101
|
Rivera-Valdivia N, Arteaga-Rivera K, Reyes-Guanes J, Neira-Segura N, de-la-Torre A. Severe sequelae in bilateral acute iris transillumination syndrome secondary to the use of oral moxifloxacin: a case report. J Med Case Rep 2021; 15:462. [PMID: 34537056 PMCID: PMC8449864 DOI: 10.1186/s13256-021-03075-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 08/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Moxifloxacin is a fourth-generation fluoroquinolone used as a second-line treatment for multiple bacterial infections. Uveitis has been described as an adverse effect related to this medication. Although several case reports have been published describing uveitis and bilateral acute iris transillumination syndrome related to moxifloxacin, we present a unique case of a patient with severe sequelae associated with bilateral acute iris transillumination syndrome secondary to the use of oral moxifloxacin. Case presentation A 45-year-old Colombian hispanic female presented bilateral conjunctival hyperemia, decreased visual acuity, blurred vision, photophobia, and ocular pain after 15 days of treatment with systemic moxifloxacin for an upper tract respiratory infection. The patient presented unilateral anterior chamber pigment dispersion, mydriatic and nonreactive pupils, extensive iris transillumination defects, and secondary glaucoma. Blood and aqueous humor tests were negative for infectious and autoimmune diseases. Moxifloxacin-induced bilateral acute iris transillumination syndrome was diagnosed. Permanent sequelae such as ocular pain, photophobia, and focus difficulty secondary to severe bilateral iridian atrophy and inability of synkinetic reflex were left. Additionally, glaucoma was diagnosed, and Ahmed valve implantation was required. Conclusions We should be aware of the possible association between moxifloxacin and bilateral acute iris transillumination syndrome. A detailed anamnesis, adequate examination, and laboratory tests are necessary to reach an early diagnosis and treatment to avoid unnecessary therapies. Larger studies should be carried out to understand the pathophysiology, diagnosis, management, and sequelae of the disease.
Collapse
Affiliation(s)
- Nicolás Rivera-Valdivia
- Escuela Barraquer Research Group, Escuela Superior de Oftalmología - Instituto Barraquer de América, Avenida Calle 100 # 18A - 51, Bogotá, Colombia
| | - Karla Arteaga-Rivera
- Escuela Barraquer Research Group, Escuela Superior de Oftalmología - Instituto Barraquer de América, Avenida Calle 100 # 18A - 51, Bogotá, Colombia
| | - Juliana Reyes-Guanes
- Escuela Barraquer Research Group, Escuela Superior de Oftalmología - Instituto Barraquer de América, Avenida Calle 100 # 18A - 51, Bogotá, Colombia
| | - Natalia Neira-Segura
- Escuela Barraquer Research Group, Escuela Superior de Oftalmología - Instituto Barraquer de América, Avenida Calle 100 # 18A - 51, Bogotá, Colombia
| | - Alejandra de-la-Torre
- NeURos research group, Escuela de Medicina y Ciencias de la salud, Universidad del Rosario, Carrera 24 # 63 C 69, Bogotá, Colombia.
| |
Collapse
|
102
|
Antibiotic Resistance Genes and Associated Phenotypes in Escherichia coli and Enterococcus from Cattle at Different Production Stages on a Dairy Farm in Central California. Antibiotics (Basel) 2021; 10:antibiotics10091042. [PMID: 34572624 PMCID: PMC8471271 DOI: 10.3390/antibiotics10091042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
The objectives of this study were to characterize overall genomic antibiotic resistance profiles of fecal Escherichia coli and Enterococcus spp. from dairy cattle at different production stages using whole-genome sequencing and to determine the association between antimicrobial resistance (AMR) phenotypes and their corresponding genotypes. The Comprehensive Antibiotic Resistance Database (CARD) and ResFinder, two publicly available databases of antimicrobial resistance genes, were used to annotate isolates. Based on the ResFinder database, 27.5% and 20.0% of tested E. coli isolates (n = 40) harbored single and ≥3 antimicrobial resistance genes, respectively; for Enterococcus spp., we observed 87.8% and 8.2%, respectively. The highest prevalence of AMR genes in E. coli was for resistance to tetracycline (27.5%), followed by sulphonamide (22.5%) and aminoglycoside (20.0%); the predominant antimicrobial resistance genes in Enterococcus spp. targeted macrolide drugs (77.6%). Based on the CARD database, resistance to ≥3 antimicrobial classes was observed in all E. coli and 77.6% in Enterococcus spp. isolates. A high degree of agreement existed between the resistance phenotype and the presence of resistance genes for various antimicrobial classes for E. coli but much less so for isolates of Enterococcus. Consistent with prior work, fecal E. coli and Enterococcus spp. isolates from calves harbored a wide spectrum of resistance genes, compared to those from cattle at other production stages, based on the cross-sectional samples from the studied farm.
Collapse
|
103
|
De Smet J, Wagemans J, Boon M, Ceyssens PJ, Voet M, Noben JP, Andreeva J, Ghilarov D, Severinov K, Lavigne R. The bacteriophage LUZ24 "Igy" peptide inhibits the Pseudomonas DNA gyrase. Cell Rep 2021; 36:109567. [PMID: 34433028 DOI: 10.1016/j.celrep.2021.109567] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/20/2021] [Accepted: 07/29/2021] [Indexed: 01/01/2023] Open
Abstract
The bacterial DNA gyrase complex (GyrA/GyrB) plays a crucial role during DNA replication and serves as a target for multiple antibiotics, including the fluoroquinolones. Despite it being a valuable antibiotics target, resistance emergence by pathogens including Pseudomonas aeruginosa are proving problematic. Here, we describe Igy, a peptide inhibitor of gyrase, encoded by Pseudomonas bacteriophage LUZ24 and other members of the Bruynoghevirus genus. Igy (5.6 kDa) inhibits in vitro gyrase activity and interacts with the P. aeruginosa GyrB subunit, possibly by DNA mimicry, as indicated by a de novo model of the peptide and mutagenesis. In vivo, overproduction of Igy blocks DNA replication and leads to cell death also in fluoroquinolone-resistant bacterial isolates. These data highlight the potential of discovering phage-inspired leads for antibiotics development, supported by co-evolution, as Igy may serve as a scaffold for small molecule mimicry to target the DNA gyrase complex, without cross-resistance to existing molecules.
Collapse
Affiliation(s)
- Jeroen De Smet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Maarten Boon
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Pieter-Jan Ceyssens
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Marleen Voet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Julia Andreeva
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Dmitry Ghilarov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Konstantin Severinov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
104
|
Rusu A, Lungu IA, Moldovan OL, Tanase C, Hancu G. Structural Characterization of the Millennial Antibacterial (Fluoro)Quinolones-Shaping the Fifth Generation. Pharmaceutics 2021; 13:pharmaceutics13081289. [PMID: 34452252 PMCID: PMC8399897 DOI: 10.3390/pharmaceutics13081289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/12/2022] Open
Abstract
The evolution of the class of antibacterial quinolones includes the introduction in therapy of highly successful compounds. Although many representatives were withdrawn due to severe adverse reactions, a few representatives have proven their therapeutical value over time. The classification of antibacterial quinolones into generations is a valuable tool for physicians, pharmacists, and researchers. In addition, the transition from one generation to another has brought new representatives with improved properties. In the last two decades, several representatives of antibacterial quinolones received approval for therapy. This review sets out to chronologically outline the group of approved antibacterial quinolones since 2000. Special attention is given to eight representatives: besifloxacin, delafoxacin, finafloxacin, lascufloxacin, nadifloxacin and levonadifloxacin, nemonoxacin, and zabofloxacin. These compounds have been characterized regarding physicochemical properties, formulations, antibacterial activity spectrum and advantageous structural characteristics related to antibacterial efficiency. At present these new compounds (with the exception of nadifloxacin) are reported differently, most often in the fourth generation and less frequently in a new generation (the fifth). Although these new compounds' mechanism does not contain essential new elements, the question of shaping a new generation (the fifth) arises, based on higher potency and broad spectrum of activity, including resistant bacterial strains. The functional groups that ensured the biological activity, good pharmacokinetic properties and a safety profile were highlighted. In addition, these new representatives have a low risk of determining bacterial resistance. Several positive aspects are added to the fourth fluoroquinolones generation, characteristics that can be the basis of the fifth generation. Antibacterial quinolones class continues to acquire new compounds with antibacterial potential, among other effects. Numerous derivatives, hybrids or conjugates are currently in various stages of research.
Collapse
Affiliation(s)
- Aura Rusu
- Pharmaceutical and Therapeutical Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.R.); (G.H.)
| | - Ioana-Andreea Lungu
- The Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.-A.L.); (O.-L.M.)
| | - Octavia-Laura Moldovan
- The Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (I.-A.L.); (O.-L.M.)
| | - Corneliu Tanase
- Pharmaceutical Botany Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Correspondence: ; Tel.: +40-744-215-543
| | - Gabriel Hancu
- Pharmaceutical and Therapeutical Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania; (A.R.); (G.H.)
| |
Collapse
|
105
|
Rotem S, Steinberger-Levy I, Israeli O, Zahavy E, Aloni-Grinstein R. Beating the Bio-Terror Threat with Rapid Antimicrobial Susceptibility Testing. Microorganisms 2021; 9:1535. [PMID: 34361970 PMCID: PMC8304332 DOI: 10.3390/microorganisms9071535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
A bioterror event using an infectious bacterium may lead to catastrophic outcomes involving morbidity and mortality as well as social and psychological stress. Moreover, a bioterror event using an antibiotic resistance engineered bacterial agent may raise additional concerns. Thus, preparedness is essential to preclude and control the dissemination of the bacterial agent as well as to appropriately and promptly treat potentially exposed individuals or patients. Rates of morbidity, death, and social anxiety can be drastically reduced if the rapid delivery of antimicrobial agents for post-exposure prophylaxis and treatment is initiated as soon as possible. Availability of rapid antibiotic susceptibility tests that may provide key recommendations to targeted antibiotic treatment is mandatory, yet, such tests are only at the development stage. In this review, we describe the recently published rapid antibiotic susceptibility tests implemented on bioterror bacterial agents and discuss their assimilation in clinical and environmental samples.
Collapse
Affiliation(s)
| | | | | | | | - Ronit Aloni-Grinstein
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel; (S.R.); (I.S.-L.); (O.I.); (E.Z.)
| |
Collapse
|
106
|
Ferreira M, Gameiro P. Fluoroquinolone-Transition Metal Complexes: A Strategy to Overcome Bacterial Resistance. Microorganisms 2021; 9:microorganisms9071506. [PMID: 34361943 PMCID: PMC8303200 DOI: 10.3390/microorganisms9071506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 01/12/2023] Open
Abstract
Fluoroquinolones (FQs) are antibiotics widely used in the clinical practice due to their large spectrum of action against Gram-negative and some Gram-positive bacteria. Nevertheless, the misuse and overuse of these antibiotics has triggered the development of bacterial resistance mechanisms. One of the strategies to circumvent this problem is the complexation of FQs with transition metal ions, known as metalloantibiotics, which can promote different activity and enhanced pharmacological behaviour. Here, we discuss the stability of FQ metalloantibiotics and their possible translocation pathways. The main goal of the present review is to frame the present knowledge on the conjunction of biophysical and biological tools that can help to unravel the antibacterial action of FQ metalloantibiotics. An additional goal is to shed light on the studies that must be accomplished to ensure stability and viability of such metalloantibiotics. Potentiometric, spectroscopic, microscopic, microbiological, and computational techniques are surveyed. Stability and partition constants, interaction with membrane porins and elucidation of their role in the influx, determination of the antimicrobial activity against multidrug-resistant (MDR) clinical isolates, elucidation of the mechanism of action, and toxicity assays are described for FQ metalloantibiotics.
Collapse
|
107
|
Magallon A, Roussel M, Neuwirth C, Tetu J, Cheiakh AC, Boulet B, Varin V, Urbain V, Bador J, Amoureux L. Fluoroquinolone resistance in Achromobacter spp.: substitutions in QRDRs of GyrA, GyrB, ParC and ParE and implication of the RND efflux system AxyEF-OprN. J Antimicrob Chemother 2021; 76:297-304. [PMID: 33156919 DOI: 10.1093/jac/dkaa440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/23/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Achromobacter are emerging pathogens in cystic fibrosis patients. Mechanisms of resistance to fluoroquinolones are unknown in clinical isolates. Among non-fermenting Gram-negative bacilli, fluoroquinolone resistance is mostly due to amino acid substitutions in localized regions of the targets (GyrA, GyrB, ParC and ParE) named QRDRs, but also to efflux. OBJECTIVES To explore quinolone resistance mechanisms in Achromobacter. METHODS The putative QRDRs of GyrA, GyrB, ParC and ParE were sequenced in 62 clinical isolates, and in vitro one-step mutants obtained after exposure to fluoroquinolones. An in vitro mutant and its parental isolate were investigated by RNASeq and WGS. RT-qPCR and gene inactivation were used to explore the role of efflux systems overexpression. RESULTS We detected seven substitutions in QRDRs (Q83L/S84P/D87N/D87G for GyrA, Q480P for GyrB, T395A/K525Q for ParE), all in nine of the 27 clinical isolates with ciprofloxacin MIC ≥16 mg/L, whereas none among the in vitro mutants. The RND efflux system AxyEF-OprN was overproduced (about 150-fold) in the in vitro mutant NCF-39-Bl6 versus its parental strain NCF-39 (ciprofloxacin MICs 64 and 1.5 mg/L, respectively). A substitution in AxyT (putative regulator of AxyEF-OprN) was detected in NCF-39-Bl6. Ciprofloxacin MIC in NCF-39-Bl6 dropped from 64 to 1.5 mg/L following gene inactivation of either axyT or axyF. Substitutions in AxyT associated with overexpression of AxyEF-OprN were also detected in seven clinical strains with ciprofloxacin MIC ≥16 mg/L. CONCLUSIONS Target alteration is not the primary mechanism involved in fluoroquinolone resistance in Achromobacter. The role of AxyEF-OprN overproduction was demonstrated in one in vitro mutant.
Collapse
Affiliation(s)
- Arnaud Magallon
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France.,UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, Besançon, France
| | - Mathilde Roussel
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France
| | - Catherine Neuwirth
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France.,UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, Besançon, France
| | - Jennifer Tetu
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France.,UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, Besançon, France
| | - Anne-Charlotte Cheiakh
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France
| | - Baptiste Boulet
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France
| | - Véronique Varin
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France
| | - Victor Urbain
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France
| | - Julien Bador
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France.,UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, Besançon, France
| | - Lucie Amoureux
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070 Dijon CEDEX, France.,UMR/CNRS 6249 Chrono-environnement, University of Bourgogne-Franche-Comté, Besançon, France
| |
Collapse
|
108
|
Zhang CZ, Zhang Y, Ding XM, Lin XL, Lian XL, Trampari E, Thomson NM, Ding HZ, Webber MA, Jiang HX. Emergence of ciprofloxacin heteroresistance in foodborne Salmonella enterica serovar Agona. J Antimicrob Chemother 2021; 75:2773-2779. [PMID: 32747937 DOI: 10.1093/jac/dkaa288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/03/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Bacterial heteroresistance has been increasingly identified as an important phenomenon for many antibiotic/bacterium combinations. OBJECTIVES To investigate ciprofloxacin heteroresistance in Salmonella and characterize mechanisms contributing to ciprofloxacin heteroresistance. METHODS Ciprofloxacin-heteroresistant Salmonella were identified by population analysis profiling (PAP). Target mutations and the presence of PMQR genes were detected using PCR and sequencing. Expression of acrB, acrF and qnrS was conducted by quantitative RT-PCR. Competition ability and virulence were also compared using pyrosequencing, blue/white screening, adhesion and invasion assays and a Galleria model. Two subpopulations were whole-genome sequenced using Oxford Nanopore and Illumina platforms. RESULTS PAP identified one Salmonella from food that yielded a subpopulation demonstrating heteroresistance to ciprofloxacin at a low frequency (10-9 to 10-7). WGS and PFGE analyses confirmed that the two subpopulations were isogenic, with six SNPs and two small deletions distinguishing the resistant from the susceptible. Both subpopulations possessed a T57S substitution in ParC and carried qnrS. The resistant subpopulation was distinguished by overexpression of acrB and acrF, a deletion within rsxC and altered expression of soxS. The resistant population had a competitive advantage against the parental population when grown in the presence of bile salts but was attenuated in the adhesion and invasion of human intestinal cells. CONCLUSIONS We determined that heteroresistance resulted from a combination of mutations in fluoroquinolone target genes and overexpression of efflux pumps associated with a deletion in rsxC. This study warns that ciprofloxacin heteroresistance exists in Salmonella in the food chain and highlights the necessity for careful interpretation of antibiotic susceptibility.
Collapse
Affiliation(s)
- Chuan-Zhen Zhang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Yan Zhang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Min Ding
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Ling Lin
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Lei Lian
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Eleftheria Trampari
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Nicholas M Thomson
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Huan-Zhong Ding
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7UH, UK
| | - Hong-Xia Jiang
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
109
|
Shared and Unique Evolutionary Trajectories to Ciprofloxacin Resistance in Gram-Negative Bacterial Pathogens. mBio 2021; 12:e0098721. [PMID: 34154405 PMCID: PMC8262867 DOI: 10.1128/mbio.00987-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Resistance to the broad-spectrum antibiotic ciprofloxacin is detected at high rates for a wide range of bacterial pathogens. To investigate the dynamics of ciprofloxacin resistance development, we applied a comparative resistomics workflow for three clinically relevant species of Gram-negative bacteria: Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa. We combined experimental evolution in a morbidostat with deep sequencing of evolving bacterial populations in time series to reveal both shared and unique aspects of evolutionary trajectories. Representative clone characterization by sequencing and MIC measurements enabled direct assessment of the impact of mutations on the extent of acquired drug resistance. In all three species, we observed a two-stage evolution: (i) early ciprofloxacin resistance reaching 4- to 16-fold the MIC for the wild type, commonly as a result of single mutations in DNA gyrase target genes (gyrA or gyrB), and (ii) additional genetic alterations affecting the transcriptional control of the drug efflux machinery or secondary target genes (DNA topoisomerase parC or parE).
Collapse
|
110
|
Sheikh BA, Bhat BA, Mehraj U, Mir W, Hamadani S, Mir MA. Development of New Therapeutics to Meet the Current Challenge of Drug Resistant Tuberculosis. Curr Pharm Biotechnol 2021; 22:480-500. [PMID: 32600226 DOI: 10.2174/1389201021666200628021702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) is a prominent infective disease and a major reason of mortality/ morbidity globally. Mycobacterium tuberculosis causes a long-lasting latent infection in a significant proportion of human population. The increasing burden of tuberculosis is mainly caused due to multi drug-resistance. The failure of conventional treatment has been observed in large number of cases. Drugs that are used to treat extensively drug-resistant tuberculosis are expensive, have limited efficacy, and have more side effects for a longer duration of time and are often associated with poor prognosis. To regulate the emergence of multidrug resistant tuberculosis, extensively drug-resistant tuberculosis and totally drug resistant tuberculosis, efforts are being made to understand the genetic/molecular basis of target drug delivery and mechanisms of drug resistance. Understanding the molecular approaches and pathology of Mycobacterium tuberculosis through whole genome sequencing may further help in the improvement of new therapeutics to meet the current challenge of global health. Understanding cellular mechanisms that trigger resistance to Mycobacterium tuberculosis infection may expose immune associates of protection, which could be an important way for vaccine development, diagnostics, and novel host-directed therapeutic strategies. The recent development of new drugs and combinational therapies for drug-resistant tuberculosis through major collaboration between industry, donors, and academia gives an improved hope to overcome the challenges in tuberculosis treatment. In this review article, an attempt was made to highlight the new developments of drug resistance to the conventional drugs and the recent progress in the development of new therapeutics for the treatment of drugresistant and non-resistant cases.
Collapse
Affiliation(s)
- Bashir A Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Basharat A Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Wajahat Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Suhail Hamadani
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| |
Collapse
|
111
|
Distribution of fluoroquinolone resistance determinants in Carbapenem-resistant Klebsiella pneumoniae clinical isolates associated with bloodstream infections in China. BMC Microbiol 2021; 21:164. [PMID: 34078263 PMCID: PMC8173869 DOI: 10.1186/s12866-021-02238-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/21/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The rate of fluoroquinolone (FQ) resistance among carbapenem-resistant Klebsiella pneumoniae (CRKP) is high. The present study aimed to investigate the distribution of fluoroquinolone resistance determinants in clinical CRKP isolates associated with bloodstream infections (BSIs). RESULTS A total of 149 BSI-associated clinical CRKP isolates collected from 11 Chinese teaching hospitals from 2015 to 2018 were investigated for the prevalence of fluoroquinolone resistance determinants, including plasmid-mediated quinolone resistance (PMQR) genes and spontaneous mutations in the quinolone resistance-determining regions (QRDRs) of the gyrA and parC genes. Among these 149 clinical CRKP isolates, 117 (78.5%) exhibited resistance to ciprofloxacin. The GyrA substitutions (Ser83 → IIe/Phe) and (Asp87 → Gly/Ala) were found among 112 (75.2%) of 149 isolates, while the substitution (Ser80 → IIe) of ParC was found in 111 (74.5%) of the 149 isolates. In total, 70.5% (105/149) of the CRKP isolates had at least two mutations within gyrA as well as a third mutation in parC. No mutations in the QRDRs were found in 31 ciprofloxacin susceptible CRKP isolates. Eighty-nine (56.9%) of 149 were found to carry PMQR genes including qnrS1 (43.0%), aac(6')-Ib-cr (16.1%), qnrB4 (6.0%), qnrB2 (2.7%), and qnrB1 (1.3%). Nine isolates contained two or more PMQR genes, with one carrying four [aac(6')-Ib-cr, qnr-S1, qnrB2, and qnrB4]. The co-existence rate of PMQR determinants and mutations in the QRDRs of gyrA and parC reached 68.5% (61/89). Seventy-four (83.1%, 74/89) PMQR-positive isolates harbored extended-spectrum beta-lactamase (ESBL)-encoding genes. Multilocus sequence typing (MLST) analysis demonstrated that the ST11 was the most prevalent STs in our study. CONCLUSIONS Mutations in the QRDRs of gyrA and parC were the key factors leading to the high prevalence of fluoroquinolone resistance among BSI-associated CRKP. The co-existence of PMQR genes and mutations in the QRDRs can increase the resistance level of CRKP to fluoroquinolones in clinical settings. ST11 CRKP isolates with identical QRDR substitution patterns were found throughout hospitals in China.
Collapse
|
112
|
Azargun R, Gholizadeh P, Sadeghi V, Hosainzadegan H, Tarhriz V, Memar MY, Pormohammad A, Eyvazi S. Molecular mechanisms associated with quinolone resistance in Enterobacteriaceae: review and update. Trans R Soc Trop Med Hyg 2021; 114:770-781. [PMID: 32609840 DOI: 10.1093/trstmh/traa041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/09/2020] [Accepted: 05/20/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Quinolones are broad-spectrum antibiotics, which are used for the treatment of different infectious diseases associated with Enterobacteriaceae. During recent decades, the wide use as well as overuse of quinolones against diverse infections has led to the emergence of quinolone-resistant bacterial strains. Herein, we present the development of quinolone antibiotics, their function and also the different quinolone resistance mechanisms in Enterobacteriaceae by reviewing recent literature. METHODS All data were extracted from Google Scholar search engine and PubMed site, using keywords; quinolone resistance, Enterobacteriaceae, plasmid-mediated quinolone resistance, etc. RESULTS AND CONCLUSION The acquisition of resistance to quinolones is a complex and multifactorial process. The main resistance mechanisms consist of one or a combination of target-site gene mutations altering the drug-binding affinity of target enzymes. Other mechanisms of quinolone resistance are overexpression of AcrAB-tolC multidrug-resistant efflux pumps and downexpression of porins as well as plasmid-encoded resistance proteins including Qnr protection proteins, aminoglycoside acetyltransferase (AAC(6')-Ib-cr) and plasmid-encoded active efflux pumps such as OqxAB and QepA. The elucidation of resistance mechanisms will help researchers to explore new drugs against the resistant strains.
Collapse
Affiliation(s)
- Robab Azargun
- Department of Microbiology, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Sadeghi
- Faculty of Veterinary Medicine, Islamic Azad University, Urmia, Iran
| | - Hasan Hosainzadegan
- Department of Microbiology, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Pormohammad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
113
|
Mahkam M, Bazmi Zeynabad F, Alizadeh E, Rahimi M, Rahimi F, Salehi R. Novel Methotrexate-Ciprofloxacin Loaded Alginate-Clay Based Nanocomposite as Anticancer and Antibacterial Co-Drug Delivery System. Adv Pharm Bull 2021; 11:477-489. [PMID: 34513622 PMCID: PMC8421626 DOI: 10.34172/apb.2021.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 05/22/2020] [Accepted: 06/30/2020] [Indexed: 01/03/2023] Open
Abstract
Purpose: In last decades, by increasing multi-drug resistant microbial pathogens an urgent demand was felt in the development of novel antimicrobial agents. Methods: Promising nanocomposites composed of clay/alginate/imidazolium-based ionic liquid, have been developed via intercalation of calcium alginate and ionic liquid by ion exchange method. These tailored nanocomposites were used as nanocarriers to simultaneously deliver methotrexate (MTX), and ciprofloxacin (CIP), as anticancer and antibacterial agents, respectively to MCF-7 breast cancer cells. Nanocomposites were fully characterized by scanning electron microscopy studies (SEM), X-ray diffraction (XRD), Fourier transforms infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA) methods. The in vitro antimicrobial potential of the mentioned nanocomposites in free and dual-drug loaded form was investigated on Pseudomonas aeruginosa and Escherichia coli bacteria. The antitumor activity of nano-formulations was evaluated by both MTT assay and cell cycle arrest. Results: The dual drug-loaded nanocomposites with exceptionally high loading efficiency (MTX: 99 ±0.4% and CIP: 98 ±1.2%) and mean particle size of 70 nm were obtained with obvious pH-responsive MTX and CIP release (both drugs release rate was increased at pH 5.8 compared to 7.4). The antibacterial activity of CIP-loaded nanocomposites was significantly higher in comparison with free CIP (P <0.001). The antitumor activity results revealed that MTX cytotoxicity on MCF-7 cells was significantly higher in nano-formulations compared to free MTX (P <0.001). Both MTX-loaded nanocomposites caused S-phase arrest in MCF-7 cells compared to non-treated cells (P ˂ 0.001). Conclusion: Newly developed smart nanocomposites are potentially effective pH-sustainable delivery systems for enhanced tumor therapy.
Collapse
Affiliation(s)
- Mehrdad Mahkam
- Chemistry Department, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Rahimi
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Fariborz Rahimi
- Department of Electrical Engineering, University of Bonab, Bonab, Iran
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
114
|
Warraich AA, Mohammed AUR, Gibson H, Hussain M, Rahman AS. Acidic amino acids as counterions of ciprofloxacin: Effect on growth and pigment production in Staphylococcus aureus NCTC 8325 and Pseudomonas aeruginosa PAO1. PLoS One 2021; 16:e0250705. [PMID: 33914790 PMCID: PMC8084218 DOI: 10.1371/journal.pone.0250705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/13/2021] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial resistance (AMR) is emerging as a global threat to public health. One of the strategies employed to combat AMR is the use of adjuvants which act to enhance or reinstate antimicrobial activity by inhibiting resistance mechanisms. However, these adjuvants are themselves not immune to selecting resistant phenotypes. Thus, there is a need to utilise mechanisms which are either less likely to or unable to trigger resistance. One commonly employed mechanism of resistance by microorganisms is to prevent antimicrobial uptake or efflux the antibiotic which manages to permeate its membrane. Here we propose amino acids as antimicrobial adjuvants that may be utilizing alternate mechanisms to fight AMR. We used a modified ethidium bromide (EtBr) efflux assay to determine its efflux in the presence of ciprofloxacin within Staphylococcus aureus (NCTC 8325) and Pseudomonas aeruginosa (PAO1). In this study, aspartic acid and glutamic acid were found to inhibit growth of both bacterial species. Moreover, a reduced production of toxic pigments, pyocyanin and pyoverdine by P. aeruginosa was also observed. As evident from similar findings with tetracycline, these adjuvants, may be a way forward towards tackling antimicrobial resistance.
Collapse
Affiliation(s)
- Annsar Ahmad Warraich
- Aston Pharmacy School, Aston University, Birmingham, United Kingdom
- School of Pharmacy, University of Wolverhampton, Wolverhampton, United Kingdom
| | | | - Hazel Gibson
- School of Pharmacy, University of Wolverhampton, Wolverhampton, United Kingdom
| | | | - Ayesha Sabah Rahman
- School of Pharmacy, University of Wolverhampton, Wolverhampton, United Kingdom
| |
Collapse
|
115
|
Kowalczyk A, Paneth A, Trojanowski D, Paneth P, Zakrzewska-Czerwińska J, Stączek P. Thiosemicarbazide Derivatives Decrease the ATPase Activity of Staphylococcus aureus Topoisomerase IV, Inhibit Mycobacterial Growth, and Affect Replication in Mycobacterium smegmatis. Int J Mol Sci 2021; 22:ijms22083881. [PMID: 33918623 PMCID: PMC8069432 DOI: 10.3390/ijms22083881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Compounds targeting bacterial topoisomerases are of interest for the development of antibacterial agents. Our previous studies culminated in the synthesis and characterization of small-molecular weight thiosemicarbazides as the initial prototypes of a novel class of gyrase and topoisomerase IV inhibitors. To expand these findings with further details on the mode of action of the most potent compounds, enzymatic studies combined with a molecular docking approach were carried out, the results of which are presented herein. The biochemical assay for 1-(indol-2-oyl)-4-(4-nitrophenyl) thiosemicarbazide (4) and 4-benzoyl-1-(indol-2-oyl) thiosemicarbazide (7), showing strong inhibitory activity against Staphylococcus aureus topoisomerase IV, confirmed that these compounds reduce the ability of the ParE subunit to hydrolyze ATP rather than act by stabilizing the cleavage complex. Compound 7 showed better antibacterial activity than compound 4 against clinical strains of S. aureus and representatives of the Mycobacterium genus. In vivo studies using time-lapse microfluidic microscopy, which allowed for the monitoring of fluorescently labelled replisomes, revealed that compound 7 caused an extension of the replication process duration in Mycobacterium smegmatis, as well as the growth arrest of bacterial cells. Despite some similarities to the mechanism of action of novobiocin, these compounds show additional, unique properties, and can thus be considered a novel group of inhibitors of the ATPase activity of bacterial type IIA topoisomerases.
Collapse
Affiliation(s)
- Aleksandra Kowalczyk
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland;
| | - Agata Paneth
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (A.P.); (P.S.)
| | - Damian Trojanowski
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (D.T.); (J.Z.-C.)
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Łódź University of Technology, Żeromskiego 116, 90-924 Łódź, Poland;
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)—International Research Agenda, Łódź University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (D.T.); (J.Z.-C.)
| | - Paweł Stączek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland;
- Correspondence: (A.P.); (P.S.)
| |
Collapse
|
116
|
Jia J, Zhang C, Liu Y, Huang Y, Bai Y, Hang X, Zeng L, Zhu D, Bi H. Armeniaspirol A: a novel anti-Helicobacter pylori agent. Microb Biotechnol 2021; 15:442-454. [PMID: 33780131 PMCID: PMC8867979 DOI: 10.1111/1751-7915.13807] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
Antibiotic resistance in Helicobacter pylori has been growing worldwide with current treatment regimens. Development of new compounds for treatment of H. pylori infections is urgently required to achieve a successful eradication therapy in the future. Armeniaspirols, a novel class of natural products isolated from Streptomyces armeniacus, have been previously identified as antibacterial agents against Gram‐positive pathogens. In this study, we found that armeniaspirol A (ARM1) exhibited potent antibacterial activity against H. pylori, including multidrug‐resistant strains, with MIC range values of 4–16 μg ml‐1. The underlying mechanism of action of ARM1 against H. pylori involved the disruption of bacterial cell membranes. Also, ARM1 inhibited biofilm formation, eliminated preformed biofilms and killed biofilm‐encased H. pylori in a dose‐dependent manner. In a mouse model of multidrug‐resistant H. pylori infection, dual therapy with ARM1 and omeprazole showed efficient in vivo killing efficacy comparable to the standard triple therapy, and induced negligible toxicity against normal tissues. Moreover, at acidic pH 2.5, ARM1 exhibited a much more potent anti‐H. pylori activity than metronidazole. Thus, these findings demonstrated that ARM1 is a novel potent anti‐H. pylori agent, which can be developed as a promising drug lead for treatment of H. pylori infections.
Collapse
Affiliation(s)
- Jia Jia
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology & Helicobacter pylori Research Centre, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.,Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Chongwen Zhang
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology & Helicobacter pylori Research Centre, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yaqi Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Yanqiang Huang
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology & Helicobacter pylori Research Centre, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yuefan Bai
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology & Helicobacter pylori Research Centre, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xudong Hang
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology & Helicobacter pylori Research Centre, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Liping Zeng
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology & Helicobacter pylori Research Centre, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Dongqing Zhu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China
| | - Hongkai Bi
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology & Helicobacter pylori Research Centre, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.,Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| |
Collapse
|
117
|
Gaba S, Gupta M, Gaba R, Lehl SS. Scrub Typhus: an Update*. CURRENT TROPICAL MEDICINE REPORTS 2021. [DOI: 10.1007/s40475-021-00234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
118
|
Santhosh P, Thomas MH. Ozenoxacin: A novel topical antibiotic. Indian J Dermatol Venereol Leprol 2021; 87:131-134. [PMID: 33580932 DOI: 10.25259/ijdvl_191_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 08/01/2020] [Indexed: 11/04/2022]
Affiliation(s)
- Parvathy Santhosh
- Department of Dermatology, Malabar Medical College Hospital and Research Centre, Kozhikode, Kerala, India
| | - Mithun Harold Thomas
- Department of Gastroenterology, Government Medical College, Kozhikode, Kerala, India
| |
Collapse
|
119
|
Wild Boars Carry Extended-Spectrum β-Lactamase- and AmpC-Producing Escherichia coli. Microorganisms 2021; 9:microorganisms9020367. [PMID: 33673341 PMCID: PMC7917586 DOI: 10.3390/microorganisms9020367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/08/2023] Open
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) represent major healthcare concerns. The role of wildlife in the epidemiology of these bacteria is unclear. The purpose of this study was to determine their prevalence in wild boars in Germany and to characterize individual isolates. A total of 375 fecal samples and 439 nasal swabs were screened for the presence of ESBL-/AmpC-E. coli and MRSA, respectively. The associations of seven demographic and anthropogenic variables with the occurrence of ESBL-/AmpC-E. coli were statistically evaluated. Collected isolates were subjected to antimicrobial susceptibility testing, molecular typing methods, and gene detection by PCR and genome sequencing. ESBL-/AmpC-E. coli were detected in 22 fecal samples (5.9%) whereas no MRSA were detected. The occurrence of ESBL-/AmpC-E. coli in wild boars was significantly and positively associated with human population density. Of the 22 E. coli, 19 were confirmed as ESBL-producers and carried genes belonging to blaCTX-M group 1 or blaSHV-12. The remaining three isolates carried the AmpC-β-lactamase gene blaCMY-2. Several isolates showed additional antimicrobial resistances. All four major phylogenetic groups were represented with group B1 being the most common. This study demonstrates that wild boars can serve as a reservoir for ESBL-/AmpC-producing and multidrug-resistant E. coli.
Collapse
|
120
|
Kareem SM, Al-Kadmy IMS, Kazaal SS, Mohammed Ali AN, Aziz SN, Makharita RR, Algammal AM, Al-Rejaie S, Behl T, Batiha GES, El-Mokhtar MA, Hetta HF. Detection of gyrA and parC Mutations and Prevalence of Plasmid-Mediated Quinolone Resistance Genes in Klebsiella pneumoniae. Infect Drug Resist 2021; 14:555-563. [PMID: 33603418 PMCID: PMC7886241 DOI: 10.2147/idr.s275852] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Background and Aim Recently, the extensive use of quinolones led to increased resistance to these antimicrobial agents, with different rates according to the organism and the geographical region. The aim of this study was to detect the resistance rate of Klebsiella pneumoniae Iraqi isolates toward quinolone antimicrobial agents, to determine genetic mutations in gyrA and parC, to screen for efflux-pump activity, and to screen the presence of plasmid-mediated quinolone resistance (PMQR) genes. Methods Forty-three K. pneumoniae isolates were confirmed phenotypically and genotypically by Vitek 2 system and species specific primers by PCR using the targeting rpo gene followed by sequencing. Antibiotic susceptibility test was carried out using disc diffusion method. Quinolone resistant isolates were subjected to ciprofloxacin MIC testing, and cartwheel method to screen for efflux pump activity. The presence of the plasmid mediated quinolone resistance genes qepA, qnrB, qnrS, and aac(6)Ib was tested by PCR. Sequencing of gyrA and parC was performed. Results We observed a high rate of resistance to ceftriaxone, gentamicin ciprofloxacin, and levofloxacin. Low rate of resistance was detected against amikacin and azithromycin. Ciprofloxacin MIC results revealed that 96.1% of the isolates had MICs >256 µg/mL, 83.4% had MICs >512 µg/mL while 34.6% had MIC >1024 µg/mL. Testing of isolates against ciprofloxacin mixed with EtBr at various concentrations resulted in decreased resistant. Sequencing results showed that Ser83Leu was the most common mutation in gyrA that was observed in all quinolone resistant isolates, followed by Asp87Asn. Ser80Ile mutation in parC was observed in 77.7% of the tested isolates. The prevalence of PMQR genes was 92.5% aac (6)-Ib, 51.8% qnrB, 40.7% qepA, and 37% qnrS. Conclusion Quinolone resistance is common in K. pneumoniae isolates in Baghdad. The frequent mutation in gyrA and parC, and the presence of PMQR genes is alarming.
Collapse
Affiliation(s)
- Sawsan Mohammed Kareem
- Branch of Biotechnology, Department of Biology, College of Science, University of Mustansiriyah, Baghdad, Iraq
| | - Israa M S Al-Kadmy
- Branch of Biotechnology, Department of Biology, College of Science, University of Mustansiriyah, Baghdad, Iraq.,Faculty of Science & Engineering, School of Engineering, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Saba S Kazaal
- Branch of Biotechnology, Department of Biology, College of Science, University of Mustansiriyah, Baghdad, Iraq
| | - Alaa N Mohammed Ali
- Branch of Biotechnology, Department of Biology, College of Science, University of Mustansiriyah, Baghdad, Iraq
| | - Sarah Naji Aziz
- Branch of Biotechnology, Department of Biology, College of Science, University of Mustansiriyah, Baghdad, Iraq
| | - Rabab R Makharita
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Salim Al-Rejaie
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicines, Damanhour University, Damanhour, 22511, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.,Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
121
|
Zábranský M, Alves PC, Bravo C, Duarte MT, André V. From pipemidic acid molecular salts to metal complexes and BioMOFs using mechanochemistry. CrystEngComm 2021. [DOI: 10.1039/d0ce01533d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mechanochemistry has proven to be an excellent sustainable, efficient and fast tool for the discovery of new crystal forms of old drugs.
Collapse
Affiliation(s)
- Martin Zábranský
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague, Czech Republic
| | - Paula C. Alves
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Av. Rovisco Pais, 1049-003 Lisboa, Portugal
| | - Catarina Bravo
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Av. Rovisco Pais, 1049-003 Lisboa, Portugal
| | - M. Teresa Duarte
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Vânia André
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Av. Rovisco Pais, 1049-003 Lisboa, Portugal
| |
Collapse
|
122
|
Ferreira M, Sousa CF, Gameiro P. Fluoroquinolone Metalloantibiotics to Bypass Antimicrobial Resistance Mechanisms: Decreased Permeation through Porins. MEMBRANES 2020; 11:membranes11010003. [PMID: 33375018 PMCID: PMC7822003 DOI: 10.3390/membranes11010003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022]
Abstract
Fluoroquinolones (FQs) are broad-spectrum antibiotics largely used in the clinical practice against Gram-negative and some Gram-positive bacteria. Nevertheless, bacteria have developed several antimicrobial resistance mechanisms against such class of antibiotics. Ternary complexes of FQs, copper(II) and phenanthroline, known as metalloantibiotics, arise in an attempt to counteract an antibiotic resistance mechanism related to low membrane permeability. These metalloantibiotics seem to use an alternative influx route, independent of porins. The translocation pathways of five FQs and its metalloantibiotics were studied through biophysical experiments, allowing us to infer about the role of OmpF porin in the influx. The FQ-OmpF interaction was assessed in mimetic membrane systems differing on the lipidic composition, disclosing no interference of the lipidic composition. The drug-porin interaction revealed similar values for the association constants of FQs and metalloantibiotics with native OmpF. Therefore, OmpF mutants and specific quenchers were used to study the location-association relationship, comparing a free FQ and its metalloantibiotic. The free FQ revealed a specific association, with preference for residues on the centre of OmpF, while the metalloantibiotic showed a random interaction. Thereby, metalloantibiotics may be an alternative to pure FQs, being able to overcome some antimicrobial resistance mechanism of Gram-negative bacteria related to decreased membrane permeability.
Collapse
|
123
|
Kirk R, Ratcliffe A, Noonan G, Uosis-Martin M, Lyth D, Bardell-Cox O, Massam J, Schofield P, Hindley S, Jones DR, Maclean J, Smith A, Savage V, Mohmed S, Charrier C, Salisbury AM, Moyo E, Metzger R, Chalam-Judge N, Cheung J, Stokes NR, Best S, Craighead M, Armer R, Huxley A. Rational design, synthesis and testing of novel tricyclic topoisomerase inhibitors for the treatment of bacterial infections part 1. RSC Med Chem 2020; 11:1366-1378. [PMID: 34095844 DOI: 10.1039/d0md00174k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
The alarming reduction in drug effectiveness against bacterial infections has created an urgent need for the development of new antibacterial agents that circumvent bacterial resistance mechanisms. We report here a series of DNA gyrase and topoisomerase IV inhibitors that demonstrate potent activity against a range of Gram-positive and selected Gram-negative organisms, including clinically-relevant and drug-resistant strains. In part 1, we present a detailed structure activity relationship (SAR) analysis that led to the discovery of our previously disclosed compound, REDX05931, which has a minimum inhibitory concentration (MIC) of 0.06 μg mL-1 against fluoroquinolone-resistant Staphylococcus aureus. Although in vitro hERG and CYP inhibition precluded further development, it validates a rational design approach to address this urgent unmet medical need and provides a scaffold for further optimisation, which is presented in part 2.
Collapse
Affiliation(s)
- R Kirk
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - A Ratcliffe
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - G Noonan
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - M Uosis-Martin
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - D Lyth
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - O Bardell-Cox
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - J Massam
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - P Schofield
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - S Hindley
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - D R Jones
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - J Maclean
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - A Smith
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - V Savage
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - S Mohmed
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - C Charrier
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - A-M Salisbury
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - E Moyo
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - R Metzger
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - N Chalam-Judge
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - J Cheung
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - N R Stokes
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - S Best
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - M Craighead
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - R Armer
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| | - A Huxley
- Redx Anti-Infectives Ltd, Alderley Park, Mereside Macclesfield SK10 4TG UK
| |
Collapse
|
124
|
Azargun R, Sadeghi V, Leylabadlo HE, Alizadeh N, Ghotaslou R. Molecular mechanisms of fluoroquinolone resistance in Enterobacteriaceae clinical isolates in Azerbaijan, Iran. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
125
|
Chernova OA, Chernov VM, Mouzykantov AA, Baranova NB, Edelstein IA, Aminov RI. Antimicrobial drug resistance mechanisms among Mollicutes. Int J Antimicrob Agents 2020; 57:106253. [PMID: 33264670 DOI: 10.1016/j.ijantimicag.2020.106253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 07/08/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022]
Abstract
Representatives of the Mollicutes class are the smallest, wall-less bacteria capable of independent reproduction. They are widespread in nature, most are commensals, and some are pathogens of humans, animals and plants. They are also the main contaminants of cell cultures and vaccine preparations. Despite limited biosynthetic capabilities, they are highly adaptable and capable of surviving under various stress and extreme conditions, including antimicrobial selective pressure. This review describes current understanding of antibiotic resistance (ABR) mechanisms in Mollicutes. Protective mechanisms in these bacteria include point mutations, which may include non-target genes, and unique gene exchange mechanisms, contributing to transfer of ABR genes. Better understanding of the mechanisms of emergence and dissemination of ABR in Mollicutes is crucial to control these hypermutable bacteria and prevent the occurrence of highly ABR strains.
Collapse
Affiliation(s)
- Olga A Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Vladislav M Chernov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Alexey A Mouzykantov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Natalya B Baranova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre of RAS, Kazan, Russian Federation
| | - Inna A Edelstein
- Smolensk State Medical University, Ministry of Health of Russian Federation, Smolensk, Russian Federation
| | - Rustam I Aminov
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| |
Collapse
|
126
|
Telhig S, Ben Said L, Zirah S, Fliss I, Rebuffat S. Bacteriocins to Thwart Bacterial Resistance in Gram Negative Bacteria. Front Microbiol 2020; 11:586433. [PMID: 33240239 PMCID: PMC7680869 DOI: 10.3389/fmicb.2020.586433] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022] Open
Abstract
An overuse of antibiotics both in human and animal health and as growth promoters in farming practices has increased the prevalence of antibiotic resistance in bacteria. Antibiotic resistant and multi-resistant bacteria are now considered a major and increasing threat by national health agencies, making the need for novel strategies to fight bugs and super bugs a first priority. In particular, Gram-negative bacteria are responsible for a high proportion of nosocomial infections attributable for a large part to Enterobacteriaceae, such as pathogenic Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. To cope with their highly competitive environments, bacteria have evolved various adaptive strategies, among which the production of narrow spectrum antimicrobial peptides called bacteriocins and specifically microcins in Gram-negative bacteria. They are produced as precursor peptides that further undergo proteolytic cleavage and in many cases more or less complex posttranslational modifications, which contribute to improve their stability and efficiency. Many have a high stability in the gastrointestinal tract where they can target a single pathogen whilst only slightly perturbing the gut microbiota. Several microcins and antibiotics can bind to similar bacterial receptors and use similar pathways to cross the double-membrane of Gram-negative bacteria and reach their intracellular targets, which they also can share. Consequently, bacteria may use common mechanisms of resistance against microcins and antibiotics. This review describes both unmodified and modified microcins [lasso peptides, siderophore peptides, nucleotide peptides, linear azole(in)e-containing peptides], highlighting their potential as weapons to thwart bacterial resistance in Gram-negative pathogens and discusses the possibility of cross-resistance and co-resistance occurrence between antibiotics and microcins in Gram-negative bacteria.
Collapse
Affiliation(s)
- Soufiane Telhig
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Laila Ben Said
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | - Séverine Zirah
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
127
|
Tall YA, Al-Rawashdeh B, Abualhaijaa A, Almaaytah A, Masadeh M, Alzoubi KH. Functional Characterization of a Novel Hybrid Peptide with High Potency against Gram-negative Bacteria. Curr Pharm Des 2020; 26:376-385. [PMID: 32003660 DOI: 10.2174/1381612826666200128090700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multi-drug resistant infections are a growing worldwide health concern. There is an urgent need to produce alternative antimicrobial agents. OBJECTIVE The study aimed to design a new hybrid antimicrobial peptide, and to evaluate its antimicrobial activity alone and in combination with traditional antibiotics. METHODS Herein, we designed a novel hybrid peptide (BMR-1) using the primary sequences of the parent peptides Frog Esculentin-1a and Monkey Rhesus cathelicidin (RL-37). The positive net charge was increased, and other physicochemical parameters were optimized. The antimicrobial activities of BMR-1 were tested against control and multi-drug resistant gram-negative bacteria. RESULTS BMR-1 adopted a bactericidal behavior with MIC values of 25-30 µM. These values reduced by over 75% upon combination with conventional antibiotics (levofloxacin, chloramphenicol, ampicillin, and rifampicin). The combination showed strong synergistic activities in most cases and particularly against multi-drug resistance P. aeruginosa and E. coli. BMR-1 showed similar potency against all tested strains regardless of their resistant mechanisms. BMR-1 exhibited no hemolytic effect on human red blood cells with the effective MIC values against the tested strains. CONCLUSION BMR-1 hybrid peptide is a promising candidate to treat resistant infectious diseases caused by gramnegative bacteria.
Collapse
Affiliation(s)
- Yara Al Tall
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Baha'a Al-Rawashdeh
- Department of Toxicology and Forensic Science, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmad Abualhaijaa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ammar Almaaytah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.,Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan
| | - Majed Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
128
|
Synthesis, biological evaluation and computational studies of acrylohydrazide derivatives as potential Staphylococcus aureus NorA efflux pump inhibitors. Bioorg Chem 2020; 104:104225. [DOI: 10.1016/j.bioorg.2020.104225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 01/20/2023]
|
129
|
Gregova G, Kmet V. Antibiotic resistance and virulence of Escherichia coli strains isolated from animal rendering plant. Sci Rep 2020; 10:17108. [PMID: 33051473 PMCID: PMC7553926 DOI: 10.1038/s41598-020-72851-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/03/2020] [Indexed: 01/09/2023] Open
Abstract
Processing of animal carcasses and other animal wastes in rendering plants is a significant source of antibiotic resistant microorganisms. The main goal of this study was to investigate the resistance to 18 antibacterial agents including β-lactams, fluoroquinolones, colistin and virulence factors (iss, tsh, cvaC, iutA, papC, kps and ibeA genes) in 88 Escherichia coli strains isolated from a rendering plant over 1 year period. ESBL (Extended-spectrum beta-lactamases) and plasmid-mediated Amp were screened by interpretative reading of MIC. ESBL phenotype was detected in 20.4% of samples and high level of resistance to fluoroquinolone was found in 27.2% of strains. Cephalosporinase CTX-M1, cephamycinase CMY-2, integrase 1 and transposon 3 genes were detected by PCR. Furthermore, there were found three CMY-2 producing E. coli with O25b-ST131, resistant to the high level of enrofloxacin and containing the gene encoding the ferric aerobactin receptor (iutA). One enrofloxacin resistant E. coli strain possessed iss, ibeA, kps and papC virulence genes also with CMY-2, integrase1 and Tn3. ST131 E. coli with CMY-2 has a zoonotic potential and presents a serious health risk to humans.
Collapse
Affiliation(s)
- Gabriela Gregova
- University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81, Kosice, Slovakia.
| | - Vladimir Kmet
- Institute of Animal Physiology, Centre of Biosciences, Slovak Academy of Sciences, Soltesovej 4, 040 01, Kosice, Slovakia
| |
Collapse
|
130
|
Sutera V, Hennebique A, Lopez F, Fernandez N, Schneider D, Maurin M. Genomic trajectories to fluoroquinolone resistance in Francisella tularensis subsp. holarctica live vaccine strain. Int J Antimicrob Agents 2020; 56:106153. [PMID: 32911069 DOI: 10.1016/j.ijantimicag.2020.106153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 07/04/2020] [Accepted: 08/29/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Fluoroquinolone (FQ)-resistant mutants were previously selected from the live vaccine strain (LVS) of Francisella tularensis (F. tularensis) subsp. holarctica. This study further characterised all genetic changes that occurred in these mutants during the evolutionary trajectory toward high-level FQ resistance, and their potential impact on F. tularensis antibiotic resistance and intracellular fitness. METHODS The whole genomes of FQ-resistant mutants were determined and compared with those of their parental strain. All detected mutations were evaluated for their potential impact on FQ resistance and intracellular multiplication of F. tularensis. RESULTS As compared with the parental LVS genome, 28 mutations were found in the derived FQ-resistant mutants. These mutations involved all genes encoding type II topoisomerases (i.e. gyrA, gyrB, parC, and parE). Interestingly, some of them were not previously associated with FQ resistance, warranting further characterisation. Mutations associated with FQ resistance were also found in other genes, including three encoding proteins involved in transport processes. Most of the detected mutations did not alter multiplication of the corresponding mutants in J774 cells. In contrast, all mutations at locus FTL_0439 encoding FupA/B, a membrane protein involved in iron transport, were associated with FQ resistance and fitness loss. CONCLUSION FQ resistance in F. tularensis is complex and may involve single or combined mutations in genes encoding type II topoisomerases, transport systems and FupA/B. In vivo studies are now required to assess the potential role of these mutations in FQ treatment failures.
Collapse
Affiliation(s)
- Vivien Sutera
- Centre National de Référence Francisella tularensis, Laboratoire de Bactériologie, Institut de Biologie et de Pathologie, CHU Grenoble Alpes, Grenoble, France; Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité Informatique - Mathématiques et Applications (TIMC-IMAG), Univ. Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Aurélie Hennebique
- Centre National de Référence Francisella tularensis, Laboratoire de Bactériologie, Institut de Biologie et de Pathologie, CHU Grenoble Alpes, Grenoble, France; Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité Informatique - Mathématiques et Applications (TIMC-IMAG), Univ. Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Fabrice Lopez
- Technological Advances for Genomics and Clinics (TAGC), Univ. Aix-Marseille II, Marseille, France; Transcriptomic and Genomic Marseille-Luminy (TGML), IBiSA platform, Marseille, France
| | - Nicolas Fernandez
- Technological Advances for Genomics and Clinics (TAGC), Univ. Aix-Marseille II, Marseille, France; Transcriptomic and Genomic Marseille-Luminy (TGML), IBiSA platform, Marseille, France
| | - Dominique Schneider
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité Informatique - Mathématiques et Applications (TIMC-IMAG), Univ. Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Max Maurin
- Centre National de Référence Francisella tularensis, Laboratoire de Bactériologie, Institut de Biologie et de Pathologie, CHU Grenoble Alpes, Grenoble, France; Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité Informatique - Mathématiques et Applications (TIMC-IMAG), Univ. Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble, France.
| |
Collapse
|
131
|
Comparative activity of ozenoxacin and other quinolones in Staphylococcus aureus strains overexpressing the efflux pump-encoding genes mepA and norA. Int J Antimicrob Agents 2020; 56:106082. [DOI: 10.1016/j.ijantimicag.2020.106082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/26/2020] [Accepted: 07/05/2020] [Indexed: 11/18/2022]
|
132
|
Oliveira WK, Ferrarini M, Morello LG, Faoro H. Resistome analysis of bloodstream infection bacterial genomes reveals a specific set of proteins involved in antibiotic resistance and drug efflux. NAR Genom Bioinform 2020; 2:lqaa055. [PMID: 33575606 PMCID: PMC7671365 DOI: 10.1093/nargab/lqaa055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022] Open
Abstract
Bacterial resistance to antibiotics is a global public health problem. Its association with bloodstream infections is even more severe and may easily evolve to sepsis. To improve our response to these bacteria, it is essential to gather thorough knowledge on the main pathogens along with the main mechanisms of resistance they carry. In this paper, we performed a large meta-analysis of 3872 bacterial genomes isolated from blood samples, from which we identified 71 745 antibiotic resistance genes (ARGs). Taxonomic analysis showed that Proteobacteria and Firmicutes phyla, and the species Klebsiella pneumoniae and Staphylococcus aureus were the most represented. Comparison of ARGs with the Resfams database showed that the main mechanism of antibiotic resistance is mediated by efflux pumps. Clustering analysis between resistome of blood and soil-isolated bacteria showed that there is low identity between transport and efflux proteins between bacteria from these environments. Furthermore, a correlation analysis among all features showed that K. pneumoniae and S. aureus formed two well-defined clusters related to the resistance mechanisms, proteins and antibiotics. A retrospective analysis has shown that the average number of ARGs per genome has gradually increased. The results demonstrate the importance of comprehensive studies to understand the antibiotic resistance phenomenon.
Collapse
Affiliation(s)
- Willian K Oliveira
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, FIOCRUZ, Paraná, 81350-010, Brazil
| | - Mariana Ferrarini
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne 69622, France
| | - Luis G Morello
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, FIOCRUZ, Paraná, 81350-010, Brazil
| | - Helisson Faoro
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, FIOCRUZ, Paraná, 81350-010, Brazil
- Graduate Program on Bioinformatics, Federal University of Paraná, Paraná, 81520-260, Brazil
| |
Collapse
|
133
|
Yue M, Li X, Liu D, Hu X. Serotypes, antibiotic resistance, and virulence genes of Salmonella in children with diarrhea. J Clin Lab Anal 2020; 34:e23525. [PMID: 32797660 PMCID: PMC7755775 DOI: 10.1002/jcla.23525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Salmonella is an important foodborne pathogen that causes acute diarrhea in humans worldwide. This study analyzed the relationships of serotypes and antibiotic resistance with virulence genes of Salmonella isolated from children with salmonellosis. METHODS Serological typing was performed using the slide-agglutination method. The Kirby-Bauer disk diffusion method was used to test antibiotic susceptibility. Twenty virulence genes were detected by PCR. RESULTS Salmonella Typhimurium (21 isolates, 34.43%) and S Enteritidis (12 isolates, 19.67%) were the predominant species among the 61 isolates. Ampicillin resistance was most common (63.93%), and among the cephalosporins, resistance was most often found to cefotaxime, a third-generation cephalosporin (19.67%). Among the 20 virulence genes, prgH, ssrB, and pagC were detected in all Salmonella isolates. In S Typhimurium, the detection rates of hilA, sipB, marT, mgtC, sopB, pagN, nlpI, bapA, oafA, and tolC were high. In S Enteritidis, the detection rates of icmF, spvB, spvR, and pefA were high. Nitrofurantoin resistance was negatively correlated with the virulence gene bapA (P = .005) and was positively correlated with icmF, spvB, spvR, and pefA (P = .012, .008, .002, and .005, respectively), The P values between all other virulence genes and antibiotic resistance were >.05. CONCLUSION Salmonella Typhimurium and S Enteritidis were the main serotypes in children with diarrhea in Hangzhou, China. Salmonella exhibited a high level of resistance to common antibiotics, and a high rate of bacteria carrying virulence genes was observed. However, no significant correlation was found between virulence genes and resistance to common antibiotics.
Collapse
Affiliation(s)
- Meina Yue
- Hangzhou Children's Hospital, Hangzhou, China
| | - Xiaoyu Li
- Hangzhou Children's Hospital, Hangzhou, China
| | - Di Liu
- Hangzhou Children's Hospital, Hangzhou, China
| | - Xue Hu
- Hangzhou Children's Hospital, Hangzhou, China
| |
Collapse
|
134
|
Yu X, Zhang D, Song Q. Profiles of gyrA Mutations and Plasmid-Mediated Quinolone Resistance Genes in Shigella Isolates with Different Levels of Fluoroquinolone Susceptibility. Infect Drug Resist 2020; 13:2285-2290. [PMID: 32765004 PMCID: PMC7367718 DOI: 10.2147/idr.s257877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/25/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Fluoroquinolone-resistant Shigella is considered a serious public health problem and has been put on the WHO global priority list of antibiotic-resistant bacteria. This study was aimed to investigate the fluoroquinolone resistance in Shigella and its relevant genetic mechanisms. Materials and Methods Shigella isolates that were isolated from diarrheal patient’s feces in Ningbo China from 2011 to 2018 were tested for susceptibility to ampicillin, gentamicin, tetracycline, nalidixic acid, ciprofloxacin, and cefotaxime. Genes related to quinolone resistance were amplified by PCR. Results A total of 118 Shigella isolates were collected, including 76 S. flexneri isolates, 40 S. sonnei isolates, and 2 S. boydii isolates. Ciprofloxacin susceptibility test identified 10 (9%) susceptible, 65 (55%) intermediate, and 43 (36%) resistant isolates. Of 76 S. flexneri isolates, 37 were ciprofloxacin resistant, a prevalence significantly higher than 6 of 40 S. sonnei isolates (P=0.01). The isolates collected during 2014–2018 displayed a significant increase in the prevalence of ciprofloxacin resistance (P=0.05) than those collected during 2011–2013. All the ciprofloxacin-intermediate and resistant isolates had mutations of gyrA(S83L) and parC (S80I), whereas only the ciprofloxacin-resistant isolates had gyrA (D87N) mutation and qnrB gene. Additionally, 30% of the ciprofloxacin-resistant isolates were positive for aac(6´)-Ib-cr gene. Conclusion This study shows the currently increasing prevalence of ciprofloxacin resistance. The reduced fluoroquinolone susceptibility is highly associated with gyrA (S83L) and parC (S80I) mutations, while the fluoroquinolone resistance is highly associated with gyrA (D87N) mutation, qnrB gene and perhaps aac(6´)-Ib-cr gene.
Collapse
Affiliation(s)
- Xuxia Yu
- Department of Hospital Infection, Ningbo City First Hospital, Ningbo, Zhejiang Province, People's Republic of China
| | - Danyang Zhang
- Department of Microbiology, Ningbo Municipal Centre for Disease Control and Prevention, Ningbo, Zhejiang Province, People's Republic of China
| | - Qifa Song
- Central Laboratory, Ningbo City First Hospital, Ningbo, Zhejiang Province, People's Republic of China
| |
Collapse
|
135
|
Liaqat A, Barlas A, Barlas T, Khurram H, Liaqat H. Ciprofloxacin-Induced Reaction Imitating a Lupus Flare: A Case Report. Cureus 2020; 12:e8327. [PMID: 32617205 PMCID: PMC7325334 DOI: 10.7759/cureus.8327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that can affect almost any organ in the body. It usually runs a chronic course with systemic inflammation, and age at diagnosis varies from 15 to 44 years. Laboratory reports often show high anti-nuclear antibody (ANA) levels, increased anti-double-stranded deoxyribonucleic acid (anti-dsDNA) levels, and low complement levels. 'Lupus flare' is a term used for an acute exacerbation of previously existing SLE. It usually manifests as an acute worsening of clinical signs and symptoms, along with an abrupt change in typical laboratory values. Triggers for a lupus flare include viral or bacterial infections, acute stress, and various environmental factors such as ultraviolet (UV) light. Ciprofloxacin is a broad-spectrum fluoroquinolone antibiotic used for various bacterial infections. On rare occasions, ciprofloxacin can cause adverse effects in the body, which may resemble an acute flare of SLE symptoms in patients with previously controlled disease. We have presented such a case of ciprofloxacin-induced reactions mimicking a lupus flare in an SLE patient.
Collapse
Affiliation(s)
- Adnan Liaqat
- Internal Medicine, Southeast Health Medical Center, Alabama, USA
| | | | - Talal Barlas
- Internal Medicine, The Wright Center, Scranton, USA
| | - Hamna Khurram
- Internal Medicine, Wah Medical College, Wah Cantonment, PAK
| | - Hamza Liaqat
- Internal Medicine, Wah Medical College, Wah Cantonment, PAK
| |
Collapse
|
136
|
Abstract
The rise of antimicrobial resistance is a leading medical threat, motivating efforts to forecast both its evolutionary dynamics and its genetic causes. Aminoglycosides are a major class of antibiotics that disrupt translation, but resistance may occur by a number of mechanisms. Here, we show the repeated evolution of resistance to the aminoglycoside tobramycin in both P. aeruginosa and A. baumannii via mutations in fusA1, encoding elongation factor G, and ptsP, encoding the nitrogen-specific phosphotransferase system. Laboratory evolution and whole-population genome sequencing were used to identify these targets, but mutations at identical amino acid positions were also found in published genomes of diverse bacterial species and clinical isolates. We also identified other resistance mechanisms associated with growth in biofilms that likely interfere with drug binding or uptake. Characterizing the evolution of multiple species in the presence of antibiotics can identify new, repeatable causes of resistance that may be predicted and counteracted by alternative treatment. Different species exposed to a common stress may adapt by mutations in shared pathways or in unique systems, depending on how past environments have molded their genomes. Understanding how diverse bacterial pathogens evolve in response to an antimicrobial treatment is a pressing example of this problem, where discovery of molecular parallelism could lead to clinically useful predictions. Evolution experiments with pathogens in environments containing antibiotics, combined with periodic whole-population genome sequencing, can be used to identify many contending routes to antimicrobial resistance. We separately propagated two clinically relevant Gram-negative pathogens, Pseudomonas aeruginosa and Acinetobacter baumannii, in increasing concentrations of tobramycin in two different environments each: planktonic and biofilm. Independently of the pathogen, the populations adapted to tobramycin selection by parallel evolution of mutations in fusA1, encoding elongation factor G, and ptsP, encoding phosphoenolpyruvate phosphotransferase. As neither gene is a direct target of this aminoglycoside, mutations to either are unexpected and underreported causes of resistance. Additionally, both species acquired antibiotic resistance-associated mutations that were more prevalent in the biofilm lifestyle than in the planktonic lifestyle; these mutations were in electron transport chain components in A. baumannii and lipopolysaccharide biosynthesis enzymes in P. aeruginosa populations. Using existing databases, we discovered site-specific parallelism of fusA1 mutations that extends across bacterial phyla and clinical isolates. This study suggests that strong selective pressures, such as antibiotic treatment, may result in high levels of predictability in molecular targets of evolution, despite differences between organisms’ genetic backgrounds and environments.
Collapse
|
137
|
Elokil AA, Abouelezz KF, Ahmad HI, Pan Y, Li S. Investigation of the Impacts of Antibiotic Exposure on the Diversity of the Gut Microbiota in Chicks. Animals (Basel) 2020; 10:ani10050896. [PMID: 32455745 PMCID: PMC7278382 DOI: 10.3390/ani10050896] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Broad-spectrum antibiotics have been a cornerstone in the treatment of bacterial diseases. However, growing evidence suggests that antibiotics have effects on host-associated gut microbiota communities. In this study, we report persistent significant changes in the abundance of gut microbiota and their functional metabolite pathways in chickens due to enrofloxacin and diclazuril exposure. These changes may affect the taxonomic, genomic, and functional capacity of the chicken gut microbiota, reducing bacterial diversity while expanding and collapsing membership of specific indigenous taxa. Understanding the biology of competitive exclusion of adaptive functions during antibiotic exposure in the gut may inform the design of new strategies to treat infections, while preserving the ecology of chicken-beneficial constituents. Abstract The dynamic microbiota in chickens can be affected by exposure to antibiotics, which may alter the composition and substrate availability of functional pathways. Here, 120 Jing Hong chicks at 30 days of age were randomly divided into four treatments totaling seven experimental groups: control chicks not exposed to antibiotics; and chicks exposed to enrofloxacin, diclazuril, and their mixture at 1:1 for 14 days and then not exposed for a withdrawal period of 15 days. Fecal samples were collected from the 7 groups at 8 time-points (exposure to 4 antibiotics and 4 withdrawal periods) to perform in-depth 16S rRNA sequencing of the gut microbiota. Taxon-independent analysis showed that the groups had significantly distinct microbial compositions (p < 0.01). Based on the microbial composition, as compared with the control group, the abundances of the phyla Firmicutes, Actinobacteria, Thermi, and Verrucomicrobia, as well as the families Lactobacillus, Lactococcus, S24-7, and Corynebacterium, were decreased in the antibiotic-exposed chicks (p < 0.01). Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analyses revealed significant differences in microbiota metabolite pathways due to the genera of the antibiotic-responsive microbes (p < 0.01), especially the pathways relating to cell growth and death, immune system diseases, carbohydrate metabolism, and nucleotide metabolism. Oral treatment with enrofloxacin, diclazuril, and their mixture modified the gut microbiota composition and the microbial metabolic profiles in chickens, with persistent effects (during the withdrawal period) that prevented the return to the original community and led to the formation of a new community.
Collapse
Affiliation(s)
- Abdelmotaleb A. Elokil
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (A.A.E.); (Y.P.)
- Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Khaled F.M. Abouelezz
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt;
| | - Hafiz I. Ahmad
- Department of Livestock Production, University of Veterinary and Animal sciences, Ravi Campus, Pattoki 55300, Pakistan;
| | - Yuanhu Pan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (A.A.E.); (Y.P.)
| | - Shijun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (A.A.E.); (Y.P.)
- Correspondence: ; Tel.: +86-27-8738-7480; Fax: +86-27-8728-0408
| |
Collapse
|
138
|
C. Alves P, Rijo P, Bravo C, M. M. Antunes A, André V. Bioactivity of Isostructural Hydrogen Bonding Frameworks Built from Pipemidic Acid Metal Complexes. Molecules 2020; 25:E2374. [PMID: 32443884 PMCID: PMC7287797 DOI: 10.3390/molecules25102374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 01/21/2023] Open
Abstract
We report herein three novel complexes whose design was based on the approach that consists of combining commercially available antibiotics with metals to attain different physicochemical properties and promote antimicrobial activity. Thus, new isostructural three-dimensional (3D) hydrogen bonding frameworks of pipemidic acid with manganese (II), zinc (II) and calcium (II) have been synthesised by mechanochemistry and are stable under shelf conditions. Notably, the antimicrobial activity of the compounds is maintained or even increased; in particular, the activity of the complexes is augmented against Escherichia coli, a representative of Gram-negative bacteria that have emerged as a major concern in drug resistance. Moreover, the synthesised compounds display similar general toxicity (Artemia salina model) levels to the original antibiotic, pipemidic acid. The increased antibacterial activity of the synthesised compounds, together with their appropriate toxicity levels, are promising outcomes.
Collapse
Affiliation(s)
- Paula C. Alves
- Centro de Química Estrutural (CQE), Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (P.C.A.); (C.B.); (A.M.M.A.)
- Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Av. Rovisco Pais 1, 1049-003 Lisboa, Portugal
| | - Patrícia Rijo
- Universidade Lusófona’s Research Center for Biosciences and Health Technologies (CBIOS), Campo Grande 376, 1749-024 Lisboa, Portugal;
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa (UL), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Catarina Bravo
- Centro de Química Estrutural (CQE), Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (P.C.A.); (C.B.); (A.M.M.A.)
- Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Av. Rovisco Pais 1, 1049-003 Lisboa, Portugal
| | - Alexandra M. M. Antunes
- Centro de Química Estrutural (CQE), Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (P.C.A.); (C.B.); (A.M.M.A.)
| | - Vânia André
- Centro de Química Estrutural (CQE), Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (P.C.A.); (C.B.); (A.M.M.A.)
- Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Av. Rovisco Pais 1, 1049-003 Lisboa, Portugal
| |
Collapse
|
139
|
Sheng H, Huang J, Han Z, Liu M, Lü Z, Zhang Q, Zhang J, Yang J, Cui S, Yang B. Genes and Proteomes Associated With Increased Mutation Frequency and Multidrug Resistance of Naturally Occurring Mismatch Repair-Deficient Salmonella Hypermutators. Front Microbiol 2020; 11:770. [PMID: 32457709 PMCID: PMC7225559 DOI: 10.3389/fmicb.2020.00770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/31/2020] [Indexed: 11/23/2022] Open
Abstract
The emergence of antibiotic-resistant Salmonella through mutations led to mismatch repair (MMR) deficiency that represents a potential hazard to public health. Here, four representative MMR-deficient Salmonella hypermutator strains and Salmonella Typhimurium LT2 were used to comprehensively reveal the influence of MMR deficiency on antibiotic resistance among Salmonella. Our results indicated that the mutation frequency ranged from 3.39 × 10–4 to 5.46 × 10–2 in the hypermutator. Mutation sites in MutS, MutL, MutT, and UvrD of the four hypermutators were all located in the essential and core functional regions. Mutation frequency of the hypermutator was most highly correlated with the extent of mutation in MutS. Mutations in MMR genes (mutS, mutT, mutL, and uvrD) were correlated with increased mutation in antibiotic resistance genes, and the extent of antibiotic resistance was significantly correlated with the number of mutation sites in MutL and in ParC. The number of mutation sites in MMR genes and antibiotic resistance genes exhibited a significant positive correlation with the number of antibiotics resisted and with expression levels of mutS, mutT, and mutL. Compared to Salmonella Typhimurium LT2, a total of 137 differentially expressed and 110 specifically expressed proteins were identified in the four hypermutators. Functional enrichment analysis indicated that the proteins significantly overexpressed in the hypermutators primarily associated with translation and stress response. Interaction network analysis revealed that the ribosome pathway might be a critical factor for high mutation frequency and multidrug resistance in MMR-deficient Salmonella hypermutators. These results help elucidate the mutational dynamics that lead to hypermutation, antibiotic resistance, and activation of stress response pathways in Salmonella.
Collapse
Affiliation(s)
- Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jinling Huang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Zhaoyu Han
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Mi Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Zexun Lü
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Qian Zhang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jinlei Zhang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jun Yang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|
140
|
Detection of 5 Kinds of Genes Related to Plasmid-Mediated Quinolone Resistance in Four Species of Nonfermenting Bacteria with 2 Drug Resistant Phenotypes. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2020; 2020:3948719. [PMID: 32351636 PMCID: PMC7171638 DOI: 10.1155/2020/3948719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 11/17/2022]
Abstract
Objective This study aimed to detect 5 kinds of genes related to plasmid-mediated quinolone resistance in four species of nonfermenting bacteria with 2 drug resistance phenotypes (multidrug resistance and pandrug resistance), which were Acinetobacter baumannii (Ab), Pseudomonas aeruginosa (Pa), Stenotrophomonas maltophilia (Sm), and Elizabethkingia meningoseptica (Em). Methods The Phoenix NMIC/ID-109 panel and API 20NE panel were applied to 19 isolated strains, including 6 Ab strains (2 strains with multidrug resistance and 4 strains with pandrug resistance), 6 Pa strains (3 strains with multidrug resistance and 3 strains with pandrug resistance), 4 Sm strains (2 strains with multidrug resistance and 2 strains with pandrug resistance), and 3 Cm strains (2 strains with multidrug resistance and 1 strain with pandrug resistance). After strain identification and drug susceptibility test, PCR was applied to detect 5 genes related to plasmid-mediated quinolone resistance. The genes detected were quinolone resistance A (qnrA), aminoglycoside acetyltransferase ciprofloxacin resistance variant, acc(6′)-Ib-cr, and 3 integrons (intI1, intI2, and intI3). The amplified products were analyzed by 1% agarose gel electrophoresis and sequenced. Sequence alignment was carried out using the bioinformatics technique. Results Of 19 strains tested, 8 strains carried acc(6′)-Ib-cr and 6 of them were of pandrug resistance phenotype (3 Ab strains, 2 Pa strains, and 1 Sm strain). The carrying rate of acc(6′)-Ib-cr was 60.0% for strains of pandrug resistance (6/10). Two strains were of multidrug resistance (1 Ab strain and 1 Pa strain), and the carrying rate of acc(6′)-Ib-cr was 22.0% (2/9). The carrying rate was significantly different between strains of multidrug resistance and pandrug resistance (P < 0.05). The class 1 integron was detected in 11 strains, among which 6 strains were of pandrug resistance (3 Ab strains, 2 Pa strains, and 1 Sm strain). The carrying rate of the class 1 integron was 60.0% (6/10). Five strains were of multidrug resistance (3 Pa strains, 1 Ab strain, and 1 Em strain), and the carrying rate was 55.6% (5/9). The carrying rate of the class 1 integron was not significantly different between strains of multidrug resistance and pandrug resistance (P > 0.05). Both acc(6′)-Ib-cr and intI1 were detected in 6 strains, which were negative for qnrA, intI2, and intI3. Conclusion Quinolone resistance of isolated strains was related to acc(6′)-Ib-cr and intI1 but not to qnrA, intI2, or intI3. The carrying rate of acc(6′)-Ib-cr among the strains of pandrug resistance was much higher than that among the strains of multidrug resistance. But, the strains of two drug resistant phenotypes were not significantly different in the carrying rate of intI1. The detection rates of the two genes were high and similar in Ab and Pa strains. 1 Em strain carried the class 1 integron.
Collapse
|
141
|
Ferreira M, Bessa LJ, Sousa CF, Eaton P, Bongiorno D, Stefani S, Campanile F, Gameiro P. Fluoroquinolone Metalloantibiotics: A Promising Approach against Methicillin-Resistant Staphylococcus aureus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093127. [PMID: 32365881 PMCID: PMC7246690 DOI: 10.3390/ijerph17093127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022]
Abstract
Fluoroquinolones (FQs) are antibiotics commonly used in clinical practice, although nowadays they are becoming ineffective due to the emergence of several mechanisms of resistance in most bacteria. The complexation of FQs with divalent metal ions and phenanthroline (phen) is a possible approach to circumvent antimicrobial resistance, since it forms very stable complexes known as metalloantibiotics. This work is aimed at determining the antimicrobial activity of metalloantibiotics of Cu(II)FQphen against a panel of multidrug-resistant (MDR) clinical isolates and to clarify their mechanism of action. Minimum inhibitory concentrations (MICs) were determined against MDR isolates of Escherichia coli, Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA). Metalloantibiotics showed improved antimicrobial activity against several clinical isolates, especially MRSA. Synergistic activity was evaluated in combination with ciprofloxacin and ampicillin by the disk diffusion and checkerboard methods. Synergistic and additive effects were shown against MRSA isolates. The mechanism of action was studied though enzymatic assays and atomic force microscopy (AFM) experiments. The results indicate a similar mechanism of action for FQs and metalloantibiotics. In summary, metalloantibiotics seem to be an effective alternative to pure FQs against MRSA. The results obtained in this work open the way to the screening of metalloantibiotics against other Gram-positive bacteria.
Collapse
Affiliation(s)
- Mariana Ferreira
- REQUIMTE-LAQV (Rede de Química e Tecnologia – Laboratório Associado para a Química Verde), Departamento de Química e Bioquímica da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (L.J.B.); (C.F.S.); (P.E.); (P.G.)
- Correspondence:
| | - Lucinda J. Bessa
- REQUIMTE-LAQV (Rede de Química e Tecnologia – Laboratório Associado para a Química Verde), Departamento de Química e Bioquímica da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (L.J.B.); (C.F.S.); (P.E.); (P.G.)
| | - Carla F. Sousa
- REQUIMTE-LAQV (Rede de Química e Tecnologia – Laboratório Associado para a Química Verde), Departamento de Química e Bioquímica da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (L.J.B.); (C.F.S.); (P.E.); (P.G.)
| | - Peter Eaton
- REQUIMTE-LAQV (Rede de Química e Tecnologia – Laboratório Associado para a Química Verde), Departamento de Química e Bioquímica da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (L.J.B.); (C.F.S.); (P.E.); (P.G.)
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (D.B.); (S.S.); (F.C.)
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (D.B.); (S.S.); (F.C.)
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (D.B.); (S.S.); (F.C.)
| | - Paula Gameiro
- REQUIMTE-LAQV (Rede de Química e Tecnologia – Laboratório Associado para a Química Verde), Departamento de Química e Bioquímica da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (L.J.B.); (C.F.S.); (P.E.); (P.G.)
| |
Collapse
|
142
|
Liu K, Huigens RW. Instructive Advances in Chemical Microbiology Inspired by Nature's Diverse Inventory of Molecules. ACS Infect Dis 2020; 6:541-562. [PMID: 31842540 PMCID: PMC7346871 DOI: 10.1021/acsinfecdis.9b00413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Natural product antibiotics have played an essential role in the treatment of bacterial infection in addition to serving as useful tools to explore the intricate biology of bacteria. Our current arsenal of antibiotics operate through the inhibition of well-defined bacterial targets critical for replication and growth. Pathogenic bacteria effectively utilize a diversity of mechanisms that lead to acquired resistance and/or innate tolerance toward antibiotic therapies, which can result in devastating consequences to human life. Several research groups have established innovative programs that work at the chemistry-biology interface to develop new molecules that aim to define and address concerns related to antibiotic resistance and tolerance. In this Review, we present recent progress by select research groups that highlight a diversity of integrated chemical biology and medicinal chemistry approaches aimed at the development and utilization of chemical tools that have led to promising new microbiological insights that may lead to significant clinical advances regarding the treatment of pathogenic bacteria.
Collapse
Affiliation(s)
- Ke Liu
- 1345 Center Drive, Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Robert W. Huigens
- 1345 Center Drive, Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
143
|
Svenningsen SW, Frederiksen RF, Counil C, Ficker M, Leisner JJ, Christensen JB. Synthesis and Antimicrobial Properties of a Ciprofloxacin and PAMAM-dendrimer Conjugate. Molecules 2020; 25:molecules25061389. [PMID: 32197523 PMCID: PMC7146445 DOI: 10.3390/molecules25061389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 02/01/2023] Open
Abstract
Infections caused by bacteria resistant to antibiotics are an increasing problem. Multivalent antibiotics could be a solution. In the present study, a covalent conjugate between Ciprofloxacin and a G0-PAMAM dendrimer has been synthesized and tested against clinically relevant Gram-positive and Gram-negative bacteria. The conjugate has antimicrobial activity and there is a positive dendritic effect compared to Ciprofloxacin itself.
Collapse
Affiliation(s)
- Søren Wedel Svenningsen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (S.W.S.); (C.C.); (M.F.)
| | - Rikki Franklin Frederiksen
- Department of Veterinary and Animal Sciences, Food Safety and Zoonoses, University of Copenhagen, Grønnegårdsvej 15, DK-1870 Frederiksberg C, Denmark; (R.F.F.); (J.J.L.)
| | - Claire Counil
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (S.W.S.); (C.C.); (M.F.)
| | - Mario Ficker
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (S.W.S.); (C.C.); (M.F.)
| | - Jørgen J. Leisner
- Department of Veterinary and Animal Sciences, Food Safety and Zoonoses, University of Copenhagen, Grønnegårdsvej 15, DK-1870 Frederiksberg C, Denmark; (R.F.F.); (J.J.L.)
| | - Jørn Bolstad Christensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark; (S.W.S.); (C.C.); (M.F.)
- Correspondence: ; Tel.: +45-3533-2452
| |
Collapse
|
144
|
Tudó G, Lopez-Gavin A, Portell-Buj E, Freixes J, Vila J, Roman A, Monté MR, Gonzalez-Martin J. In Vitro Activity of a Novel Quinolone, UB-8902, Against Ofloxacin-Resistant Mycobacterium tuberculosis Isolates. Microb Drug Resist 2020; 26:1019-1022. [PMID: 32159449 DOI: 10.1089/mdr.2019.0367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The main objective of this study was to compare in vitro activities of a novel fluoroquinolone (FQ), UB-8902, with ofloxacin (OFX), levofloxacin (LFX), and moxifloxacin (MOX) against Mycobacterium tuberculosis isolates. Eleven OFX-resistant and 11 drug-susceptible clinical isolates were studied. Individual minimum inhibitory concentrations of OFX, LFX, MOX, and UB-8902 were determined using Middlebrook 7H11 agar. The concentrations studied ranged from 0.125 to 128 μg/mL in twofold dilutions. UB-8902 was more active than LFX and similar to MOX for OFX-resistant M. tuberculosis isolates. In addition, UB-8902 and MOX showed equal activity against drug-susceptible isolates, both being more active than OFX and LFX. In conclusion, the new FQ, UB-8902, showed good activity against OFX-resistant isolates. Moreover, it showed better activity than OFX and LFX and was equivalent to MOX against FQ-susceptible clinical isolates. UB-8902 can be considered as a drug with potential antituberculous activity, similar to MOX.
Collapse
Affiliation(s)
- Griselda Tudó
- Microbiology Department, CDB, Hospital Clinic-Barcelona Institute of Global Health (ISGlobal), University of Barcelona, Barcelona, Spain
| | - Alexandre Lopez-Gavin
- Microbiology Department, CDB, Hospital Clinic-Barcelona Institute of Global Health (ISGlobal), University of Barcelona, Barcelona, Spain
| | - Elena Portell-Buj
- Microbiology Department, CDB, Hospital Clinic-Barcelona Institute of Global Health (ISGlobal), University of Barcelona, Barcelona, Spain
| | - Joan Freixes
- Cenavisa Plc Laboratories, Reus, Tarragona, Spain
| | - Jordi Vila
- Microbiology Department, CDB, Hospital Clinic-Barcelona Institute of Global Health (ISGlobal), University of Barcelona, Barcelona, Spain
| | - Angely Roman
- Microbiology Department, CDB, Hospital Clinic-Barcelona Institute of Global Health (ISGlobal), University of Barcelona, Barcelona, Spain
| | - Maria Rosa Monté
- Microbiology Department, CDB, Hospital Clinic-Barcelona Institute of Global Health (ISGlobal), University of Barcelona, Barcelona, Spain
| | - Julian Gonzalez-Martin
- Microbiology Department, CDB, Hospital Clinic-Barcelona Institute of Global Health (ISGlobal), University of Barcelona, Barcelona, Spain
| |
Collapse
|
145
|
Wang P, Hu L, Hao Z. Palmatine Is a Plasmid-Mediated Quinolone Resistance (PMQR) Inhibitor That Restores the Activity of Ciprofloxacin Against QnrS and AAC(6')-Ib-cr-Producing Escherichia coli. Infect Drug Resist 2020; 13:749-759. [PMID: 32210589 PMCID: PMC7069587 DOI: 10.2147/idr.s242304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose The emergence of plasmid-mediated quinolone resistance (PMQR) is a global challenge in the treatment of clinical disease in both humans and animals and is exacerbated by the presence of different PMQR genes existing in the same bacterial strain. Here, we discovered that a natural isoquinoline alkaloid palmatine extracted from traditional Chinese medicinal plants effectively inhibited the activity of PMQR proteins QnrS and AAC(6′)-Ib-cr. Methods In total 120 clinical ciprofloxacin-resistant Escherichia coli (E. coli) were screened for the presence of qnrS and aac(6ʹ)-Ib-cr by PCR. Recombinant E. coli that produced QnrS or AAC(6ʹ)-Ib-cr proteins were constructed and the correct expression was confirmed by MALDI/TOF MS analysis and SDS-PAGE. A minimal inhibitory concentration (MICs) assay, growth curve assay and time-kill assay were conducted to evaluate the in vitro antibacterial activity of palmatine and the combination of palmatine and ciprofloxacin. Cytotoxicity assays and mouse thigh infection model were used to evaluate the in vivo synergies. Molecular docking, gyrase supercoiling assay and acetylation assay were used to clarify the mechanism of action. Results Palmatine effectively restored the activity of ciprofloxacin against qnrS and aac(6ʹ)-Ib-cr-positive E. coli strains in a synergistic manner in vitro. In addition, the combined therapy significantly reduced the bacterial burden in a mouse thigh infection model. Molecular docking revealed that palmatine bound at the functional large loop B of QnrS and Trp102Arg and Asp179Tyr in the binding pocket of AAC(6′)-Ib-cr. Furthermore, interaction analysis confirmed that palmatine reduced the gyrase protective effect of QnrS and the acetylation effect of AAC(6′)-Ib-cr. Conclusion Our findings suggest that palmatine is a potential efficacious compound to restore PMQR-mediated ciprofloxacin resistance and warrants further preclinical evaluations.
Collapse
Affiliation(s)
- Peng Wang
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Longfei Hu
- Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Zhihui Hao
- National Centre for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100089, People's Republic of China
| |
Collapse
|
146
|
Hyun JC, Kavvas ES, Monk JM, Palsson BO. Machine learning with random subspace ensembles identifies antimicrobial resistance determinants from pan-genomes of three pathogens. PLoS Comput Biol 2020; 16:e1007608. [PMID: 32119670 PMCID: PMC7067475 DOI: 10.1371/journal.pcbi.1007608] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 03/12/2020] [Accepted: 12/16/2019] [Indexed: 12/29/2022] Open
Abstract
The evolution of antimicrobial resistance (AMR) poses a persistent threat to global public health. Sequencing efforts have already yielded genome sequences for thousands of resistant microbial isolates and require robust computational tools to systematically elucidate the genetic basis for AMR. Here, we present a generalizable machine learning workflow for identifying genetic features driving AMR based on constructing reference strain-agnostic pan-genomes and training random subspace ensembles (RSEs). This workflow was applied to the resistance profiles of 14 antimicrobials across three urgent threat pathogens encompassing 288 Staphylococcus aureus, 456 Pseudomonas aeruginosa, and 1588 Escherichia coli genomes. We find that feature selection by RSE detects known AMR associations more reliably than common statistical tests and previous ensemble approaches, identifying a total of 45 known AMR-conferring genes and alleles across the three organisms, as well as 25 candidate associations backed by domain-level annotations. Furthermore, we find that results from the RSE approach are consistent with existing understanding of fluoroquinolone (FQ) resistance due to mutations in the main drug targets, gyrA and parC, in all three organisms, and suggest the mutational landscape of those genes with respect to FQ resistance is simple. As larger datasets become available, we expect this approach to more reliably predict AMR determinants for a wider range of microbial pathogens.
Collapse
Affiliation(s)
- Jason C. Hyun
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, California, United States of America
| | - Erol S. Kavvas
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Jonathan M. Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
147
|
Minakshi P, Ghosh M, Brar B, Kumar R, Lambe UP, Ranjan K, Manoj J, Prasad G. Nano-antimicrobials: A New Paradigm for Combating Mycobacterial Resistance. Curr Pharm Des 2020; 25:1554-1579. [PMID: 31218956 DOI: 10.2174/1381612825666190620094041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mycobacterium group contains several pathogenic bacteria including M. tuberculosis where the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) is alarming for human and animal health around the world. The condition has further aggravated due to the speed of discovery of the newer drugs has been outpaced by the rate of resistance developed in microorganisms, thus requiring alternative combat strategies. For this purpose, nano-antimicrobials have emerged as a potential option. OBJECTIVE The current review is focused on providing a detailed account of nanocarriers like liposome, micelles, dendrimers, solid lipid NPs, niosomes, polymeric nanoparticles, nano-suspensions, nano-emulsion, mesoporous silica and alginate-based drug delivery systems along with the recent updates on developments regarding nanoparticle-based therapeutics, vaccines and diagnostic methods developed or under pipeline with their potential benefits and limitations to combat mycobacterial diseases for their successful eradication from the world in future. RESULTS Distinct morphology and the underlying mechanism of pathogenesis and resistance development in this group of organisms urge improved and novel methods for the early and efficient diagnosis, treatment and vaccination to eradicate the disease. Recent developments in nanotechnology have the potential to meet both the aspects: nano-materials are proven components of several efficient targeted drug delivery systems and the typical physicochemical properties of several nano-formulations have shown to possess distinct bacteriocidal properties. Along with the therapeutic aspects, nano-vaccines and theranostic applications of nano-formulations have grown in popularity in recent times as an effective alternative means to combat different microbial superbugs. CONCLUSION Nanomedicine holds a bright prospect to perform a key role in global tuberculosis elimination program.
Collapse
Affiliation(s)
- Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125 004, Haryana, India
| | - Mayukh Ghosh
- Department of Veterinary Biochemistry, Ranchi Veterinary College, Birsa Agricultural University, Ranchi-834 006, Jharkhand, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125 004, Haryana, India
| | - Rajesh Kumar
- Department of Veterinary Physiology, COVAS, KVASU, Pookode, Wayanad- 673576, Kerala, India
| | - Upendra P Lambe
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125 004, Haryana, India
| | | | - Jinu Manoj
- RVDEC Mahendergarh, LUVAS, Haryana, India
| | - Gaya Prasad
- SVP University of Agriculture and Technology, Meerut, India
| |
Collapse
|
148
|
Sanabria-Ríos DJ, Morales-Guzmán C, Mooney J, Medina S, Pereles-De-León T, Rivera-Román A, Ocasio-Malavé C, Díaz D, Chorna N, Carballeira NM. Antibacterial Activity of Hexadecynoic Acid Isomers toward Clinical Isolates of Multidrug-Resistant Staphylococcus aureus. Lipids 2020; 55:101-116. [PMID: 31975430 DOI: 10.1002/lipd.12213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/16/2019] [Accepted: 01/06/2020] [Indexed: 11/07/2022]
Abstract
In the present study, the structural characteristics that impart antibacterial activity to C16 alkynoic fatty acids (aFA) were further investigated. The syntheses of hexadecynoic acids (HDA) containing triple bonds at C-3, C-6, C-8, C-9, C-10, and C-12 were carried out in four steps and with an overall yield of 34-78%. In addition, HDA analogs containing a sulfur atom at either C-4 or C-5 were also prepared in 69-77% overall yields, respectively. Results from this study revealed that the triple bond at C-2 is pivotal for the antibacterial activity displayed by 2-HDA, while the farther the position of the triple bond from the carbonyl group, the lower its bactericidal activity against gram-positive bacteria, including clinical isolates of methicillin-resistant Staphylococcus aureus (CIMRSA) strains. The potential of 2-HDA as an antibacterial agent was also assessed in five CIMRSA strains that were resistant to Ciprofloxacin (Cipro) demonstrating that 2-HDA was the most effective treatment in inhibiting their growth when compared with either Cipro alone or equimolar combinations of Cipro and 2-HDA. Moreover, it was proved that the inhibition of S. aureus DNA gyrase can be linked to the antibacterial activity displayed by 2-HDA. Finally, it was determined that the ability of HDA analogs to form micelles can be linked to their decreased activity against gram-positive bacteria, since critical micellar concentrations (CMC) between 50 and 300 μg/mL were obtained.
Collapse
Affiliation(s)
- David J Sanabria-Ríos
- Faculty of Science and Technology, Inter American University of Puerto Rico, Metropolitan Campus, PO Box 191293, San Juan, PR, 00919, USA
| | - Christian Morales-Guzmán
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, 17 Ave Universidad STE 1701, San Juan, PR, 00925, USA
| | - Joseph Mooney
- Faculty of Science and Technology, Inter American University of Puerto Rico, Metropolitan Campus, PO Box 191293, San Juan, PR, 00919, USA
| | - Solymar Medina
- Faculty of Science and Technology, Inter American University of Puerto Rico, Metropolitan Campus, PO Box 191293, San Juan, PR, 00919, USA
| | - Tomás Pereles-De-León
- Faculty of Science and Technology, Inter American University of Puerto Rico, Metropolitan Campus, PO Box 191293, San Juan, PR, 00919, USA
| | - Ashley Rivera-Román
- Faculty of Science and Technology, Inter American University of Puerto Rico, Metropolitan Campus, PO Box 191293, San Juan, PR, 00919, USA
| | - Carlimar Ocasio-Malavé
- Faculty of Science and Technology, Inter American University of Puerto Rico, Metropolitan Campus, PO Box 191293, San Juan, PR, 00919, USA
| | - Damarith Díaz
- Faculty of Science and Technology, Inter American University of Puerto Rico, Metropolitan Campus, PO Box 191293, San Juan, PR, 00919, USA
| | - Nataliya Chorna
- Department of Biochemistry, University of Puerto Rico, Medical Sciences, Campus, PO Box 365067, San Juan, PR, 00936, USA
| | - Néstor M Carballeira
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, 17 Ave Universidad STE 1701, San Juan, PR, 00925, USA
| |
Collapse
|
149
|
Tan P, Lai Z, Jian Q, Shao C, Zhu Y, Li G, Shan A. Design of Heptad Repeat Amphiphiles Based on Database Filtering and Structure-Function Relationships to Combat Drug-Resistant Fungi and Biofilms. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2129-2144. [PMID: 31887002 DOI: 10.1021/acsami.9b19927] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to the emergence of reports of multidrug-resistant fungi, infections caused by multidrug-resistant fungi and biofilms are considered to be a global threat to human health due to the lack of effective broad-spectrum drugs. Here, we developed a series heptad repeat sequences based on an antimicrobial peptide database (APD) and structure-function relationships. Among the developed peptides, the target peptide ACR3 exhibited good activity against all fungi and bacteria tested, including fluconazole-resistant Candida albicans (C. albicans) and methicillin-resistant Staphylococcu saureus (S. aureus), while demonstrating relatively low toxicity and good salt tolerance. The peptide ACR3 inhibits the formation of C. albicans biofilms and has a therapeutic effect on mature biofilms in vitro and in vivo. Moreover, we did not observe any resistance of C. albicans and E. coli against the peptide ACR3. A series of assays and microscopy were used to analyze the antimicrobial mechanism. These results showed that the antimicrobial activity of the peptide ACR3 utilizes a multimodal mechanism that degrades the cell wall barrier, alters the cytoplasmic membrane electrical potential, and induces intracellular reactive oxygen species (ROS) production. In general, the peptide ACR3 is a potent antibacterial agent that shows great potential for use in biomedical coatings and healthcare formulas to combat the growing threat of fungal and bacterial infection.
Collapse
Affiliation(s)
- Peng Tan
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , China
| | - Zhenheng Lai
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , China
| | - Qiao Jian
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , China
| | - Changxuan Shao
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , China
| | - Yongjie Zhu
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , China
| | - Guoyu Li
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , China
| |
Collapse
|
150
|
Pazda M, Kumirska J, Stepnowski P, Mulkiewicz E. Antibiotic resistance genes identified in wastewater treatment plant systems - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134023. [PMID: 31479900 DOI: 10.1016/j.scitotenv.2019.134023] [Citation(s) in RCA: 328] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 04/15/2023]
Abstract
The intensive use of antibiotics for human, veterinary and agricultural purposes, results in their continuous release into the environment. Together with antibiotics, antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are introduced into wastewater. Wastewater treatment plants (WWTPs) are believed to be probable hotspots for antibiotic resistance dissemination in the environment as they offer convenient conditions for ARB proliferation as well as for horizontal transfer of ARGs among different microorganisms. In fact, genes conferring resistance to all classes of antibiotics together with mobile genetic elements (MGEs) like plasmids, transposons, bacteriophages, integrons are detected in WWTPs in different countries. It seems that WWTPs with conventional treatment processes are capable of significant reduction of ARB but are not efficient in ARG removal. Implementation of advanced wastewater cleaning processes in addition to a conventional wastewater treatment is an important step to protect the aquatic environment. Growing interest in presence and fate of ARB and ARGs in WWTP systems resulted in the fact that knowledge in this area has increased staggeringly in the past few years. The main aim of the article is to collect and organize available data on ARGs, that are commonly detected in raw sewage, treated wastewater or activated sludge. Resistance to the antibiotics usually used in antibacterial therapy belonging to main classes like beta-lactams, macrolides, quinolones, sulfonamides, trimethoprim and tetracyclines was taken into account. The presence of multidrug efflux genes is also included in this paper. The occurrence of antibiotics may promote the selection of ARB and ARGs. As it is important to discuss the problem considering all aspects that influence it, the levels of antibiotics detected in influent and effluent of WWTPs were also presented.
Collapse
Affiliation(s)
- Magdalena Pazda
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Jolanta Kumirska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| |
Collapse
|