101
|
Kurumaji A, Umino M, Nishikawa T. Effects of novelty stress on hippocampal gene expression, corticosterone and motor activity in mice. Neurosci Res 2011; 71:161-7. [DOI: 10.1016/j.neures.2011.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/09/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
|
102
|
Airway response to acute mechanical stress in a human bronchial model of stretch. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:R208. [PMID: 21914176 PMCID: PMC3334752 DOI: 10.1186/cc10443] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 08/11/2011] [Accepted: 09/13/2011] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Lung inflation may have deleterious effects on the alveoli during mechanical ventilation. However, the consequences of stretch during excessive lung inflation on basal tone and responsiveness of human bronchi are unknown. This study was undertaken to devise an experimental model of acute mechanical stretch in isolated human bronchi and to investigate its effect on airway tone and responsiveness. METHODS Bronchi were removed from 48 thoracic surgery patients. After preparation and equilibration in an organ bath, bronchial rings were stretched for 5 min using a force (2.5 × basal tone) that corresponded to airway-inflation pressure > 30 cm H₂O. The consequences of stretch were examined by using functional experiments, analysis of organ-bath fluid, and ribonucleic acid (RNA) isolation from tissue samples. RESULTS Following removal of the applied force the airways immediately developed an increase in basal tone (P < 0.0001 vs. paired controls) that was sustained and it did so without significantly increasing responsiveness to acetylcholine. The spontaneous tone was abolished with a Rho-kinase inhibitor and epithelium removal, a leukotriene antagonist or nitric oxide synthase inhibitors reduced it, whereas indomethacin, sensory nerve inhibitors or antagonists for muscarinic, endothelin and histamine receptors had no effect. Stretch enhanced leukotriene-E4 production during the immediate spontaneous contraction of human bronchi (P < 0.05). Moreover, stretch up-regulated the early mRNA expression of genes involved in wingless-type mouse mammary tumor virus integration-site family (WNT)-signaling and Rho-kinase pathways. CONCLUSIONS Stretching human bronchi for only 5 min induces epithelial leukotriene release via nitric oxide synthase activation and provokes a myogenic response dependent on Rho-kinase and WNT-signaling pathways. From a clinical perspective, these findings highlight the response of human airway to acute mechanical stress during excessive pulmonary inflation.
Collapse
|
103
|
A soluble factor from Trypanosoma cruzi inhibits transforming growth factor-ß-induced MAP kinase activation and gene expression in dermal fibroblasts. PLoS One 2011; 6:e23482. [PMID: 21931601 PMCID: PMC3169535 DOI: 10.1371/journal.pone.0023482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/18/2011] [Indexed: 02/04/2023] Open
Abstract
The protozoan parasite Trypanosoma cruzi, which causes human Chagas' disease, exerts a variety of effects on host extracellular matrix (ECM) including proteolytic degradation of collagens and dampening of ECM gene expression. Exposure of primary human dermal fibroblasts to live infective T. cruzi trypomastigotes or their shed/secreted products results in a rapid down-regulation of the fibrogenic genes collagenIα1, fibronectin and connective tissue growth factor (CTGF/CCN2). Here we demonstrate the ability of a secreted/released T. cruzi factor to antagonize ctgf/ccn2 expression in dermal fibroblasts in response to TGF-ß, lysophosphatidic acid or serum, where agonist-induced phosphorylation of the mitogen-activated protein (MAP) kinases Erk1/2, p38 and JNK was also inhibited. Global analysis of gene expression in dermal fibroblasts identified a discrete subset of TGF-ß-inducible genes involved in cell proliferation, wound repair, and immune regulation that are inhibited by T. cruzi secreted/released factors, where the genes exhibiting the highest sensitivity to T. cruzi are known to be regulated by MAP kinase-activated transcription factors. Consistent with this observation, the Ets-family transcription factor binding site in the proximal promoter region of the ctgf/ccn2 gene (−91 bp to −84 bp) was shown to be required for T. cruzi-mediated down-regulation of ctgf/ccn2 reporter expression. The cumulative data suggest a model in which T. cruzi-derived molecules secreted/released early in the infective process dampen MAP kinase signaling and the activation of transcription factors that regulate expression of fibroblast genes involved in wound repair and tissue remodelling, including ctgf/ccn2. These findings have broader implications for local modulation of ECM synthesis/remodelling by T. cruzi during the early establishment of infection in the mammalian host and highlight the potential for pathogen-derived molecules to be exploited as tools to modulate the fibrogenic response.
Collapse
|
104
|
Hillman NH, Nitsos I, Berry C, Pillow JJ, Kallapur SG, Jobe AH. Positive end-expiratory pressure and surfactant decrease lung injury during initiation of ventilation in fetal sheep. Am J Physiol Lung Cell Mol Physiol 2011; 301:L712-20. [PMID: 21856815 DOI: 10.1152/ajplung.00157.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The initiation of ventilation in preterm, surfactant-deficient sheep without positive end-expiratory pressure (PEEP) causes airway injury and lung inflammation. We hypothesized that PEEP and surfactant treatment would decrease the lung injury from initiation of ventilation with high tidal volumes. Fetal sheep at 128-day gestational age were randomized to ventilation with: 1) no PEEP, no surfactant; 2) 8-cmH(2)O PEEP, no surfactant; 3) no PEEP + surfactant; 4) 8-cmH(2)O PEEP + surfactant; or 5) control (2-cmH(2)O continuous positive airway pressure) (n = 6-7/group). After maternal anesthesia and hysterotomy, the head and chest were exteriorized, and the fetus was intubated. While maintaining placental circulation, the fetus was ventilated for 15 min with a tidal volume escalating to 15 ml/kg using heated, humidified, 100% nitrogen. The fetus then was returned to the uterus, and tissue was collected after 30 min for evaluation of early markers of lung injury. Lambs receiving both surfactant and PEEP had increased dynamic compliance, increased static lung volumes, and decreased total protein and heat shock proteins 70 and 60 in bronchoalveolar lavage fluid compared with other groups. Ventilation, independent of PEEP or surfactant, increased mRNA expression of acute phase response genes and proinflammatory cytokine mRNA in the lung tissue compared with controls. PEEP decreased mRNA for cytokines (2-fold) compared with groups receiving no PEEP. Surfactant administration further decreased some cytokine mRNAs and changed the distribution of early growth response protein-1 expression. The use of PEEP during initiation of ventilation at birth decreased early mediators of lung injury. Surfactant administration changed the distribution of injury and had a moderate additive protective effect.
Collapse
Affiliation(s)
- Noah H Hillman
- Cincinnati Children's Hospital Medical Center, Division of Pulmonary Biology, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA.
| | | | | | | | | | | |
Collapse
|
105
|
Xiao LW, Yang M, Dong J, Xie H, Sui GL, He YL, Lei JX, Liao EY, Yuan X. Stretch-inducible expression of connective tissue growth factor (CTGF) in human osteoblasts-like cells is mediated by PI3K-JNK pathway. Cell Physiol Biochem 2011; 28:297-304. [PMID: 21865737 DOI: 10.1159/000331743] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2011] [Indexed: 11/19/2022] Open
Abstract
To explore the possible role for connective tissue growth factor (CTGF) during tooth movement, we evaluated CTGF gene and protein expression in MG-63 cells subjected to cyclic stretch. Cyclic stretch caused a time-dependent increase in CTGF mRNA and protein levels.Inhibition of p38 MAP kinase or ERK activation did not affect cyclic stretch-induced CTGF expression. Specific inhibitors of PI3K suppressed stretch -induced CTGF expression in a time-dependent manner. cyclic stretch activated JNK and ERK, but not p38 MAP kinase in osteoblast-like cells. PI3K inhibitors suppressed cyclic stretch-induced JNK, but not p38 MAP kinase activation. Finally, SP600125, a Specific Inhibitor of JNK, suppressed stretch -induced CTGF Expression. These results suggest that stretch-induced CTGF expression is mediated through the PI3K-JNK -dependent pathway, not by p38 MAP kinase and ERK pathways.
Collapse
Affiliation(s)
- Li-Wei Xiao
- Stomatological Center, the Second Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Connective tissue growth factor modulates podocyte actin cytoskeleton and extracellular matrix synthesis and is induced in podocytes upon injury. Histochem Cell Biol 2011; 136:301-19. [DOI: 10.1007/s00418-011-0844-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2011] [Indexed: 12/19/2022]
|
107
|
Lau LF. CCN1/CYR61: the very model of a modern matricellular protein. Cell Mol Life Sci 2011; 68:3149-63. [PMID: 21805345 DOI: 10.1007/s00018-011-0778-3] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 02/08/2023]
Abstract
CCN1 (CYR61) is a dynamically expressed, multifunctional matricellular protein that plays essential roles in cardiovascular development during embryogenesis, and regulates inflammation, wound healing and fibrogenesis in the adult. Aberrant CCN1 expression is associated with myriad pathologies, including various cancers and diseases associated with chronic inflammation. CCN1 promotes diverse and sometimes opposing cellular responses, which can be ascribed, as least in part, to disparate activities mediated through its direct binding to distinct integrins in different cell types and contexts. Accordingly, CCN1 promotes cell proliferation, survival and angiogenesis by binding to integrin α(v)β(3), and induces apoptosis and senescence through integrin α(6)β(1) and heparan sulfate proteoglycans. The ability of CCN1 to trigger the accumulation of a robust and sustained level of reactive oxygen species underlies some of its unique activities as a matrix cell-adhesion molecule. Emerging studies suggest that CCN1 might be useful as a biomarker or therapeutic target in certain diseases.
Collapse
Affiliation(s)
- Lester F Lau
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, 900 S. Ashland Avenue, Chicago, IL 60607, USA.
| |
Collapse
|
108
|
Miyake Y, Furumatsu T, Kubota S, Kawata K, Ozaki T, Takigawa M. Mechanical stretch increases CCN2/CTGF expression in anterior cruciate ligament-derived cells. Biochem Biophys Res Commun 2011; 409:247-52. [DOI: 10.1016/j.bbrc.2011.04.138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 04/28/2011] [Indexed: 01/13/2023]
|
109
|
Aguiar DP, Coelho-Aguiar JM, Abreu JG. CCN2/CTGF silencing blocks cell aggregation in embryonal carcinoma P19 cell. Braz J Med Biol Res 2011; 44:200-5. [PMID: 21344133 DOI: 10.1590/s0100-879x2011007500019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 01/03/2011] [Indexed: 11/21/2022] Open
Abstract
Connective tissue growth factor (CCN2/CTGF) is a matricellular-secreted protein involved in extracellular matrix remodeling. The P19 cell line is an embryonic carcinoma line widely used as a cellular model for differentiation and migration studies. In the present study, we employed an exogenous source of CCN2 and small interference RNA to address the role of CCN2 in the P19 cell aggregation phenomenon. Our data showed that increasing CCN2 protein concentrations from 0.1 to 20 nM decreased the number of cell clusters and dramatically increased cluster size without changing proliferation or cell survival, suggesting that CCN2 induced aggregation. In addition, CCN2 specific silencing inhibited typical P19 cell aggregation, which could be partially rescued by 20 nM CCN2. The present study demonstrates that CCN2 is a key molecule for cell aggregation of embryonic P19 cells.
Collapse
Affiliation(s)
- D P Aguiar
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brasil
| | | | | |
Collapse
|
110
|
Dubiel EA, Martin Y, Vermette P. Bridging the Gap Between Physicochemistry and Interpretation Prevalent in Cell−Surface Interactions. Chem Rev 2011; 111:2900-36. [DOI: 10.1021/cr9002598] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Evan A. Dubiel
- Laboratoire de bio-ingénierie et de biophysique de l’Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Québec, Canada J1K 2R1
- Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, Québec, Canada J1H 4C4
| | - Yves Martin
- Laboratoire de bio-ingénierie et de biophysique de l’Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Québec, Canada J1K 2R1
- Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, Québec, Canada J1H 4C4
| | - Patrick Vermette
- Laboratoire de bio-ingénierie et de biophysique de l’Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Québec, Canada J1K 2R1
- Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, Québec, Canada J1H 4C4
| |
Collapse
|
111
|
Fujinaka H, Katsuyama K, Yamamoto K, Nameta M, Yoshida Y, Yaoita E, Tomizawa S, Yamamoto T. Expression and localization of insulin-like growth factor binding proteins in normal and proteinuric kidney glomeruli. Nephrology (Carlton) 2011; 15:700-9. [PMID: 21040165 DOI: 10.1111/j.1440-1797.2010.01285.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Insulin-like growth factor I (IGF-I) acts on target cells in an endocrine and/or local manner through the IGF-I receptor (IGF-IR), and its actions are modulated by multiple IGF binding proteins (IGFBP). To elucidate the roles of local IGFBP in kidney glomeruli, the expression and localization of their genes were examined and compared with normal and proteinuric kidney glomeruli. METHODS A cDNA microarray database (MAd-761) was constructed using human kidney glomeruli and cortices. The gene expression levels of IGF-I, IGF-1R and IGFBP (1-10) were examined in glomeruli and cortices by polymerase chain reaction (PCR) and in situ hybridization (ISH), and the expression levels of IGFBP that were abundantly found in the glomerulus were compared between normal and proteinuric kidneys in rats and humans. RESULTS IGFBP-2, -7 and -8 were demonstrated to be abundantly and preferentially expressed in the glomerulus. In PCR, the expression levels of the IGFBP-2, -7, -8 and -10 genes in glomeruli were shown to have more than doubled compared with their levels in the cortices. In ISH, the IGFBP-2, -7, -8 and -10 genes were found to be localized in glomerular cells including podocytes, and their increased expression was observed in inflammatory glomeruli. IGF-I gene expression was localized in glomerular podocytes, whereas the IGF-IR gene was expressed in glomerular podocytes and cortical tubular cells. In nephrotic rats, the expression of the IGFBP-10 gene was increased in glomerular podocytes; however, the expression levels of IGFBP-2, -7 and -8 did not change. CONCLUSION IGFBP-2, -7, -8 and -10 are produced by normal and injured glomerular podocytes and may regulate local IGF-I actions in podocytes and/or cortical tubular cells in the kidney.
Collapse
Affiliation(s)
- Hidehiko Fujinaka
- Institute for Clinical Research, Niigata National Hospital, Kashiwazaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Snyder EM, Small CL, Bomgardner D, Xu B, Evanoff R, Griswold MD, Hinton BT. Gene expression in the efferent ducts, epididymis, and vas deferens during embryonic development of the mouse. Dev Dyn 2011; 239:2479-91. [PMID: 20652947 DOI: 10.1002/dvdy.22378] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The tissues of the male reproductive tract are characterized by distinct morphologies, from highly coiled to un-coiled. Global gene expression profiles of efferent ducts, epididymis, and vas deferens were generated from embryonic day 14.5 to postnatal day 1 as tissue-specific morphologies emerge. Expression of homeobox genes, potential mediators of tissue-specific morphological development, was assessed. Twenty homeobox genes were identified as either tissue-enriched, developmentally regulated, or both. Additionally, ontology analysis demonstrated cell adhesion to be highly regulated along the length of the reproductive tract. Regulators of cell adhesion with variable expression between the three tissues were identified including Alcam, various cadherins, and multiple integrins. Immunofluorescence localization of the cell adhesion regulators POSTN and CDH2 demonstrated cell adhesion in the epithelium and mesenchyme of the epididymis may change throughout development. These results suggest cell adhesion may be modulated in a tissue-specific manner, playing an important role in establishing each tissue's final morphology.
Collapse
Affiliation(s)
- Elizabeth M Snyder
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.
| | | | | | | | | | | | | |
Collapse
|
113
|
Hasan A, Pokeza N, Shaw L, Lee HS, Lazzaro D, Chintala H, Rosenbaum D, Grant MB, Chaqour B. The matricellular protein cysteine-rich protein 61 (CCN1/Cyr61) enhances physiological adaptation of retinal vessels and reduces pathological neovascularization associated with ischemic retinopathy. J Biol Chem 2011; 286:9542-54. [PMID: 21212276 DOI: 10.1074/jbc.m110.198689] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Retinal vascular damages are the cardinal hallmarks of retinopathy of prematurity (ROP), a leading cause of vision impairment and blindness in childhood. Both angiogenesis and vasculogenesis are disrupted in the hyperoxia-induced vaso-obliteration phase, and recapitulated, although aberrantly, in the subsequent ischemia-induced neovessel formation phase of ROP. Yet, whereas the histopathological features of ROP are well characterized, many key modulators with a therapeutic potential remain unknown. The CCN1 protein also known as cysteine-rich protein 61 (Cyr61) is a dynamically expressed, matricellular protein required for proper angiogenesis and vasculogenesis during development. The expression of CCN1 becomes abnormally reduced during the hyperoxic and ischemic phases of ROP modeled in the mouse eye with oxygen-induced retinopathy (OIR). Lentivirus-mediated re-expression of CCN1 enhanced physiological adaptation of the retinal vasculature to hyperoxia and reduced pathological angiogenesis following ischemia. Remarkably, injection into the vitreous of OIR mice of hematopoietic stem cells (HSCs) engineered to express CCN1 harnessed ischemia-induced neovessel outgrowth without adversely affecting the physiological adaptation of retinal vessels to hyperoxia. In vitro exposure of HSCs to recombinant CCN1 induced integrin-dependent cell adhesion, migration, and expression of specific endothelial cell markers as well as many components of the Wnt signaling pathway including Wnt ligands, their receptors, inhibitors, and downstream targets. CCN1-induced Wnt signaling mediated, at least in part, adhesion and endothelial differentiation of cultured HSCs, and inhibition of Wnt signaling interfered with normalization of the retinal vasculature induced by CCN1-primed HSCs in OIR mice. These newly identified functions of CCN1 suggest its possible therapeutic utility in ischemic retinopathy.
Collapse
Affiliation(s)
- Adeel Hasan
- Department of Cell Biology, Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Xu Y, Wagner DR, Bekerman E, Chiou M, James AW, Carter D, Longaker MT. Connective tissue growth factor in regulation of RhoA mediated cytoskeletal tension associated osteogenesis of mouse adipose-derived stromal cells. PLoS One 2010; 5:e11279. [PMID: 20585662 PMCID: PMC2890586 DOI: 10.1371/journal.pone.0011279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 06/03/2010] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Cytoskeletal tension is an intracellular mechanism through which cells convert a mechanical signal into a biochemical response, including production of cytokines and activation of various signaling pathways. METHODS/PRINCIPAL FINDINGS Adipose-derived stromal cells (ASCs) were allowed to spread into large cells by seeding them at a low-density (1,250 cells/cm(2)), which was observed to induce osteogenesis. Conversely, ASCs seeded at a high-density (25,000 cells/cm(2)) featured small cells that promoted adipogenesis. RhoA and actin filaments were altered by changes in cell size. Blocking actin polymerization by Cytochalasin D influenced cytoskeletal tension and differentiation of ASCs. To understand the potential regulatory mechanisms leading to actin cytoskeletal tension, cDNA microarray was performed on large and small ASCs. Connective tissue growth factor (CTGF) was identified as a major regulator of osteogenesis associated with RhoA mediated cytoskeletal tension. Subsequently, knock-down of CTGF by siRNA in ASCs inhibited this osteogenesis. CONCLUSIONS/SIGNIFICANCE We conclude that CTGF is important in the regulation of cytoskeletal tension mediated ASC osteogenic differentiation.
Collapse
Affiliation(s)
- Yue Xu
- Hagey Pediatric Regenerative Medicine Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Diane R. Wagner
- Hagey Pediatric Regenerative Medicine Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Biomechanical Engineering Division, Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
- Bioengineering Graduate Program and Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Elena Bekerman
- Hagey Pediatric Regenerative Medicine Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael Chiou
- Hagey Pediatric Regenerative Medicine Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Aaron W. James
- Hagey Pediatric Regenerative Medicine Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Dennis Carter
- Biomechanical Engineering Division, Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Michael T. Longaker
- Hagey Pediatric Regenerative Medicine Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
115
|
Adler SG, Schwartz S, Williams ME, Arauz-Pacheco C, Bolton WK, Lee T, Li D, Neff TB, Urquilla PR, Sewell KL. Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin J Am Soc Nephrol 2010; 5:1420-8. [PMID: 20522536 DOI: 10.2215/cjn.09321209] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVES This report summarizes the first phase 1 trial treating patients with microalbuminuric diabetic kidney disease (DKD) using FG-3019, a human monoclonal antibody to connective tissue growth factor (CTGF). CTGF is critically involved in processes of progressive fibrosis, including DKD. This phase 1, open-label, dose-escalation trial evaluated safety, pharmacokinetics, and possible therapeutic effects of FG-3019 on albuminuria, proteinuria, and tubular proteins. DESIGN, SETTING, PARTICIPANTS, AND MEASUREMENTS Microalbuminuric subjects (n = 24) with type 2 (79%) or type 1 (21%) diabetes received 3 or 10 mg/kg FG-3019 dosed intravenously every 14 days for four doses. Albuminuria and safety follow-up were to days 62 and 365, respectively. RESULTS No infusion was interrupted for symptoms, although 5 of 24 subjects had mild infusion-day adverse events thought to be possibly drug-related. No subject developed anti-FG-3019 antibodies. FG-3019 clearance was lower at 10 mg/kg than at 3 mg/kg, suggesting a saturable elimination pathway. Although this study was not designed for efficacy testing, it was notable that urinary albumin/creatinine ratio (ACR) decreased significantly from mean pretreatment ACR of 48 mg/g to mean post-treatment (day 56) ACR of 20 mg/g (P = 0.027) without evidence for a dose-response relationship. CONCLUSIONS Treatment of microalbuminuric DKD subjects using FG-3019 was well tolerated and associated with a decrease in albuminuria. The data demonstrate a saturable pathway for drug elimination, minimal infusion adverse events, and no significant drug-attributable adverse effects over the year of follow-up. Changes in albuminuria were promising but require validation in a prospective, randomized, blinded study.
Collapse
Affiliation(s)
- Sharon G Adler
- Division of Nephrology and Hypertension, Los Angeles BioMedical Research Institute, Torrance, California 90502, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Miyamoto S, Del Re DP, Xiang SY, Zhao X, Florholmen G, Brown JH. Revisited and revised: is RhoA always a villain in cardiac pathophysiology? J Cardiovasc Transl Res 2010; 3:330-43. [PMID: 20559774 DOI: 10.1007/s12265-010-9192-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 04/22/2010] [Indexed: 01/10/2023]
Abstract
The neonatal rat ventricular myocyte model of hypertrophy has provided tremendous insight with regard to signaling pathways regulating cardiac growth and gene expression. Many mediators thus discovered have been successfully extrapolated to the in vivo setting, as assessed using genetically engineered mice and physiological interventions. Studies in neonatal rat ventricular myocytes demonstrated a role for the small G-protein RhoA and its downstream effector kinase, Rho-associated coiled-coil containing protein kinase (ROCK), in agonist-mediated hypertrophy. Transgenic expression of RhoA in the heart does not phenocopy this response, however, nor does genetic deletion of ROCK prevent hypertrophy. Pharmacologic inhibition of ROCK has effects most consistent with roles for RhoA signaling in the development of heart failure or responses to ischemic damage. Whether signals elicited downstream of RhoA promote cell death or survival and are deleterious or salutary is, however, context and cell-type dependent. The concepts discussed above are reviewed, and the hypothesis that RhoA might protect cardiomyocytes from ischemia and other insults is presented. Novel RhoA targets including phospholipid regulated and regulating enzymes (Akt, PI kinases, phospholipase C, protein kinases C and D) and serum response element-mediated transcriptional responses are considered as possible pathways through which RhoA could affect cardiomyocyte survival.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0636, USA
| | | | | | | | | | | |
Collapse
|
117
|
Lutz R, Sakai T, Chiquet M. Pericellular fibronectin is required for RhoA-dependent responses to cyclic strain in fibroblasts. J Cell Sci 2010; 123:1511-1521. [PMID: 20375066 DOI: 10.1242/jcs.060905] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
To test the hypothesis that the pericellular fibronectin matrix is involved in mechanotransduction, we compared the response of normal and fibronectin-deficient mouse fibroblasts to cyclic substrate strain. Normal fibroblasts seeded on vitronectin in fibronectin-depleted medium deposited their own fibronectin matrix. In cultures exposed to cyclic strain, RhoA was activated, actin-stress fibers became more prominent, MAL/MKL1 shuttled to the nucleus, and mRNA encoding tenascin-C was induced. By contrast, these RhoA-dependent responses to cyclic strain were suppressed in fibronectin knockdown or knockout fibroblasts grown under identical conditions. On vitronectin substrate, fibronectin-deficient cells lacked fibrillar adhesions containing alpha5 integrin. However, when fibronectin-deficient fibroblasts were plated on exogenous fibronectin, their defects in adhesions and mechanotransduction were restored. Studies with fragments indicated that both the RGD-synergy site and the adjacent heparin-binding region of fibronectin were required for full activity in mechanotransduction, but not its ability to self-assemble. In contrast to RhoA-mediated responses, activation of Erk1/2 and PKB/Akt by cyclic strain was not affected in fibronectin-deficient cells. Our results indicate that pericellular fibronectin secreted by normal fibroblasts is a necessary component of the strain-sensing machinery. Supporting this hypothesis, induction of cellular tenascin-C by cyclic strain was suppressed by addition of exogenous tenascin-C, which interferes with fibronectin-mediated cell spreading.
Collapse
Affiliation(s)
- Roman Lutz
- Friedrich Miescher Institute for Biomedical Research, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
118
|
Butler GS, Overall CM. Proteomic identification of multitasking proteins in unexpected locations complicates drug targeting. Nat Rev Drug Discov 2009; 8:935-48. [PMID: 19949400 DOI: 10.1038/nrd2945] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proteomics has revealed that many proteins are present in unexpected cellular locations. Moreover, it is increasingly recognized that proteins can translocate between intracellular and extracellular compartments in non-conventional ways. This increases gene pleiotrophy as the diverse functions of the protein that the gene encodes are dependent on the cellular location. Given that trafficking drug targets may exist in various forms--often with completely different functions--in multiple cellular compartments, careful interpretation of proteomics data is needed for an accurate understanding of gene function. This Perspective is intended to inspire the investigation of unusual protein localizations, rather than assuming that they are due to mislocalization or artefacts. Given a fair chance, proteomics could reveal novel and unforeseen biology with important ramifications for target validation in drug discovery.
Collapse
Affiliation(s)
- Georgina S Butler
- Centre for Blood Research, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, VT6 1Z3, Canada.
| | | |
Collapse
|
119
|
Samarin J, Wessel J, Cicha I, Kroening S, Warnecke C, Goppelt-Struebe M. FoxO proteins mediate hypoxic induction of connective tissue growth factor in endothelial cells. J Biol Chem 2009; 285:4328-36. [PMID: 20018872 DOI: 10.1074/jbc.m109.049650] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hypoxia, a driving force in neovascularization, promotes alterations in gene expression mediated by hypoxia-inducible factor (HIF)-1alpha. Connective tissue growth factor (CTGF, CCN2) is a modulator of endothelial cell growth and migration, but its regulation by hypoxia is poorly understood. Therefore, we analyzed signaling pathways involved in the regulation of CTGF by hypoxia in endothelial cells. Exposure to low oxygen tension or treatment with the hypoxia-mimetic dimethyloxalyl glycine (DMOG) stabilized HIF-1alpha and up-regulated CTGF in human umbilical vein endothelial cells and in a murine microvascular endothelial cell line. Induction of CTGF correlated with a HIF-dependent increase in protein and mRNA levels, and nuclear accumulation of the transcription factor FoxO3a. By contrast, gene expression and cellular localization of FoxO1 were not significantly altered by hypoxia. Expression of CTGF was strongly reduced by siRNA silencing of FoxO1 or FoxO3a. Furthermore, nuclear exclusion of FoxO1/3a transcription factors by inhibition of serine/threonine protein phosphatases by okadaic acid inhibited CTGF expression, providing evidence for both FoxO proteins as regulators of CTGF expression. The DMOG-stimulated induction of CTGF was further increased when endothelial cells were co-incubated with transforming growth factor-beta, an activator of Smad signaling. Activation of RhoA-Rho kinase signaling by the microtubule-disrupting drug combretastatin A4 also enhanced the DMOG-induced CTGF expression, thus placing CTGF induction by hypoxia in a network of interacting signaling pathways. Our findings provide evidence that FoxO1, hypoxia-stimulated expression of FoxO3a and its nuclear accumulation are required for the induction of CTGF by hypoxia in endothelial cells.
Collapse
Affiliation(s)
- Jana Samarin
- Department of Nephrology and Hypertension, Medical College of Georgia, Augusta, Georgia 30912
| | | | | | | | | | | |
Collapse
|
120
|
Barbolina MV, Adley BP, Kelly DL, Shepard J, Fought AJ, Scholtens D, Penzes P, Shea LD, Stack MS. Downregulation of connective tissue growth factor by three-dimensional matrix enhances ovarian carcinoma cell invasion. Int J Cancer 2009; 125:816-25. [PMID: 19382180 DOI: 10.1002/ijc.24347] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Epithelial ovarian carcinoma (EOC) is a leading cause of death from gynecologic malignancies, due mainly to the prevalence of undetected metastatic disease. The process of cell invasion during intraperitoneal anchoring of metastatic lesions requires concerted regulation of many processes, including modulation of adhesion to the extracellular matrix and localized invasion. Exploratory cDNA microarray analysis of early response genes (altered after 4 hr of 3D collagen culture) coupled with confirmatory real-time reverse-transcriptase polymerase chain reaction, multiple 3D cell culture matrices, Western blot, immunostaining, adhesion, migration and invasion assays were used to identify modulators of adhesion pertinent to EOC progression and metastasis. cDNA microarray analysis indicated a dramatic downregulation of connective tissue growth factor (CTGF) in EOC cells placed in invasion- mimicking conditions (3D Type I collagen). Examination of human EOC specimens revealed that CTGF expression was absent in 46% of the tested samples (n = 41), but was present in 100% of normal ovarian epithelium samples (n = 7). Reduced CTGF expression occurs in many types of cells and may be a general phenomenon displayed by cells encountering a 3D environment. CTGF levels were inversely correlated with invasion such that downregulation of CTGF increased, while its upregulation reduced collagen invasion. Cells adhered preferentially to a surface comprised of both collagen I and CTGF relative to either component alone using alpha6beta1 and alpha3beta1 integrins. Together these data suggest that downregulation of CTGF in EOC cells may be important for cell invasion through modulation of cell-matrix adhesion.
Collapse
Affiliation(s)
- Maria V Barbolina
- Department of Chemical and Biological Engineering, Northwestern University, Chicago, IL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Komorowsky C, Ocker M, Goppelt-Struebe M. Differential regulation of connective tissue growth factor in renal cells by histone deacetylase inhibitors. J Cell Mol Med 2009; 13:2353-2364. [PMID: 20141616 PMCID: PMC9181358 DOI: 10.1111/j.1582-4934.2008.00674.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Accepted: 12/27/2008] [Indexed: 01/11/2023] Open
Abstract
Regulation of the profibrotic and angiogenesis modulating cytokine connective tissue growth factor (CTGF) occurs primarily at the transcriptional level. Therefore, we hypothesized that histone deacetylating enzymes (HDAC), which modulate the accessibility of transcriptionally active promoter regions, might play a role in the regulation of CTGF gene expression. We analyzed microvascular endothelial cells, which showed immunoreactivity for acetylated histone in kidney sections, and compared them with renal tubular epithelial cells. Treatment of cultured endothelial cells with different HDAC inhibitors up-regulated CTGF mRNA and protein. Pre-treatment with HDAC inhibitors facilitated induction of CTGF by transforming growth factor-beta (TGF-beta) or lysophosphatidic acid. Transcription factors of the FoxO family were involved in the up-regulation of CTGF as shown at protein level and by reporter gene analyses. In tubular epithelial cells, up-regulation of CTGF was only observed when these cells were cultured as subconfluent cells. Dense cells, which are more likely to resemble tubular cells in vivo, showed no up-regulation upon treatment with HDAC inhibitors and were protected against CTGF induction by TGF-beta. Taken together, our data indicate that the effect of HDAC inhibitors on CTGF expression is largely cell dependent in non-tumour cells. Different cell type-specific transcription factors seem to determine whether CTGF expression is reduced or increased in cells exposed to HDAC inhibitors.
Collapse
Affiliation(s)
- Claudiu Komorowsky
- Department of Nephrology and Hypertension, University Hospital Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
122
|
Marra M, Santini D, Meo G, Vincenzi B, Zappavigna S, Baldi A, Rosolowski M, Tonini G, Loeffler M, Lupu R, Addeo SR, Abbruzzese A, Budillon A, Caraglia M. Cyr61 downmodulation potentiates the anticancer effects of zoledronic acid in androgen‐independent prostate cancer cells. Int J Cancer 2009; 125:2004-13. [DOI: 10.1002/ijc.24648] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Monica Marra
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Daniele Santini
- Department of Medical Oncology, University Campus Bio‐Medico, Rome, Italy
| | - Giuseppina Meo
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, University Campus Bio‐Medico, Rome, Italy
| | - Silvia Zappavigna
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Alfonso Baldi
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Maciej Rosolowski
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Giuseppe Tonini
- Department of Medical Oncology, University Campus Bio‐Medico, Rome, Italy
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Ruth Lupu
- Department of Medicine, Evanston Northwestern Research Institute, Feinberg Medical School, Evanston, IL
| | - Santolo Rosario Addeo
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Alberto Abbruzzese
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, National Cancer Institute of Naples “Fondazione G. Pascale”, Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry and Biophysics, Second University of Naples, Naples, Italy
- Experimental Pharmacology Unit, National Cancer Institute of Naples “Fondazione G. Pascale”, Naples, Italy
| |
Collapse
|
123
|
Kroening S, Neubauer E, Wessel J, Wiesener M, Goppelt-Struebe M. Hypoxia interferes with connective tissue growth factor (CTGF) gene expression in human proximal tubular cell lines. Nephrol Dial Transplant 2009; 24:3319-25. [PMID: 19549692 DOI: 10.1093/ndt/gfp305] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Hypoxia plays an important role in kidney injury. By the stabilization of the transcription factor HIF-1, hypoxia affects gene expression also in tubular epithelial cells. Increased expression of connective tissue growth factor (CTGF) is observed in different kidney diseases and is associated with deteriorating renal function. Therefore, we hypothesized that the expression of CTGF might be modulated under hypoxic conditions. METHODS The human proximal tubular epithelial cell lines HK-2 and HKC-8 were treated with reduced oxygen tension (1% O(2)) or the hypoxia mimetic dimethyloxalyl glycine (DMOG). CTGF was analysed by Western blotting, real-time RT-PCR and luciferase gene expression assays. RESULTS Exposure of HK-2 or HKC-8 cells to hypoxia or treatment with DMOG for up to 24 h reduced cellular as well as secreted CTGF protein synthesis. Downregulation was also detectable at the mRNA level and was confirmed by reporter gene assays. Hypoxic repression of CTGF synthesis was dependent on HIF-1, as shown by HIF-1alpha knockdown by siRNA. Furthermore, exposure to hypoxia reduced CTGF synthesis in response to TGF-beta. A negative correlation between HIF-1alpha accumulation and CTGF synthesis was also observed in renal cell carcinoma cells (RCC4 and RCC10). Reexpression of von Hippel-Lindau protein reduced HIF-1alpha and increased CTGF synthesis. CONCLUSIONS We provide evidence that hypoxia inhibits CTGF synthesis in human proximal tubular epithelial cells, involving HIF-1alpha. Under hypoxic conditions, induction of CTGF by TGF-beta was repressed. The reduced synthesis of the profibrotic factor CTGF may contribute to a potential protective effect of hypoxic preconditioning in acute renal injury.
Collapse
Affiliation(s)
- Sven Kroening
- Department of Nephrology and Hypertension, Medical Clinic 4, University Hospital of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
124
|
Hanna M, Liu H, Amir J, Sun Y, Morris SW, Siddiqui MAQ, Lau LF, Chaqour B. Mechanical regulation of the proangiogenic factor CCN1/CYR61 gene requires the combined activities of MRTF-A and CREB-binding protein histone acetyltransferase. J Biol Chem 2009; 284:23125-36. [PMID: 19542562 DOI: 10.1074/jbc.m109.019059] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Smooth muscle-rich tissues respond to mechanical overload by an adaptive hypertrophic growth combined with activation of angiogenesis, which potentiates their mechanical overload-bearing capabilities. Neovascularization is associated with mechanical strain-dependent induction of angiogenic factors such as CCN1, an immediate-early gene-encoded matricellular molecule critical for vascular development and repair. Here we have demonstrated that mechanical strain-dependent induction of the CCN1 gene involves signaling cascades through RhoA-mediated actin remodeling and the p38 stress-activated protein kinase (SAPK). Actin signaling controls serum response factor (SRF) activity via SRF interaction with the myocardin-related transcriptional activator (MRTF)-A and tethering to a single CArG box sequence within the CCN1 promoter. Such activity was abolished in mechanically stimulated mouse MRTF-A(-/-) cells or upon inhibition of CREB-binding protein (CBP) histone acetyltransferase (HAT) either pharmacologically or by siRNAs. Mechanical strain induced CBP-mediated acetylation of histones 3 and 4 at the SRF-binding site and within the CCN1 gene coding region. Inhibition of p38 SAPK reduced CBP HAT activity and its recruitment to the SRF.MRTF-A complex, whereas enforced induction of p38 by upstream activators (e.g. MKK3 and MKK6) enhanced both CBP HAT and CCN1 promoter activities. Similarly, mechanical overload-induced CCN1 gene expression in vivo was associated with nuclear localization of MRTF-A and enrichment of the CCN1 promoter with both MRTF-A and acetylated histone H3. Taken together, these data suggest that signal-controlled activation of SRF, MRTF-A, and CBP provides a novel connection between mechanical stimuli and angiogenic gene expression.
Collapse
Affiliation(s)
- Mary Hanna
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Mitani A, Nagase T, Fukuchi K, Aburatani H, Makita R, Kurihara H. Transcriptional coactivator with PDZ-binding motif is essential for normal alveolarization in mice. Am J Respir Crit Care Med 2009; 180:326-38. [PMID: 19498055 DOI: 10.1164/rccm.200812-1827oc] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Transcriptional coactivator with PDZ-binding motif (TAZ) is assumed to act as a coactivator of several transcription factors including smad2/3. In the lung, surfactant protein C (Sftpc) is known to be a downstream target of thyroid transcription factor-1 (TTF-1)-TAZ transcriptional coactivation. OBJECTIVES The lung phenotype of Taz-deficient mice was explored. METHODS Taz-deficient mice were analyzed pathologically and physiologically. Next, we performed microarray analysis to determine the genes closely related to abnormal lung development. Finally, Taz-heterozygous mice were injected with bleomycin. MEASUREMENTS AND MAIN RESULTS Taz-deficient homozygotes showed abnormal alveolarization during lung development, which caused in adult mice airspace enlargement mimicking emphysema. There was no significant difference in the expression of Sftpc between wild-type and Taz-deficient lungs. Instead, microarray analysis identified some candidate downstream genes related to the pathogenesis, including the connective tissue growth factor (Ctgf) gene, which is required for normal lung development. In vitro studies showed that TAZ up-regulated Ctgf expression not only by reinforcing transforming growth factor-beta/smad signals, but also by interfering in the more proximal Ctgf promoter region (from bp -123 to -76), defined as the TAZ response element. Furthermore, Taz-heterozygous mice were resistant to bleomycin-induced lung fibrosis. CONCLUSIONS The results indicate the importance of TAZ in lung alveolarization and its involvement in the pathogenesis of lung fibrosis.
Collapse
Affiliation(s)
- Akihisa Mitani
- Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
126
|
Samarin J, Cicha I, Goppelt-Struebe M. Cell type-specific regulation of CCN2 protein expression by PI3K-AKT-FoxO signaling. J Cell Commun Signal 2009; 3:79-84. [PMID: 19390991 PMCID: PMC2686758 DOI: 10.1007/s12079-009-0055-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 04/03/2009] [Indexed: 10/27/2022] Open
Abstract
The biological activity of connective tissue growth factor (CTGF, CCN2) is regulated at the level of intracellular signaling leading to gene expression, and by its extracellular interaction partners which determine the functional outcome of CCN2 action. In this overview, we summarize the data which provide evidence that one of the major signaling pathways, phosphatidylinositol-3 kinase (PI3K)-AKT signaling, shows a remarkable cell type-dependence in terms of regulation of CCN2 expression. In smooth muscle cells, fibroblasts, and epithelial cells, inhibition of this pathway either reduced CCN2 expression or was not involved in CCN2 gene expression depending on the stimulus used. In microvascular endothelial cells by contrast, activation of PI3K-AKT signaling was inversely related to CCN2 expression. Upregulation of CCN2 upon inhibition of PI3K-AKT was also observed in primary cultures of human endothelial cells (HUVEC) exposed to laminar flow in an in vitro flow-through system. In different types of endothelial cells, FoxO transcription factors, which are negatively regulated by AKT, were identified as potent activators of CCN2 gene expression. In HUVEC, we observed a correlation between enhanced nuclear localization of FoxO1 and increased synthesis of CCN2 protein in areas of non-uniform shear stress. These data indicate that FoxO proteins are key regulators of CCN2 gene expression which determine the effect of PI3K-AKT activation in terms of CCN2 regulation. Short summary Phosphatidylinositol-3 kinase (PI3K)-AKT signaling shows a remarkable cell type-dependence in terms of regulation of CCN2 expression. In endothelial cells activation of PI3K - AKT signaling was inversely related to CCN2 expression. FoxO transcription factors, which are negatively regulated by AKT, were identified as potent activators of CCN2 gene expression.
Collapse
Affiliation(s)
- Jana Samarin
- Department of Nephrology and Hypertension, Medical Clinic 4, University of Erlangen-Nürnberg, University Hospital Erlangen, 91054, Erlangen, Germany
| | | | | |
Collapse
|
127
|
Asparuhova MB, Gelman L, Chiquet M. Role of the actin cytoskeleton in tuning cellular responses to external mechanical stress. Scand J Med Sci Sports 2009; 19:490-9. [PMID: 19422655 DOI: 10.1111/j.1600-0838.2009.00928.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mechanical forces are essential for tissue homeostasis. In adherent cells, cell-matrix adhesions connect the extracellular matrix (ECM) with the cytoskeleton and transmit forces in both directions. Integrin receptors and signaling molecules in cell-matrix adhesions transduce mechanical into chemical signals, thereby regulating many cellular processes. This review focuses on how cellular mechanotransduction is tuned by actin-generated cytoskeletal tension that balances external with internal mechanical forces. We point out that the cytoskeleton rapidly responds to external forces by RhoA-dependent actin assembly and contraction. This in turn induces remodeling of cell-matrix adhesions and changes in cell shape and orientation. As a consequence, a cell constantly modulates its response to new bouts of external mechanical stimulation. Changes in actin dynamics are monitored by MAL/MKL-1/MRTF-A, a co-activator of serum response factor. Recent evidence suggests that MAL is also involved in coupling mechanically induced changes in the actin cytoskeleton to gene expression. Compared with other, more rapid and transient signals evoked at the cell surface, this parallel mechanotransduction pathway is more sustained and provides spatial and temporal specificity to the response. We describe examples of genes that are regulated by mechanical stress in a manner depending on actin dynamics, among them the ECM protein, tenascin-C.
Collapse
Affiliation(s)
- M B Asparuhova
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | | | | |
Collapse
|
128
|
Paracrine control of oligodendrocyte differentiation by SRF-directed neuronal gene expression. Nat Neurosci 2009; 12:418-27. [DOI: 10.1038/nn.2280] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 01/20/2009] [Indexed: 02/07/2023]
|
129
|
Daniels A, van Bilsen M, Goldschmeding R, van der Vusse GJ, van Nieuwenhoven FA. Connective tissue growth factor and cardiac fibrosis. Acta Physiol (Oxf) 2009; 195:321-38. [PMID: 19040711 DOI: 10.1111/j.1748-1716.2008.01936.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cardiac fibrosis is a major pathogenic factor in a variety of cardiovascular diseases and refers to an excessive deposition of extracellular matrix components in the heart, which leads to cardiac dysfunction and eventually overt heart failure. Evidence is accumulating for a crucial role of connective tissue growth factor (CTGF) in fibrotic processes in several tissues including the heart. CTGF orchestrates the actions of important local factors evoking cardiac fibrosis. The central role of CTGF as a matricellular protein modulating the fibrotic process in cardiac remodelling makes it a possible biomarker for cardiac fibrosis and a potential candidate for therapeutic intervention to mitigate fibrosis in the heart.
Collapse
Affiliation(s)
- A Daniels
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
130
|
Cicha I, Goppelt-Struebe M. Connective tissue growth factor: context-dependent functions and mechanisms of regulation. Biofactors 2009; 35:200-8. [PMID: 19449449 DOI: 10.1002/biof.30] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Connective tissue growth factor (CTGF, CCN2) is a secreted matricellular protein, the functions of which depend on the interactions with other molecules in the microcellular environment. As an example of context-dependent activity of CTGF, this review will outline different aspects of CTGF function in relation to angiogenesis. CTGF is barely expressed in normal adult tissue, but is strongly upregulated in fibrotic tissue and is also increased during development, in wound healing, or in certain types of cancer. Accordingly, gene expression of CTGF is tightly regulated. To highlight the complexity of the regulation of CTGF gene expression, we discuss here the mechanisms involved in CTGF regulation by TGFbeta in different cell types, and the mechanisms related to CTGF gene expression in cells exposed to mechanical forces. Finally, we will touch upon novel aspects of epigenetic regulation of CTGF gene expression. (c) 2009 International Union of Biochemistry and Molecular Biology, Inc.
Collapse
Affiliation(s)
- Iwona Cicha
- Department of Cardiology and Angiology, University Erlangen-Nuremberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | | |
Collapse
|
131
|
Woods A, Pala D, Kennedy L, McLean S, Rockel JS, Wang G, Leask A, Beier F. Rac1 signaling regulates CTGF/CCN2 gene expression via TGFbeta/Smad signaling in chondrocytes. Osteoarthritis Cartilage 2009; 17:406-13. [PMID: 18760941 DOI: 10.1016/j.joca.2008.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 07/07/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Connective tissue growth factor (CTGF) has been implicated in regulation of chondrocyte differentiation at multiple steps and has been implicated in the progression of diseases such as scleroderma and osteoarthritis. However, the pathways mediating the expression of CTGF/CCN2 and related factors in cartilage are not fully understood. We have previously shown that the Rho family of proteins and the actin cytoskeleton regulate both early and late chondrocyte differentiation. RESULTS Here we demonstrate that several CTGF/Cyr61/Nov (CCN) family members are differentially affected by either inhibition of actin polymerization (cytochalasin D treatment), promotion of actin polymerization (jasplakinolide treatment), inhibition of RhoA/rho kinase (ROCK) signaling (Y27632 treatment) and Rac1 signaling. We also show that the Smad site in the CTGF/CCN2 promoter is responsive to both Rac1 inhibition and cytochalasin D treatment, suggesting a role of TGFbeta/Smad signaling in mediating the effects of actin dynamics and Rac1. CONCLUSION Collectively, these data show that Rac1 and actin pathways control CTGF/CCN2 expression in chondrocytes which might be relevant to both skeletal development and associated diseases such as osteoarthritis.
Collapse
Affiliation(s)
- A Woods
- CIHR Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
132
|
PGF(2alpha) stimulates FP prostanoid receptor mediated crosstalk between Ras/Raf signaling and Tcf transcriptional activation. Biochem Biophys Res Commun 2009; 381:625-9. [PMID: 19248765 DOI: 10.1016/j.bbrc.2009.02.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 02/20/2009] [Indexed: 11/24/2022]
Abstract
Prostaglandin-F(2alpha) (PGF(2alpha)) is a product of the cyclooxygenase pathway and is a local signaling molecule that activates a G-protein coupled prostanoid receptor named FP. FP receptors can stimulate T-cell factor (Tcf) transcriptional activation by stabilization of beta-catenin and can upregulate the expression of mRNA encoding cysteine-rich protein 61 (Cyr61), a secreted extracellular matrix protein that stimulates angiogenesis. We now show in both HEK cells and human microglial cells that the induction of Cyr61 protein expression by the human FP receptor utilizes a novel mechanism involving the activation of Ras and Raf followed by a MEK/ERK independent activation of Tcf signaling. The upregulation of Cyr61 in microglial cells may contribute to glioma tumorigenesis and could be a potential therapeutic target.
Collapse
|
133
|
Samarin J, Rehm M, Krueger B, Waschke J, Goppelt-Struebe M. Up-regulation of connective tissue growth factor in endothelial cells by the microtubule-destabilizing agent combretastatin A-4. Mol Cancer Res 2009; 7:180-8. [PMID: 19208742 DOI: 10.1158/1541-7786.mcr-08-0292] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Incubation of microvascular endothelial cells with combretastatin A-4 phosphate (CA-4P), a microtubule-destabilizing compound that preferentially targets tumor vessels, altered cell morphology and induced scattering of Golgi stacks. Concomitantly, CA-4P up-regulated connective tissue growth factor (CTGF/CCN2), a pleiotropic factor with antiangiogenic properties. In contrast to the effects of other microtubule-targeting agents such as colchicine or nocodazole, up-regulation of CTGF was only detectable in sparse cells, which were not embedded in a cell monolayer. Furthermore, CA-4P induced CTGF expression in endothelial cells, forming tube-like structures on basement membrane gels. Up-regulation of CTGF by CA-4P was dependent on Rho kinase signaling and was increased when p42/44 mitogen-activated protein kinase was inhibited. Additionally, FoxO transcription factors were identified as potent regulators of CTGF expression in endothelial cells. Activation of FoxO transcription factors by inhibition of phosphatidylinositol 3-kinase/AKT signaling resulted in a synergistic increase in CA-4P-mediated CTGF induction. CA-4P-mediated expression of CTGF was thus potentiated by the inhibition of kinase pathways, which are targets of novel antineoplastic drugs. Up-regulation of CTGF by low concentrations of CA-4P may thus occur in newly formed tumor vessels and contribute to the microvessel destabilization and antiangiogenic effects of CA-4P observed in vivo.
Collapse
Affiliation(s)
- Jana Samarin
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | | | | | | | | |
Collapse
|
134
|
Yang R, Amir J, Liu H, Chaqour B. Mechanical strain activates a program of genes functionally involved in paracrine signaling of angiogenesis. Physiol Genomics 2008; 36:1-14. [PMID: 18854370 DOI: 10.1152/physiolgenomics.90291.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Studies were performed to examine the extent to which mechanical stimuli mediate control of angiogenesis in bladder cells both in vitro and in vivo. Differential gene expression between control nonstretched and cyclically stretched bladder smooth muscle cells was assessed using oligonucleotide microarrays and pathway analysis by the web tool Fast Assignment and Transference of Information (FatiGO). Data showed that a substantial proportion (33 of 86) of mechanically responsive genes were angiogenesis-related and include cytokines, growth-related factors, adhesion proteins, and matricellular, signal transduction, extracellular matrix (ECM), and inflammatory molecules. Integrative knowledge of protein-protein interactions revealed that 12 mechano-sensitive gene-encoded proteins have interacting partner(s) in the vascular system confirming their potential role in paracrine regulation of angiogenesis. Angiogenic genes include matricellular proteins such as Cyr61/CCN1, CTGF/CCN2 and tenascin C, components of the VEGF and IGF systems, ECM proteins such as type I collagen and proteoglycans, and matrix metalloproteinases. In an in vivo model of bladder overdistension, 5 of 11 mechano-responsive angiogenic genes, independently tested by real-time PCR, were upregulated as a result of pressure overload including Cyr61/CCN1, CTGF/CCN2, MCP-1, VEGF-A, MMP-1, and midkine. Meanwhile, the molecular anatomy of angiogenic gene promoters reveals the presence of GA box-binding for the myc-associated zinc finger protein, MAZ, often found adjacent to binding sites for mechano-responsive transcription factors (e.g., NF-kappaB), suggesting that the coordinated activity of these factors may induce selective angiogenic gene transcription. These data suggest that mechanical control of angiogenic genes is an integral part of the adaptive and plasticity responses to mechanical overload.
Collapse
Affiliation(s)
- Ru Yang
- Department of Anatomy and Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203-2098, USA
| | | | | | | |
Collapse
|
135
|
Kroening S, Solomovitch S, Sachs M, Wullich B, Goppelt-Struebe M. Regulation of connective tissue growth factor (CTGF) by hepatocyte growth factor in human tubular epithelial cells. Nephrol Dial Transplant 2008; 24:755-62. [DOI: 10.1093/ndt/gfn530] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
136
|
Abstract
Connective tissue growth factor (CTGF=CCN2), one of six members of cysteine-rich, secreted, heparin-binding proteins with a modular structure, is recognized as an important player in fibrogenic pathways as deduced from findings in non-hepatic tissues and emerging results from liver fibrosis. Collectively, the data show strongly increased expression in fibrosing tissues and transforming growth factor (TGF-beta)-stimulated expression in hepatocytes, biliary epithelial cells and stellate cells. Functional activity as a mediator of fibre-fibre, fibre-matrix and matrix-matrix interactions, as an enhancer of profibrogenic TGF-beta and several secondary effects owing to TGF-beta enhancement, and as a down-modulator of the bioactivity of bone morphogenetic protein-7 has been proposed. By changing the activity ratio of TGF-beta to its antagonist bone-morphogenetic protein-7, CTGF is proposed as a fibrogenic master switch for epithelial-mesenchymal transition. Consequently, knockdown of CTGF considerably attenuates experimental liver fibrosis. The spill-over of CTGF from the liver into the blood stream proposes this protein as a non-invasive reporter of TGF-beta bioactivity in this organ. Indeed, CTGF-levels in sera correlate significantly with fibrogenic activity. The data suggest CTGF as a multifaceted regulatory protein in fibrosis, which offers important translational aspects for diagnosis and follow-up of hepatic fibrogenesis and as a target for therapeutic interventions. In addition, CTGF-promoter polymorphism might be of importance as a prognostic genetic marker to predict the progression of fibrosis.
Collapse
Affiliation(s)
- Olav A Gressner
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital, Aachen, Germany
| | | |
Collapse
|
137
|
Chen CC, Lau LF. Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol 2008; 41:771-83. [PMID: 18775791 DOI: 10.1016/j.biocel.2008.07.025] [Citation(s) in RCA: 393] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/25/2008] [Accepted: 07/25/2008] [Indexed: 12/21/2022]
Abstract
Members of the CCN (CYR61/CTGF/NOV) family have emerged as dynamically expressed, extracellular matrix-associated proteins that play critical roles in cardiovascular and skeletal development, injury repair, fibrotic diseases and cancer. The synthesis of CCN proteins is highly inducible by serum growth factors, cytokines, and environmental stresses such as hypoxia, UV exposure, and mechanical stretch. Consisting of six secreted proteins in vertebrate species, CCNs are typically comprised of four conserved cysteine-rich modular domains. They function primarily through direct binding to specific integrin receptors and heparan sulfate proteoglycans, thereby triggering signal transduction events that culminate in the regulation of cell adhesion, migration, proliferation, gene expression, differentiation, and survival. CCN proteins can also modulate the activities of several growth factors and cytokines, including TGF-beta, TNFalpha, VEGF, BMPs, and Wnt proteins, and may thereby regulate a broad array of biological processes. Recent studies have uncovered novel CCN activities unexpected for matricellular proteins, including their ability to induce apoptosis as cell adhesion substrates, to dictate the cytotoxicity of inflammatory cytokines such as TNFalpha, and to promote hematopoietic stem cell self-renewal. As potent regulators of angiogenesis and chondrogenesis, CCNs are essential for successful cardiovascular and skeletal development during embryogenesis. In the adult, the expression of CCN proteins is associated with injury repair and inflammation, and has been proposed as diagnostic or prognostic markers for diabetic nephropathy, hepatic fibrosis, systemic sclerosis, and several types of cancer. Targeting CCN signaling pathways may hold promise as a strategy of rational therapeutic design.
Collapse
Affiliation(s)
- Chih-Chiun Chen
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL 60607, United States
| | | |
Collapse
|
138
|
Kurumaji A, Ito T, Ishii S, Nishikawa T. Effects of FG7142 and immobilization stress on the gene expression in the neocortex of mice. Neurosci Res 2008; 62:155-9. [PMID: 18771696 DOI: 10.1016/j.neures.2008.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 12/17/2022]
Abstract
Several psychiatric disorders are often precipitated or exacerbated by exposure to stressors. FG7142 (N-methyl-beta-carboline-3-carboxamide), a partial inverse agonist of benzodiazepine receptors, mimics the physiological (an increased release in the adrenal steroid hormone) and neurochemical (an enhanced neurotransmission of monoamines) changes induced by stressful stimuli. We examined the effects of FG7142 and immobilization stress on the gene expression of the mouse neocortex in order to obtain a new insight into the molecular stress-responsive system. The effect of FG7142 (20 mg/kg, i.p.) on the gene expression of the brain area was examined using a DNA microarray method. The genes showing a significant change in expression were investigated in further experiments using the quantitative RT-PCR method. There was an increase in the mRNA of seven genes in the neocortex of mice 1h after treatment with FG7142. In addition, there was an increase in the mRNAs of five of the seven genes (Fos, Cyr61, Btg2, Adamts1, and Gem) in the neocortex of mice exposed to the stress for 1h. The up-regulation of these five genes by both FG7142 and immobilization stress indicates that these genes may be involved in the stress-responsive system. Dysfunctions of the system may be associated with the pathophysiology of psychiatric disorders.
Collapse
Affiliation(s)
- Akeo Kurumaji
- Section of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, 1-5-45 Yushima, Bunkyou-ku, Tokyo 113-8519, Japan.
| | | | | | | |
Collapse
|
139
|
The CCN family of genes: a perspective on CCN biology and therapeutic potential. J Cell Commun Signal 2008; 1:159-64. [PMID: 18568428 DOI: 10.1007/s12079-008-0022-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 05/28/2008] [Indexed: 10/22/2022] Open
Abstract
The CCN family of genes currently comprises six secreted proteins (designated CCN1-6 after Cyr61/CCN1; ctgf/CCN2; Nov/CCN3; WISP1/CCN4; WISP2/CCN5, WISP3/CCN6) with a similar mosaic primary structure. It is now well accepted that CCN proteins are not growth factors but matricellular proteins that modify signaling of other molecules, in particular those associated with the extracellular matrix. CCN proteins are involved in mitosis, adhesion, apoptosis, extracellular matrix production, growth arrest and migration of multiple cell types. Since their first identification as matricellular factors, the CCN proteins now figure prominently in a variety of major diseases and are now considered valid candidates for therapeutic targeting. Dissection of the molecular mechanisms governing the biological properties of these proteins is being actively pursued by an expanding network of scientists around the globe who will meet this year at the 5th International Workshop on the CCN family of Genes, organized by the International CCN Society ( http://ccnsociety.com ), home for an international cadre of collaborators working in the CCN field.
Collapse
|
140
|
Pharmacoproteomics of a metalloproteinase hydroxamate inhibitor in breast cancer cells: dynamics of membrane type 1 matrix metalloproteinase-mediated membrane protein shedding. Mol Cell Biol 2008; 28:4896-914. [PMID: 18505826 DOI: 10.1128/mcb.01775-07] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Broad-spectrum matrix metalloproteinase (MMP) inhibitors (MMPI) were unsuccessful in cancer clinical trials, partly due to side effects resulting from limited knowledge of the full repertoire of MMP substrates, termed the substrate degradome, and hence the in vivo functions of MMPs. To gain further insight into the degradome of MMP-14 (membrane type 1 MMP) an MMPI, prinomastat (drug code AG3340), was used to reduce proteolytic processing and ectodomain shedding in human MDA-MB-231 breast cancer cells transfected with MMP-14. We report a quantitative proteomic evaluation of the targets and effects of the inhibitor in this cell-based system. Proteins in cell-conditioned medium (the secretome) and membrane fractions with levels that were modulated by the MMPI were identified by isotope-coded affinity tag (ICAT) labeling and tandem mass spectrometry. Comparisons of the expression of MMP-14 with that of a vector control resulted in increased MMP-14/vector ICAT ratios for many proteins in conditioned medium, indicating MMP-14-mediated ectodomain shedding. Following MMPI treatment, the MMPI/vehicle ICAT ratio was reversed, suggesting that MMP-14-mediated shedding of these proteins was blocked by the inhibitor. The reduction in shedding or the release of substrates from pericellular sites in the presence of the MMPI was frequently accompanied by the accumulation of the protein in the plasma membrane, as indicated by high MMPI/vehicle ICAT ratios. Considered together, this is a strong predictor of biologically relevant substrates cleaved in the cellular context that led to the identification of many undescribed MMP-14 substrates, 20 of which we validated biochemically, including DJ-1, galectin-1, Hsp90alpha, pentraxin 3, progranulin, Cyr61, peptidyl-prolyl cis-trans isomerase A, and dickkopf-1. Other proteins with altered levels, such as Kunitz-type protease inhibitor 1 and beta-2-microglobulin, were not substrates in biochemical assays, suggesting an indirect affect of the MMPI, which might be important in drug development as biomarkers or, in preclinical phases, to predict systemic drug actions and adverse side effects. Hence, this approach describes the dynamic pattern of cell membrane ectodomain shedding and its perturbation upon metalloproteinase drug treatment.
Collapse
|
141
|
Von den Hoff JW, Delatte M. Interplay of mechanical loading and growth factors in the mandibular condyle. Arch Oral Biol 2008; 53:709-15. [PMID: 18395696 DOI: 10.1016/j.archoralbio.2008.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/21/2008] [Accepted: 03/01/2008] [Indexed: 10/22/2022]
Abstract
The mandibular condyle is an important growth site in the developing mandible. The growth of the condyle is known to be highly adaptable to functional factors. This property is exploited in orthodontics for the treatment of class II malocclusions and mandibular asymmetries. However, there is an ongoing debate on the efficacy of functional appliances. The comparison of experimental studies is complicated by the lack of detailed analyses of the load distribution within the condyle. In spite of this, there is a large body of evidence showing that mechanical manipulation of the condyle induces metabolic changes, and changes in the expression of growth factors and other signalling molecules. This review aims to give an overview of the role of growth factors in the condyle with special emphasis on their responsiveness to mechanical perturbation.
Collapse
Affiliation(s)
- J W Von den Hoff
- Department of Orthodontics and Oral Biology, Radboud University Medical Centre Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | |
Collapse
|
142
|
Liu H, Yang R, Tinner B, Choudhry A, Schutze N, Chaqour B. Cysteine-rich protein 61 and connective tissue growth factor induce deadhesion and anoikis of retinal pericytes. Endocrinology 2008; 149:1666-77. [PMID: 18187544 DOI: 10.1210/en.2007-1415] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Loss of retinal pericytes is one of the distinctive features of diabetic retinopathy (DR), which is characterized by retinal capillary obliteration. The matricellular proteins, cysteine-rich protein 61 (Cyr61) and connective tissue growth factor (CTGF), are aberrantly expressed in the retinal vasculature from the early stages of DR, but their effects on retinal pericytes are unknown. We show herein that rat retinal pericytes (RRPs) exposed to advanced glycosylation-end products, an important injurious stimulus of diabetes, express increased levels of both Cyr61 and CTGF, and concomitantly undergo anoikis, a form of apoptosis by loss of cell-matrix interactions. Adenovirus-mediated expression of Cyr61 and/or CTGF conferred an anoikis-prone phenotype to rat retinal pericytes, including decreased phosphotyrosine protein levels at focal adhesion points and formation of cortical actin rings. When used as substrates for pericyte attachment and compared with other matrix proteins (e.g. type IV collagen), recombinant Cyr61 and CTGF proteins exhibited antiadhesive and apoptogenic activities. Phosphatase inhibitors reversed these effects, suggesting that Cyr61 and CTGF promote dephosphorylation events. Furthermore, Cyr61- and CTGF-induced apoptosis was mediated through the intrinsic pathway and involved the expression of genes that have been functionally grouped as p53 target genes. Expression of the matrix metalloproteinase-2 gene, a known target of p53, was increased in pericytes overexpressing either Cyr61 or CTGF. Inhibition of matrix metalloproteinase-2 had, at least in part, a protective effect against Cyr61- and CTGF-induced apoptosis. Taken together, these findings support the involvement of Cyr61 and CTGF in pericyte detachment and anoikis, implicating these proteins in the pathogenesis of DR.
Collapse
Affiliation(s)
- Haibo Liu
- Department of Anatomy and Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | | | | | |
Collapse
|
143
|
Baguma-Nibasheka M, Kablar B. Pulmonary hypoplasia in the connective tissue growth factor (Ctgf) null mouse. Dev Dyn 2008; 237:485-93. [DOI: 10.1002/dvdy.21433] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
144
|
Maallem S, Wierinckx A, Lachuer J, Kwon MH, Tappaz ML. Gene expression profiling in brain following acute systemic hypertonicity: novel genes possibly involved in osmoadaptation. J Neurochem 2008; 105:1198-211. [PMID: 18194432 DOI: 10.1111/j.1471-4159.2008.05222.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In brain osmoprotective genes known to be involved in cellular osmoadaptation to hypertonicity, as well as the related transcription factor tonicity-responsive enhancer binding protein (TonEBP) are only expressed in some cell subsets. In the search for other genes possibly involved in osmoadaptation of brain cells we have analyzed, through microarray, the transcriptional profile of forebrain from rats subjected to 45 min, 90 min, and 6 h systemic hypertonicity. Microarray data were validated by quantitative real-time PCR. Around 23 000 genes gave a reliable hybridization signal. The number of genes showing a higher expression increased from around 15 (45 min) up to nearly 200 (6 h). Among about 30 immediate early genes (IEGs) encoding transcription factors, only Atf3, Verge, and Klf4 showed a rapid increased expression. TonEBP-mRNA tissue level and TonEBP-mRNA labeling in neurons remained unchanged whereas TonEBP labeling was rapidly increased in neurons. Sodium-dependent neutral amino acid transporter-2 (SNAT2) encoded by gene Slc38a2 showed a delayed increased expression. The rapid tonicity-induced activation of Atf3, Verge, and Klf4 may regulate genes involved in osmoadaptation. Nfat5 encoding TonEBP is not an IEG and the early tonicity-induced expression of TonEBP in neurons may result from translational activation. Increased expression of sodium-dependent neutral amino-acid transporter 2 may lead to the cellular accumulation of amino acids for adaptation to hypertonicity.
Collapse
Affiliation(s)
- Saïd Maallem
- Unité INSERM 433, Neurobiologie Experimentale et Physiopathologie, Faculté de Médecine RTH Laennec, Rue Guillaume Paradin, Lyon, Cedex, France
| | | | | | | | | |
Collapse
|
145
|
Giehl K, Graness A, Goppelt-Struebe M. The small GTPase Rac-1 is a regulator of mesangial cell morphology and thrombospondin-1 expression. Am J Physiol Renal Physiol 2007; 294:F407-13. [PMID: 18045834 DOI: 10.1152/ajprenal.00093.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Thrombospondin-1 (TSP-1), which is synthesized by mesangial cells, is known for its anti-angiogenic activity and its ability to activate latent TGF-beta. TSP-1 is upregulated in renal diseases associated with tissue remodeling. Therefore, we hypothesized that the expression of TSP-1 might be modulated by changes in cell morphology involving proteins of the Rho family. Spreading of mesangial cells after detachment and reseeding was characterized by the formation of lamellipodia and focal adhesions, pointing toward a Rac-1-mediated rearrangement of actin structures. Clustering of focal adhesion proteins was also observed in a model system of nocodazole-induced disruption of microtubules. These morphological alterations were impeded by pharmacological inhibition of Src family kinases, of the small GTPase Rac-1, or by downregulation of Rac-1 by siRNA. Upon cell spreading, TSP-1 was upregulated in the absence and much more prominently in the presence of serum, but also after nocodazole treatment. TSP-1 upregulation was controlled by activation of Src family kinases, ERK 1/2 and Rac-1, whereas activation of RhoA-ROCK signaling was not linked to TSP-1 induction. We thus provide evidence that TSP-1 expression is induced by common signaling pathways, which are activated by morphological alterations of renal mesangial cells or by soluble factors as contained in serum, and these pathways include Src family kinases, ERK 1/2 and Rac-1. Our data suggest that tissue remodeling activates gene expression of pathophysiologically relevant proteins such as TSP-1.
Collapse
Affiliation(s)
- Klaudia Giehl
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | | | | |
Collapse
|
146
|
Gressner OA, Lahme B, Demirci I, Gressner AM, Weiskirchen R. Differential effects of TGF-beta on connective tissue growth factor (CTGF/CCN2) expression in hepatic stellate cells and hepatocytes. J Hepatol 2007; 47:699-710. [PMID: 17629588 DOI: 10.1016/j.jhep.2007.05.015] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/26/2007] [Accepted: 05/11/2007] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Connective tissue growth factor (CTGF/CCN2) has been implicated in the pathogenesis of hepatic fibrosis and suggested as a downstream mediator of the fibrogenic master cytokine TGF-beta. METHODS We investigated the effect of TGF-beta1 on CTGF/CCN2 expression in cultured rat hepatic stellate cells and hepatocytes by means of Western and Northern blotting, immunocytochemistry, reporter gene analysis, and metabolic labelling. RESULTS We found that the expression of CTGF/CCN2 in hepatic stellate cells is (i) only marginally (if at all) stimulated by TGF-beta and by a constitutively active type I TGF-beta receptor, (ii) independent from Smad2/3 phosphorylation, (iii) not reduced by TGF-beta1 antagonists or ALK5-receptor inhibitors and (iv) not upregulated during transdifferentiation to myofibroblasts in culture. However, expression and secretion of CTGF/CCN2 in cultured hepatocytes increased spontaneously during culture and was strongly stimulated by TGF-beta1. In bile-duct ligated and CCl(4)-treated rat livers, a strong CTGF/CCN2 expression in hepatocytes was noticed. Endothelin-1 stimulated CTGF/CCN2 expression in stellate cells but not in hepatocytes. Pathway specific signalling inhibitors point to the involvement of non-Smad signalling cascades but their contribution to CTGF/CCN2 regulation is different in both cell types. CONCLUSIONS The results do not reveal a relevant interrelation between TGF-beta function and CTGF/CCN2 expression in hepatic stellate cells, which is in contrast to hepatocytes.
Collapse
Affiliation(s)
- Olav A Gressner
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital, D-52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
147
|
Kivelä R, Kyröläinen H, Selänne H, Komi PV, Kainulainen H, Vihko V. A single bout of exercise with high mechanical loading induces the expression of Cyr61/CCN1 and CTGF/CCN2 in human skeletal muscle. J Appl Physiol (1985) 2007; 103:1395-401. [PMID: 17673559 DOI: 10.1152/japplphysiol.00531.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High mechanical loading was hypothesized to induce the expression of angiogenic and/or lymphangiogenic extracellular matrix (ECM) proteins in skeletal muscle. Eight men performed a strenuous exercise protocol, which consisted of 100 unilateral maximal drop jumps followed by submaximal jumping until exhaustion. Muscle biopsies were taken 30 min and 48 h postexercise from the vastus lateralis muscle and analyzed for the following parameters: mRNA and protein expression of ECM-associated CCN proteins [cysteine-rich angiogenic protein 61 (Cyr61)/CCN1, connective tissue growth factor (CTGF)/CCN2], and mRNA expression of vascular endothelial growth factors (VEGFs) and hypoxia-inducible factor-1α. The mRNA expression of Cyr61 and CTGF increased 30 min after the exercise (14- and 2.5-fold, respectively; P < 0.001). Cyr61 remained elevated 48 h postexercise (threefold; P < 0.05). The mRNA levels of VEGF-A, VEGF-B, VEGF-C, VEGF-D, or hypoxia-inducible factor-1α did not change significantly at either 30 min or 48 h postexercise; however, the variation between subjects increased markedly in VEGF-A and VEGF-B mRNA. Cyr61 protein levels were higher at both 30 min and 48 h after the exercise compared with the control ( P < 0.05). Cyr61 and CTGF proteins were localized to muscle fibers and the surrounding ECM by immunohistochemistry. Fast fibers stained more intensively than slow fibers. In conclusion, mechanical loading induces rapid expression of CCN proteins in human skeletal muscle. This may be one of the early mechanisms involved in skeletal muscle remodeling after exercise, since Cyr61 and CTGF regulate the expression of genes involved in angiogenesis and ECM remodeling.
Collapse
Affiliation(s)
- Riikka Kivelä
- LIKES Research Center for Sport and Health Sciences, Rautpohjankatu 8a, FIN-40700 Jyväskylä, Finland.
| | | | | | | | | | | |
Collapse
|
148
|
Wiedmaier N, Müller S, Köberle M, Manncke B, Krejci J, Autenrieth IB, Bohn E. Bacteria induce CTGF and CYR61 expression in epithelial cells in a lysophosphatidic acid receptor-dependent manner. Int J Med Microbiol 2007; 298:231-43. [PMID: 17765657 DOI: 10.1016/j.ijmm.2007.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 04/20/2007] [Accepted: 06/05/2007] [Indexed: 01/25/2023] Open
Abstract
Cysteine-rich protein 61 (Cyr61/CCN1) and connective tissue growth factor (CTGF/CCN2) are members of the CCN (CYR61, CTGF, nephroblastoma overexpressed gene) family and exert pleiotropic functions such as regulation of adhesion, migration, extracellular matrix deposition, or cell differentiation, and play an important role in wound healing. This study focused on the nature of the so far unknown CTGF and CYR61 mRNA expression of epithelial cells after infection with bacteria. We demonstrate that infection of epithelial cells with attenuated Yersinia enterocolitica lacking the virulence plasmid pYV leads to the expression of CYR61 and CTGF. Virulent Y. enterocolitica bearing the pYV virulence plasmid suppressed the mRNA expression of these genes. Yersinia-mediated inhibition of CTGF and CYR61 mRNA expression is partially mediated by the cysteine protease YopT. Further characterization of the Yersinia factors, which trigger CTGF and CYR61 mRNA expression, demonstrated that these factors were secreted and could be enriched in lipid extracts. Beside Yersinia, several other bacteria such as Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, or Staphylococcus aureus, as well as supernatants of these bacteria induced CTGF and CYR61 expression. Blocking experiments with the lysophosphatidic acid (LPA) receptor-specific inhibitor Ki16425 suggest a general involvement of LPA receptors in bacteria-triggered CTGF and CYR61 expression. These data suggest that LPA receptor-dependent expression of CTGF and CYR61 represents a common host response after interaction with bacteria.
Collapse
Affiliation(s)
- Nina Wiedmaier
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Str. 6, D-72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
149
|
Muehlich S, Cicha I, Garlichs CD, Krueger B, Posern G, Goppelt-Struebe M. Actin-dependent regulation of connective tissue growth factor. Am J Physiol Cell Physiol 2007; 292:C1732-8. [PMID: 17215322 DOI: 10.1152/ajpcell.00552.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Expression of connective tissue growth factor (CTGF) in endothelial cells is modulated by shear stress affecting the organization of the cytoskeleton. The molecular connection between alterations of actin and CTGF expression was investigated in human umbilical vein endothelial cells (HUVEC) and a microvascular endothelial cell line. Overexpression of nonpolymerizable monomeric actin R62D interfered with stress fiber formation in HUVEC and concomitantly reduced immunoreactive CTGF. In microvascular endothelial cells, flow-dependent upregulation of CTGF was prevented by this actin mutant. In contrast, overexpression of actin S14C strengthened filamentous actin and increased CTGF expression. These data indicated an inverse relationship between CTGF expression and monomeric actin. Coexpression of the mutant actins and different CTGF promoter constructs revealed an actin-sensitive site between 3 and 4.5 kb of the CTGF promoter. A CArG-like box at −3791 bp was responsible for actin-dependent CTGF induction as shown by mutagenesis. Overexpression of actin S14C activated the nonmutated promoter significantly more strongly than the mutated promoter. Actin polymerization is regulated by the small GTPase RhoA and activation of serum response factor (SRF). Overexpression of constitutively active RhoA or SRF significantly increased CTGF protein synthesis. The 4.5-kb promoter construct, but not the construct with a mutation in the CArG box, was activated by SRF or RhoA, providing evidence for a functional role of this site in CTGF induction. These findings provide novel evidence that monomeric actin is the connecting link between alterations in the cytoskeleton and CTGF gene expression and demonstrate the importance of SRF in regulating CTGF transcription.
Collapse
Affiliation(s)
- Susanne Muehlich
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Loschgestrasse 8, D-91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
150
|
Cicha I, Goppelt-Struebe M, Muehlich S, Yilmaz A, Raaz D, Daniel WG, Garlichs CD. Pharmacological inhibition of RhoA signaling prevents connective tissue growth factor induction in endothelial cells exposed to non-uniform shear stress. Atherosclerosis 2007; 196:136-145. [PMID: 17452038 DOI: 10.1016/j.atherosclerosis.2007.03.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 03/05/2007] [Accepted: 03/08/2007] [Indexed: 01/30/2023]
Abstract
Shear stress changes play an important role in atheroma formation. This study focussed on atherogenic protein expression under non-uniform shear stress and the pharmacological modulation of shear-related endothelial dysfunction. Bifurcating flow-through cell culture slides were used to expose HUVECs to steady laminar or non-uniform shear stress for 18 h at 10 dyn/cm(2). Protein expression was determined by immunofluorescence, and quantified using MetaVue software. Laminar shear stress resulted in cell alignment, reduced F-actin fibers, and significant induction of endothelial nitric oxide synthase expression. Under non-uniform shear stress at bifurcations, minor upregulation of adhesion molecules was observed. Connective tissue growth factor (CTGF) was significantly downregulated by laminar shear stress and induced in cells exposed to non-uniform shear stress. CTGF upregulation by non-uniform shear stress was RhoA-dependent, because it was almost completely inhibited in cells transfected with dominant negative RhoA-N19, and when cells were treated with 1 micromol/L simvastatin during flow. Pre-incubation of HUVECs with inhibitors of Rho-associated kinase before exposure to flow significantly suppressed the CTGF induction in regions of non-uniform shear stress. In conclusion, non-uniform shear stress-dependent CTGF expression requires active RhoA and can be prevented pharmacologically. Interference with shear stress-induced protein expression may inhibit endothelial dysfunction in atheroprone vessel regions.
Collapse
Affiliation(s)
- Iwona Cicha
- Medical Clinic 2, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | - Susanne Muehlich
- Medical Clinic 4, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Atilla Yilmaz
- Medical Clinic 2, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Dorette Raaz
- Medical Clinic 2, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Werner G Daniel
- Medical Clinic 2, University of Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|