminal microtubule interacting and trafficking domains and the carboxyl-terminal VSL domain. The VSE is also required for Vta1-mediated Vps4 stimulation by ESCRT-III subunits Vps60 and Did2. These results suggest that ESCRT-III binding to the Vta1 microtubule interacting and trafficking domains relieves linker region autoinhibition of the VSE to produce maximal activation of Vps4 during ESCRT function.
Collapse
Affiliation(s)
- Andrew P Norgan
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Brian A Davies
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Ishara F Azmi
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Andreas S Schroeder
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Johanna A Payne
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Gregory M Lynch
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905,; Becker Middle School, Becker, Minnesota 55308, and
| | - Zhaohui Xu
- the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - David J Katzmann
- From the Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| |
Collapse
|
117
|
Pashkova N, Gakhar L, Winistorfer SC, Sunshine AB, Rich M, Dunham MJ, Yu L, Piper RC. The yeast Alix homolog Bro1 functions as a ubiquitin receptor for protein sorting into multivesicular endosomes. Dev Cell 2013; 25:520-33. [PMID: 23726974 DOI: 10.1016/j.devcel.2013.04.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/08/2013] [Accepted: 04/09/2013] [Indexed: 12/23/2022]
Abstract
Sorting of ubiquitinated membrane proteins into lumenal vesicles of multivesicular bodies is mediated by the Endosomal Sorting Complex Required for Transport (ESCRT) apparatus and accessory proteins such as Bro1, which recruits the deubiquitinating enzyme Doa4 to remove ubiquitin from cargo. Here we propose that Bro1 works as a receptor for the selective sorting of ubiquitinated cargoes. We found synthetic genetic interactions between BRO1 and ESCRT-0, suggesting that Bro1 functions similarly to ESCRT-0. Multiple structural approaches demonstrated that Bro1 binds ubiquitin via the N-terminal trihelical arm of its middle V domain. Mutants of Bro1 that lack the ability to bind Ub were dramatically impaired in their ability to sort Ub-cargo membrane proteins, but only when combined with hypomorphic alleles of ESCRT-0. These data suggest that Bro1 and other Bro1 family members function in parallel with ESCRT-0 to recognize and sort Ub-cargoes.
Collapse
Affiliation(s)
- Natasha Pashkova
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Agromayor M, Martin-Serrano J. Knowing when to cut and run: mechanisms that control cytokinetic abscission. Trends Cell Biol 2013; 23:433-41. [PMID: 23706391 DOI: 10.1016/j.tcb.2013.04.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/07/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
Abscission, the final step of cytokinesis, mediates the severing of the membrane tether, or midbody, that connects two daughter cells. It is now recognized that abscission is a complex process requiring tight spatiotemporal regulation of its machinery to ensure equal chromosome segregation and cytoplasm content distribution between daughter cells. Failure to coordinate these events results in genetic damage. Here, we review recent evidence suggesting that proper abscission timing is coordinated by cytoskeletal rearrangements and recruitment of regulators of the Endosomal Sorting Complex Required for Transport (ESCRT) machinery such as CEP55 and MIT-domain-containing protein 1 (MITD1) to the abscission site. Additionally, we discuss the surveillance mechanism known as the Aurora B-mediated abscission checkpoint (NoCut), which prevents genetic damage by ensuring proper abscission delay when chromatin is trapped at the midbody.
Collapse
Affiliation(s)
- Monica Agromayor
- Department of Infectious Diseases, King's College London School of Medicine, London SE1 9RT, UK
| | | |
Collapse
|
119
|
Haglund K, Dikic I. The role of ubiquitylation in receptor endocytosis and endosomal sorting. J Cell Sci 2013; 125:265-75. [PMID: 22357968 DOI: 10.1242/jcs.091280] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ligand-induced activation of transmembrane receptors activates intracellular signaling cascades that control vital cellular processes, such as cell proliferation, differentiation, migration and survival. Receptor signaling is modulated by several mechanisms to ensure that the correct biological outcome is achieved. One such mechanism, which negatively regulates receptor signaling, involves the modification of receptors with ubiquitin. This post-translational modification can promote receptor endocytosis and targets receptors for lysosomal degradation, thereby ensuring termination of receptor signaling. In this Commentary, we review the roles of ubiquitylation in receptor endocytosis and degradative endosomal sorting by drawing on the epidermal growth factor receptor (EGFR) as a well-studied example. Furthermore, we elaborate on the molecular basis of ubiquitin recognition along the endocytic pathway through compartment-specific ubiquitin-binding proteins and highlight how endocytic sorting machineries control these processes. In addition, we discuss the importance of ubiquitin-dependent receptor endocytosis for the maintenance of cellular homeostasis and in the prevention of diseases such as cancer.
Collapse
Affiliation(s)
- Kaisa Haglund
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0310 Oslo, Norway.
| | | |
Collapse
|
120
|
Abstract
The endosomal sorting complexes required for transport (ESCRT) pathway was initially defined in yeast genetic screens that identified the factors necessary to sort membrane proteins into intraluminal endosomal vesicles. Subsequent studies have revealed that the mammalian ESCRT pathway also functions in a series of other key cellular processes, including formation of extracellular microvesicles, enveloped virus budding, and the abscission stage of cytokinesis. The core ESCRT machinery comprises Bro1 family proteins and ESCRT-I, ESCRT-II, ESCRT-III, and VPS4 complexes. Site-specific adaptors recruit these soluble factors to assemble on different cellular membranes, where they carry out membrane fission reactions. ESCRT-III proteins form filaments that draw membranes together from the cytoplasmic face, and mechanistic models have been advanced to explain how ESCRT-III filaments and the VPS4 ATPase can work together to catalyze membrane fission.
Collapse
Affiliation(s)
- John McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650, USA
| | | | | |
Collapse
|
121
|
Ali N, Zhang L, Taylor S, Mironov A, Urbé S, Woodman P. Recruitment of UBPY and ESCRT exchange drive HD-PTP-dependent sorting of EGFR to the MVB. Curr Biol 2013; 23:453-61. [PMID: 23477725 DOI: 10.1016/j.cub.2013.02.033] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/04/2013] [Accepted: 02/14/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sorting ubiquitinated epidermal growth factor receptor (EGFR) to the intralumenal vesicles of the multivesicular body requires the coordinated action of several ESCRT complexes. A central question is how EGFR transits vectorially from early, ubiquitin-binding ESCRTs to the final complex, ESCRT-III, such that cargo sequestration is coupled with intralumenal vesicle formation. RESULTS We show that the ESCRT accessory protein HD-PTP/PTPN23 associates with EGFR and combines with the deubiquitinating enzyme UBPY/USP8 to transfer EGFR from ESCRT-0 to ESCRT-III and drive EGFR sorting to intralumenal vesicles. HD-PTP binds ESCRT-0 via two interactions with the STAM2 subunit. First, the HD-PTP Bro1 domain binds the core domain of STAM2. This is competed by the ESCRT-III subunit CHMP4B, which binds an overlapping site on HD-PTP Bro1. Second, a proline-rich peptide in HD-PTP binds the SH3 domain of STAM2. Similar proline-rich peptides on UBPY also bind STAM2 SH3 to facilitate EGFR deubiquitination. Hence, locally recruited UBPY would be expected to compete with HD-PTP for STAM2 binding at this second site. Indeed, we show that HD-PTP recruits UBPY to EGFR. Association of UBPY with HD-PTP involves UBPY interacting with HD-PTP-bound CHMP4B, as well as additional interaction(s) between UBPY and HD-PTP. CONCLUSIONS This study identifies HD-PTP as a central coordinator of the ESCRT pathway for EGFR. Based on these studies, we propose a model whereby the concerted recruitment of CHMP4B and UBPY to HD-PTP and the engagement of UBPY by STAM2 displaces ESCRT-0 from HD-PTP, deubiquitinates EGFR, and releases ESCRT-0 from cargo in favor of ESCRT-III.
Collapse
Affiliation(s)
- Nazim Ali
- University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
122
|
Ramaseshadri P, Segers G, Flannagan R, Wiggins E, Clinton W, Ilagan O, McNulty B, Clark T, Bolognesi R. Physiological and cellular responses caused by RNAi- mediated suppression of Snf7 orthologue in western corn rootworm (Diabrotica virgifera virgifera) larvae. PLoS One 2013; 8:e54270. [PMID: 23349844 PMCID: PMC3548817 DOI: 10.1371/journal.pone.0054270] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/11/2012] [Indexed: 11/19/2022] Open
Abstract
Ingestion of double stranded RNA (dsRNA) has been previously demonstrated to be effective in triggering RNA interference (RNAi) in western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte), providing potential novel opportunities for insect pest control. The putative Snf7 homolog of WCR (DvSnf7) has previously been shown to be an effective RNAi target for insect control, as DvSnf7 RNAi leads to lethality of WCR larvae. Snf7 functions as a part of the ESCRT (Endosomal Sorting Complex Required for Transport) pathway which plays a crucial role in cellular housekeeping by internalization, transport, sorting and lysosomal degradation of transmembrane proteins. To understand the effects that lead to death of WCR larvae by DvSnf7 RNAi, we examined some of the distinct cellular processes associated with ESCRT functions such as de-ubiquitination of proteins and autophagy. Our data indicate that ubiquitinated proteins accumulate in DvSnf7 dsRNA-fed larval tissues and that the autophagy process seems to be impaired. These findings suggest that the malfunctioning of these cellular processes in both midgut and fat body tissues triggered by DvSnf7 RNAi were the main effects leading to the death of WCR. This study also illustrates that Snf7 is an essential gene in WCR and its functions are consistent with biological functions described for other eukaryotes.
Collapse
Affiliation(s)
| | - Gerrit Segers
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| | - Ronald Flannagan
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| | - Elizabeth Wiggins
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| | - William Clinton
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| | - Oliver Ilagan
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| | - Brian McNulty
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| | - Thomas Clark
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| | - Renata Bolognesi
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| |
Collapse
|
123
|
Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes? EMBO J 2013; 32:552-65. [PMID: 23314748 DOI: 10.1038/emboj.2012.354] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/18/2012] [Indexed: 02/08/2023] Open
Abstract
Although cellular proteins conjugated to K48-linked Ub chains are targeted to proteasomes, proteins conjugated to K63-ubiquitin chains are directed to lysosomes. However, pure 26S proteasomes bind and degrade K48- and K63-ubiquitinated substrates similarly. Therefore, we investigated why K63-ubiquitinated proteins are not degraded by proteasomes. We show that mammalian cells contain soluble factors that selectively bind to K63 chains and inhibit or prevent their association with proteasomes. Using ubiquitinated proteins as affinity ligands, we found that the main cellular proteins that associate selectively with K63 chains and block their binding to proteasomes are ESCRT0 (Endosomal Sorting Complex Required for Transport) and its components, STAM and Hrs. In vivo, knockdown of ESCRT0 confirmed that it is required to block binding of K63-ubiquitinated molecules to the proteasome. In addition, the Rad23 proteins, especially hHR23B, were found to bind specifically to K48-ubiquitinated proteins and to stimulate proteasome binding. The specificities of these proteins for K48- or K63-ubiquitin chains determine whether a ubiquitinated protein is targeted for proteasomal degradation or delivered instead to the endosomal-lysosomal pathway.
Collapse
|
124
|
Tian M, Xie Q. Non-26S proteasome proteolytic role of ubiquitin in plant endocytosis and endosomal trafficking(F). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:54-63. [PMID: 23137267 DOI: 10.1111/jipb.12007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The 76 amino acid protein ubiquitin (Ub) is highly conserved in all eukaryotic species. It plays important roles in many cellular processes by covalently attaching to the target proteins. The best known function of Ub is marking substrate proteins for degradation by the 26S proteasome. In fact, other consequences of ubiquitination have been discovered in yeast and mammals, such as membrane trafficking, DNA repair, chromatin modification, and protein kinase activation. The common mechanism underlying these processes is that Ub serves as a signal to sort proteins to the vacuoles or lysosomes for degradation as opposed to 26S proteasome-dependent degradation. To date, several reports have indicated that a similar function of Ub also exists in plants. This review focuses on a summary and analysis of the recent research progress on Ub acting as a signal to mediate endocytosis and endosomal trafficking in plants.
Collapse
Affiliation(s)
- Miaomiao Tian
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
125
|
Abstract
The diversity of ubiquitin (Ub)-dependent signaling is attributed to the ability of this small protein to form different types of covalently linked polyUb chains and to the existence of Ub binding proteins that interpret this molecular syntax. We used affinity capture/mass spectrometry to identify ALIX, a component of the ESCRT pathway, as a Ub binding protein. We report that the V domain of ALIX binds directly and selectively to K63-linked polyUb chains, exhibiting a strong preference for chains composed of more than three Ub. Sequence analysis identified two potential Ub binding sites on a single α-helical surface within the coiled-coil region of the V domain. Mutation of these putative Ub binding sites inhibited polyUb binding to the isolated V domain in vitro and impaired budding of lentiviruses. These data reveal an important role for K63 polyUb binding by ALIX in retroviral release.
Collapse
|
126
|
Abstract
Arenaviruses are a family of enveloped negative-stranded RNA viruses that can cause severe human disease ranging from encephalitis symptoms to fulminant hemorrhagic fever. The bi‑segmented RNA genome encodes four polypeptides: the nucleoprotein NP, the surface glycoprotein GP, the polymerase L, and the RING finger protein Z. Although it is the smallest arenavirus protein with a length of 90 to 99 amino acids and a molecular weight of approx. 11 kDa, the Z protein has multiple functions in the viral life cycle including (i) regulation of viral RNA synthesis, (ii) orchestration of viral assembly and budding, (iii) interaction with host cell proteins, and (iv) interferon antagonism. In this review, we summarize our current understanding of the structural and functional role of the Z protein in the arenavirus replication cycle.
Collapse
Affiliation(s)
- Sarah Katharina Fehling
- Institut für Virologie der Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany.
| | | | | |
Collapse
|
127
|
Tsg101 interacts with herpes simplex virus 1 VP1/2 and is a substrate of VP1/2 ubiquitin-specific protease domain activity. J Virol 2012; 87:692-6. [PMID: 23077308 DOI: 10.1128/jvi.01969-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ubiquitination/deubiquitination of key factors represent crucial steps in the biogenesis of multivesicular body (MVB) and sorting of transmembrane proteins. We and others previously demonstrated that MVB is involved in herpes simplex virus 1 (HSV-1) envelopment and budding. Here, we report that the HSV-1 large tegument protein, VP1/2, interacts with and regulates the ubiquitination of Tsg101, a cellular protein essential in MVB formation, thus identifying the first cellular substrate of a herpesviral deubiquitinating enzyme.
Collapse
|
128
|
Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, Dong L, Feng D, Goetz B, Arya P, Bailey TA, Palermo N, Borgstahl GEO, Natarajan A, Raja SM, Naramura M, Band V, Band H. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:122-39. [PMID: 23085373 DOI: 10.1016/j.bbamcr.2012.10.010] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 12/20/2022]
Abstract
Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell-cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant "activated PTK-selective" ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, Dong L, Feng D, Goetz B, Arya P, Bailey TA, Palermo N, Borgstahl GEO, Natarajan A, Raja SM, Naramura M, Band V, Band H. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. BIOCHIMICA ET BIOPHYSICA ACTA 2012. [PMID: 23085373 DOI: 10.1016/j.bbamcr] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell-cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant "activated PTK-selective" ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Koumanov F, Pereira VJ, Whitley PR, Holman GD. GLUT4 traffic through an ESCRT-III-dependent sorting compartment in adipocytes. PLoS One 2012; 7:e44141. [PMID: 23049745 PMCID: PMC3458039 DOI: 10.1371/journal.pone.0044141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/30/2012] [Indexed: 12/16/2022] Open
Abstract
In insulin target tissues, GLUT4 is known to traffic through multiple compartments that may involve ubiquitin- and/or SUMO-dependent targeting. During these trafficking steps, GLUT4 is sorted into a storage reservoir compartment that is acutely released by insulin signalling processes that are downstream of PI 3-kinase associated changes in inositol phospholipids. As ESCRT components have recently been found to influence cellular sorting processes that are related to changes in both ubiquitination and inositol phospholipids, we have examined whether GLUT4 traffic is routed through ESCRT dependent sorting steps. Introduction of the dominant negative inhibitory constructs of the ESCRT-III components CHMP3 (CHMP3(1–179)) and Vps4 (GFP-Vps4E235Q) into rat adipocytes leads to the accumulation of GLUT4 in large, coalesced and extended vesicles structures that co-localise with the inhibitory constructs over large parts of the extended structure. A new swollen hybrid and extensively ubiquitinated compartment is produced in which GLUT4 co-localises more extensively with the endosomal markers including EEA1 and transferrin receptors but also with the TGN marker syntaxin6. These perturbations are associated with failure of insulin action on GLUT4 traffic to the cell surface and suggest impairment in an ESCRT-dependent sorting step used for GLUT4 traffic to its specialised reservoir compartment.
Collapse
Affiliation(s)
- Françoise Koumanov
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom.
| | | | | | | |
Collapse
|
131
|
Henry A, Hislop J, Grove J, Thorn K, Marsh M, von Zastrow M. Regulation of endocytic clathrin dynamics by cargo ubiquitination. Dev Cell 2012; 23:519-32. [PMID: 22940114 PMCID: PMC3470869 DOI: 10.1016/j.devcel.2012.08.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/21/2012] [Accepted: 08/04/2012] [Indexed: 12/21/2022]
Abstract
VIDEO ABSTRACT Some endocytic cargoes control clathrin-coated pit (CCP) maturation, but it is not known how such regulation is communicated. We found that μ-opioid neuropeptide receptors signal to their enclosing CCPs by ubiquitination. Nonubiquitinated receptors delay CCPs at an intermediate stage of maturation, after clathrin lattice assembly is complete but before membrane scission. Receptor ubiquitination relieves this inhibition, effectively triggering CCP scission and producing a receptor-containing endocytic vesicle. The ubiquitin modification that conveys this endocytosis-promoting signal is added to the receptor's first cytoplasmic loop, catalyzed by the Smurf2 ubiquitin ligase, and coordinated with activation-dependent receptor phosphorylation and clustering through Smurf2 recruitment by the endocytic adaptor beta-arrestin. Epsin1 detects the signal at the CCP and is required for ubiquitin-promoted scission. This cargo-to-coat communication system mediates a biochemical checkpoint that ensures appropriate receptor ubiquitination for later trafficking, and it controls specific receptor loading into CCPs by sensing when a sufficient quorum is reached.
Collapse
Affiliation(s)
- Anastasia G. Henry
- Program in Cell Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James N. Hislop
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joe Grove
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Kurt Thorn
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Mark von Zastrow
- Program in Cell Biology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
132
|
Ubiquitin-mediated regulation of endocytosis by proteins of the arrestin family. Biochem Res Int 2012; 2012:242764. [PMID: 22988512 PMCID: PMC3439951 DOI: 10.1155/2012/242764] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/28/2012] [Indexed: 02/08/2023] Open
Abstract
In metazoans, proteins of the arrestin family are key players of G-protein-coupled receptors (GPCRS) signaling and trafficking. Following stimulation, activated receptors are phosphorylated, thus allowing the binding of arrestins and hence an “arrest” of receptor signaling. Arrestins act by uncoupling receptors from G proteins and contribute to the recruitment of endocytic proteins, such as clathrin, to direct receptor trafficking into the endocytic pathway. Arrestins also serve as adaptor proteins by promoting the recruitment of ubiquitin ligases and participate in the agonist-induced ubiquitylation of receptors, known to have impact on their subcellular localization and stability. Recently, the arrestin family has expanded following the discovery of arrestin-related proteins in other eukaryotes such as yeasts or fungi. Surprisingly, most of these proteins are also involved in the ubiquitylation and endocytosis of plasma membrane proteins, thus suggesting that the role of arrestins as ubiquitin ligase adaptors is at the core of these proteins' functions. Importantly, arrestins are themselves ubiquitylated, and this modification is crucial for their function. In this paper, we discuss recent data on the intricate connections between arrestins and the ubiquitin pathway in the control of endocytosis.
Collapse
|
133
|
Duncan R, Richardson SCW. Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges. Mol Pharm 2012; 9:2380-402. [PMID: 22844998 DOI: 10.1021/mp300293n] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
More than 40 nanomedicines are already in routine clinical use with a growing number following in preclinical and clinical development. The therapeutic objectives are often enhanced disease-specific targeting (with simultaneously reduced access to sites of toxicity) and, especially in the case of macromolecular biotech drugs, improving access to intracellular pharmacological target receptors. Successful navigation of the endocytic pathways is usually a prerequisite to achieve these goals. Thus a comprehensive understanding of endocytosis and intracellular trafficking pathways in both the target and bystander normal cell type(s) is essential to enable optimal nanomedicine design. It is becoming evident that endocytic pathways can become disregulated in disease and this, together with the potential changes induced during exposure to the nanocarrier itself, has the potential to significantly impact nanomedicine performance in terms of safety and efficacy. Here we overview the endomembrane trafficking pathways, discuss the methods used to determine and quantitate the intracellular fate of nanomedicines, and review the current status of lysosomotropic and endosomotropic delivery. Based on the lessons learned during more than 3 decades of clinical development, the need to use endocytosis-relevant clinical biomarkers to better select those patients most likely to benefit from nanomedicine therapy is also discussed.
Collapse
Affiliation(s)
- Ruth Duncan
- School of Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK.
| | | |
Collapse
|
134
|
Cargo ubiquitination is essential for multivesicular body intralumenal vesicle formation. EMBO Rep 2012; 13:331-8. [PMID: 22370727 DOI: 10.1038/embor.2012.18] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/27/2011] [Accepted: 01/18/2012] [Indexed: 11/08/2022] Open
Abstract
The efficient formation of a variety of transport vesicles is influenced by the presence of cargo, suggesting that cargo itself might have a defining role in vesicle biogenesis. However, definitive in vivo experiments supporting this concept are lacking, as it is difficult to eliminate endogenous cargo. The Endosomal Sorting Complexes Required for Transport (ESCRT) apparatus sorts ubiquitinated membrane proteins into endosomal intralumenal vesicles (ILVs) that accumulate within multivesicular bodies. Here we show that cargo ubiquitination is required for effective recruitment of the ESCRT machinery onto endosomal membranes and for the subsequent formation of ILVs.
Collapse
|
135
|
Abstract
Clathrin is considered the prototype vesicle coat protein whose self-assembly mediates sorting of membrane cargo and recruitment of lipid modifiers. Detailed knowledge of clathrin biochemistry, structure, and interacting proteins has accumulated since the first observation, almost 50 years ago, of its role in receptor-mediated endocytosis of yolk protein. This review summarizes that knowledge, and focuses on properties of the clathrin heavy and light chain subunits and interaction of the latter with Hip proteins, to address the diversity of clathrin function beyond conventional receptor-mediated endocytosis. The distinct functions of the two human clathrin isoforms (CHC17 and CHC22) are discussed, highlighting CHC22's specialized involvement in traffic of the GLUT4 glucose transporter and consequent role in human glucose metabolism. Analysis of clathrin light chain function and interaction with the actin-binding Hip proteins during bacterial infection defines a novel actin-organizing function for CHC17 clathrin. By considering these diverse clathrin functions, along with intracellular sorting roles and influences on mitosis, further relevance of clathrin function to human health and disease is established.
Collapse
Affiliation(s)
- Frances M Brodsky
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143-0552, USA.
| |
Collapse
|
136
|
Pashkova N, Piper RC. UBAP1: a new ESCRT member joins the cl_Ub. Structure 2012; 20:383-5. [PMID: 22404994 DOI: 10.1016/j.str.2012.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The ESCRTs play multiple roles within the cell, including degradation of ubiquitinated membrane proteins by sorting them into multivesicular bodies (MVBs). Two recent studies provide structural and functional insights into how the newly identified ESCRT-I component UBAP1 dedicates ESCRT-I function for sorting ubiquitinated proteins at the MVB (Agromayor et al., 2012 [this issue of Structure]; Stefani et al., 2011).
Collapse
Affiliation(s)
- Natasha Pashkova
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
137
|
Agromayor M, Soler N, Caballe A, Kueck T, Freund SM, Allen MD, Bycroft M, Perisic O, Ye Y, McDonald B, Scheel H, Hofmann K, Neil SJD, Martin-Serrano J, Williams RL. The UBAP1 subunit of ESCRT-I interacts with ubiquitin via a SOUBA domain. Structure 2012; 20:414-28. [PMID: 22405001 PMCID: PMC3314968 DOI: 10.1016/j.str.2011.12.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 12/13/2011] [Accepted: 12/30/2011] [Indexed: 11/23/2022]
Abstract
The endosomal sorting complexes required for transport (ESCRTs) facilitate endosomal sorting of ubiquitinated cargo, MVB biogenesis, late stages of cytokinesis, and retroviral budding. Here we show that ubiquitin associated protein 1 (UBAP1), a subunit of human ESCRT-I, coassembles in a stable 1:1:1:1 complex with Vps23/TSG101, VPS28, and VPS37. The X-ray crystal structure of the C-terminal region of UBAP1 reveals a domain that we describe as a solenoid of overlapping UBAs (SOUBA). NMR analysis shows that each of the three rigidly arranged overlapping UBAs making up the SOUBA interact with ubiquitin. We demonstrate that UBAP1-containing ESCRT-I is essential for degradation of antiviral cell-surface proteins, such as tetherin (BST-2/CD317), by viral countermeasures, namely, the HIV-1 accessory protein Vpu and the Kaposi sarcoma-associated herpesvirus (KSHV) ubiquitin ligase K5.
Collapse
Affiliation(s)
- Monica Agromayor
- Department of Infectious Diseases, King's College London School of Medicine, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Boura E, Ivanov V, Carlson LA, Mizuuchi K, Hurley JH. Endosomal sorting complex required for transport (ESCRT) complexes induce phase-separated microdomains in supported lipid bilayers. J Biol Chem 2012; 287:28144-51. [PMID: 22718754 DOI: 10.1074/jbc.m112.378646] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) system traffics ubiquitinated cargo to lysosomes via an unusual membrane budding reaction that is directed away from the cytosol. Here, we show that human ESCRT-II self-assembles into clusters of 10-100 molecules on supported lipid bilayers. The ESCRT-II clusters are functional in that they bind to ubiquitin and the ESCRT-III subunit VPS20 at nanomolar concentrations on membranes with the same stoichiometries observed in solution and in crystals. The clusters only form when cholesterol is included in the lipid mixture at >10 mol %. The clusters induce the formation of ordered membrane domains that exclude the dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbo-cyanine perchlorate. These results show that ESCRT complexes are capable of inducing lateral lipid phase separation under conditions where the lipids themselves do not spontaneously phase-separate. This property could facilitate ESCRT-mediated membrane budding.
Collapse
Affiliation(s)
- Evzen Boura
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
139
|
Abstract
From the moment of cotranslational insertion into the lipid bilayer of the endoplasmic reticulum (ER), newly synthesized integral membrane proteins are subject to a complex series of sorting, trafficking, quality control, and quality maintenance systems. Many of these processes are intimately controlled by ubiquitination, a posttranslational modification that directs trafficking decisions related to both the biosynthetic delivery of proteins to the plasma membrane (PM) via the secretory pathway and the removal of proteins from the PM via the endocytic pathway. Ubiquitin modification of integral membrane proteins (or "cargoes") generally acts as a sorting signal, which is recognized, captured, and delivered to a specific cellular destination via specialized trafficking events. By affecting the quality, quantity, and localization of integral membrane proteins in the cell, defects in these processes contribute to human diseases, including cystic fibrosis, circulatory diseases, and various neuropathies. This review summarizes our current understanding of how ubiquitin modification influences cargo trafficking, with a special emphasis on mechanisms of quality control and quality maintenance in the secretory and endocytic pathways.
Collapse
Affiliation(s)
- Jason A MacGurn
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
140
|
MacDonald C, Stringer DK, Piper RC. Sna3 is an Rsp5 adaptor protein that relies on ubiquitination for its MVB sorting. Traffic 2012; 13:586-98. [PMID: 22212814 DOI: 10.1111/j.1600-0854.2011.01326.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/27/2011] [Accepted: 12/29/2011] [Indexed: 01/24/2023]
Abstract
The process in which ubiquitin (Ub) conjugation is required for trafficking of integral membrane proteins into multivesicular bodies (MVBs) and eventual degradation in the lumen of lysosomes/vacuoles is well defined. However, Ub-independent pathways into MVBs are less understood. To better understand this process, we have further characterized the membrane protein Sna3, the prototypical Ub-independent cargo protein sorted through the MVB pathway in yeast. We show that Sna3 trafficking to the vacuole is critically dependent on Rsp5 ligase activity and ubiquitination. We find Sna3 undergoes Ub-dependent MVB sorting by either becoming ubiquitinated itself or associating with other ubiquitinated membrane protein substrates. In addition, our functional studies support a role for Sna3 as an adaptor protein that recruits Rsp5 to cargo such as the methionine transporter Mup1, resulting in efficient Mup1 delivery to the vacuole.
Collapse
Affiliation(s)
- Chris MacDonald
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52246, USA
| | | | | |
Collapse
|
141
|
Richardson LG, Mullen RT. Meta-analysis of the expression profiles of the Arabidopsis ESCRT machinery. PLANT SIGNALING & BEHAVIOR 2011; 6:1897-903. [PMID: 22105035 PMCID: PMC3337174 DOI: 10.4161/psb.6.12.18023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) machinery is a set of multi-protein complexes that are well conserved among all eukaryotes and mediate a remarkable array of cellular processes including late endosome/multivesicular body (MVB) formation, retroviral particle release, and membrane abscission during cytokinesis. While the molecular mechanisms underlying ESCRT function have been relatively well characterized in yeasts and mammals, far less is known about ESCRT in plants. In this study, we utilized publicly-available microarray, massively parallel signature sequencing (MPSS) and proteome data sets in order to survey the expression profiles of many of the components of the Arabidopsis thaliana ESCRT machinery. Overall, the results indicate that ESCRT expression in Arabidopsis is highly dynamic across a wide range of organs, tissues and treatments, consistent with the complex interplay that likely exists between the spatial and temporal regulation of the ESCRT machinery and the diverse array of roles that ESCRT participates in during plant growth and development.
Collapse
|
142
|
Hurley JH. Nipped in the bud: how the AMSH MIT domain helps deubiquitinate lysosome-bound cargo. Structure 2011; 19:1033-5. [PMID: 21827939 DOI: 10.1016/j.str.2011.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Recruitment of the K63-linkage specific deubiquitinating enzyme AMSH is an important step in ESCRT-dependent membrane protein sorting. In this issue of Structure, Solomons et al. now reveal an extraordinarily high affinity complex between the "MIM4" region of one ESCRT-III subunit, CHMP3, and the MIT domain of AMSH.
Collapse
Affiliation(s)
- James H Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
143
|
Piper RC, Lehner PJ. Endosomal transport via ubiquitination. Trends Cell Biol 2011; 21:647-55. [PMID: 21955996 DOI: 10.1016/j.tcb.2011.08.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/23/2011] [Accepted: 08/31/2011] [Indexed: 12/21/2022]
Abstract
Cell survival, growth, differentiation and homeostasis rely on exquisite control of the abundance of particular cell-surface membrane proteins. Cell-surface proteins must respond appropriately to environmental and intracellular cues, often undergoing regulated internalization and lysosomal degradation. These proteins also can sustain damage and must be recognized and removed. A unifying mechanism has emerged for the trafficking of damaged and downregulated proteins to the lysosome by their attachment to ubiquitin (Ub), which serves as a sorting signal for clathrin-mediated internalization and sorting into late endosomes. Major questions remain as to how this system is governed, how it is adapted for different proteins, and whether Ub serves as more than a one-way ticket to the lysosome for degradation. Here, we highlight recent insights and the challenges that remain.
Collapse
Affiliation(s)
- Robert C Piper
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|