101
|
Tsioumpekou M, Krijgsman D, Leusen JHW, Olofsen PA. The Role of Cytokines in Neutrophil Development, Tissue Homing, Function and Plasticity in Health and Disease. Cells 2023; 12:1981. [PMID: 37566060 PMCID: PMC10417597 DOI: 10.3390/cells12151981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Neutrophils are crucial innate immune cells and comprise 50-70% of the white blood cell population under homeostatic conditions. Upon infection and in cancer, blood neutrophil numbers significantly increase because of the secretion of various chemo- and cytokines by, e.g., leukocytes, pericytes, fibroblasts and endothelial cells present in the inflamed tissue or in the tumor microenvironment (TME). The function of neutrophils in cancer has recently gained considerable attention, as they can exert both pro- and anti-tumorigenic functions, dependent on the cytokine milieu present in the TME. Here, we review the effect of cytokines on neutrophil development, tissue homing, function and plasticity in cancer and autoimmune diseases as well as under physiological conditions in the bone marrow, bloodstream and various organs like the spleen, kidney, liver, lung and lymph nodes. In addition, we address several promising therapeutic options, such as cytokine therapy, immunocytokines and immunotherapy, which aim to exploit the anti-tumorigenic potential of neutrophils in cancer treatment or block excessive neutrophil-mediated inflammation in autoimmune diseases.
Collapse
Affiliation(s)
- Maria Tsioumpekou
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
| | - Daniëlle Krijgsman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
| | - Patricia A. Olofsen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.T.); (D.K.); (J.H.W.L.)
| |
Collapse
|
102
|
Stavropoulos D, Grewal MK, Petriti B, Chau KY, Hammond CJ, Garway-Heath DF, Lascaratos G. The Role of Mitophagy in Glaucomatous Neurodegeneration. Cells 2023; 12:1969. [PMID: 37566048 PMCID: PMC10417839 DOI: 10.3390/cells12151969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
This review aims to provide a better understanding of the emerging role of mitophagy in glaucomatous neurodegeneration, which is the primary cause of irreversible blindness worldwide. Increasing evidence from genetic and other experimental studies suggests that mitophagy-related genes are implicated in the pathogenesis of glaucoma in various populations. The association between polymorphisms in these genes and increased risk of glaucoma is presented. Reduction in intraocular pressure (IOP) is currently the only modifiable risk factor for glaucoma, while clinical trials highlight the inadequacy of IOP-lowering therapeutic approaches to prevent sight loss in many glaucoma patients. Mitochondrial dysfunction is thought to increase the susceptibility of retinal ganglion cells (RGCs) to other risk factors and is implicated in glaucomatous degeneration. Mitophagy holds a vital role in mitochondrial quality control processes, and the current review explores the mitophagy-related pathways which may be linked to glaucoma and their therapeutic potential.
Collapse
Affiliation(s)
- Dimitrios Stavropoulos
- Department of Ophthalmology, King’s College Hospital, London SE5 9RS, UK;
- Department of Ophthalmology, 417 Veterans Army Hospital (NIMTS), 11521 Athens, Greece
| | - Manjot K. Grewal
- NIHR Biomedical Research Center, Moorfields Eye Hospital and UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Division of Optometry and Visual Science, School of Health Sciences, City, University of London, London EC1V 0HB, UK
| | - Bledi Petriti
- NIHR Biomedical Research Center, Moorfields Eye Hospital and UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Department of Clinical & Movement Neurosciences, UCL Queens Square Institute of Neurology, London NW3 2PF, UK
| | - Kai-Yin Chau
- Department of Clinical & Movement Neurosciences, UCL Queens Square Institute of Neurology, London NW3 2PF, UK
| | - Christopher J. Hammond
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, London SE1 7EH, UK
- Department of Ophthalmology, St Thomas’ Hospital, London SE1 7EH, UK
| | - David F. Garway-Heath
- NIHR Biomedical Research Center, Moorfields Eye Hospital and UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Gerassimos Lascaratos
- Department of Ophthalmology, King’s College Hospital, London SE5 9RS, UK;
- Section of Ophthalmology, School of Life Course Sciences, King’s College London, London SE1 7EH, UK
| |
Collapse
|
103
|
Roe JM, Seely K, Bussard CJ, Eischen Martin E, Mouw EG, Bayles KW, Hollingsworth MA, Brooks AE, Dailey KM. Hacking the Immune Response to Solid Tumors: Harnessing the Anti-Cancer Capacities of Oncolytic Bacteria. Pharmaceutics 2023; 15:2004. [PMID: 37514190 PMCID: PMC10384176 DOI: 10.3390/pharmaceutics15072004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Oncolytic bacteria are a classification of bacteria with a natural ability to specifically target solid tumors and, in the process, stimulate a potent immune response. Currently, these include species of Klebsiella, Listeria, Mycobacteria, Streptococcus/Serratia (Coley's Toxin), Proteus, Salmonella, and Clostridium. Advancements in techniques and methodology, including genetic engineering, create opportunities to "hijack" typical host-pathogen interactions and subsequently harness oncolytic capacities. Engineering, sometimes termed "domestication", of oncolytic bacterial species is especially beneficial when solid tumors are inaccessible or metastasize early in development. This review examines reported oncolytic bacteria-host immune interactions and details the known mechanisms of these interactions to the protein level. A synopsis of the presented membrane surface molecules that elicit particularly promising oncolytic capacities is paired with the stimulated localized and systemic immunogenic effects. In addition, oncolytic bacterial progression toward clinical translation through engineering efforts are discussed, with thorough attention given to strains that have accomplished Phase III clinical trial initiation. In addition to therapeutic mitigation after the tumor has formed, some bacterial species, referred to as "prophylactic", may even be able to prevent or "derail" tumor formation through anti-inflammatory capabilities. These promising species and their particularly favorable characteristics are summarized as well. A complete understanding of the bacteria-host interaction will likely be necessary to assess anti-cancer capacities and unlock the full cancer therapeutic potential of oncolytic bacteria.
Collapse
Affiliation(s)
- Jason M Roe
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kevin Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Caleb J Bussard
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
| | | | - Elizabeth G Mouw
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Amanda E Brooks
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
- Office of Research & Scholarly Activity, Rocky Vista University, Ivins, UT 84738, USA
| | - Kaitlin M Dailey
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
104
|
Kiran A, Altaf A, Sarwar M, Malik A, Maqbool T, Ali Q. Phytochemical profiling and cytotoxic potential of Arnebia nobilis root extracts against hepatocellular carcinoma using in-vitro and in-silico approaches. Sci Rep 2023; 13:11376. [PMID: 37452082 PMCID: PMC10349071 DOI: 10.1038/s41598-023-38517-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Hepatocellular carcinoma is the fifth most prevalent cancer worldwide. The emergence of drug resistance and other adverse effects in available anticancer options are challenging to explore natural sources. The current study was designed to decipher the Arnebia nobilis (A. nobilis) extracts for detecting phytochemicals, in-vitro evaluation of antioxidative and cytotoxic potentials, and in-silico prediction of potent anticancer compounds. The phytochemical analysis revealed the presence of flavonoids, phenols, tannins, alkaloids, quinones, and cardiac glycosides, in the ethanol (ANE) and n-hexane (ANH) extracts of A. nobilis. ANH extract exhibited a better antioxidant potential to scavenge DPPH, nitric oxide and superoxide anion radicals than ANE extract, which showed better potential only against H2O2 radicals. In 24 h treatment, ANH extract revealed higher cytotoxicity (IC50 value: 22.77 µg/mL) than ANH extract (IC50 value: 46.74 µg/mL) on cancer (HepG2) cells without intoxicating the normal (BHK) cells using MTT assay. A better apoptotic potential was observed in ANH extract (49.10%) compared to ANE extract (41.35%) on HepG2 cells using the annexin V/PI method. GCMS analysis of ANH extract identified 35 phytocompounds, from which only 14 bioactive compounds were selected for molecular docking based on druggability criteria and toxicity filters. Among the five top scorers, deoxyshikonin exhibited the best binding affinities of - 7.2, - 9.2, - 7.2 and - 9.2 kcal/mol against TNF-α, TGF-βR1, Bcl-2 and iNOS, respectively, followed by ethyl cholate and 2-Methyl-6-(4-methylphenyl)hept-2-en-4-one along with their desirable ADMET properties. The phytochemicals of ANH extract could be used as a promising drug candidate for liver cancer after further validations.
Collapse
Affiliation(s)
- Asia Kiran
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54300, Pakistan
| | - Awais Altaf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54300, Pakistan.
| | - Muhammad Sarwar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54300, Pakistan
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54300, Pakistan
| | - Tahir Maqbool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54300, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
105
|
Kciuk M, Alam M, Ali N, Rashid S, Głowacka P, Sundaraj R, Celik I, Yahya EB, Dubey A, Zerroug E, Kontek R. Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications. Molecules 2023; 28:5246. [PMID: 37446908 PMCID: PMC10343677 DOI: 10.3390/molecules28135246] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 90-001 Lodz, Poland;
- Doctoral School of Medical University of Lodz, Hallera 1 Square, 90-700 Lodz, Poland
| | - Rajamanikandan Sundaraj
- Department of Biochemistry, Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore 641021, India;
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey;
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida 201310, India;
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai 600077, India
| | - Enfale Zerroug
- LMCE Laboratory, Group of Computational and Pharmaceutical Chemistry, University of Biskra, Biskra 07000, Algeria;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
| |
Collapse
|
106
|
Moghaddam SJK, Roushandeh AM, Roudkenar MH, Nemati S, Najafi-Ghalehlou N, Pakzad T, Hamidi M. Study of Three Potential Diagnostic Biomarkers in Nasopharyngeal Carcinoma Samples from Guilan, North of Iran. Int Arch Otorhinolaryngol 2023; 27:e461-e470. [PMID: 37564471 PMCID: PMC10411240 DOI: 10.1055/s-0042-1749371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/17/2022] [Indexed: 10/17/2022] Open
Abstract
Introduction Finding biomarkers for highly lethal cancers is a priority. Objective The current study was designed to understand the clinical significance of vascular endothelial growth factor (VEGF), latent membrane protein 1 (LMP1), and tumor necrosis factor-α (TNF-α) expression as the biomarkers, and evaluate their correlation with each other, in nasopharyngeal carcinoma (NPC) in the province of Guilan, North of Iran. Methods Gene expression was evaluated in 25 formalin-fixed paraffin-embedded (FFPE) blocks from cases of confirmed NPC and 20 FFPE samples of non-NPC by quantifying messenger ribonucleic acid (mRNA) and protein levels, using real-time polymerase chain reaction (PCR) and immunohistochemistry (IHC) methods, respectively. Furthermore, the correlations among the protein levels of different genes, along with the patients' demographic characteristics were assessed. Results Our findings on mRNA and protein levels demonstrated that the expression of the LMP1 gene in the NPC group was significantly elevated compared with that of the non-NPC group. In addition, the protein levels in the NPC group indicated a positive and significant correlation between LMP1 and VEGF expression. It was noted that both protein and mRNA levels showed no significant differences in the expression of TNF-α and VEGF genes between the NPC and control groups. Furthermore, there was no significant relationship between the expression of these proteins and the demographic characteristics of NPC patients. Conclusion Overall, a significant increase in LMP1 expression was observed in NPC patients, which may serve as a diagnostic biomarker for NPC. Also, LMP1 might be involved in NPC progression by inducing VEGF gene expression.
Collapse
Affiliation(s)
- Saghi Jani Kargar Moghaddam
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Shadman Nemati
- Otorhinolaryngology Research Center, Faculty of Medicine, Amiralmomenin Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Nima Najafi-Ghalehlou
- Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Toofan Pakzad
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
107
|
Sharafutdinova KI, Shlyapina VS, Baeva AI, Timurshin AA, Sabanaeva IE, Nakieva AG, Kalashnikova MF, Khabibov MN. [Diabetes mellitus and the female reproductive system tumors]. PROBLEMY ENDOKRINOLOGII 2023; 69:103-110. [PMID: 37448252 DOI: 10.14341/probl13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/19/2023] [Accepted: 05/11/2023] [Indexed: 07/15/2023]
Abstract
The article discusses various pathophysiological conditions and processes that lead to the development of tumors in diabetes mellitus. These include obesity, hyperglycemia, hyperinsulinemia, inflammation, and oxidative stress. The data of epidemiological studies are given, in which it was found that diabetes mellitus (both type 1 and type 2) increases the risk of developing the female reproductive system tumors, such as ovarian cancer, endometrial cancer, while for cervical cancer, vaginal cancer and vulvar cancer, such a relationship has not been clearly identified.
Collapse
Affiliation(s)
| | - V S Shlyapina
- Russian National Research Medical University named after N.I. Pirogov
| | - A I Baeva
- Russian National Research Medical University named after N.I. Pirogov
| | | | | | | | | | - M N Khabibov
- First Moscow State Medical University (Sechenov University)
| |
Collapse
|
108
|
Jou E. Type 1 and type 2 cytokine-mediated immune orchestration in the tumour microenvironment and their therapeutic potential. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:474-497. [PMID: 37455828 PMCID: PMC10345208 DOI: 10.37349/etat.2023.00146] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 07/18/2023] Open
Abstract
Cancer remains the second leading cause of death worldwide despite modern breakthroughs in medicine, and novel treatments are urgently needed. The revolutionary success of immune checkpoint inhibitors in the past decade serves as proof of concept that the immune system can be effectively harnessed to treat cancer. Cytokines are small signalling proteins with critical roles in orchestrating the immune response and have become an attractive target for immunotherapy. Type 1 immune cytokines, including interferon γ (IFNγ), interleukin-12 (IL-12), and tumour necrosis factor α (TNFα), have been shown to have largely tumour suppressive roles in part through orchestrating anti-tumour immune responses mediated by natural killer (NK) cells, CD8+ T cells and T helper 1 (Th1) cells. Conversely, type 2 immunity involving group 2 innate lymphoid cells (ILC2s) and Th2 cells are involved in tissue regeneration and wound repair and are traditionally thought to have pro-tumoural effects. However, it is found that the classical type 2 immune cytokines IL-4, IL-5, IL-9, and IL-13 may have conflicting roles in cancer. Similarly, type 2 immunity-related cytokines IL-25 and IL-33 with recently characterised roles in cancer may either promote or suppress tumorigenesis in a context-dependent manner. Furthermore, type 1 cytokines IFNγ and TNFα have also been found to have pro-tumoural effects under certain circumstances, further complicating the overall picture. Therefore, the dichotomy of type 1 and type 2 cytokines inhibiting and promoting tumours respectively is not concrete, and attempts of utilising these for cancer immunotherapy must take into account all available evidence. This review provides an overview summarising the current understanding of type 1 and type 2 cytokines in tumour immunity and discusses the prospects of harnessing these for immunotherapy in light of previous and ongoing clinical trials.
Collapse
Affiliation(s)
- Eric Jou
- Queens’ College, University of Cambridge, CB3 9ET Cambridge, UK
- MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| |
Collapse
|
109
|
Basappa B, Jung YY, Ravish A, Xi Z, Swamynayaka A, Madegowda M, Pandey V, Lobie PE, Sethi G, Ahn KS. Methyl-Thiol-Bridged Oxadiazole and Triazole Heterocycles as Inhibitors of NF-κB in Chronic Myelogenous Leukemia Cells. Biomedicines 2023; 11:1662. [PMID: 37371757 DOI: 10.3390/biomedicines11061662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Nuclear factor kappa beta (NF-κB) is a transcriptional factor that plays a crucial role in regulating cancer cell proliferation. Therefore, the inhibition of NF-κB activity by small molecules may be beneficial in cancer therapy. In this report, methyl-thiol-bridged oxadiazole and triazole heterocycles were synthesized via click chemistry and it was observed that the lead structure, 2-(((1-(3,4-dichlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-5-(4-methoxybenzyl)-1,3,4-oxadiazole (4c), reduced the viability of MCF-7 cells with an IC50 value of 7.4 µM. Compound 4c also caused concentration-dependent loss of cell viability in chronic myelogenous leukemia (CML) cells. Furthermore, compound 4c inhibited the activation of NF-κB in human CML cells as observed by nuclear translocation and DNA binding assays. Functionally, compound 4c produced PARP cleavage and also suppressed expression of Bcl-2/xl, MMP-9, COX-2, survivin, as well as VEGF, resulting in apoptosis of CML cells. Moreover, ChIP assay showed that compound 4c decreased the binding of COX-2 to the p65 gene promoter. Detailed in silico analysis also indicated that compound 4c targeted NF-κB in CML cells. In conclusion, a novel structure bearing both triazole and oxadiazole moieties has been identified that can target NF-κB in CML cells and may constitute a potential novel drug candidate.
Collapse
Affiliation(s)
- Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore 570006, India
| | - Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Akshay Ravish
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore 570006, India
| | - Zhang Xi
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Ananda Swamynayaka
- Department of Studies in Physics, University of Mysore, Mysore 570006, India
| | - Mahendra Madegowda
- Department of Studies in Physics, University of Mysore, Mysore 570006, India
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Peter E Lobie
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
110
|
Kadatane SP, Satariano M, Massey M, Mongan K, Raina R. The Role of Inflammation in CKD. Cells 2023; 12:1581. [PMID: 37371050 DOI: 10.3390/cells12121581] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic kidney disease (CKD) affects many adults worldwide. Persistent low-grade inflammation is a substantial factor in its development and progression and has correlated with increased mortality and cardiovascular problems. This low-grade inflammation is a product of dysregulation of the normal balance between pro- and anti-inflammatory markers. Various factors such as increased innate immune system activation, reactive oxygen species production, periodontal disease, dysregulation of anti-inflammatory systems and intestinal dysbiosis result in the dysregulation of this balance. Furthermore, this low-grade inflammation has down-effects such as hypertension, renal fibrosis and acceleration of renal function decline. Moreover, low-grade inflammation over time has been linked to malignancy in CKD. As CKD progresses, many patients require dialysis, which has a negative bidirectional relationship with persistent inflammation. Treatment options for inflammation in CKD are vast, including cytokine inhibitors, statins and diets. However, more research is needed to create a standardized management plan. In this review, we will examine the normal physiology of the kidney and its relationship with the immune system. We will then delve into the pathology behind persistent inflammation, the various causes of inflammation, the downstream effects of inflammation, dialysis and potential treatments for inflammation in CKD.
Collapse
Affiliation(s)
| | - Matthew Satariano
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Michael Massey
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Kai Mongan
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Rupesh Raina
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH 44302, USA
- Department of Nephrology, Akron Children's Hospital, Akron, OH 44308, USA
| |
Collapse
|
111
|
Tran NT, Chen L, Zhou Y, Zhang M, Wang Y, Li S. SpTNF regulates apoptosis and antimicrobial peptide synthesis in mud crab (Scylla paramamosain) during white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2023:108881. [PMID: 37279830 DOI: 10.1016/j.fsi.2023.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/03/2023] [Indexed: 06/08/2023]
Abstract
Tumor necrosis factor (TNF) is an inflammatory cytokine that is important in cell survival, proliferation, differentiation, and death. However, the functions of TNF in the immune responses of invertebrates have been less studied. In this study, SpTNF was cloned and characterized from mud crab (Scylla paramamosain) for the first time. SpTNF contains an open reading frame of 354 bp encoding 117 deduced amino acids, with a conserved C-terminal TNF homology domain (THD) domain. RNAi knockdown of SpTNF reduced hemocyte apoptosis and antimicrobial peptide (AMP) synthesis. Expression of SpTNF was initially down-regulated but subsequently up-regulated after 48 h in hemocytes of mud crabs after WSSV infection. Results of RNAi knockdown and overexpression showed that SpTNF inhibits the WSSV infection through activating apoptosis, NF-κB pathway, and AMP synthesis. Furthermore, the lipopolysaccharide-induced TNF-α factor (SpLITAF) can regulate the expression of SpTNF, induction of apoptosis, and activation of the NF-κB pathway and AMP synthesis. The expression and nuclear translocation of SpLITAF were regulated by WSSV infection. SpLITAF knockdown increased the WSSV copy number and VP28 gene expression. Taken together, these results proved the protective function of SpTNF, which is regulated by SpLITAF, in the immune response of mud crabs against WSSV through the regulation of apoptosis and activation of AMP synthesis.
Collapse
Affiliation(s)
- Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Lianjie Chen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yanlian Zhou
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
112
|
Patel RS, Agrawal B. Mucosal immunization with lipopeptides derived from conserved regions of SARS-CoV-2 antigens induce robust cellular and cross-variant humoral immune responses in mice. Front Immunol 2023; 14:1178523. [PMID: 37334376 PMCID: PMC10272440 DOI: 10.3389/fimmu.2023.1178523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/17/2023] [Indexed: 06/20/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has infected >600 million people in the ongoing global pandemic. Several variants of the SARS-CoV-2 have emerged in the last >2 years, challenging the continued efficacy of current COVID vaccines. Therefore, there is a crucial need to investigate a highly cross-protective vaccine effective against variants of SARS-CoV-2. In this study, we examined seven lipopeptides derived from highly conserved, immunodominant epitopes from the S, N, and M proteins of SARS-CoV-2, that are predicted to contain epitopes for clinically protective B cells, helper T cells (TH) and cytotoxic T cells (CTL). Intranasal immunization of mice with most of the lipopeptides led to significantly higher splenocyte proliferation and cytokine production, mucosal and systemic antibody responses, and induction of effector B and T lymphocytes in both lungs and spleen, compared to immunizations with the corresponding peptides without lipid. Immunizations with Spike-derived lipopeptides led to cross-reactive IgG, IgM and IgA responses against Alpha, Beta, Delta, and Omicron Spike proteins as well as neutralizing antibodies. These studies support their potential for development as components of a cross-protective SARS-CoV-2 vaccine.
Collapse
|
113
|
Lee CS, Hwang G, Nam YW, Hwang CH, Song J. IKK-mediated TRAF6 and RIPK1 interaction stifles cell death complex assembly leading to the suppression of TNF-α-induced cell death. Cell Death Differ 2023; 30:1575-1584. [PMID: 37085671 PMCID: PMC10244383 DOI: 10.1038/s41418-023-01161-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
Tumor necrosis factor α (TNF-α) is a pro-inflammatory cytokine capable of inducing extrinsic apoptosis and necroptosis. Tumor necrosis factor receptor-associated factor 6 (TRAF6), an E3 ligase, is a member of the TRAF family of proteins, which mediates inflammatory signals by activating nuclear factor kappa B (NFкB) and mitogen-activated protein kinase (MAPK). Although the functions of TRAF6 have been identified, its role in TNF-α-induced cell death remains poorly understood. Here, we report that TRAF6 is a negative modulator of TNF-α-induced cell death but does not affect TNF-α-induced NFκB activation. TRAF6 deficiency accelerates both TNF-α-induced apoptosis and necroptosis; however, the acceleration can be reversed by reconstituting TRAF6 or TRAF6C70A, suggesting that E3 ligase activity is not required for this activity. Mechanistically, TRAF6 directly interacts with RIPK1 during TNF-α-induced cell death signaling, which prevents RIPK1 from interacting with components of the cell death complex such as itself, FADD or RIPK3. These processes suppress the assembly of the death complex. Notably, IKK was required for TRAF6 to interact with RIPK1. In vivo, Traf6-/- embryos exhibited higher levels of cell death in the liver but could be rescued by the simultaneous knockout of Tnf. Finally, TRAF6 knockdown xenografts were highly sensitive to necroptotic stimuli. We concluded that TRAF6 suppresses TNF-α-induced cell death in coordination with IKK complexes in vivo and in vitro by suppressing the assembly of cell death complex.
Collapse
Affiliation(s)
- Choong-Sil Lee
- Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, Korea
| | - Gyuho Hwang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Young Woo Nam
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Chi Hyun Hwang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Jaewhan Song
- Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, Korea.
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
114
|
Han J, Dong L, Wu M, Ma F. Dynamic polarization of tumor-associated macrophages and their interaction with intratumoral T cells in an inflamed tumor microenvironment: from mechanistic insights to therapeutic opportunities. Front Immunol 2023; 14:1160340. [PMID: 37251409 PMCID: PMC10219223 DOI: 10.3389/fimmu.2023.1160340] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Immunotherapy has brought a paradigm shift in the treatment of tumors in recent decades. However, a significant proportion of patients remain unresponsive, largely due to the immunosuppressive tumor microenvironment (TME). Tumor-associated macrophages (TAMs) play crucial roles in shaping the TME by exhibiting dual identities as both mediators and responders of inflammation. TAMs closely interact with intratumoral T cells, regulating their infiltration, activation, expansion, effector function, and exhaustion through multiple secretory and surface factors. Nevertheless, the heterogeneous and plastic nature of TAMs renders the targeting of any of these factors alone inadequate and poses significant challenges for mechanistic studies and clinical translation of corresponding therapies. In this review, we present a comprehensive summary of the mechanisms by which TAMs dynamically polarize to influence intratumoral T cells, with a focus on their interaction with other TME cells and metabolic competition. For each mechanism, we also discuss relevant therapeutic opportunities, including non-specific and targeted approaches in combination with checkpoint inhibitors and cellular therapies. Our ultimate goal is to develop macrophage-centered therapies that can fine-tune tumor inflammation and empower immunotherapy.
Collapse
Affiliation(s)
- Jiashu Han
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Luochu Dong
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Fei Ma
- Center for National Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
115
|
Saldanha DJ, Cai A, Dorval Courchesne NM. The Evolving Role of Proteins in Wearable Sweat Biosensors. ACS Biomater Sci Eng 2023; 9:2020-2047. [PMID: 34491052 DOI: 10.1021/acsbiomaterials.1c00699] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sweat is an increasingly popular biological medium for fitness monitoring and clinical diagnostics. It contains an abundance of biological information and is available continuously and noninvasively. Sweat-sensing devices often employ proteins in various capacities to create skin-friendly matrices that accurately extract valuable and time-sensitive information from sweat. Proteins were first used in sensors as biorecognition elements in the form of enzymes and antibodies, which are now being tuned to operate at ranges relevant for sweat. In addition, a range of structural proteins, sometimes assembled in conjunction with polymers, can provide flexible and compatible matrices for skin sensors. Other proteins also naturally possess a range of functionalities─as adhesives, charge conductors, fluorescence emitters, and power generators─that can make them useful components in wearable devices. Here, we examine the four main components of wearable sweat sensors─the biorecognition element, the transducer, the scaffold, and the adhesive─and the roles that proteins have played so far, or promise to play in the future, in each component. On a case-by-case basis, we analyze the performance characteristics of existing protein-based devices, their applicable ranges of detection, their transduction mechanism and their mechanical properties. Thereby, we review and compare proteins that can readily be used in sweat sensors and others that will require further efforts to overcome design, stability or scalability challenges. Incorporating proteins in one or multiple components of sweat sensors could lead to the development and deployment of tunable, greener, and safer biosourced devices.
Collapse
Affiliation(s)
- Dalia Jane Saldanha
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada H3A 0C5
| | - Anqi Cai
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada H3A 0C5
| | | |
Collapse
|
116
|
Kramer ED, Tzetzo SL, Colligan SH, Hensen ML, Brackett CM, Clausen BE, Taketo MM, Abrams SI. β-Catenin signaling in alveolar macrophages enhances lung metastasis through a TNF-dependent mechanism. JCI Insight 2023; 8:e160978. [PMID: 37092550 PMCID: PMC10243816 DOI: 10.1172/jci.insight.160978] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/08/2023] [Indexed: 04/25/2023] Open
Abstract
The main cause of malignancy-related mortality is metastasis. Although metastatic progression is driven by diverse tumor-intrinsic mechanisms, there is a growing appreciation for the contribution of tumor-extrinsic elements of the tumor microenvironment, especially macrophages, which correlate with poor clinical outcomes. Macrophages consist of bone marrow-derived and tissue-resident populations. In contrast to bone marrow-derived macrophages, the transcriptional pathways that govern the pro-metastatic activities of tissue-resident macrophages (TRMs) remain less clear. Alveolar macrophages (AMs) are a TRM population with critical roles in tissue homeostasis and metastasis. Wnt/β-catenin signaling is a hallmark of cancer and has been identified as a pathologic regulator of AMs in infection. We tested the hypothesis that β-catenin expression in AMs enhances metastasis in solid tumor models. Using a genetic β-catenin gain-of-function approach, we demonstrated that (a) enhanced β-catenin in AMs heightened lung metastasis; (b) β-catenin activity in AMs drove a dysregulated inflammatory program strongly associated with Tnf expression; and (c) localized TNF-α blockade abrogated this metastatic outcome. Last, β-catenin gene CTNNB1 and TNF expression levels were positively correlated in AMs of patients with lung cancer. Overall, our findings revealed a Wnt/β-catenin/TNF-α pro-metastatic axis in AMs with potential therapeutic implications against tumors refractory to the antineoplastic actions of TNF-α.
Collapse
Affiliation(s)
| | | | | | | | - Craig M. Brackett
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Björn E. Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Makoto M. Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
117
|
Dhall A, Patiyal S, Choudhury S, Jain S, Narang K, Raghava GPS. TNFepitope: A webserver for the prediction of TNF-α inducing epitopes. Comput Biol Med 2023; 160:106929. [PMID: 37126926 DOI: 10.1016/j.compbiomed.2023.106929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Tumor Necrosis Factor alpha (TNF-α) is a pleiotropic pro-inflammatory cytokine that is crucial in controlling the signaling pathways within the immune cells. Recent studies reported that higher expression levels of TNF-α are associated with the progression of several diseases, including cancers, cytokine release syndrome in COVID-19, and autoimmune disorders. Thus, it is the need of the hour to develop immunotherapies or subunit vaccines to manage TNF-α progression in various disease conditions. In the pilot study, we proposed a host-specific in-silico tool for predicting, designing, and scanning TNF-α inducing epitopes. The prediction models were trained and validated on the experimentally validated TNF-α inducing/non-inducing epitopes from human and mouse hosts. Firstly, we developed alignment-free (machine learning based models using composition-based features of peptides) methods for predicting TNF-α inducing peptides and achieved maximum AUROC of 0.79 and 0.74 for human and mouse hosts, respectively. Secondly, an alignment-based (using BLAST) method has been used for predicting TNF-α inducing epitopes. Finally, a hybrid method (combination of alignment-free and alignment-based method) has been developed for predicting epitopes. Hybrid approach achieved maximum AUROC of 0.83 and 0.77 on an independent dataset for human and mouse hosts, respectively. We have also identified potential TNF-α inducing peptides in different proteins of HIV-1, HIV-2, SARS-CoV-2, and human insulin. The best models developed in this study has been incorporated in the webserver TNFepitope (https://webs.iiitd.edu.in/raghava/tnfepitope/), standalone package and GitLab (https://gitlab.com/raghavalab/tnfepitope).
Collapse
Affiliation(s)
- Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Shubham Choudhury
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Shipra Jain
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Kashish Narang
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India. http://webs.iiitd.edu.in/raghava/
| |
Collapse
|
118
|
Ghanbarnasab Behbahani R, Danyaei A, Shogi H, Tahmasbi MJ, Saki G, Neisi N. Irradiation and conditioned media from human umbilical cord stem cells suppress epithelial-mesenchymal transition biomarkers in breast cancer cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:486-491. [PMID: 37009003 PMCID: PMC10008391 DOI: 10.22038/ijbms.2023.68374.14919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/18/2022] [Indexed: 04/04/2023]
Abstract
Objectives Breast cancer cells developing radioresistance during radiation may result in cancer recurrence and poor survival. One of the main reasons for this problem is the changes in the regulation of genes that have a key role in the epithelial-mesenchymal transition (EMT). Utilizing mesenchymal stem cells can be an effective approach to overcome therapeutic resistance. In this study, we investigated the possibility of combining mesenchymal medium with cancer cell medium in sensitizing breast carcinoma cells to radiation. Materials and Methods In this experimental study, the cells were irradiated at a dose of 4 Gy alone and in combination with stem cells and cancer cells media. Apoptosis, cell cycle, Western blotting, and real-time PCR assays evaluated the therapeutic effects. Results We found that the CSCM could decrease the expression of several EMT markers (CD133, CD44, Vimentin, Nanog, Snail, and Twist), resulting in increased cell distribution in the G1 and G2/M phases, apoptosis rate, and protein levels of p-Chk2 and cyclin D1; furthermore, it exhibits synergetic effects with radiation treatment in vitro. Conclusion These findings show that CSCM inhibits the expansion of breast cancer cells and makes them more susceptible to radiotherapy, offering a unique approach to treating breast cancer by overcoming radioresistance.
Collapse
Affiliation(s)
- Rahil Ghanbarnasab Behbahani
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Danyaei
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Corresponding author: Amir Danyaei. Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Hamed Shogi
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Tahmasbi
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niloofar Neisi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
119
|
Brierly G, Celentano A, Breik O, Moslemivayeghan E, Patini R, McCullough M, Yap T. Tumour Necrosis Factor Alpha (TNF-α) and Oral Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15061841. [PMID: 36980727 PMCID: PMC10046488 DOI: 10.3390/cancers15061841] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Uncovering the inflammatory mechanisms underpinning initiation, progression, and promotion of oral squamous cell carcinoma (OSCC) development is fundamental to the rational pursuit of targeted therapeutics. Here we present a review of the current knowledge of the role of TNF-α in the aetiology, pathogenesis, and potential therapies with regards to OSCC. TNF-α is worthy of particular attention in OSCC, with its presence demonstrated to enhance cell proliferation and its downregulation demonstrated to inhibit proliferation and migration in other carcinomas in both in vitro and in vivo models and oral cancer patients. Increased TNF-α in the OSCC tumour microenvironment has been demonstrated to favour invasion through promotion of firstly the pro-inflammatory, pro-invasive phenotypes of OSCC cells and secondly its paracrine mechanism mediating recruitment and activation of inflammatory cells. Polymorphisms affecting the gene expression of TNF-α have been strongly associated with an increased risk for oral squamous cell carcinoma. A number of studies have considered TNF-α within biofluids, including saliva and serum, as a potential biomarker for the early detection of OSCC, as well as its staging, differentiation, and prognosis. The broad and multifaceted role that TNF-α plays in many inflammatory states presents an obvious confounder, particularly with demonstrated increased TNF-α levels in common oral disease states. Lastly, biologic agents targeting TNF-α are currently in clinical use for immune-mediated inflammatory rheumatological and gastrointestinal diseases. There is the potential that these biological agents might have an adjunctive role in OSCC prevention and treatment.
Collapse
Affiliation(s)
- Gary Brierly
- Maxillofacial/Head and Neck Surgery, Royal Brisbane and Women's Hospital, Queensland Health, Brisbane, QLD 4072, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Antonio Celentano
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Carlton, VIC 3053, Australia
| | - Omar Breik
- Maxillofacial/Head and Neck Surgery, Royal Brisbane and Women's Hospital, Queensland Health, Brisbane, QLD 4072, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Elham Moslemivayeghan
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Carlton, VIC 3053, Australia
| | - Romeo Patini
- Department of Head, Neck and Sense Organs, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Michael McCullough
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Carlton, VIC 3053, Australia
| | - Tami Yap
- Melbourne Dental School, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Carlton, VIC 3053, Australia
- Dermatology, Royal Melbourne Hospital, Melbourne Health, Parkville, VIC 3050, Australia
| |
Collapse
|
120
|
Yu B, Xiang L, Peppelenbosch MP, Fuhler GM. Overlapping cytokines in H. pylori infection and gastric cancer: A tandem meta-analysis. Front Immunol 2023; 14:1125658. [PMID: 37006300 PMCID: PMC10050690 DOI: 10.3389/fimmu.2023.1125658] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Background Previous evidence indicated that Helicobacter pylori-induced inflammation is the first step towards gastric carcinogenesis. However, investigations of the immunological factors driving this process have shown inconsistencies. We aimed to present a thorough summary of all researched cytokines in relation to H. pylori infection and GC and relate these to global GC risk. Methods We performed a systematic review and tandem meta-analysis identifying all published studies reporting on serum cytokine levels in H. pylori-infected cases vs. non-infected controls and gastric cancer cases vs. non-gastric cancer controls, with sub-analyses performed to identify global regional differences in cytokine induction and their correlation with GC incidence. Results Only levels of systemic IL-6 (standardized mean difference [SMD]:0.95, 95%CI [0.45;1.45]) and TNF-α (SMD:0.88, 95%CI [0.46; 1.29]) were significantly increased upon H. pylori infection. Sub-analysis showed that of IL-6 levels were increased upon H. pylori infection in East Asian, Middle Eastern and Southeast Asian cohorts, but not in North America, Europe, Russia and Africa. Serum levels of IL-6, IL-7, IL-10, IL-12, and TNF-α were significantly raised in GC. Exploration of the relationship between serum cytokines changes upon H. pylori infection and regional differences in risk of GC development indicated that the SMD of IL-6 serum levels presents a significant correlation with the relative incidence of GC (r=0.81, p=0.00014). Conclusion This study shows that H. pylori infection and GC are associated with increased IL-6 and TNF-α levels. Particularly, IL-6 shows region-specific increases that correlate with GC incidence, making it a key contender for the cause of this disease.
Collapse
Affiliation(s)
| | | | | | - Gwenny M. Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
121
|
Summers SE, Salih V, Foey AD. ErbB- and MUC1-targeted CAR-T cell immunotherapy of oral squamous cell carcinoma. FRONTIERS IN DENTAL MEDICINE 2023; 4:1116402. [PMID: 39935547 PMCID: PMC11811755 DOI: 10.3389/fdmed.2023.1116402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/24/2023] [Indexed: 02/13/2025] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has shown great success in treating B cell malignancies; however, there are many challenges that limit their therapeutic efficacy in solid tumours. Immunotherapy of head and neck squamous cell carcinoma (HNSCC), and, in particular, oral squamous cell carcinoma (OSCC), presents a unique set of challenges including lack of consistently expressed tumour associated antigens (TAAs) and the immunosuppressive tumour microenvironment (TME). Currently, there are few clinical trials investigating the use of CAR-T cells in HNSCC/OSCC; however, results from trials investigating similar solid tumours, such as breast cancer, can be adopted to help evaluate the use of CAR-T in this cancer. In this review, the process of CAR-T cell engineering and different generations of these cells will be summarised, highlighting their potential use in treating HNSCC through targeting ErbB and MUC1; TAAs highly expressed by this solid tumour. Potential strategies including combination therapy, utilising both TAA-targeting CAR-Ts and immune checkpoint inhibitors, such as PD-L1, have been discussed, in an attempt to develop synergistic anti-tumour responses. In addition to this, the use of dual-targeting CAR-T cells, synthetic NOTCH (synNOTCH) receptors and alternative non-tumour targets of the TME have been reviewed. Such combination therapies have been shown to help limit solid tumour progression and enhance both the safety and efficacy of CAR-T cell immunotherapy, which may be adopted for the treatment and management of OSCC.
Collapse
Affiliation(s)
- Saffron E. Summers
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
- School of Dentistry, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Vehid Salih
- School of Dentistry, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Andrew D. Foey
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
122
|
Reynaud D, Alfaidy N, Collet C, Lemaitre N, Sergent F, Miege C, Soleilhac E, Assi AA, Murthi P, Courtois G, Fauvarque MO, Slim R, Benharouga M, Abi Nahed R. NLRP7 Enhances Choriocarcinoma Cell Survival and Camouflage in an Inflammasome Independent Pathway. Cells 2023; 12:857. [PMID: 36980199 PMCID: PMC10099745 DOI: 10.3390/cells12060857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Gestational choriocarcinoma (GC) is a highly malignant trophoblastic tumor that often develops from a complete hydatidiform mole (HM). NLRP7 is the major gene responsible for recurrent HM and is involved in the innate immune response, inflammation and apoptosis. NLRP7 can function in an inflammasome-dependent or -independent pathway. Recently, we have demonstrated that NLRP7 is highly expressed in GC tumor cells and contributes to their tumorigenesis. However, the underlying mechanisms are still unknown. Here, we investigated the mechanism by which NLRP7 controls these processes in malignant (JEG-3) and non-tumor (HTR8/SVneo) trophoblastic cells. Cell survival, dedifferentiation, camouflage, and aggressiveness were compared between normal JEG-3 cells or knockdown for NLRP7, JEG-3 Sh NLRP7. In addition, HTR8/SVneo cells overexpressing NLRP7 were used to determine the impact of NLRP7 overexpression on non-tumor cells. NLRP7 involvement in tumor cell growth and tolerance was further characterized in vivo using the metastatic mouse model of GC. RESULTS We demonstrate that NLRP7 (i) functions in an inflammasome-dependent and -independent manners in HTR8/SVneo and JEG-3 cells, respectively; (ii) differentially regulates the activity of NF-κB in tumor and non-tumor cells; (iii) increases malignant cell survival, dedifferentiation, and camouflage; and (iv) facilitates tumor cells colonization of the lungs in the preclinical model of GC. CONCLUSIONS This study demonstrates for the first time the mechanism by which NLRP7, independently of its inflammasome machinery, contributes to GC growth and tumorigenesis. The clinical relevance of NLRP7 in this rare cancer highlights its potential therapeutic promise as a molecular target to treat resistant GC patients.
Collapse
Affiliation(s)
- Déborah Reynaud
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Constance Collet
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Nicolas Lemaitre
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Frederic Sergent
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Céline Miege
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | | | - Alaa Al Assi
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Univeristy Grenoble Alpes, Inserm, 38000 Grenoble, France
| | - Padma Murthi
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne VIC 3800, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women’s Hospital, Parkville, VIC 3502, Australia
| | - Gilles Courtois
- University Grenoble Alpes, Inserm, CEA, UA13 BGE, 38000 Grenoble, France
| | | | - Rima Slim
- Departments of Human Genetics and Obstetrics and Gynecology, McGill University Health Centre Research Institute, Montréal, QC H4A 3J1, Canada
| | - Mohamed Benharouga
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Roland Abi Nahed
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Univeristy Grenoble Alpes, Inserm, 38000 Grenoble, France
| |
Collapse
|
123
|
Larson EA, Dalamaga M, Magkos F. The role of exercise in obesity-related cancers: Current evidence and biological mechanisms. Semin Cancer Biol 2023; 91:16-26. [PMID: 36871634 DOI: 10.1016/j.semcancer.2023.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Cancer ranks among the five leading causes of death in almost all countries and has important repercussions for individual and public health, the healthcare system, and society in general. Obesity increases the incidence of many types of cancer, but growing evidence suggests that physical activity may decrease risk for developing a variety of obesity-related cancer types, and, in some cases, may improve cancer prognosis and mortality rates. This review summarizes recent evidence on the effect of physical activity on obesity-related cancer prevention and survival. For some cancers, including breast, colorectal, and endometrial cancer, there is strong evidence for a preventative effect of exercise, but for many others, including gallbladder and kidney cancer, and multiple myeloma, evidence is inconsistent or largely lacking. Though many potential mechanisms have been proposed to explain the onco-protective effect of exercise, including improved insulin sensitivity, alterations in sex hormone availability, improved immune function and inflammation, myokine secretion, and modulation of intracellular signaling at the level of AMP kinase, the exact mechanism(s) of action within each cancer subtype remains poorly defined. Overall, a deeper understanding of how exercise can help against cancer and of the exercise parameters that can be altered to optimize exercise prescription is necessary and should be the subject of future investigation.
Collapse
Affiliation(s)
- Elisabeth A Larson
- Division of Nutritional Sciences; Cornell University, Ithaca, NY, United States
| | - Maria Dalamaga
- Department of Biological Chemistry; National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports; University of Copenhagen, Denmark.
| |
Collapse
|
124
|
Dermatologic Manifestations of Noninflammasome-Mediated Autoinflammatory Diseases. JID INNOVATIONS 2023; 3:100176. [PMID: 36876221 PMCID: PMC9982332 DOI: 10.1016/j.xjidi.2022.100176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Autoinflammatory diseases (AIDs) arise from disturbances that alter interactions of immune cells and tissues. They give rise to prominent (auto)inflammation in the absence of aberrant autoantibodies and/or autoreactive T cells. AIDs that are predominantly caused by changes in the inflammasome pathways, such as the NLRP3- or pyrin-associated inflammasome, have gained substantial attention over the last years. However, AIDs resulting primarily from other changes in the defense system of the innate immune system are less well-studied. These noninflammasome-mediated AIDs relate to, for example, disturbance in the TNF or IFN signaling pathways or aberrations in genes affecting the IL-1RA. The spectrum of clinical signs and symptoms of these conditions is vast. Thus, recognizing early cutaneous signs constitutes an important step in differential diagnoses for dermatologists and other physicians. This review provides an overview of the pathogenesis, clinical presentation, and available treatment options highlighting dermatologic aspects of noninflammasome-mediated AIDs.
Collapse
Key Words
- AID, autoinflammatory disease
- ANCA, antineutrophil cytoplasmic antibody
- AOSD, adult-onset Still disease
- BASDAI, Bath Ankylosing Spondylitis Activity Index
- CANDLE, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature
- CAPS, cryopyrin-associated periodic syndrome
- CRD, cysteine-rich domain
- DIRA, deficiency of IL-1RA
- DITRA, deficiency of IL-36RA
- ER, endoplasmic reticulum
- ESR, erythrocyte sedimentation rate
- FMF, familial Mediterranean fever
- M-CSF, macrophage colony-stimulating factor
- MAS, macrophage activation syndrome
- NET, neutrophil extracellular trap
- NOS, nitrous oxide
- NSAID, nonsteroidal anti-inflammatory drug
- NUD, neutrophilic urticarial dermatosis
- PFAPA, periodic fever, aphthous stomatitis, pharyngitis, and adenitis
- PKR, protein kinase R
- PRAAS, proteosome-associated autoinflammatory disease
- SAPHO, synovitis, acne, pustulosis, hyperostosis, osteitis syndrome
- SAVI, STING-associated vasculopathy with onset in infancy
- STAT, signal transducer and activator of transcription
- SchS, Schnitzler syndrome
- TNFR, TNF receptor
- TRAPS, TNF receptor‒associated autoinflammatory disease
- Th17, T helper 17
- VAS, Visual Analog Scale
- sTNFR, soluble TNF receptor
Collapse
|
125
|
Adhikari S, Hussain Sheikh A, Baildya N, Mahmoudi G, Alam Choudhury N, Okpareke O, Sen T, Kumar Verma A, Kumar Singh R, Pathak S, Kaminsky W. Antiproliferative Evaluation and Supramolecular Properties of a Pd(II) complex Harvested from Benzil bis(pyridyl hydrazone) Ligand: Combined Experimental and Theoretical Studies. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
126
|
van Tienderen GS, Rosmark O, Lieshout R, Willemse J, de Weijer F, Elowsson Rendin L, Westergren-Thorsson G, Doukas M, Groot Koerkamp B, van Royen ME, van der Laan LJ, Verstegen MM. Extracellular matrix drives tumor organoids toward desmoplastic matrix deposition and mesenchymal transition. Acta Biomater 2023; 158:115-131. [PMID: 36427688 DOI: 10.1016/j.actbio.2022.11.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/31/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Patient-derived tumor organoids have been established as promising tools for in vitro modelling of multiple tumors, including cholangiocarcinoma (CCA). However, organoids are commonly cultured in basement membrane extract (BME) which does not recapitulate the intricacies of the extracellular matrix (ECM). We combined CCA organoids (CCAOs) with native tumor and liver scaffolds, obtained by decellularization, to effectuate a model to study the interaction between epithelial tumor cells and their surrounding ECM. Decellularization resulted in removal of cells while preserving ECM structure and retaining important characteristics of the tissue origin, including stiffness and presence of desmoplasia. The transcriptome of CCAOs in a tumor scaffold much more resembled that of patient-paired CCA tissue in vivo compared to CCAOs cultured in BME or liver scaffolds. This was accompanied by an increase in chemoresistance to clinically-relevant chemotherapeutics. CCAOs in decellularized scaffolds revealed environment-dependent proliferation dynamics, driven by the occurrence of epithelial-mesenchymal transition. Furthermore, CCAOs initiated an environment-specific desmoplastic reaction by increasing production of multiple collagen types. In conclusion, convergence of organoid-based models with native ECM scaffolds will lead to better understanding of the in vivo tumor environment. STATEMENT OF SIGNIFICANCE: The extracellular matrix (ECM) influences various facets of tumor behavior. Understanding the exact role of the ECM in controlling tumor cell fate is pertinent to understand tumor progression and develop novel therapeutics. This is particularly the case for cholangiocarcinoma (CCA), whereby the ECM displays a distinct tumor environment, characterized by desmoplasia. However, current models to study the interaction between epithelial tumor cells and the environment are lacking. We have developed a fully patient-derived model encompassing CCA organoids (CCAOs) and human decellularized tumor and tumor-free liver ECM. The tumor ECM induced recapitulation of various aspects of CCA, including migration dynamics, transcriptome and proteome profiles, and chemoresistance. Lastly, we uncover that epithelial tumor cells contribute to matrix deposition, and that this phenomenon is dependent on the level of desmoplasia already present.
Collapse
Affiliation(s)
- Gilles S van Tienderen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Oskar Rosmark
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ruby Lieshout
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jorke Willemse
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Floor de Weijer
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Linda Elowsson Rendin
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Michail Doukas
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Luc Jw van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Monique Ma Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
127
|
Chakravarti AR, Groer CE, Gong H, Yudistyra V, Forrest ML, Berkland CJ. Design of a Tumor Binding GMCSF as Intratumoral Immunotherapy of Solid Tumors. Mol Pharm 2023; 20:1975-1989. [PMID: 36825806 DOI: 10.1021/acs.molpharmaceut.2c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Next-generation cancer immunotherapies may utilize immunostimulants to selectively activate the host immune system against tumor cells. Checkpoint inhibitors (CPIs) like anti-PD1/PDL-1 that inhibit immunosuppression have shown unprecedented success but are only effective in the 20-30% of patients that possess an already "hot" (immunogenic) tumor. In this regard, intratumoral (IT) injection of immunostimulants is a promising approach since they can work synergistically with CPIs to overcome the resistance to immunotherapies by inducing immune stimulation in the tumor. One such immunostimulant is granulocyte macrophage-colony-stimulating factor (GMCSF) that functions by recruiting and activating antigen-presenting cells (dendritic cells) in the tumor, thereby initiating anti-tumor immune responses. However, key problems with GMCSF are lack of efficacy and the risk of systemic toxicity caused by the leakage of GMCSF from the tumor tissue. We have designed tumor-retentive versions of GMCSF that are safe yet potent immunostimulants for the local treatment of solid tumors. The engineered GMCSFs (eGMCSF) were synthesized by recombinantly fusing tumor-ECM (extracellular matrix) binding peptides to GMCSF. The eGMCSFs exhibited enhanced tumor binding and potent immunological activity in vitro and in vivo. Upon IT administration, the tumor-retentive eGMCSFs persisted in the tumor, thereby alleviating systemic toxicity, and elicited localized immune activation to effectively turn an unresponsive immunologically "cold" tumor "hot".
Collapse
Affiliation(s)
| | - Chad E Groer
- HylaPharm, LLC, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Huan Gong
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Vivian Yudistyra
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Marcus Laird Forrest
- HylaPharm, LLC, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Cory J Berkland
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States.,Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
128
|
Zhao Y, Jia S, Zhang K, Zhang L. Serum cytokine levels and other associated factors as possible immunotherapeutic targets and prognostic indicators for lung cancer. Front Oncol 2023; 13:1064616. [PMID: 36874133 PMCID: PMC9977806 DOI: 10.3389/fonc.2023.1064616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023] Open
Abstract
Lung cancer is one of the most prevalent cancer types and the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for 80-85% of all cancer incidences. Lung cancer therapy and prognosis largely depend on the disease's degree at the diagnosis time. Cytokines are soluble polypeptides that contribute to cell-to-cell communication, acting paracrine or autocrine on neighboring or distant cells. Cytokines are essential for developing neoplastic growth, but they are also known to operate as biological inducers following cancer therapy. Early indications are that inflammatory cytokines such as IL-6 and IL-8 play a predictive role in lung cancer. Nevertheless, the biological significance of cytokine levels in lung cancer has not yet been investigated. This review aimed to assess the existing literature on serum cytokine levels and additional factors as potential immunotherapeutic targets and lung cancer prognostic indicators. Changes in serum cytokine levels have been identified as immunological biomarkers for lung cancer and predict the effectiveness of targeted immunotherapy.
Collapse
Affiliation(s)
- Yinghao Zhao
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shengnan Jia
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Kun Zhang
- Department of Central Lab, The Second Hospital of Jilin University, Changchun, China
| | - Lian Zhang
- Department of Pathology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
129
|
Toni T, Viswanathan R, Robbins Y, Gunti S, Yang X, Huynh A, Cheng H, Sowers AL, Mitchell JB, Allen CT, Morgan EL, Van Waes C. Combined Inhibition of IAPs and WEE1 Enhances TNFα- and Radiation-Induced Cell Death in Head and Neck Squamous Carcinoma. Cancers (Basel) 2023; 15:1029. [PMID: 36831373 PMCID: PMC9954698 DOI: 10.3390/cancers15041029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a prevalent diagnosis with current treatment options that include radiotherapy and immune-mediated therapies, in which tumor necrosis factor-α (TNFα) is a key mediator of cytotoxicity. However, HNSCC and other cancers often display TNFα resistance due to activation of the canonical IKK-NFκB/RELA pathway, which is activated by, and induces expression of, cellular inhibitors of apoptosis proteins (cIAPs). Our previous studies have demonstrated that the IAP inhibitor birinapant sensitized HNSCC to TNFα-dependent cell death in vitro and radiotherapy in vivo. Furthermore, we recently demonstrated that the inhibition of the G2/M checkpoint kinase WEE1 also sensitized HNSCC cells to TNFα-dependent cell death, due to the inhibition of the pro-survival IKK-NFκB/RELA complex. Given these observations, we hypothesized that dual-antagonist therapy targeting both IAP and WEE1 proteins may have the potential to synergistically sensitize HNSCC to TNFα-dependent cell death. Using the IAP inhibitor birinapant and the WEE1 inhibitor AZD1775, we show that combination treatment reduced cell viability, proliferation and survival when compared with individual treatment. Furthermore, combination treatment enhanced the sensitivity of HNSCC cells to TNFα-induced cytotoxicity via the induction of apoptosis and DNA damage. Additionally, birinapant and AZD1775 combination treatment decreased cell proliferation and survival in combination with radiotherapy, a critical source of TNFα. These results support further investigation of IAP and WEE1 inhibitor combinations in preclinical and clinical studies in HNSCC.
Collapse
Affiliation(s)
- Tiffany Toni
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Ramya Viswanathan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yvette Robbins
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD 20892, USA
| | - Sreenivasulu Gunti
- Sinonasal and Skull Base Tumor Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angel Huynh
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD 20892, USA
| | - Hui Cheng
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anastasia L. Sowers
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clint T. Allen
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD 20892, USA
| | - Ethan L. Morgan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
130
|
Keane JM, Walsh CJ, Cronin P, Baker K, Melgar S, Cotter PD, Joyce SA, Gahan CGM, Houston A, Hyland NP. Investigation of the gut microbiome, bile acid composition and host immunoinflammatory response in a model of azoxymethane-induced colon cancer at discrete timepoints. Br J Cancer 2023; 128:528-536. [PMID: 36418894 PMCID: PMC9938136 DOI: 10.1038/s41416-022-02062-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Distinct sets of microbes contribute to colorectal cancer (CRC) initiation and progression. Some occur due to the evolving intestinal environment but may not contribute to disease. In contrast, others may play an important role at particular times during the tumorigenic process. Here, we describe changes in the microbiota and host over the course of azoxymethane (AOM)-induced tumorigenesis. METHODS Mice were administered AOM or PBS and were euthanised 8, 12, 24 and 48 weeks later. Samples were analysed using 16S rRNA gene sequencing, UPLC-MS and qRT-PCR. RESULTS The microbiota and bile acid profile showed distinct changes at each timepoint. The inflammatory response became apparent at weeks 12 and 24. Moreover, significant correlations between individual taxa, cytokines and bile acids were detected. One co-abundance group (CAG) differed significantly between PBS- and AOM-treated mice at week 24. Correlation analysis also revealed significant associations between CAGs, bile acids and the bile acid transporter, ASBT. Aberrant crypt foci and adenomas were first detectable at weeks 24 and 48, respectively. CONCLUSION The observed changes precede host hyperplastic transformation and may represent early therapeutic targets for the prevention or management of CRC at specific timepoints in the tumorigenic process.
Collapse
Affiliation(s)
- J M Keane
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - C J Walsh
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - P Cronin
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - K Baker
- Department of Medicine, University College Cork, Cork, Ireland
- Department of Pathology, University College Cork, Cork, Ireland
| | - S Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - P D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - S A Joyce
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - C G M Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - A Houston
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Medicine, University College Cork, Cork, Ireland.
| | - N P Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
131
|
Pooladanda V, Thatikonda S, Priya Muvvala S, Godugu C. Acute respiratory distress syndrome enhances tumor metastasis into lungs: Role of BRD4 in the tumor microenvironment. Int Immunopharmacol 2023; 115:109701. [PMID: 36641892 PMCID: PMC9827001 DOI: 10.1016/j.intimp.2023.109701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is associated with severe lung inflammation, edema, hypoxia, and high vascular permeability. The COVID-19-associated pandemic ARDS caused by SARS-CoV-2 has created dire global conditions and has been highly contagious. Chronic inflammatory disease enhances cancer cell proliferation, progression, and invasion. We investigated how acute lung inflammation activates the tumor microenvironment and enhances lung metastasis in LPS induced in vitro and in vivo models. Respiratory illness is mainly caused by cytokine storm, which further influences oxidative and nitrosative stress. The LPS-induced inflammatory cytokines made the conditions suitable for the tumor microenvironment in the lungs. In the present study, we observed that LPS induced the cytokine storm and promoted lung inflammation via BRD4, which further caused the nuclear translocation of p65 NF-κB and STAT3. The transcriptional activation additionally triggers the tumor microenvironment and lung metastasis. Thus, BRD4-regulated p65 and STAT3 transcriptional activity in ARDS enhances lung tumor metastasis. Moreover, LPS-induced ARDS might promote the tumor microenvironment and increase cancer metastasis into the lungs. Collectively, BRD4 plays a vital role in inflammation-mediated tumor metastasis and is found to be a diagnostic and molecular target in inflammation-associated cancers.
Collapse
Affiliation(s)
- Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India,Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA,Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sowjanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India,Department of Head and Neck‐Endocrine Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Sai Priya Muvvala
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India.
| |
Collapse
|
132
|
Wen D, Liang T, Chen G, Li H, Wang Z, Wang J, Fu R, Han X, Ci T, Zhang Y, Abdou P, Li R, Bu L, Dotti G, Gu Z. Adipocytes Encapsulating Telratolimod Recruit and Polarize Tumor-Associated Macrophages for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206001. [PMID: 36526596 PMCID: PMC9929126 DOI: 10.1002/advs.202206001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Indexed: 05/09/2023]
Abstract
Tumor-associated adipocytes (TAAs) recruit monocytes and promote their differentiation into tumor-associated macrophages (TAMs) that support tumor development. Here, TAAs are engineered to promote the polarization of TAMs to the tumor suppressive M1 phenotype. Telratolimod, a toll-like receptor 7/8 agonist, is loaded into the lipid droplets of adipocytes to be released at the tumor site upon tumor cell-triggered lipolysis. Locally administered drug-loaded adipocytes increased tumor suppressive M1 macrophages in both primary and distant tumors and suppressed tumor growth in a melanoma model. Furthermore, drug-loaded adipocytes improved CD8+ T cell-mediated immune responses within the tumor microenvironment and favored dendritic cell maturation in the tumor draining lymph nodes.
Collapse
Affiliation(s)
- Di Wen
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Earle A. Chiles Research InstituteRobert W. Franz Cancer CenterProvidence Portland Medical CenterPortlandOregon97213USA
| | - Tingxizi Liang
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang ProvinceCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Guojun Chen
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Hongjun Li
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang ProvinceCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Zejun Wang
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Jinqiang Wang
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang ProvinceCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Ruxing Fu
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Xiao Han
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Tianyuan Ci
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Yuqi Zhang
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang ProvinceCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
| | - Peter Abdou
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Ruoxin Li
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Linlin Bu
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
| | - Gianpietro Dotti
- Department of Microbiology and ImmunologySchool of MedicineUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Zhen Gu
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang ProvinceCollege of Pharmaceutical SciencesZhejiang UniversityHangzhou310058China
- Jinhua Institute of Zhejiang UniversityJinhua321299P. R. China
- Department of General SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| |
Collapse
|
133
|
Tumor Necrosis Factor Alpha: Implications of Anesthesia on Cancers. Cancers (Basel) 2023; 15:cancers15030739. [PMID: 36765695 PMCID: PMC9913216 DOI: 10.3390/cancers15030739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Cancer remains a major public health issue and a leading cause of death worldwide. Despite advancements in chemotherapy, radiation therapy, and immunotherapy, surgery is the mainstay of cancer treatment for solid tumors. However, tumor cells are known to disseminate into the vascular and lymphatic systems during surgical manipulation. Additionally, surgery-induced stress responses can produce an immunosuppressive environment that is favorable for cancer relapse. Up to 90% of cancer-related deaths are the result of metastatic disease after surgical resection. Emerging evidence shows that the interactions between tumor cells and the tumor microenvironment (TME) not only play decisive roles in tumor initiation, progression, and metastasis but also have profound effects on therapeutic efficacy. Tumor necrosis factor alpha (TNF-α), a pleiotropic cytokine contributing to both physiological and pathological processes, is one of the main mediators of inflammation-associated carcinogenesis in the TME. Because TNF-α signaling may modulate the course of cancer, it can be therapeutically targeted to ameliorate clinical outcomes. As the incidence of cancer continues to grow, approximately 80% of cancer patients require anesthesia during cancer care for diagnostic, therapeutic, or palliative procedures, and over 60% of cancer patients receive anesthesia for primary surgical resection. Numerous studies have demonstrated that perioperative management, including surgical manipulation, anesthetics/analgesics, and other supportive care, may alter the TME and cancer progression by affecting inflammatory or immune responses during cancer surgery, but the literature about the impact of anesthesia on the TNF-α production and cancer progression is limited. Therefore, this review summarizes the current knowledge of the implications of anesthesia on cancers from the insights of TNF-α release and provides future anesthetic strategies for improving oncological survival.
Collapse
|
134
|
Multifactorial Diseases of the Heart, Kidneys, Lungs, and Liver and Incident Cancer: Epidemiology and Shared Mechanisms. Cancers (Basel) 2023; 15:cancers15030729. [PMID: 36765688 PMCID: PMC9913123 DOI: 10.3390/cancers15030729] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Within the aging population, the frequency of cancer is increasing dramatically. In addition, multiple genetic and environmental factors lead to common multifactorial diseases, including cardiovascular disease, chronic kidney disease, chronic obstructive pulmonary disease, and metabolic-associated fatty liver disease. In recent years, there has been a growing awareness of the connection between cancer and multifactorial diseases, as well as how one can affect the other, resulting in a vicious cycle. Although the exact mechanistic explanations behind this remain to be fully explored, some progress has been made in uncovering the common pathologic mechanisms. In this review, we focus on the nature of the link between cancer and common multifactorial conditions, as well as specific shared mechanisms, some of which may represent either preventive or therapeutic targets. Rather than organ-specific interactions, we herein focus on the shared mechanisms among the multifactorial diseases, which may explain the increased cancer risk. More research on this subject will highlight the significance of developing new drugs that target multiple systems rather than just one disease.
Collapse
|
135
|
Alotaibi AG, Li JV, Gooderham NJ. Tumour Necrosis Factor-Alpha (TNF-α)-Induced Metastatic Phenotype in Colorectal Cancer Epithelial Cells: Mechanistic Support for the Role of MicroRNA-21. Cancers (Basel) 2023; 15:627. [PMID: 36765584 PMCID: PMC9913347 DOI: 10.3390/cancers15030627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Colorectal cancer is driven by genetic and epigenetic changes in cells to confer phenotypes that promote metastatic transformation and development. Tumour necrosis factor-alpha (TNF-α), a pro-inflammatory mediator, regulates cellular communication within the tumour microenvironment and is associated with the progression of the metastatic phenotype. Oncogenic miR-21 has been shown to be overexpressed in most solid tumours, including colorectal cancer, and is known to target proteins involved in metastatic transformation. In this study, we investigated the relationship between TNF-α and miR-21 regulation in colorectal cancer epithelial cells (SW480 and HCT116). We observed that TNF-α, at concentrations reported to be present in serum and tumour tissue from colorectal cancer patients, upregulated miR-21 expression in both cell lines. TNF-α treatment also promoted cell migration, downregulation of the expression of E-cadherin, a marker of epithelial to mesenchymal transition, and anti-apoptotic BCL-2 (a validated target for miR-21). Knockdown of miR-21 had the opposite effect on each of these TNF-a induced phenotypic changes. Additionally, in the SW480 cell line, although TNF-α treatment selectively induced expression of a marker of metastatic progression VEGF-A, it failed to affect MMP2 expression or invasion activity. Our data indicate that exposing colorectal cancer epithelial cells to TNF-α, at concentrations occurring in the serum and tumour microenvironment of colorectal cancer patients, upregulated miR-21 expression and promoted the metastatic phenotype.
Collapse
Affiliation(s)
- Aminah G. Alotaibi
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
- National Centre for Genomic Technology, King Abdulaziz City for Science and Technology, KACST, Riyadh 11442, Saudi Arabia
| | - Jia V. Li
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| | - Nigel J. Gooderham
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, UK
| |
Collapse
|
136
|
Geng Z, Ye C, Zhu X. Malignancies in systemic rheumatic diseases: A mini review. Front Immunol 2023; 14:1095526. [PMID: 36926334 PMCID: PMC10011115 DOI: 10.3389/fimmu.2023.1095526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
There is an increased risk of malignancies in patients with many systemic rheumatic diseases, which negatively impact on their quality of life. The risk and types of malignancies can differ by the type of rheumatic diseases. Possible mechanisms linking them are dynamic and complicated, including chronic inflammation and damage in rheumatic disease, inability to clear oncogenic infections, shared etiology and some anti-rheumatic therapies. Although certain disease-modifying anti-rheumatic drugs (DMARDs) have been proved to be potentially carcinogenic, the majority of them were not associated with increased risk of most malignancies in patients with systemic rheumatic diseases.
Collapse
Affiliation(s)
- Zhe Geng
- Department of Hematology, Central Hospital of Wuhan, Wuhan, China
| | - Cong Ye
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
137
|
Palócz O, Erdélyi B, Sátorhelyi P, Csikó G. Impact of heat-inactivated Lactobacillus on inflammatory response in endotoxin- and chemotherapeutic-treated porcine enterocytes. Res Vet Sci 2023; 154:132-137. [PMID: 36584521 DOI: 10.1016/j.rvsc.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/06/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Several factors such as pathogen bacteria, or oral chemotherapy disturb the intestinal integrity, leading to several undesirable effects. Inactivated probiotics may be beneficial in safely redress the physiological functions of the intestinal epithelium. Our aim is to determine the effect of tyndallized Lactobacillus on LPS- and 5-fluorouracil-treated porcine jejunal cells. IPEC-J2 cells derived from porcine jejunal epithelium were used as the in vitro model. The enterocyte cell cultures were treated with 109Lactobacillus reuteri cells/ml or 10 μg/ml lipopolysaccharides (LPS) or 100 μM 5-fluorouracil separately and simultaneously. We determined the alterations in mRNA levels of inflammatory mediators IL6, CXCL8/IL8, TNF. Furthermore, the protein level of IL-6 and IL-8 were measured. The fluorouracil treatment upregulated the IL6 gene expression, the endotoxin treatment upregulated the IL8 and TNF level. The heat-inactivated Lactobacillus increased the IL-8 level both at the gene expression and protein level. The co-administration of the non-viable probiotic with the 5-fluorouracil and the LPS resulted in decrease of IL6, IL8, and TNF level. The immune-modulator effect of tyndallized probiotic product is demonstrated in porcine jejunal cells. The inactivated Lactobacillus was able to prevent the accumulation of the selected inflammatory mediators in LPS- or 5-fluorouracil-exposed enterocytes.
Collapse
Affiliation(s)
- Orsolya Palócz
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István u. 2, Budapest 1078, Hungary.
| | - Balázs Erdélyi
- Fermentia Microbiological Ltd., Berlini u. 47-49, Budapest 1045, Hungary
| | - Péter Sátorhelyi
- Fermentia Microbiological Ltd., Berlini u. 47-49, Budapest 1045, Hungary
| | - György Csikó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István u. 2, Budapest 1078, Hungary
| |
Collapse
|
138
|
Effect of LDHA Inhibition on TNF-α-Induced Cell Migration in Esophageal Cancers. Int J Mol Sci 2022; 23:ijms232416062. [PMID: 36555705 PMCID: PMC9785069 DOI: 10.3390/ijms232416062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Cell migration is an essential part of the complex and multistep process that is the development of cancer, a disease that is the second most common cause of death in humans. An important factor promoting the migration of cancer cells is TNF-α, a pro-inflammatory cytokine that, among its many biological functions, also plays a major role in mediating the expression of MMP9, one of the key regulators of cancer cell migration. It is also known that TNF-α is able to induce the Warburg effect in some cells by increasing glucose uptake and enhancing the expression and activity of lactate dehydrogenase subunit A (LDHA). Therefore, the aim of the present study was to investigate the interrelationship between the TNF-α-induced promigratory activity of cancer cells and their glucose metabolism status, using esophageal cancer cells as an example. By inhibiting LDHA activity with sodium oxamate (SO, also known as aminooxoacetic acid sodium salt or oxamic acid sodium salt) or siRNA-mediated gene silencing, we found using wound healing assay and gelatin zymography that LDHA downregulation impairs TNF-α-dependent tumor cell migration and significantly reduces TNF-α-induced MMP9 expression. These effects were associated with disturbances in the activation of the ERK1/2 signaling pathway, as we observed by Western blotting. We also reveal that in esophageal cancer cells, SO effectively reduces the production of lactic acid, which, as we have shown, synergizes the stimulating effect of TNF-α on MMP9 expression. In conclusion, our findings identified LDHA as a regulator of TNF-α-induced cell migration in esophageal cancer cells by the ERK1/2 signaling pathway, suggesting that LDHA inhibitors that limit the migration of cancer cells caused by the inflammatory process may be considered as an adjunct to standard therapy in esophageal cancer patients.
Collapse
|
139
|
Ephraim R, Feehan J, Fraser S, Nurgali K, Apostolopoulos V. Cancer Immunotherapy: The Checkpoint between Chronic Colitis and Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14246131. [PMID: 36551617 PMCID: PMC9776998 DOI: 10.3390/cancers14246131] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a group of diseases that cause intestinal inflammation and lesions because of an abnormal immune response to host gut microflora. Corticosteroids, anti-inflammatories, and antibiotics are often used to reduce non-specific inflammation and relapse rates; however, such treatments are ineffective over time. Patients with chronic colitis are more susceptible to developing colorectal cancer, especially those with a longer duration of colitis. There is often a limit in using chemotherapy due to side effects, leading to reduced efficacy, leaving an urgent need to improve treatments and identify new therapeutic targets. Cancer immunotherapy has made significant advances in recent years and is mainly categorized as cancer vaccines, adoptive cellular immunotherapy, or immune checkpoint blockade therapies. Checkpoint markers are expressed on cancer cells to evade the immune system, and as a result checkpoint inhibitors have transformed cancer treatment in the last 5-10 years. Immune checkpoint inhibitors have produced long-lasting clinical responses in both single and combination therapies. Winnie mice are a viable model of spontaneous chronic colitis with immune responses like human IBD. Determining the expression levels of checkpoint markers in tissues from these mice will provide insights into disease initiation, progression, and cancer. Such information will lead to identification of novel checkpoint markers and the development of treatments with or without immune checkpoint inhibitors or vaccines to slow or stop disease progression.
Collapse
Affiliation(s)
- Ramya Ephraim
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
140
|
Jiménez-Cortegana C, Hontecillas-Prieto L, García-Domínguez DJ, Zapata F, Palazón-Carrión N, Sánchez-León ML, Tami M, Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, de la Cruz-Merino L, Sánchez-Margalet V. Obesity and Risk for Lymphoma: Possible Role of Leptin. Int J Mol Sci 2022; 23:15530. [PMID: 36555171 PMCID: PMC9779026 DOI: 10.3390/ijms232415530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity, which is considered a pandemic due to its high prevalence, is a risk factor for many types of cancers, including lymphoma, through a variety of mechanisms by promoting an inflammatory state. Specifically, over the last few decades, obesity has been suggested not only to increase the risk of lymphoma but also to be associated with poor clinical outcomes and worse responses to different treatments for those diseases. Within the extensive range of proinflammatory mediators that adipose tissue releases, leptin has been demonstrated to be a key adipokine due to its pleotropic effects in many physiological systems and diseases. In this sense, different studies have analyzed leptin levels and leptin/leptin receptor expressions as a probable bridge between obesity and lymphomas. Since both obesity and lymphomas are prevalent pathophysiological conditions worldwide and their incidences have increased over the last few years, here we review the possible role of leptin as a promising proinflammatory mediator promoting lymphomas.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Daniel J. García-Domínguez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Fernando Zapata
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Natalia Palazón-Carrión
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - María L. Sánchez-León
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Malika Tami
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
141
|
Fahmy UA, Badr-Eldin SM, Aldawsari HM, Alhakamy NA, Ahmed OAA, Radwan MF, Eid BG, Sayed SRM, El Sherbiny GA, Abualsunun W. Potentiality of raloxifene loaded melittin functionalized lipidic nanovesicles against pancreatic cancer cells. Drug Deliv 2022; 29:1863-1877. [PMID: 35708464 PMCID: PMC9225738 DOI: 10.1080/10717544.2022.2072544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
Pancreatic cancer (PC) frequency and incidence have grown rapidly in recent years. One of the most serious problems with PC is the existence of asymptotic manifestations, which frequently delays early detection, and until the diagnosis is established, tumor cells progress to the metastatic stage. Another significant concern with PC is the scarcity of well-defined pharmacotherapeutic drugs. The aim of this study was to develop an efficient nanocarrier system to augment the efficacy of raloxifene (RLX) against PC cells. As a result, the current investigation was carried out in order to give an effective treatment method, in which an optimum RLX loaded phospholipid-based vesicles with melittin (PL-MEL) was chosen using experimental design software, with particle size, zeta potential and entrapment efficiency % as dependent variables. Furthermore, anticancer activity against PANC1 cells was assessed. The optimized nanovesicle parameters were 172.5 nm for the measured size, zeta potential of -0.69 mV, and entrapment efficiency of 76.91% that were in good agreement with the expected ones. RLX-raw, plain formula, and optimized RLX-PL-MEL showed IC50 concentrations of 26.07 ± 0.98, 9.166 ± 0.34, and 1.24 ± 0.05 µg/mL, respectively. Furthermore, cell cycle analysis revealed that the nanovesicle was most effective in the G2-M phase, whereas Bax, and Bcl-2 estimates revealed that optimized RLX formula had the highest apoptotic activity among treatments investigated. However, as compared to RLX alone or plain formula alone, the optimized formula demonstrated higher expression of TNFα and Bax while a significant reduction of Bcl-2 and NF-κB expression was observed. mitochondrial membrane potential (MMP) analysis confirmed the apoptosis as well as the anticancer effect of the optimized formula. Thus, the present study results showed an improvement in the anti-PC effects of the RLX with phospholipid conjugated melittin, making it a novel treatment approach against PC.
Collapse
Affiliation(s)
- Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed F. Radwan
- Department of Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Basma G. Eid
- Department of Pharmacology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaban R. M. Sayed
- College of Science, Electron Microscope Unit, King Saud University, Riyadh, Saudi Arabia
| | - Gamal A. El Sherbiny
- Department of Pharmacology, Faculty of Pharmacy, Cyprus International University, Nicosia, Cyprus
| | - Walaa Abualsunun
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
142
|
Pho T, Champion JA. Surface Engineering of Protein Nanoparticles Modulates Transport, Adsorption, and Uptake in Mucus. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51697-51710. [PMID: 36354361 DOI: 10.1021/acsami.2c14670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein nanoparticles have been demonstrated as effective carriers for protein antigens and therapeutics due to properties endowed by their protein composition. They exhibit high protein to carrier yields, biocompatibility, and heterogeneous surface properties. While protein nanoparticles have been delivered via multiple routes, including intranasal, their interactions with mucosal barriers have not been well studied or modified. Biological barriers associated with intranasal delivery consist of viscoelastic mucus that hinders material transport through surface interactions and the underlying epithelium. Herein, we altered protein nanoparticle surface properties and characterized interactions with nasal mucus and the subsequent effects on diffusion, cellular uptake, and immune cell maturation. Ovalbumin protein nanoparticles were used, serving as a model vaccine nanoparticle. Unmodified ovalbumin protein nanoparticles were compared to cationic ovalbumin particles functionalized with amine groups, neutral particles functionalized with polyethylene glycol, and zwitterionic particles coated layer-by-layer (LBL) with chitosan and oligonucleotides. Transport analysis indicated rapid diffusion of polyethylene glycol and LBL-modified ovalbumin nanoparticles in porcine nasal mucus, while cationic particles were mucoadhesive. Cellular uptake in the presence of mucus by epithelial and dendritic cells was highest for particles containing positive charges, both LBL and amine-functionalized. These particles also exhibited the most diverse adsorbed protein corona from nasal fluids. The corona impacted both dendritic cell uptake and maturation, with polyethylene glycol and LBL modifications improving CD86 expression. Altogether, surface modifications on protein-based nanocarriers are shown to facilitate distinctive physical and cellular behavior associated with mucosal delivery.
Collapse
Affiliation(s)
- Thomas Pho
- School of Chemical and Biomolecular Engineering, BioEngineering Program, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia30332-2000, United States
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, BioEngineering Program, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia30332-2000, United States
| |
Collapse
|
143
|
Mihajlović M, Ninić A, Ostojić M, Sopić M, Stefanović A, Vekić J, Antonić T, Zeljković D, Trifunović B, Spasojević-Kalimanovska V, Bogavac Stanojević N, Jančić I, Zeljković A. Association of Adiponectin Receptors with Metabolic and Immune Homeostasis Parameters in Colorectal Cancer: In Silico Analysis and Observational Findings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14995. [PMID: 36429712 PMCID: PMC9691131 DOI: 10.3390/ijerph192214995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Adiponectin (ADIPOQ) as both a regulator of metabolic homeostasis and a protein involved in immune response might be of particular interest to contemporary laboratory medicine, especially in terms of minimally invasive diagnostics. The diverse roles of ADIPOQ with regard to the immune and metabolic aspects of colorectal carcinogenesis have been proposed. However, the expression of its receptors ADIPOR1 and ADIPOR2 is scarcely explored in peripheral blood mononuclear cells (PBMCs). Moreover, ADIPORs' relationships with the immune response mediator TNF-α have not been previously investigated in the PBMCs of CRC patients. This study used both in silico and observational case-control analyses with the aim of exploring the association of ADIPOR gene expression and ADIPOQ single nucleotide polymorphisms (SNPs) with the inflammatory marker TNF-α and lipid status parameters in patients with CRC. Publicly available transcriptomic datasets (GSE47756, GSE44076) obtained from analyses of monocytes and CRC tissue samples were employed for the in silico evaluation of ADIPORs' specific genetic traits. GSE47756 and GSE44076 datasets were processed with GSEA software to provide a genetic fingertip of different signaling pathways associated with ADIPORs' mRNA levels. The case-control aspect of the study included the PBMC samples of 73 patients diagnosed with CRC and 80 healthy volunteers. The PCR method was carried out for the PBMC gene expression analysis (ADIPOR1, ADIPOR2, TNF-α mRNA levels) and for the subjects' genotyping (ADIPOQ rs266729, ADIPOR1 rs7539542). GSEA showed significant associations of ADIPOR mRNA expression with gene sets related to metabolic and immune homeostasis in both datasets. The case-control study revealed the association of ADIPOR1 rs7539542 with reduced lipid status parameters in CRC. In addition, PBMC ADIPOR1 mRNA levels decreased in CRC (p < 0.001), whereas ADIPOR2 mRNA did not differ between the groups (p = 0.442). A reduction in PBMC TNF-α mRNA levels was noted in CRC (p < 0.05). Our results indicate that ADIPOR1 and ADIPOR2 play a significant role in the alteration of both metabolic and immune homeostasis during the progression of CRC. For the first time, ADIPOR1 is shown to be a specific receptor for mediating ADIPOQ's effects in the PBMCs of CRC patients.
Collapse
Affiliation(s)
- Marija Mihajlović
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Ninić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Ostojić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia
| | - Miron Sopić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Stefanović
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Vekić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Tamara Antonić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Dejan Zeljković
- Clinic of General Surgery, Military Medical Academy, 11000 Belgrade, Serbia
| | - Bratislav Trifunović
- Clinic of General Surgery, Military Medical Academy, 11000 Belgrade, Serbia
- Faculty of Medicine, Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | | | - Nataša Bogavac Stanojević
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Ivan Jančić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Zeljković
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
144
|
Yu K, Yu C, Jiao L, Miao K, Ni L, Rao X, Zhou L, Zhao C. The Function and Therapeutic Implications of TNF Signaling in MDSCs. Biomolecules 2022; 12:1627. [PMID: 36358977 PMCID: PMC9687347 DOI: 10.3390/biom12111627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 09/27/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of immature and heterogeneous myeloid cells with immunosuppressive functions. MDSCs play important roles in the pathogenesis of cancer, chronic inflammatory diseases, and many autoimmune disorders. The accumulation and activation of MDSCs can be regulated by tumor necrosis factor α (TNF-α). In this review, we summarize the roles played by TNF-α in the recruitment, immunosuppressive functions, and chemotaxis of MDSCs, and discuss the potential therapeutic effects of TNF-α upon these cells in tumor growth and some inflammatory disorders.
Collapse
Affiliation(s)
- Kun Yu
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengxin Yu
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liping Jiao
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Kun Miao
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Ni
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoquan Rao
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling Zhou
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chunxia Zhao
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
145
|
Nisa A, Kipper FC, Panigrahy D, Tiwari S, Kupz A, Subbian S. Different modalities of host cell death and their impact on Mycobacterium tuberculosis infection. Am J Physiol Cell Physiol 2022; 323:C1444-C1474. [PMID: 36189975 PMCID: PMC9662802 DOI: 10.1152/ajpcell.00246.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 11/22/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is the pathogen that causes tuberculosis (TB), a leading infectious disease of humans worldwide. One of the main histopathological hallmarks of TB is the formation of granulomas comprised of elaborately organized aggregates of immune cells containing the pathogen. Dissemination of Mtb from infected cells in the granulomas due to host and mycobacterial factors induces multiple cell death modalities in infected cells. Based on molecular mechanism, morphological characteristics, and signal dependency, there are two main categories of cell death: programmed and nonprogrammed. Programmed cell death (PCD), such as apoptosis and autophagy, is associated with a protective response to Mtb by keeping the bacteria encased within dead macrophages that can be readily phagocytosed by arriving in uninfected or neighboring cells. In contrast, non-PCD necrotic cell death favors the pathogen, resulting in bacterial release into the extracellular environment. Multiple types of cell death in the PCD category, including pyroptosis, necroptosis, ferroptosis, ETosis, parthanatos, and PANoptosis, may be involved in Mtb infection. Since PCD pathways are essential for host immunity to Mtb, therapeutic compounds targeting cell death signaling pathways have been experimentally tested for TB treatment. This review summarizes different modalities of Mtb-mediated host cell deaths, the molecular mechanisms underpinning host cell death during Mtb infection, and its potential implications for host immunity. In addition, targeting host cell death pathways as potential therapeutic and preventive approaches against Mtb infection is also discussed.
Collapse
Affiliation(s)
- Annuurun Nisa
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Franciele C Kipper
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Sangeeta Tiwari
- Department of Biological Sciences, Border Biomedical Research Center (BBRC), University of Texas, El Paso, Texas
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Townsville, Queensland, Australia
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| |
Collapse
|
146
|
Dogan NO, Ceylan H, Suadiye E, Sheehan D, Aydin A, Yasa IC, Wild AM, Richter G, Sitti M. Remotely Guided Immunobots Engaged in Anti-Tumorigenic Phenotypes for Targeted Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204016. [PMID: 36202751 DOI: 10.1002/smll.202204016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Building medical microrobots from the body's own cells may circumvent the biocompatibility concern and hence presents more potential in clinical applications to improve the possibility of escaping from the host defense mechanism. More importantly, live cells can enable therapeutically relevant functions with significantly higher efficiency than synthetic systems. Here, live immune cell-derived microrobots from macrophages, i.e., immunobots, which can be remotely steered with externally applied magnetic fields and directed toward anti-tumorigenic (M1) phenotypes, are presented. Macrophages engulf the engineered magnetic decoy bacteria, composed of 0.5 µm diameter silica Janus particles with one side coated with anisotropic FePt magnetic nanofilm and the other side coated with bacterial lipopolysaccharide (LPS). This study demonstrates the torque-based surface rolling locomotion of the immunobots along assigned trajectories inside blood plasma, over a layer of endothelial cells, and under physiologically relevant flow rates. The immunobots secrete signature M1 cytokines, IL-12 p40, TNF-α, and IL-6, and M1 cell markers, CD80 and iNOS, via toll-like receptor 4 (TLR4)-mediated stimulation with bacterial LPS. The immunobots exhibit anticancer activity against urinary bladder cancer cells. This study further demonstrates such immunobots from freshly isolated primary bone marrow-derived macrophages since patient-derivable macrophages may have a strong clinical potential for future cell therapies in cancer.
Collapse
Affiliation(s)
- Nihal Olcay Dogan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Hakan Ceylan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Eylül Suadiye
- Materials Central Scientific Facility, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Devin Sheehan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Asli Aydin
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Immihan Ceren Yasa
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Anna-Maria Wild
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Gunther Richter
- Materials Central Scientific Facility, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul, 34450, Turkey
| |
Collapse
|
147
|
Mikaeili Namini A, Jahangir M, Mohseni M, Kolahi AA, Hassanian-Moghaddam H, Mazloumi Z, Motallebi M, Sheikhpour M, Movafagh A. An in silico comparative transcriptome analysis identifying hub lncRNAs and mRNAs in brain metastatic small cell lung cancer (SCLC). Sci Rep 2022; 12:18063. [PMID: 36302939 PMCID: PMC9613661 DOI: 10.1038/s41598-022-22252-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023] Open
Abstract
Small cell lung cancer (SCLC) is a particularly lethal subtype of lung cancer. Metastatic lung tumours lead to most deaths from lung cancer. Predicting and preventing tumour metastasis is crucially essential for patient survivability. Hence, in the current study, we focused on a comprehensive analysis of lung cancer patients' differentially expressed genes (DEGs) on brain metastasis cell lines. DEGs are analysed through KEGG and GO databases for the most critical biological processes and pathways for enriched DEGs. Additionally, we performed protein-protein interaction (PPI), GeneMANIA, and Kaplan-Meier survival analyses on our DEGs. This article focused on mRNA and lncRNA DEGs for LC patients with brain metastasis and underlying molecular mechanisms. The expression data was gathered from the Gene Expression Omnibus database (GSE161968). We demonstrate that 30 distinct genes are up-expressed in brain metastatic SCLC patients, and 31 genes are down-expressed. All our analyses show that these genes are involved in metastatic SCLC. PPI analysis revealed two hub genes (CAT and APP). The results of this article present three lncRNAs, Including XLOC_l2_000941, LOC100507481, and XLOC_l2_007062, also notable mRNAs, have a close relation with brain metastasis in lung cancer and may have a role in the epithelial-mesenchymal transition (EMT) in tumour cells.
Collapse
Affiliation(s)
- Arsham Mikaeili Namini
- grid.412265.60000 0004 0406 5813Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Motahareh Jahangir
- grid.412502.00000 0001 0686 4748Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Maryam Mohseni
- grid.411600.2Department of Social Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Kolahi
- grid.411600.2Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Hassanian-Moghaddam
- grid.411600.2Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Mazloumi
- grid.449262.fDepartment of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Marzieh Motallebi
- grid.411600.2Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Sheikhpour
- grid.420169.80000 0000 9562 2611Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Movafagh
- grid.411600.2Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
148
|
Siahaan SCPT, Santoso B, Widjiati. Effectiveness of Moringa oleifera Leaves on TNF-α Expression, Insulin Levels, Glucose Levels and Follicle Count in Rattus norvegicus PCOS Model. Diabetes Metab Syndr Obes 2022; 15:3255-3270. [PMID: 36304481 PMCID: PMC9595062 DOI: 10.2147/dmso.s385492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/16/2022] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a syndrome characterized by ovulation disorders accompanied by hyperandrogens. Women with PCOS are prone to develop insulin resistance which has metabolic characteristics similar to type 2 diabetes and leads to disturbance of follicular formation. PCOS is also known to increase the concentration of proinflammatory cytokines, namely TNF-α. Moringa oleifera leaves have been shown to have compounds that can reduce insulin levels and glucose levels in diabetes mellitus and should be able to reduce TNF-α and follicle count. PURPOSE This study aims to prove the effectiveness of Moringa oleifera leaf in reducing insulin, glucose levels, TNF-α and follicle count in PCOS. METHODS The three-month-old white rats Wistar (Rattus norvegicus) 150-170 grams were divided into four groups (n = 10), namely normal rats, PCOS model rats, PCOS model rats given metformin, and PCOS rats given 500mg of Moringa oleifera. The method of this study is taking PCOS model rats by injecting the 100mg/kg BW hormone testosterone propionate for 21 days. After 21 days of therapy, we analyzed insulin, glucose levels, TNF-α and follicle count. RESULTS The PCOS control group showed an increase in insulin level, glucose levels, TNF-α expression, and a decrease in the follicle count compared to the normal control group. The insulin level, glucose level, TNF-α and follicle count in the Moringa oleifera 500 mg/kg BW treatment group were significantly lower than in the PCOS control group. CONCLUSION Moringa oleifera leaves have the potential in reducing insulin levels, blood glucose levels, TNF-α and follicle count in PCOS patients.
Collapse
Affiliation(s)
| | - Budi Santoso
- Department of Obstetrics and Gynecology, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Widjiati
- Department of Embryology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
149
|
Yu Y, Wu X, Wang M, Liu W, Zhang L, Zhang Y, Hu Z, Zhou X, Jiang W, Zou Q, Cai F, Ye H. Optogenetic-controlled immunotherapeutic designer cells for post-surgical cancer immunotherapy. Nat Commun 2022; 13:6357. [PMID: 36289204 PMCID: PMC9605972 DOI: 10.1038/s41467-022-33891-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/07/2022] [Indexed: 12/25/2022] Open
Abstract
Surgical resection is the main treatment option for most solid tumors, yet cancer recurrence after surgical resection remains a significant challenge in cancer therapy. Recent advances in cancer immunotherapy are enabling radical cures for many tumor patients, but these technologies remain challenging to apply because of side effects related to uncontrollable immune system activation. Here, we develop far-red light-controlled immunomodulatory engineered cells (FLICs) that we load into a hydrogel scaffold, enabling the precise optogenetic control of cytokines release (IFN-β, TNF-α, and IL-12) upon illumination. Experiments with a B16F10 melanoma resection mouse model show that FLICs-loaded hydrogel implants placed at the surgical wound site achieve sustainable release of immunomodulatory cytokines, leading to prevention of tumor recurrence and increased animal survival. Moreover, the FLICs-loaded hydrogel implants elicit long-term immunological memory that prevents against tumor recurrence. Our findings illustrate that this optogenetic perioperative immunotherapy with FLICs-loaded hydrogel implants offers a safe treatment option for solid tumors based on activating host innate and adaptive immune systems to inhibit tumor recurrence after surgery. Beyond extending the optogenetics toolbox for immunotherapy, we envision that our optogenetic-controlled living cell factory platform could be deployed for other biomedical contexts requiring precision induction of bio-therapeutic dosage.
Collapse
Affiliation(s)
- Yuanhuan Yu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Xin Wu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Meiyan Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Wenjing Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Li Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Ying Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Zhilin Hu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Xuantong Zhou
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Wenzheng Jiang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Qiang Zou
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Fengfeng Cai
- Department of Breast Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| | - Haifeng Ye
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
| |
Collapse
|
150
|
Budek M, Nuszkiewicz J, Piórkowska A, Czuczejko J, Szewczyk-Golec K. Inflammation Related to Obesity in the Etiopathogenesis of Gastroenteropancreatic Neuroendocrine Neoplasms. Biomedicines 2022; 10:2660. [PMID: 36289922 PMCID: PMC9599081 DOI: 10.3390/biomedicines10102660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are rare neoplasms, which, due to their heterogeneous nature, non-specific symptoms, and lack of specific tumor markers pose many diagnostic and clinical challenges. In recent years, the effectiveness of GEP-NEN diagnosis has increased, which is probably associated with the greater availability of diagnostic tests and the cooperation of many experienced specialists in various scientific disciplines. In addition to the possible genetic etiology, the cause of GEP-NET development is not fully understood. Inflammation and obesity are known risks that contribute to the development of many diseases. Chronic inflammation accompanying obesity affects the hormonal balance and cell proliferation and causes the impairment of the immune system function, leading to neoplastic transformation. This review explores the role of inflammation and obesity in GEP-NETs. The exact mechanisms inducing tumor growth are unknown; however, the profile of inflammatory factors released in the GEP-NET tumor microenvironment is responsible for the progression or inhibition of tumor growth. Both the excess of adipose tissue and the impaired function of the immune system affect not only the initiation of cancer but also reduce the comfort and lifetime of patients.
Collapse
Affiliation(s)
- Marlena Budek
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| | - Anna Piórkowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| | - Jolanta Czuczejko
- Department of Psychiatry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Curie-Skłodowskiej St., 85-094 Bydgoszcz, Poland
- Department of Nuclear Medicine, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 2 Dr. I. Romanowskiej St., 85-796 Bydgoszcz, Poland
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| |
Collapse
|