101
|
Tong S, Lyu Y, Huang W, Zeng R, Jiang R, Lian Q, Leung FW, Sha W, Chen H. Genetically predicted causal associations between periodontitis and psychiatric disorders. BMJ MENTAL HEALTH 2023; 26:e300864. [PMID: 37993283 PMCID: PMC10668133 DOI: 10.1136/bmjment-2023-300864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Psychiatric disorders have serious harm to individuals' lives with high disease burden. Observational studies reported inconsistent associations between periodontitis and some psychiatric disorders, and the causal correlations between them remain unknown. OBJECTIVE This study aims to explore the causal associations between periodontitis and psychiatric disorders. METHODS A series of two-sample Mendelian randomisation (MR) analyses were employed using genome-wide association study summary statistics for periodontitis in adults from Gene-Lifestyle Interactions in Dental Endpoints Consortium and 10 psychiatric disorders from Psychiatric Genomics Consortium. Causal effects were primarily estimated using the inverse-variance weighted (IVW) method. Various sensitivity analyses were also conducted to assess the robustness of our results. FINDINGS The MR analysis suggested that genetically determined periodontitis was not causally associated with 10 psychiatric disorders (IVW, all p>0.089). Furthermore, the reverse MR analysis revealed that 10 psychiatric disorders had no causal effect on periodontitis (IVW, all p>0.068). We discovered that all the results were consistent in the four MR analytical methods, including the IVW, MR-Egger, weighted median and weighted mode. Besides, we did not identify any heterogeneity or horizontal pleiotropy in the sensitivity analysis. CONCLUSIONS These results do not support bidirectional causal associations between genetically predicted periodontitis and 10 common psychiatric disorders. Potential confounders might contribute to the previously observed associations. CLINICAL IMPLICATIONS Our findings might alleviate the concerns of patients with periodontitis or psychiatric disorders. However, further research was warranted to delve into the intricate relationship between dental health and mental illnesses.
Collapse
Affiliation(s)
- Shuangshuang Tong
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Yanlin Lyu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Wentao Huang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Rui Jiang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Qizhou Lian
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Felix W Leung
- Sepulveda Ambulatory Care Center, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
- School of Medicine, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
102
|
Annisa ZU, Sulijaya B, Tadjoedin ESS, Hutomo DI, Masulili SLC. Effectiveness of chlorhexidine gels and chips in Periodontitis Patients after Scaling and Root Planing: a systematic review and Meta-analysis. BMC Oral Health 2023; 23:819. [PMID: 37899443 PMCID: PMC10613372 DOI: 10.1186/s12903-023-03241-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/19/2023] [Indexed: 10/31/2023] Open
Abstract
Periodontal pockets are characteristic of periodontitis. Scaling and root planing is the gold standard for periodontitis treatment. Additional local antimicrobials are recommended in patients with a probing depth of ≥ 5 mm. This study aims to determine the effectiveness of chlorhexidine compared to other local antimicrobials in periodontitis. Searches were conducted using the Preferred Reporting Items for Systematic Reviews and Meta Analysis (PRISMA) guidelines. Meta-analysis was performed on studies that met inclusion criteria after risk of bias assessment. Meta-analysis between chlorhexidine chips and other antimicrobials showed a mean difference in probing depth after one month of 0.58 mm (p < 0.00001) whereas after three months the mean difference in probing depth was 0.50 mm (p = 0.001), index plaque 0.01 (p = 0.94) and gingival index - 0.11 mm (p = 0.02). Between chlorhexidine gel and other antimicrobials showed a mean difference in probing depth of 0.40 mm (p = 0.30), plaque index of 0.20 mm (p = 0.0008) and gingival index of -0.04 mm (p = 0.83) after one month. Chlorhexidine chips were more effective on the gingival index than other antimicrobials after three months. The other antimicrobials were more effective than chlorhexidine chips on probing depth after one and three months, and than chlorhexidine gels on plaque index after one month.
Collapse
Affiliation(s)
- Zahratul Umami Annisa
- Undergraduate Program, Faculty of Dentistry, Universitas Indonesia, Jl. Salemba Raya No. 4, 10430, Jakarta Pusat, Indonesia
| | - Benso Sulijaya
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jl. Salemba Raya No. 4, 10430, Jakarta Pusat, Indonesia.
| | - Ette Soraya Shahnaz Tadjoedin
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jl. Salemba Raya No. 4, 10430, Jakarta Pusat, Indonesia
| | - Dimas Ilham Hutomo
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jl. Salemba Raya No. 4, 10430, Jakarta Pusat, Indonesia
| | - Sri Lelyati C Masulili
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jl. Salemba Raya No. 4, 10430, Jakarta Pusat, Indonesia
| |
Collapse
|
103
|
Sebastian S, Yadav E, Bhardwaj P, Maruthi M, Kumar D, Gupta MK. Facile one-pot multicomponent synthesis of peptoid based gelators as novel scaffolds for drug incorporation and pH-sensitive release. J Mater Chem B 2023; 11:9975-9986. [PMID: 37823277 DOI: 10.1039/d3tb01527k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Infections caused by bacteria are the primary cause of illness and death globally, and antibiotics are the most commonly used medications to treat them. However, there are certain inherent problems in administering these drugs without any changes to their effectiveness. In order to sustain the targeted dosage over time, the use of a biocompatible local drug delivery system using low molecular mass gelators is preferred as a potential approach to reduce its side effects. Low molecular weight organic gelators (LMWOGs) have drawn a lot of attention due to their numerous and varied applications in multiple fields. But nowadays its quite a challenging task to synthesize new types of LMWOGs that can fill the significant gap towards potential applications. In this work, we have explored a multicomponent pathway for the synthesis of a small repertoire of peptoids from simple building blocks by a one-pot Ugi reaction. A variety of novel effective low molecular weight organic gelators have been synthesized, leading to the formation of stable self-assembled aggregates in various solvents such as DMSO, aqueous DMSO, and methanol. Consequently, these aggregates give rise to the creation of organogels and organo/hydrogels. The gels have a minimum gelation concentration (MGC) of 1-2% w/v with high thermal stability. Furthermore, successful encapsulation and release of metronidazole (MZ) were achieved within the gel matrix under physiological pH conditions at 37 °C, ensuring the preservation of its structural and functional properties. The results demonstrated that the release rate of MZ from the organo/hydrogels is contingent on pH, exhibiting a gradual and regulated release in mild alkaline environments. Moreover, the devised system displayed noteworthy antimicrobial efficacy against E. coli, underscoring the potential of these novel low molecular weight organic gels (LMWOGs) as effective drug delivery systems in the pharmaceutical industry. The gel formulations exhibit biocompatibility and negligible cytotoxicity, as evidenced by cell viability studies conducted using the MTT assay.
Collapse
Affiliation(s)
- Sharol Sebastian
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| | - Eqvinshi Yadav
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| | - Priya Bhardwaj
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Mulaka Maruthi
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan-173 229, Himachal Pradesh, India
| | - Manoj K Gupta
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India.
| |
Collapse
|
104
|
Liao Y, Yan Q, Cheng T, Yao H, Zhao Y, Fu D, Ji Y, Shi B. Sulforaphene Inhibits Periodontitis through Regulating Macrophage Polarization via Upregulating Dendritic Cell Immunoreceptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15538-15552. [PMID: 37823224 DOI: 10.1021/acs.jafc.3c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Periodontitis is one of the most prevalent chronic inflammatory diseases that may eventually lead to the loss of teeth. Macrophage polarization plays an important role in the development of periodontitis, and several naturally occurring food compounds have recently been reported to regulate macrophage polarization. In this study, we aimed to investigate the therapeutic potential of sulforaphene (SFE) in macrophage polarization and its impact on periodontitis. Through in vitro and in vivo experiments, our study demonstrated that SFE effectively inhibits M1 polarization while promoting M2 polarization, ultimately leading to the suppression of periodontitis. Transcriptome sequencing showed that SFE significantly upregulated the expression of dendritic cell immunoreceptor (DCIR, also known as CLEC4A2). We further validated the crucial role of DCIR in macrophage polarization through knockdown and overexpression experiments and demonstrated that SFE regulates macrophage polarization by upregulating DCIR expression. In summary, the results of this study suggest that SFE can regulate macrophage polarization and inhibit periodontitis. Moreover, this research identified DCIR (dendritic cell immunoreceptor) as a potential novel target for regulating macrophage polarization. These findings provide new insights into the treatment of periodontitis and other immune-related diseases.
Collapse
Affiliation(s)
- Yilin Liao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qi Yan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Tiange Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hantao Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yaoyu Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Dongjie Fu
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bin Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
105
|
Dong Z, Wu L, Hong H. Mitochondrial Dysfunction in the Pathogenesis and Treatment of Oral Inflammatory Diseases. Int J Mol Sci 2023; 24:15483. [PMID: 37895162 PMCID: PMC10607498 DOI: 10.3390/ijms242015483] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Oral inflammatory diseases (OIDs) include many common diseases such as periodontitis and pulpitis. The causes of OIDs consist microorganism, trauma, occlusal factors, autoimmune dis-eases and radiation therapy. When treated unproperly, such diseases not only affect oral health but also pose threat to people's overall health condition. Therefore, identifying OIDs at an early stage and exploring new therapeutic strategies are important tasks for oral-related research. Mitochondria are crucial organelles for many cellular activities and disruptions of mitochondrial function not only affect cellular metabolism but also indirectly influence people's health and life span. Mitochondrial dysfunction has been implicated in many common polygenic diseases, including cardiovascular and neurodegenerative diseases. Recently, increasing evidence suggests that mitochondrial dysfunction plays a critical role in the development and progression of OIDs and its associated systemic diseases. In this review, we elucidated the critical insights into mitochondrial dysfunction and its involvement in the inflammatory responses in OIDs. We also summarized recent research progresses on the treatment of OIDs targeting mitochondrial dysfunction and discussed the underlying mechanisms.
Collapse
Affiliation(s)
- Zhili Dong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Z.D.); (L.W.)
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Liping Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Z.D.); (L.W.)
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hong Hong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (Z.D.); (L.W.)
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
106
|
Yang X, Liu P, Fan X, Yu S, Chen C, Pan Y, Lin L, Tang X, Li C. Distribution and influencing factors on residual pockets of the teeth in patients with periodontitis following non-surgical periodontal treatment: a retrospective observational study. BMC Oral Health 2023; 23:736. [PMID: 37814304 PMCID: PMC10561464 DOI: 10.1186/s12903-023-03248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/23/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Periodontitis is a chronic and multi-factorial infectious disease. A notable difference exists in the prognosis of patients with severe periodontitis after non-surgical periodontal treatment. Thus, a retrospective study was conducted to identify common and specific factors that impact the prognosis of patients with periodontitis stage III-IV following non-surgical periodontal treatment at different tooth sites. METHODS A total of 977 teeth were included in the study, comprising 266 patients diagnosed with periodontitis stage III-IV. This sample included 330 anterior teeth, 362 maxillary posterior teeth, and 285 mandibular posterior teeth. Following treatment, the teeth were categorized into two groups based on residual pocket depth [probing depth (PD) ≥ 5 mm] at 3 months post-treatment. The prognosis of periodontitis stage III-IV was assessed through multivariate analysis employing logistic regression to determine the association of various risk factors. RESULTS The PD values of each site and the deepest PD values of each tooth significantly decreased at 3 months post-treatment. Residual pockets were predominantly found in the mesio/disto-buccal and mesio/disto-lingual regions. Multivariate analysis revealed that gender, PD, sulcus bleeding index (SBI) and plaque index (PLI) at baseline, and crown-root ratio in anterior teeth had a significant influence on periodontitis stage III-IV (P < 0.05). Smoking, PD, PLI and furcation involvement (FI) at baseline, PLI at 3 months post-treatment, grades of periodontitis, and crown-root ratio were prediction factors for maxillary posterior teeth. Factors such as PD, PLI and FI at baseline, PLI at 3 months post-treatment, and crown-root were significant in mandibular posterior teeth. CONCLUSIONS The outcome of non-surgical treatment varies depending on the tooth positions for patients with periodontitis stage III-IV. Dentists must accurately identify the affected teeth that have periodontal pockets of more than 5 mm, taking into consideration the positions of the affected teeth, as well as various local and systemic factors. This comprehensive assessment will enable dentists to develop a customized and effective treatment plan.
Collapse
Affiliation(s)
- Xue Yang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, Liaoning, 110002, China
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Peicheng Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, Liaoning, 110002, China
- Department of Stomatology, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomiao Fan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, Liaoning, 110002, China
| | - Shiwen Yu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, Liaoning, 110002, China
| | - Chen Chen
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, Liaoning, 110002, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, Liaoning, 110002, China
| | - Li Lin
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, Liaoning, 110002, China
| | - Xiaolin Tang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, Liaoning, 110002, China
| | - Chen Li
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, No.117 Nanjing North Street, Heping District, Shenyang, Liaoning, 110002, China.
| |
Collapse
|
107
|
Santos EC, Huller D, Brigola S, Ferreira MD, Pochapski MT, dos Santos FA. Pain management in periodontal therapy using local anesthetics and other drugs: an integrative review. J Dent Anesth Pain Med 2023; 23:245-256. [PMID: 37841520 PMCID: PMC10567545 DOI: 10.17245/jdapm.2023.23.5.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Background Surgical and non-surgical periodontal procedures often lead to postoperative pain. Clinicians use pharmacological methods such as anesthetics, anti-inflammatory drugs, and analgesics for relief. However, the multitude of options makes it challenging to select the best approach for routine dental care. Objective This review aimed to describe previous studies regarding the pharmacological management used for pain control during periodontal procedures as well as factors that may interfere with patients' perception of pain. Methods We included studies (period of 2000-2023, whose approach corresponded to the pharmacological protocols used for preoperative, trans-operative, and postoperative pain control in adult patients undergoing surgical and non-surgical periodontal therapy. Results A total of 32 studies were included in the analysis, of which 17 (53%) were related to anesthetic methods and 15 (47%) were related to therapeutic protocols (anti-inflammatory/analgesic agents). These studies predominantly involved nonsurgical periodontal procedures. Studies have reported that factors related to age, type of procedure, and anxiety can influence pain perception; however, only seven of these studies evaluated anxiety. Conclusions Numerous methods for pain control can be applied in periodontal therapy, which are accomplished through anesthetic methods and/or therapeutic protocols. Factors such as anxiety, age, and type of procedure are related to pain perception in patients. Thus, it is the responsibility of dentists to evaluate each clinical situation and define the best protocol to follow based on the literature.
Collapse
Affiliation(s)
| | - Daniela Huller
- Department of Dentistry, Universidade Estadual de Ponta Grossa, Paraná, Brazil
| | - Sabrina Brigola
- Department of Dentistry, Universidade Estadual de Ponta Grossa, Paraná, Brazil
| | | | | | | |
Collapse
|
108
|
Cao J, Zhang Q, Yang Q, Yu Y, Meng M, Zou J. Epigenetic regulation of osteogenic differentiation of periodontal ligament stem cells in periodontitis. Oral Dis 2023; 29:2529-2537. [PMID: 36582112 DOI: 10.1111/odi.14491] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/26/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022]
Abstract
Periodontitis is an inflammatory disease characterized by alveolar bone loss. Periodontal ligament stem cells (PDLSCs) have osteogenic differentiation potential, which can be influenced by epigenetics regulation in periodontitis. Therefore, this review aimed to shed light on the role of different epigenetic mechanisms in the osteogenic differentiation of PDLSCs and to consider the prospects of their possible therapeutic applications in periodontitis. Databases MEDLINE (through PubMed) and Web of Science were searched for the current knowledge of epigenetics in osteogenic differentiation of PDLSCs using the keywords "periodontal ligament stem cells", "epigenetic regulation", "epigenetics", "osteogenic differentiation", and "osteogenesis". All studies introducing epigenetic regulation and PDLSCs were retrieved. This review shows that epigenetic factors like DNMT, KDM6A, HDACi, some miRNAs, and lncRNAs can induce the osteogenic differentiation of PDLSCs in the noninflammatory microenvironment. However, the osteogenic differentiation of PDLSCs is inhibited in the inflammatory microenvironment through the upregulated DNA methylation of osteogenesis-related genes and specific changes in histone modification and noncoding RNA. Epigenetics of osteogenic differentiation of PDLSCs in inflammation exhibits the contrary effect compared with a noninflammatory environment. The application of epigenetic drugs to regulate the abnormal epigenetic status in periodontitis and focus on alveolar bone regeneration is promising.
Collapse
Affiliation(s)
- Jingwei Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiong Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiyuan Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingmei Meng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
109
|
Li Z, Baidoun R, Brown AC. Toxin-Triggered Liposomes for the Controlled Release of Antibiotics to Treat Infections Associated with Gram-Negative Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559931. [PMID: 37808632 PMCID: PMC10557637 DOI: 10.1101/2023.09.28.559931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Antibiotic resistance has become an urgent threat to health care in recent years. The use of drug delivery systems provides advantages over conventional administration of antibiotics and can slow the development of antibiotic resistance. In the current study, we developed a toxin-triggered liposomal antibiotic delivery system, in which the drug release is enabled by the leukotoxin (LtxA) produced by the Gram-negative pathogen, Aggregatibacter actinomycetemcomitans. LtxA has previously been shown to mediate membrane disruption by promoting a lipid phase change in nonlamellar lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-methyl (N-methyl-DOPE). In addition, LtxA has been observed to bind strongly and nearly irreversibly to membranes containing large amounts of cholesterol. Here, we designed a liposomal delivery system composed of N-methyl-DOPE and cholesterol to take advantage of these interactions. Specifically, we hypothesized that liposomes composed of N-methyl-DOPE and cholesterol, encapsulating antibiotics, would be sensitive to LtxA, enabling controlled antibiotic release. We observed that liposomes composed of N-methyl-DOPE were sensitive to the presence of low concentrations of LtxA, and cholesterol increased the extent and kinetics of content release. The liposomes were stable under various storage conditions for at least 7 days. Finally, we showed that antibiotic release occurs selectively in the presence of an LtxA-producing strain of A. actinomycetemcomitans but not in the presence of a non-LtxA-expressing strain. Together, these results demonstrate that the designed liposomal vehicle enables toxin-triggered delivery of antibiotics to LtxA-producing strains of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Ziang Li
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA
| | - Rani Baidoun
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA
- Current Affiliation: Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA
| |
Collapse
|
110
|
Roldan L, Montoya C, Solanki V, Cai KQ, Yang M, Correa S, Orrego S. A Novel Injectable Piezoelectric Hydrogel for Periodontal Disease Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43441-43454. [PMID: 37672788 DOI: 10.1021/acsami.3c08336] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Periodontal disease is a multifactorial, bacterially induced inflammatory condition characterized by the progressive destruction of periodontal tissues. The successful nonsurgical treatment of periodontitis requires multifunctional technologies offering antibacterial therapies and promotion of bone regeneration simultaneously. For the first time, in this study, an injectable piezoelectric hydrogel (PiezoGEL) was developed after combining gelatin methacryloyl (GelMA) with biocompatible piezoelectric fillers of barium titanate (BTO) that produce electrical charges when stimulated by biomechanical vibrations (e.g., mastication, movements). We harnessed the benefits of hydrogels (injectable, light curable, conforms to pocket spaces, biocompatible) with the bioactive effects of piezoelectric charges. A thorough biomaterial characterization confirmed piezoelectric fillers' successful integration with the hydrogel, photopolymerizability, injectability for clinical use, and electrical charge generation to enable bioactive effects (antibacterial and bone tissue regeneration). PiezoGEL showed significant reductions in pathogenic biofilm biomass (∼41%), metabolic activity (∼75%), and the number of viable cells (∼2-3 log) compared to hydrogels without BTO fillers in vitro. Molecular analysis related the antibacterial effects to be associated with reduced cell adhesion (downregulation of porP and fimA) and increased oxidative stress (upregulation of oxyR) genes. Moreover, PiezoGEL significantly enhanced bone marrow stem cell (BMSC) viability and osteogenic differentiation by upregulating RUNX2, COL1A1, and ALP. In vivo, PiezoGEL effectively reduced periodontal inflammation and increased bone tissue regeneration compared to control groups in a mice model. Findings from this study suggest PiezoGEL to be a promising and novel therapeutic candidate for the treatment of periodontal disease nonsurgically.
Collapse
Affiliation(s)
- Lina Roldan
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín 050037, Colombia
| | - Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Varun Solanki
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Santiago Correa
- Bioengineering Research Group (GIB), Universidad EAFIT, Medellín 050037, Colombia
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania 19140, United States
- Bioengineering Department, College of Engineering, Temple University. Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
111
|
Kuo TY, Hsieh MC, Cheng CD, Huang RY, Van Dyke TE, Sung CE, Wang CY, Hsieh YS, Cheng WC. Chlorhexidine gel topical application ameliorates inflammatory bone loss in experimental periodontitis. J Formos Med Assoc 2023; 122:899-910. [PMID: 36801153 DOI: 10.1016/j.jfma.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/19/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
OBJECTIVES This study aimed to evaluate the impact of chlorhexidine (CHX) gel on inflammation-induced periodontal tissue destruction, osteoclastogenesis, subgingival microbiota, and on the modulation of the RANKL/OPG as well as inflammatory mediators during bone remodeling in vivo. MATERIALS AND METHODS Ligation- and LPS injection-induced experimental periodontitis were created to investigate the effect of topical application of CHX gel in vivo. Alveolar bone loss, osteoclast number and gingival inflammation was evaluated by micro-CT, histological, immunohistochemistry and biochemical analysis. The composition of the subgingival microbiota was characterized by 16S rRNA gene sequencing. RESULTS Data shows significant decreases in the alveolar bone destruction in rats from ligation-plus-CHX gel group compared to ligation group. In addition, significant decreases in the number of osteoclasts on bone surface and the protein level of receptor activator of nuclear factor κB ligand (RANKL) in gingival tissue were observed in rats from ligation-plus-CHX gel group. Moreover, data shows significantly decreased inflammatory cell infiltration and decreased expression of cyclooxygenase (COX-2) and inducible NO synthase (iNOS) in gingival tissue from ligation-plus-CHX gel group versus ligation group. Assessment of the subgingival microbiota revealed changes in rats with CHX gel application treatment. CONCLUSION HX gel presents protective effect on gingival tissue inflammation, osteoclastogenesis, RANKL/OPG expression, inflammatory mediators, and alveolar bone loss in vivo, which may have a translational impact on the adjunctive use in the management of inflammation-induced alveolar bone loss.
Collapse
Affiliation(s)
- Ting-Yen Kuo
- Dental Department, Taichung Armed Forces General Hospital, Taichung, Taiwan; Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Ming-Chieh Hsieh
- Dentistry Division, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan
| | - Chia-Dan Cheng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Ren-Yeong Huang
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Thomas E Van Dyke
- Center for Clinical and Translational Research, Forsyth Institute, Cambridge, MA, United States; Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Cheng-En Sung
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Chen-Ying Wang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Periodontology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Shing Hsieh
- Department of Operative Dentistry and Endodontics, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Wan-Chien Cheng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
112
|
Nasiri K, Masoumi SM, Amini S, Goudarzi M, Tafreshi SM, Bagheri A, Yasamineh S, Alwan M, Arellano MTC, Gholizadeh O. Recent advances in metal nanoparticles to treat periodontitis. J Nanobiotechnology 2023; 21:283. [PMID: 37605182 PMCID: PMC10440939 DOI: 10.1186/s12951-023-02042-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
The gradual deterioration of the supporting periodontal tissues caused by periodontitis, a chronic multifactorial inflammatory disease, is thought to be triggered by the colonization of dysbiotic plaque biofilms in a vulnerable host. One of the most prevalent dental conditions in the world, periodontitis is now the leading factor in adult tooth loss. When periodontitis does develop, it is treated by scraping the mineralized deposits and dental biofilm off the tooth surfaces. Numerous studies have shown that non-surgical treatment significantly improves clinical and microbiological indices in individuals with periodontitis. Although periodontal parameters have significantly improved, certain bacterial reservoirs often persist on root surfaces even after standard periodontal therapy. Periodontitis has been treated with local or systemic antibiotics as well as scaling and root planning. Since there aren't many brand-new antibiotics on the market, several researchers are currently concentrating on creating alternate methods of combating periodontal germs. There is a delay in a study on the subject of nanoparticle (NP) toxicity, which is especially concerned with mechanisms of action, while the area of nanomedicine develops. The most promising of them are metal NPs since they have potent antibacterial action. Metal NPs may be employed as efficient growth inhibitors in a variety of bacteria, making them useful for the treatment of periodontitis. In this way, the new metal NPs contributed significantly to the development of efficient anti-inflammatory and antibacterial platforms for the treatment of periodontitis. The current therapeutic effects of several metallic NPs on periodontitis are summarized in this study. This data might be used to develop NP-based therapeutic alternatives for the treatment of periodontal infections.
Collapse
Affiliation(s)
- Kamyar Nasiri
- Department of Dentistry, Islamic Azad University, Tehran, Iran
| | | | - Sara Amini
- School of Science and Engineering, Duquesne University, Pittsburgh, PA, USA
| | - Mina Goudarzi
- School of Dentistry, Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mobin Tafreshi
- School of Dentistry, Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bagheri
- Department of Endodontics, School of Dentistry, Shahid Sadoughi University of Medical, Yazd, Iran
| | - Saman Yasamineh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mariem Alwan
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Omid Gholizadeh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
113
|
Prucsi Z, Zimny A, Płonczyńska A, Zubrzycka N, Potempa J, Sochalska M. Porphyromonas gingivalis Peptidyl Arginine Deiminase (PPAD) in the Context of the Feed-Forward Loop of Inflammation in Periodontitis. Int J Mol Sci 2023; 24:12922. [PMID: 37629104 PMCID: PMC10454286 DOI: 10.3390/ijms241612922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Periodontitis is a widespread chronic inflammatory disease caused by a changed dysbiotic oral microbiome. Although multiple species and risk factors are associated with periodontitis, Porphyromonas gingivalis has been identified as a keystone pathogen. The immune-modulatory function of P. gingivalis is well characterized, but the mechanism by which this bacterium secretes peptidyl arginine deiminase (PPAD), a protein/peptide citrullinating enzyme, thus contributing to the infinite feed-forward loop of inflammation, is not fully understood. To determine the functional role of citrullination in periodontitis, neutrophils were stimulated by P. gingivalis bearing wild-type PPAD and by a PPAD mutant strain lacking an active enzyme. Flow cytometry showed that PPAD contributed to prolonged neutrophil survival upon bacterial stimulation, accompanied by the secretion of aberrant IL-6 and TNF-α. To further assess the complex mechanism by which citrullination sustains a chronic inflammatory state, the ROS production and phagocytic activity of neutrophils were evaluated. Flow cytometry and colony formation assays showed that PPAD obstructs the resolution of inflammation by promoting neutrophil survival and the release of pro-inflammatory cytokines, while enhancing the resilience of the bacteria to phagocytosis.
Collapse
Affiliation(s)
- Zsombor Prucsi
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Agnieszka Zimny
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Alicja Płonczyńska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Natalia Zubrzycka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Maja Sochalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
114
|
El Mobadder M, Nammour S, Grzech-Leśniak K. Photodynamic Therapy with Tolonium Chloride and a Diode Laser (635 nm) in the Non-Surgical Management of Periodontitis: A Clinical Study. J Clin Med 2023; 12:5270. [PMID: 37629310 PMCID: PMC10455230 DOI: 10.3390/jcm12165270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to evaluate the efficacy of photodynamic therapy (PDT) using tolonium chloride and a 635 nm diode laser as an adjunct to non-surgical periodontitis treatment, specifically scaling and root planing (SRP) alone. A total of 32 patients with a pocket probing depth > 5 mm were included in the study. Among them, 16 patients underwent SRP alone (control group), and the remaining 16 patients received SRP along with PDT (study group). The PDT procedure utilized a 635 nm diode laser (Smart M, Lasotronix, Poland) and tolonium chloride. Clinical periodontal parameters, such as the plaque index (PI), bleeding on probing (BOP), gingival recession (GR), probing pocket depth (PPD), and clinical attachment loss (CAL), were assessed before treatment (T0) and at 3 months after treatment (T3). At T3, both groups demonstrated a significant reduction in the PI, BOP, PD, and CAL compared to T0. The SRP + PDT group displayed a significant reduction in PPD (3.79 mm ± 0.35) compared to the SRP alone group (4.85 mm ± 0.42) at T3. Furthermore, the SRP + PDT group exhibited a significant reduction in CAL (5.01 ± 0.81) compared to the SRP group (5.99 ± 1.08) at T3. Within the study's limitations, it was concluded that PDT, with tolonium chloride and a 635 nm diode laser, significantly contributed to the non-surgical treatment of periodontitis.
Collapse
Affiliation(s)
- Marwan El Mobadder
- Laser Laboratory, Oral Surgery Department, Wroclaw Medical University, 50-425 Wroclaw, Poland;
| | - Samir Nammour
- Department of Dental Sciences, Faculty of Medicine, University of Liege, 4000 Liege, Belgium;
| | - Kinga Grzech-Leśniak
- Laser Laboratory, Oral Surgery Department, Wroclaw Medical University, 50-425 Wroclaw, Poland;
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
| |
Collapse
|
115
|
Oliveira VB, Costa FWG, Haas AN, Júnior RMM, Rêgo RO. Effect of subgingival periodontal therapy on glycaemic control in type 2 diabetes patients: Meta-analysis and meta-regression of 6-month follow-up randomized clinical trials. J Clin Periodontol 2023; 50:1123-1137. [PMID: 37257917 DOI: 10.1111/jcpe.13830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/05/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Periodontitis worsens the hyperglycaemia in patients with type 2 diabetes mellitus (T2DM). Subgingival instrumentation, with or without surgical access, is the gold-standard treatment for periodontitis. The aim was to summarize the evidence on the effect of subgingival instrumentation (with or without open flap) on the reduction of glycosylated haemoglobin (HbA1c). METHODS Nine electronic databases were searched up to 15 February 2023. Twelve randomized controlled trials with at least 6 months of follow-up were included. Studies using systemic or local-delivery antimicrobial therapies were excluded. Meta-analyses were performed using the random-effects model. The sources of heterogeneity were assessed by applying linear meta-regression. Risk of bias was assessed by RoB 2, and certainty of evidence by GRADE. RESULTS Eleven studies were included in the quantitative analyses (1374 patients). Subgingival instrumentation resulted in 0.29% lower HbA1c (95% confidence interval: 0.10-0.47; p = .03) compared with non-active treatment. DISCUSSION None of the 12 studies were assessed as having low risk of bias. The percentage of females and the time of diabetes diagnosis significantly explained the high level of heterogeneity. Subgingival periodontal therapy results in a significant and clinically relevant improvement in glycaemic control over 6 months in patients with T2DM and periodontitis. The grade of evidence was moderate.
Collapse
Affiliation(s)
- Victor Bento Oliveira
- Graduate Program in Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Fábio Wildson Gurgel Costa
- Department of Clinical Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Alex Nogueira Haas
- Department of Conservative Dentistry, Faculty of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Rodrigo Otávio Rêgo
- Department of Clinical Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
116
|
Xu S, Hu B, Dong T, Chen BY, Xiong XJ, Du LJ, Li YL, Chen YL, Tian GC, Bai XB, Liu T, Zhou LJ, Zhang WC, Liu Y, Ding QF, Zhang XQ, Duan SZ. Alleviate Periodontitis and Its Comorbidity Hypertension using a Nanoparticle-Embedded Functional Hydrogel System. Adv Healthc Mater 2023; 12:e2203337. [PMID: 36972711 DOI: 10.1002/adhm.202203337] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/02/2023] [Indexed: 03/29/2023]
Abstract
Periodontitis and hypertension often occur as comorbidities, which need to be treated at the same time. To resolve this issue, a controlled-release composite hydrogel approach is proposed with dual antibacterial and anti-inflammatory activities as a resolution to achieve the goal of co-treatment of comorbidities. Specifically, chitosan (CS) with inherent antibacterial properties is cross-linked with antimicrobial peptide (AMP)-modified polyethylene glycol (PEG) to form a dual antibacterial hydrogel (CS-PA). Subsequently, curcumin loaded into biodegradable nanoparticles (CNP) are embedded in the hydrogel exhibiting high encapsulation efficiency and sustained release to achieve long-term anti-inflammatory activities. In a mouse model of periodontitis complicated with hypertension, CS-PA/CNP is applied to gingival sulcus and produced an optimal therapeutic effect on periodontitis and hypertension simultaneously. The therapeutic mechanisms are deeply studied and indicated that CS-PA/CNP exerted excellent immunoregulatory effects by suppressing the accumulation of lymphocytes and myeloid cells and enhanced the antioxidant capacity and thus the anti-inflammatory capacity of macrophages through the glutathione metabolism pathway. In conclusion, CS-PA/CNP has demonstrated its superior therapeutic effects and potential clinical translational value in the co-treatment of periodontitis and hypertension, and also serves as a drug delivery platform to provide combinatorial therapeutic options for periodontitis with complicated pathogenesis.
Collapse
Affiliation(s)
- Shuo Xu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200062, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200062, China
| | - Bin Hu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ting Dong
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200062, China
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200062, China
| | - Bo-Yan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200062, China
| | - Xiao-Jian Xiong
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200062, China
| | - Yu-Lin Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200062, China
| | - Yan-Lin Chen
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guo-Cai Tian
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200062, China
| | - Xue-Bing Bai
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200062, China
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200062, China
| | - Ting Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200062, China
| | - Lu-Jun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200062, China
| | - Wu-Chang Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200062, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200062, China
| | - Qin-Feng Ding
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200062, China
| | - Xue-Qing Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sheng-Zhong Duan
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200062, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200062, China
| |
Collapse
|
117
|
Abu-Ta'a M, Marzouka D. Enamel Matrix Derivative (EMD) as an Adjunct to Non-surgical Periodontal Therapy: A Systematic Review. Cureus 2023; 15:e43530. [PMID: 37719602 PMCID: PMC10500965 DOI: 10.7759/cureus.43530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
If left untreated, periodontitis is a chronic, irreversible disease that can contribute to tooth loss. The primary objective of periodontal treatment is to arrest the progression of the disease and restore the supporting structures of the tooth. Scaling and root planing (SRP) is a common non-surgical periodontal therapy (NSPT) used to reduce inflammation, pocket depth, and clinical attachment loss. However, NSPT has limitations, notably in difficult-to-access deep pockets and molar furcations. Deep pockets (greater than 4 mm) frequently retain calculus following NSPT. To attain direct access, surgical periodontal therapy (SPT) is recommended, particularly for pockets deeper than 5 mm. Enamel matrix derivative (EMD) has emerged in recent years as a tool for periodontal regeneration when used in conjunction with NSP for infrabony defects. EMD may also have advantageous effects when combined with NSPT. The purpose of this review is to provide a thorough understanding of the effects of EMD as an adjunct to NSPT. The databases Scopus, PubMed/MEDLINE, Google Scholar, Cochrane, and Embase were systematically searched to identify relevant studies on the benefits of EMD and its use as an adjunct to NSPT. Incorporating EMD into NSPT reduces chair time, and 60% of studies demonstrated considerable benefits compared to SRP alone, according to the findings. On the basis of research, it can be concluded that EMD can be used as an adjunct to NSPT, thereby reducing the amount of time spent in the operating chair. In some cases, it can, therefore, be regarded as an alternative to surgical treatment.
Collapse
Affiliation(s)
| | - Dina Marzouka
- Dental Sciences, Arab American University, Ramallah, PSE
| |
Collapse
|
118
|
Ardila CM, Pertuz M, Vivares-Builes AM. Clinical Efficacy of Platelet Derivatives in Periodontal Tissue Regeneration: An Umbrella Review. Int J Dent 2023; 2023:1099013. [PMID: 37435111 PMCID: PMC10332916 DOI: 10.1155/2023/1099013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
OBJECTIVES This umbrella review aimed to consolidate the best available evidence regarding the clinical efficacy of platelet derivatives in the treatment of periodontal defects associated with periodontitis and in the management of mucogingival deformities. MATERIALS AND METHODS The "umbrella review" strategy was used to identify systematic reviews and meta-analyses. The search was performed without language restrictions and updated at the end of February 2023. The PubMed and Scopus databases, together with gray literature, were included in the search. RESULTS The search yielded 412 studies. Subsequently, 12 articles were selected for further examination based on relevance. Finally, eight systematic reviews and meta-analyses were assessed. Regarding intrabony defects, in terms of clinical attachment level (CAL) gain, platelet-rich fibrin (PRF) was observed to lead to a statistically significant attachment gain compared to surgical therapy alone. PRF was also found to show greater CAL gain compared to platelet-rich plasma (PRP) and other biomaterials. The parameter probing depth decreased significantly when PRF was used compared to surgical therapy alone (P < 0.05). Similar results were seen when leukocyte- and platelet-rich fibrin (L-PRF) was applied. In terms of radiographic bone fill, both PRF and PRP showed significantly greater bone fill compared to surgical therapy. Regarding the results of periodontal plastic surgery, PRF favored a slight root coverage compared to the coronally displaced flap. This result depended on the number of PRF and L-PRF membranes used, but Emdogain or connective tissue graft produced better results regardless. However, an improvement in the healing of periodontal tissues was reported. CONCLUSIONS Therapies with platelet derivatives applied to intrabony defects provided superior regenerative results compared to monotherapies, except in the case of root coverage.
Collapse
Affiliation(s)
- Carlos M. Ardila
- Biomedical Stomatology Research Group, Universidad de Antioquia UdeA, Medellín, Colombia
| | - María Pertuz
- Fundación Universitaria Visión de Las Américas, Medellín, Colombia
| | | |
Collapse
|
119
|
Herrera D, van Winkelhoff AJ, Matesanz P, Lauwens K, Teughels W. Europe's contribution to the evaluation of the use of systemic antimicrobials in the treatment of periodontitis. Periodontol 2000 2023. [PMID: 37314038 DOI: 10.1111/prd.12492] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/15/2023]
Abstract
This narrative review celebrates Europe's contribution to the current knowledge on systemically administered antimicrobials in periodontal treatment. Periodontitis is the most frequent chronic noncommunicable human disease. It is caused by dysbiotic bacterial biofilms and is commonly treated with subgingival instrumentation. However, some sites/patients do not respond adequately, and its limitations and shortcomings have been recognized. This has led to the development of alternative or adjunctive therapies. One is the use of antimicrobials to target bacteria in subgingival biofilms in the periodontal pocket, which can be targeted directly through the pocket entrance with a locally delivered antibiotic or systemically by oral, intravenous, or intramuscular methods. Since the early 20th century, several studies on systemic antibiotics have been undertaken and published, especially between 1990 and 2010. Europe's latest contribution to this topic is the first European Federation of Periodontology, S3-level Clinical Practice Guideline, which incorporates recommendations related to the use of adjuncts to treat stage I-III periodontitis. Understanding the etiopathogenesis of periodontal diseases, specifically periodontitis, has influenced the use of systemic periodontal antibiotic therapy. Randomized clinical trials and systematic reviews with meta-analyses have demonstrated the clinical advantages of adjunctive systemic antimicrobials. However, current recommendations are restrictive due to concerns about antibiotic misuse and the increase in microbial antibiotic resistance. European researchers have contributed to the use of systemic antimicrobials in the treatment of periodontitis through clinical trials and by providing rational guidelines. Nowadays, European researchers are exploring alternatives and directing clinical practice by providing evidence-based guidelines to limit the use of systemic antimicrobials.
Collapse
Affiliation(s)
- David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense, Madrid, Spain
| | - Arie Jan van Winkelhoff
- Center for Dentistry and Oral Hygiene, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Paula Matesanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense, Madrid, Spain
| | - Katalina Lauwens
- Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
120
|
Damanaki A, Beisel-Memmert S, Nokhbehsaim M, Abedi A, Rath-Deschner B, Nogueira AVB, Deschner J. Influence of Occlusal Hypofunction on Alveolar Bone Healing in Rats. Int J Mol Sci 2023; 24:9744. [PMID: 37298695 PMCID: PMC10253992 DOI: 10.3390/ijms24119744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The aim of this in vivo study was to investigate the effect of occlusal hypofunction on alveolar bone healing in the absence or presence of an enamel matrix derivative (EMD). A standardized fenestration defect over the root of the mandibular first molar in 15 Wistar rats was created. Occlusal hypofunction was induced by extraction of the antagonist. Regenerative therapy was performed by applying EMD to the fenestration defect. The following three groups were established: (a) normal occlusion without EMD treatment, (b) occlusal hypofunction without EMD treatment, and (c) occlusal hypofunction with EMD treatment. After four weeks, all animals were sacrificed, and histological (hematoxylin and eosin, tartrate-resistant acid phosphatase) as well as immunohistochemical analyses (periostin, osteopontin, osteocalcin) were performed. The occlusal hypofunction group showed delayed bone regeneration compared to the group with normal occlusion. The application of EMD could partially, but not completely, compensate for the inhibitory effects of occlusal hypofunction on bone healing, as evidenced by hematoxylin and eosin and immunohistochemistry for the aforementioned molecules. Our results suggest that normal occlusal loading, but not occlusal hypofunction, is beneficial to alveolar bone healing. Adequate occlusal loading appears to be as advantageous for alveolar bone healing as the regenerative potential of EMD.
Collapse
Affiliation(s)
- Anna Damanaki
- Department of Periodontology and Operative Dentistry, University Medical Center, University of Mainz, 55131 Mainz, Germany
| | - Svenja Beisel-Memmert
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111 Bonn, Germany
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111 Bonn, Germany
| | - Ali Abedi
- Department of Periodontology and Operative Dentistry, University Medical Center, University of Mainz, 55131 Mainz, Germany
| | - Birgit Rath-Deschner
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111 Bonn, Germany
| | - Andressa V. B. Nogueira
- Department of Periodontology and Operative Dentistry, University Medical Center, University of Mainz, 55131 Mainz, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center, University of Mainz, 55131 Mainz, Germany
| |
Collapse
|
121
|
D'Ambrosio F. Clinics and Practice: Consolidating Best Practices in Periodontal Management. Clin Pract 2023; 13:666-669. [PMID: 37366930 DOI: 10.3390/clinpract13030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Periodontitis is a multifactorial inflammatory disease [...].
Collapse
Affiliation(s)
- Francesco D'Ambrosio
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy
| |
Collapse
|
122
|
Tang R, Ren Y, Zhang Y, Yin M, Ren X, Zhu Q, Gao C, Zhang W, Liu G, Liu B. Glucose-driven transformable complex eliminates biofilm and alleviates inflamm-aging for diabetic periodontitis therapy. Mater Today Bio 2023; 20:100678. [PMID: 37293313 PMCID: PMC10244695 DOI: 10.1016/j.mtbio.2023.100678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023] Open
Abstract
Diabetic periodontitis is a major complication of diabetes, which has a deep involvement in teeth loss and more serious systematic diseases, including Alzheimer's disease, atherosclerosis and cancers. Diabetic periodontitis is difficult to treat because of recalcitrant infection and hyperglycemia-induced tissue dysfunction. Current treatments fail to completely eliminate infection due to the diffusion-reaction inhibition of biofilm, and ignore the tissue dysfunction. Here, we design a glucose-driven transformable complex, composed of calcium alginate (CaAlg) hydrogel shell and Zeolitic imidazolate framework-8 (ZIF-8) core encapsulating Glucose oxidase (GOx)/Catalase (CAT) and Minocycline (MINO), named as CaAlg@MINO/GOx/CAT/ZIF-8 (CMGCZ). The reaction product of glucose-scavenging, gluconic acid, could dissolve ZIF-8 core and transform CMGCZ from inflexible to flexible, facilitating the complex to overcome the diffusion-reaction inhibition of biofilm. Meanwhile, reduced glucose concentration could ameliorate the pyroptosis of macrophages to decrease the secretion of pro-inflammatory factors, thereby reducing inflamm-aging to alleviate periodontal dysfunction.
Collapse
|
123
|
Zhu Y, Tao C, Goh C, Shrestha A. Innovative biomaterials for the treatment of periodontal disease. FRONTIERS IN DENTAL MEDICINE 2023; 4:1163562. [PMID: 39916927 PMCID: PMC11797777 DOI: 10.3389/fdmed.2023.1163562] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/03/2023] [Indexed: 02/09/2025] Open
Abstract
Periodontitis is a multifactorial disease that involves the destruction of hard and soft tissues surrounding the tooth. Routine periodontal treatment includes mechanical debridement (surgical and non-surgical) and the systemic administration of antibiotics. In contrast, severe and chronic periodontitis involves aggressive tissue destruction and bone resorption, and the damage is usually irreversible. In these severe cases, bone grafts, the delivery of growth hormones, and guided tissue regeneration can all be used to stimulate periodontal regeneration. However, these approaches do not result in consistent and predictable treatment outcomes. As a result, advanced biomaterials have evolved as an adjunctive approach to improve clinical performance. These novel biomaterials are designed to either prolong the release of antibacterial agents or osteogenic molecules, or to act as immunomodulators to promote healing. The first half of this review briefly summarizes the key immune cells and their underlying cellular pathways implicated in periodontitis. Advanced biomaterials designed to promote periodontal regeneration will be highlighted in the second half. Finally, the limitations of the current experimental design and the challenges of translational science will be discussed.
Collapse
Affiliation(s)
- Yi Zhu
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Chen Tao
- Stomatological Hospital of Chongqing, Key Laboratory of Oral Diseases and Biomaterial Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Cynthia Goh
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada
| | - Annie Shrestha
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Dentistry, Mt. Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
124
|
Wang C, Zhao Q, Chen C, Li J, Zhang J, Qu S, Tang H, Zeng H, Zhang Y. CD301b + macrophage: the new booster for activating bone regeneration in periodontitis treatment. Int J Oral Sci 2023; 15:19. [PMID: 37198150 DOI: 10.1038/s41368-023-00225-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 05/19/2023] Open
Abstract
Periodontal bone regeneration is a major challenge in the treatment of periodontitis. Currently the main obstacle is the difficulty of restoring the regenerative vitality of periodontal osteoblast lineages suppressed by inflammation, via conventional treatment. CD301b+ macrophages were recently identified as a subpopulation that is characteristic of a regenerative environment, but their role in periodontal bone repair has not been reported. The current study indicates that CD301b+ macrophages may be a constituent component of periodontal bone repair, and that they are devoted to bone formation in the resolving phase of periodontitis. Transcriptome sequencing suggested that CD301b+ macrophages could positively regulate osteogenesis-related processes. In vitro, CD301b+ macrophages could be induced by interleukin 4 (IL-4) unless proinflammatory cytokines such as interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) were present. Mechanistically, CD301b+ macrophages promoted osteoblast differentiation via insulin-like growth factor 1 (IGF-1)/thymoma viral proto-oncogene 1 (Akt)/mammalian target of rapamycin (mTOR) signaling. An osteogenic inducible nano-capsule (OINC) consisting of a gold nanocage loaded with IL-4 as the "core" and mouse neutrophil membrane as the "shell" was designed. When injected into periodontal tissue, OINCs first absorbed proinflammatory cytokines in inflamed periodontal tissue, then released IL-4 controlled by far-red irradiation. These events collectively promoted CD301b+ macrophage enrichment, which further boosted periodontal bone regeneration. The current study highlights the osteoinductive role of CD301b+ macrophages, and suggests a CD301b+ macrophage-targeted induction strategy based on biomimetic nano-capsules for improved therapeutic efficacy, which may also provide a potential therapeutic target and strategy for other inflammatory bone diseases.
Collapse
Affiliation(s)
- Can Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chen Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiaojiao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuyuan Qu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hua Tang
- Institute of Infection and Immunity, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, PR China
| | - Hao Zeng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
125
|
Babazade H, Mirzaagha A, Konarizadeh S. The effect of bromelain in periodontal surgery: a double-blind randomized placebo-controlled trial. BMC Oral Health 2023; 23:286. [PMID: 37179311 PMCID: PMC10182663 DOI: 10.1186/s12903-023-02971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/16/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Periodontitis is a persistent inflammatory condition. Eliminating the infection and reducing its risk factors are the first steps in treating periodontitis. When the anti-infective therapy is complete, there may still be deep periodontal pockets and prolonged inflammation. Surgical pocket reduction or elimination is indicated under these circumstances. We aimed to evaluate the effect of bromelain on bleeding on probing (BOP), gingival index (GI), and plaque index (PI) after pocket elimination surgery. METHODS This double-blind randomized placebo-controlled trial included 28 candidates for pocket elimination surgery referred to the private office of a periodontist in Bandar Abbas, Iran, from April 18 to August 18, 2021. Patients' general characteristics, such as age and sex, were recorded. Additionally, periodontal indices including BOP, PI, GI, and pocket probing depth (PPD) were evaluated in all subjects. All patients underwent pocket elimination surgery. Afterwards, they were randomized into two groups. The first group received 500 mg Anaheal (bromelain) capsules twice a day before meal for one week. The second group received placebo, prepared in similar shape and color by the same pharmaceutical company. BOP, PI, GI, and PPD were assessed four weeks after completion of the treatment course (five weeks after surgery). RESULTS Four weeks after intervention, BOP was significantly lower with Anaheal compared to placebo (0% vs. 35.7%, P = 0.014). However, there was no significant difference in GI between groups (P = 0.120). Mean PI was lower (17.71 ± 2.12 vs. 18.28 ± 2.49) and mean PPD higher (3.10 ± 0.71 vs. 2.64 ± 0.45) in the Anaheal group, but the differences did not reach statistically significant levels (P = 0.520 and P = 0.051, respectively). CONCLUSIONS One-week treatment with Anaheal at a dose of 1 g/d after pocket elimination surgery resulted in significantly lower BOP compared to placebo. TRIAL REGISTRATION Iranian Registry of Clinical Trials (IRCT), IRCT20201106049289N1. Registered 06/04/2021. Registered prospectively, https://www.irct.ir/trial/52181 .
Collapse
Affiliation(s)
- Hossein Babazade
- Department of Gingival Surgery, Faculty of Dentistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Arad Mirzaagha
- Student Research Committee, Faculty of Dentistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Shokoofeh Konarizadeh
- Department of Gingival Surgery, Faculty of Dentistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
126
|
Diyatri I, Juliastuti WS, Ridwan RD, Ananda GC, Waskita FA, Juliana NV, Khansa SP, Pratiwi RT, Putri CR. Antibacterial effect of a gingival patch containing nano-emulsion of red dragon fruit peel extract on Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum assessed in vitro. J Oral Biol Craniofac Res 2023; 13:386-391. [PMID: 37077878 PMCID: PMC10106915 DOI: 10.1016/j.jobcr.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 01/10/2023] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
Background The most common bacteria causing periodontitis were Porphyromonas gingivalis, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans. At present, plants are considered a valuable source of natural materials for use in the development of antimicrobial, anti-inflammatory and antioxidant agents. Hylocereus plyrhizus or red dragon fruit peel extract (RDFPE) contains terpenoids, and flavonoids can be an alternative. The gingival patch (GP) has been designed to ensure drug delivery and absorption into tissue targets. Objective To assess the effect of a mucoadhesive gingival patch containing nano-emulsion of red dragon fruit peel extract (GP-nRDFPE) in inhibiting Porphyromonas gingivalis, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans as compared to control groups. Material and method Inhibition by diffusion method was carried out in Porphyromonas gingivalis, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans medium. The test material was gingival patch mucoadhesive containing nano-emulsion red dragon fruit peel extract (GP-nRDFPR), gingival patch mucoadhesive containing red dragon fruit peel extract (GP-RDFPE), gingival patch mucoadhesive containing doxycycline (GP-dcx) and blank gingival patch (GP), conducted in four replications. The differences in the inhibition were analyzed using ANOVA and post hoc tests (p < 0.05). Result GP-nRDFPE showed higher inhibition in Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum compared to GP-RDFPE at the concentrations 3.125% and 6.25% (p < 0.05). Conclusion The GP-nRDFPE showed better anti-periodontic bacteria to Porphyromonas gingivalis, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans in line with its concentration. This is assumed that the GP-nRDFPE can use as periodontitis treatment.
Collapse
Affiliation(s)
- Indeswati Diyatri
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Wisnu Setyari Juliastuti
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Rini Devijanti Ridwan
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Ghinalya Chalbi Ananda
- Bachelor of Dental Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Fuad Adhi Waskita
- Bachelor of Dental Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Nita Vania Juliana
- Bachelor of Dental Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Shafa Putri Khansa
- Bachelor of Dental Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Reinaya Tifa Pratiwi
- Bachelor of Dental Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Cindy Ramadhan Putri
- Dental Health Science, Faculty of Dental Medicine, Universitas Airlangga, 60132, Surabaya, Indonesia
| |
Collapse
|
127
|
Pigeaud KE, Rietveld ML, Witvliet AF, Hogervorst JMA, Zhang C, Forouzanfar T, Bravenboer N, Schoenmaker T, de Vries TJ. The Effect of Sclerostin and Monoclonal Sclerostin Antibody Romosozumab on Osteogenesis and Osteoclastogenesis Mediated by Periodontal Ligament Fibroblasts. Int J Mol Sci 2023; 24:ijms24087574. [PMID: 37108735 PMCID: PMC10145870 DOI: 10.3390/ijms24087574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Sclerostin is a bone formation inhibitor produced by osteocytes. Although sclerostin is mainly expressed in osteocytes, it was also reported in periodontal ligament (PDL) fibroblasts, which are cells that play a role in both osteogenesis and osteoclastogenesis. Here, we assess the role of sclerostin and its clinically used inhibitor, romosozumab, in both processes. For osteogenesis assays, human PDL fibroblasts were cultured under control or mineralizing conditions with increasing concentrations of sclerostin or romosozumab. For analyzing osteogenic capacity and alkaline phosphatase (ALP) activity, alizarin red staining for mineral deposition and qPCR of osteogenic markers were performed. Osteoclast formation was investigated in the presence of sclerostin or romosozumab and, in PDLs, in the presence of fibroblasts co-cultured with peripheral blood mononuclear cells (PBMCs). PDL-PBMC co-cultures stimulated with sclerostin did not affect osteoclast formation. In contrast, the addition of romosozumab slightly reduced the osteoclast formation in PDL-PBMC co-cultures at high concentrations. Neither sclerostin nor romosozumab affected the osteogenic capacity of PDL fibroblasts. qPCR analysis showed that the mineralization medium upregulated the relative expression of osteogenic markers, but this expression was barely affected when romosozumab was added to the cultures. In order to account for the limited effects of sclerostin or romosozumab, we finally compared the expression of SOST and its receptors LRP-4, -5, and -6 to the expression in osteocyte rich-bone. The expression of SOST, LRP-4, and LRP-5 was higher in osteocytes compared to in PDL cells. The limited interaction of sclerostin or romosozumab with PDL fibroblasts may relate to the primary biological function of the periodontal ligament: to primarily resist bone formation and bone degradation to the benefit of an intact ligament that is indented by every chew movement.
Collapse
Affiliation(s)
- Karina E Pigeaud
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Melanie L Rietveld
- Amsterdam University College, University of Amsterdam and Vrije Universiteit, Science Park 113, 1098 XG Amsterdam, The Netherlands
| | - Aster F Witvliet
- Amsterdam University College, University of Amsterdam and Vrije Universiteit, Science Park 113, 1098 XG Amsterdam, The Netherlands
| | - Jolanda M A Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 LA Amsterdam, The Netherlands
| | - Chen Zhang
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 LA Amsterdam, The Netherlands
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Tim Forouzanfar
- Oral Pathology and 3D Innovation Lab, Department of Oral and Maxillofacial Surgery, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 LA Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Teun J de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
128
|
Elboraey MO, Sabra RS, Gamal SMM. Clinical and Radiographic Evaluation of Locally Delivered Plant Stem Cells for Treatment of Periodontitis: Randomized Clinical Trial. Contemp Clin Dent 2023; 14:135-140. [PMID: 37547428 PMCID: PMC10399805 DOI: 10.4103/ccd.ccd_183_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 08/08/2023] Open
Abstract
Background Periodontitis causes the destruction of soft and hard tissues. Stem cells have immense potential in regenerative cellular therapy. This clinical trial aimed to evaluate clinically and radiographically the effectiveness of the local application of Edelweiss stem cells as a nonsurgical treatment for stage III periodontitis. Materials and Methods The trial included 40 periodontal pockets in participants who have stage III periodontitis with probing pocket depth (PPD) ≥5 mm and clinical attachment loss (CAL) ≥5 mm. Pockets were randomly divided into two groups Group 1: was given oral hygiene instruction, scaling, root planing, and subgingival application of plant stem cells on gel foam carrier after that a periodontal dressing was applied. The procedures were repeated after 2 weeks. Group 2: was treated only by scaling and root planing. Gingival index, CAL, and PPD were measured at baseline and 3 months' posttherapy. The radiographical evaluation was done by digital long-cone parallel periapical radiographs at baseline and 6 months posttherapy. Results Clinical parameters for both groups showed a statistically significant improvement. Regarding radiographic evaluation, there was a significant increase in bone density in favor of the study group. Conclusions Locally applied Edelweiss stem cells can be considered a promising nonsurgical treatment modality for periodontal regeneration.
Collapse
Affiliation(s)
- Mohamed Omar Elboraey
- Department Oral Medicine, Periodontology, Oral Diagnosis and Radiology, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Reda Saber Sabra
- Department Oral Medicine, Periodontology, Oral Diagnosis and Radiology, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Sherouk Mohamed Mohamed Gamal
- Department Oral Medicine, Periodontology, Oral Diagnosis and Radiology, Faculty of Dentistry, Tanta University, Tanta, Egypt
| |
Collapse
|
129
|
Alkimavičienė E, Pušinskaitė R, Basevičienė N, Banienė R, Savickienė N, Pacauskienė IM. Efficacy of Proanthocyanidins in Nonsurgical Periodontal Therapy. Int Dent J 2023; 73:195-204. [PMID: 36167610 PMCID: PMC10023589 DOI: 10.1016/j.identj.2022.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/25/2022] [Accepted: 08/16/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The aim of this work was to evaluate the efficacy of proanthocyanidins (PACNs) as an adjunctive periodontal therapy in patients with periodontitis. METHODS Patients with periodontitis (stage III-IV) were included in this randomised clinical study. Patients with periodontitis received 2 different treatment modalities: minimally invasive nonsurgical therapy only (MINST group) or minimally invasive nonsurgical therapy and subgingival application of collagen hydrogels with PACNs (MINST + PACNs group). Clinical periodontal parameters, that is, pocket probing depth (PPD), clinical attachment level (CAL), bleeding on probing (BOP), plaque index (PI), were evaluated before treatment and after 8 weeks. Concentrations of immunologic markers, matrix metalloproteinase-3 (MMP-3), and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) in saliva were assessed at baseline and at 8-week follow-up. RESULTS Forty-six patients diagnosed with periodontitis were randomised into 2 groups: 23 patients in the MINST group and 23 patients in the MINST + PACNs group received the intended treatment. PACNs combined with MINST resulted in additional statistically significant PPD reduction and CAL gain in moderate periodontal pockets by 0.5 mm (P < .05) on average compared to MINST alone. Additional use of PACNs did not result in additional statistically significant improvement of BOP or PI values. Application of PACNs showed significant reduction of MMP-3 levels in saliva after 8 weeks (P < .05). CONCLUSIONS Adjunctive use of PACNs in MINST resulted in better clinical outcomes for moderate pockets. Additional use of PACNs improved MMP-3 concentration in saliva more than MINST alone. Biochemical analysis revealed that MMP-3 concentration in saliva reflected the periodontal health state.
Collapse
Affiliation(s)
- Evelina Alkimavičienė
- Department of Dental and Oral Pathology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Rasa Pušinskaitė
- Department of Dental and Oral Pathology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Nomeda Basevičienė
- Department of Dental and Oral Pathology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rasa Banienė
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Nijolė Savickienė
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | |
Collapse
|
130
|
Shao Q, Liu S, Zou C, Ai Y. Effect of LSD1 on osteogenic differentiation of human periodontal ligament stem cells in periodontitis. Oral Dis 2023; 29:1137-1148. [PMID: 34739163 DOI: 10.1111/odi.14066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Periodontitis is a chronic inflammation of periodontal tissues. This study is expected to assess the effect of LSD1 on the osteogenic differentiation of hPDLSCs in periodontitis. METHODS hPDLSCs were separated, cultivated, and identified, and then treated by LPS to induce inflammatory microenvironment and subjected to osteogenic differentiation. Subsequently, LSD1 expression was determined, and then silenced to assess its effect on hPDLSCs. Next, the binding relation between LSD1 and miR-590-3p was analyzed. miR-590-3p expression was detected and then overexpressed to evaluate its role in hPDLSCs in periodontitis. Afterward, the relation between LSD1 and OSX was analyzed. H3K4me2 level and OSX transcription were measured, and the role of H3K4me2 was determined. Additionally, the role of OSX in hPDLSCs was verified. RESULTS LSD1 was poorly expressed after osteogenic differentiation of hPDLSCs while it was rescued upon LPS induction. The osteogenic differentiation of hPDLSC in periodontitis was strengthened upon LSD1 downregulation. Besides, miR-590-3p targeted LSD1 transcription, and LSD1 inhibited OSX transcription via H3K4me2 demethylation. miR-590-3p overexpression improved osteogenic differentiation of hPDLSCs in periodontitis. But this improvement was annulled by OSX inhibition. CONCLUSION miR-590-3p targeted LSD1 transcription and upregulated H3K4me2 methylation to promote OSX transcription, thereby encouraging osteogenic differentiation of hPDLSCs in periodontitis.
Collapse
Affiliation(s)
- Qing Shao
- Department of Orthodontics, Foshan Stomatological Hospital, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| | - ShiWei Liu
- Department of Stomatology, Foshan First People's Hospital, Foshan, Guangdong Province, China
| | - Chen Zou
- Department of Orthodontics, Foshan Stomatological Hospital, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| | - Yilong Ai
- Department of Orthodontics, Foshan Stomatological Hospital, School of Stomatology and Medicine, Foshan University, Foshan, Guangdong Province, China
| |
Collapse
|
131
|
Ghazwani M, Vasudevan R, Kandasamy G, Hani U, Niharika G, Naredla M, Devanandan P, Puvvada RC, Almehizia AA, Hakami AR, Dhurke R. Development and In Vitro Characterization of Antibiotic-Loaded Nanocarriers for Dental Delivery. Molecules 2023; 28:molecules28072914. [PMID: 37049683 PMCID: PMC10096469 DOI: 10.3390/molecules28072914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
The aim of this research work was to formulate and evaluate ciprofloxacin hydrochloride-loaded nanocarriers for treating dental infections and bone regeneration. Periodontal infection is associated with inflammation, soft tissue destruction, and bone loss. The objective of the study was to extract β tricalcium phosphate (β-TCP) from coral beach sand using the hydrothermal conversion method and load these nanocarriers with ciprofloxacin hydrochloride. The developed drug-loaded nanocarriers were evaluated for various parameters. In vitro drug-loading studies showed the highest drug loading of 71% for F1 with a drug: carrier ratio compared to plain ciprofloxacin hydrochloride gel. β-TCP and nanocarriers were evaluated for powder characteristics and the results were found to have excellent and fair flowability. In vitro drug release studies conducted over a period of 5 days confirmed the percentage drug release of 96% at the end of 120 h. Nanocarriers were found to be effective against S. aureus and E. coli showing statistically significant antibacterial activity at (* p < 0.05) significant level as compared to plain ciprofloxacin hydrochloride gel. The particle size of β-TCP and nanocarriers was found to be 2 µm. Fourier transform infra-red studies showed good compatibility between the drug and the excipients. Differential scanning calorimetry studies revealed the amorphous nature of the nanocarriers as evident from the peak shift. It is obvious from the XRD studies that the phase intensity was reduced, which demonstrates a decrease in crystallinity. Nanocarriers released the drug in a controlled manner, hence may prove to be a better option to treat dental caries as compared to conventional treatments.
Collapse
Affiliation(s)
- Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Abha 61421, Saudi Arabia
| | - Rajalakshimi Vasudevan
- Department of Pharmacology, College of Pharmacy, King Khalid University (KKU), Abha 61421, Saudi Arabia
| | - Geetha Kandasamy
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University (KKU), Abha 61421, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Abha 61421, Saudi Arabia
| | - Gaddam Niharika
- Department of Pharmaceutics, St. Peter's Institute of Pharmaceutical Sciences, Hanamkonda 506001, Telangana, India
| | - Manusri Naredla
- Department of Pharmaceutics, St. Peter's Institute of Pharmaceutical Sciences, Hanamkonda 506001, Telangana, India
| | - Praveen Devanandan
- Department of Pharmacy Practice, St. Peter's Institute of Pharmaceutical Sciences, Hanamkonda 506001, Telangana, India
| | - Ranadheer Chowdary Puvvada
- Department of Pharmacy Practice, St. Peter's Institute of Pharmaceutical Sciences, Hanamkonda 506001, Telangana, India
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrahim R Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University (KKU), Abha 61481, Saudi Arabia
| | - Rajeshri Dhurke
- Department of Pharmaceutics, St. Peter's Institute of Pharmaceutical Sciences, Hanamkonda 506001, Telangana, India
| |
Collapse
|
132
|
Jezeršek M, Molan K, Terlep S, Levičnik-Höfferle Š, Gašpirc B, Lukač M, Stopar D. The evolution of cavitation in narrow soft-solid wedge geometry mimicking periodontal and peri-implant pockets. ULTRASONICS SONOCHEMISTRY 2023; 94:106329. [PMID: 36801675 PMCID: PMC9945771 DOI: 10.1016/j.ultsonch.2023.106329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
In periodontology and implantology, laser-induced cavitation has not yet been used to treat biofilm-related problems. In this study we have checked how soft tissue affects the evolution of cavitation in a wedge model representing periodontal and peri-implant pocket geometry. One side of the wedge model was composed of PDMS mimicking soft periodontal or peri-implant biological tissue, the other side was composed of glass mimicking hard tooth root or implant surface, which allowed observations of the cavitation dynamics with an ultrafast camera. Different laser pulse modalities, PDMS stiffness, and irrigants were tested for their effect on the evolution of cavitation in the narrow wedge geometry. The PDMS stiffness varied in a range that corresponds to severely inflamed, moderately inflamed, or healthy gingival tissue as determined by a panel of dentists. The results imply that deformation of the soft boundary has a major effect on the Er:YAG laser-induced cavitation. The softer the boundary, the less effective the cavitation. We show that in a stiffer gingival tissues model, photoacoustic energy can be guided and focused at the tip of the wedge model, where it enables generation of secondary cavitation and more effective microstreaming. The secondary cavitation was absent in severely inflamed gingival model tissue, but could be induced with a dual-pulse AutoSWEEPS laser modality. This should in principle increase cleaning efficiency in the narrow geometries such as those found in the periodontal and peri-implant pockets and may lead to more predictable treatment outcomes.
Collapse
Affiliation(s)
- Matija Jezeršek
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, 1000 Ljubljana
| | - Katja Molan
- University of Ljubljana, Biotechnical Faculty, Department of Microbiology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Saša Terlep
- Fotona d.o.o., Stegne 7, 1000 Ljubljana, Slovenia
| | | | - Boris Gašpirc
- University of Ljubljana, Medical Faculty, Department of Oral Medicine and Periodontology, Vrazov trg 2, 1000 Ljubljana
| | - Matjaž Lukač
- Institut Jozef Stefan, Jamova 39, 1000 Ljubljana, Slovenia
| | - David Stopar
- University of Ljubljana, Biotechnical Faculty, Department of Microbiology, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
133
|
Chen H, Feng X, Yang Q, Yang K, Man S. Expression Pattern and Value of Brain-Derived Neurotrophic Factor in Periodontitis. Int Dent J 2023:S0020-6539(23)00055-2. [PMID: 36997422 PMCID: PMC10390664 DOI: 10.1016/j.identj.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Periodontitis is a common human disease with an increasing incidence. Brain-derived neurotrophic factor (BDNF) is known to play a crucial role in the regeneration of periodontal tissue; however, the expression, methylation level, molecular function, and clinical value of BDNF in periodontitis require further investigation. This study aimed to investigate the expression and potential functions of BDNF in periodontitis. METHODS RNA expression and methylation data were obtained from the Gene Expression Omnibus (GEO) database, and the expression and methylation levels of BDNF were compared between periodontitis and normal tissues. In addition, bioinformatics analysis was performed to investigate the downstream molecular functions of BDNF. Finally, Reverse transcription Quantitative real-time polymerase chain reaction was performed to determine the level of BDNF expression in periodontitis and normal tissues. RESULTS GEO database analysis revealed that BDNF was hypermethylated in periodontitis tissues and that its expression was downregulated. Reverse transcription Quantitative real-time polymerase chain reaction confirmed that BDNF expression was downregulated in periodontitis tissues. Several genes that interact with BDNF were determined using a protein-protein interaction network. Functional analysis of BDNF revealed that it was enriched in the Gene Ontology terms cytoplasmic dynein complex, glutathione transferase activity, and glycoside metabolic process. Kyoto Encyclopedia of Genes and Genomes analysis suggested that BDNF was associated with the mechanistic target of rapamycin signaling pathway, fatty acid metabolism, the Janus kinase-signal transducer and activator of transcription signaling pathway, glutathione metabolism, and others. Furthermore, the level of BDNF expression was correlated with the immune infiltration degree of B cells and CD4+ T cells. CONCLUSIONS This study shown that BDNF was hypermethylated and downregulated in periodontitis tissues, which could be a biomarker and treatment target of periodontitis.
Collapse
|
134
|
Li L, Li J, Li S, Chen H, Wu Y, Qiu Y. IL-37 alleviates alveolar bone resorption and inflammatory response through the NF-κB/NLRP3 signaling pathway in male mice with periodontitis. Arch Oral Biol 2023; 147:105629. [PMID: 36680836 DOI: 10.1016/j.archoralbio.2023.105629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Periodontitis is an inflammatory disease, characterized by periodontal pocket formation and alveolar bone resorption, is one of the most common oral diseases. Interleukin-37 (IL-37) is a novel inflammatory suppressor that plays an important role in many inflammatory diseases. This study aimed to investigate the role of IL-37 in periodontitis DESIGN: A mouse model of periodontitis was established by Porphyromonas gingivalis. After four weeks treatment of recombinant human IL-37 (rhIL-37), the effects of IL-37 on the gingival index and tooth loosening degree of periodontitis mice were observed. H&E staining and micro-CT scanning were used to analyze the bone resorption of the maxillary. The number of osteoclasts was counted by TRAP staining and the differentiation of osteoclasts was evaluated by immunohistochemistry. The expression of inflammatory cytokines was detected by ELISA, and the protein expressions of the NF-κB/NLRP3 pathway were analyzed by WB. RESULTS RhIL-37 significantly decreased the gingival index and tooth mobility degree, inhibited maxillary bone resorption, decreased the number of osteoclasts and the expression of calcitonin receptor (CTR), periodontal cathepsin K (CTSK) and receptor activator of NF-κB ligand (RANKL), and increased the expression of osteoprotegerin (OPG) in periodontitis mice. At the same time, rhIL-37 significantly decreased the expression of IL-1β, IL-6 and TNF-α, and increased the expression of IL-10 in the gingival tissue of periodontitis mice. In addition, rhIL-37 significantly inhibited the protein expressions of p-p65, NLRP3, ASC, caspase-1 and IL-1β in periodontitis mice. CONCLUSION IL-37 may alleviate alveolar bone resorption and inflammation response in periodontitis through the NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Lihua Li
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, China
| | - Junxiong Li
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, China
| | - Siyu Li
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, China
| | - Hongjun Chen
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, China
| | - Yan Wu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, China
| | - Ya Qiu
- Medical Research Center, Affiliated Hospital of North Sichuan Medical College, China.
| |
Collapse
|
135
|
Micu IC, Muntean A, Roman A, Stratul ȘI, Pall E, Ciurea A, Soancă A, Negucioiu M, Barbu Tudoran L, Delean AG. A Local Desiccant Antimicrobial Agent as an Alternative to Adjunctive Antibiotics in the Treatment of Periodontitis: A Narrative Review. Antibiotics (Basel) 2023; 12:antibiotics12030456. [PMID: 36978324 PMCID: PMC10044681 DOI: 10.3390/antibiotics12030456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Periodontitis is one of the most common oral polymicrobial infectious diseases induced by the complex interplay between the altered subgingival microbiota and the host’s dysregulated immune-inflammatory response, leading to the initiation of progressive and irreversible destruction of the periodontal tissues and eventually to tooth loss. The main goal of cause-related periodontal therapy is to eliminate the dysbiotic subgingival biofilm in order to arrest local inflammation and further periodontal tissue breakdown. Because, in some cases, subgingival mechanical instrumentation has limited efficiency in achieving those goals, various adjunctive therapies, mainly systemic and locally delivered antimicrobials, have been proposed to augment its effectiveness. However, most adjunctive antimicrobials carry side effects; therefore, their administration should be precociously considered. HybenX® (HY) is a commercial therapeutical agent with decontamination properties, which has been studied for its effects in treating various oral pathological conditions, including periodontitis. This review covers the current evidence regarding the treatment outcomes and limitations of conventional periodontal therapies and provides information based on the available experimental and clinical studies related to the HY mechanism of action and effects following its use associated with subgingival instrumentation and other types of dental treatments.
Collapse
Affiliation(s)
- Iulia C. Micu
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş St., No. 15, 400012 Cluj-Napoca, Romania
| | - Alexandrina Muntean
- Department of Pedodontics, Faculty of Dental Medicine, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Avram Iancu St., No. 31, 400117 Cluj-Napoca, Romania
- Correspondence: (A.M.); (A.S.)
| | - Alexandra Roman
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş St., No. 15, 400012 Cluj-Napoca, Romania
| | - Ștefan I. Stratul
- Department of Periodontology, Anton Sculean Research Center of Periodontal and Peri-Implant Diseases, Faculty of Dental Medicine, Victor Babeș University of Medicine and Pharmacy Timișoara, Bulevardul Revoluției din 1989, No.9, 300230 Timișoara, Romania
| | - Emöke Pall
- Department of Infectious Disease, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Mănăștur St., No. 3-5, 400372 Cluj-Napoca, Romania
| | - Andreea Ciurea
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş St., No. 15, 400012 Cluj-Napoca, Romania
| | - Andrada Soancă
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş St., No. 15, 400012 Cluj-Napoca, Romania
- Correspondence: (A.M.); (A.S.)
| | - Marius Negucioiu
- Department of Prosthodontics, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Clinicilor St., No. 32, 400006 Cluj-Napoca, Romania
| | - Lucian Barbu Tudoran
- Electron Microscopy Center, Department of Molecular Biology and Biotechnologies, Faculty of Biology and Geology, Babeş-Bolyai University, Clinicilor St., No. 5-7, 400006 Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory (LIME), National Institute for Research and Development of Isotopic and Molecular Technologies, Institutul Național de Cercetare-Dezvoltare pentru Tehnologii Izotopice și Moleculare, 67-103 Donath St., 400293 Cluj-Napoca, Romania
| | - Ada G. Delean
- Department of Cariology, Endodontics and Oral Pathology, “Iuliu Hațieganu” University of Medicine and Pharmacy, Moților St., No. 33, 400001 Cluj-Napoca, Romania
| |
Collapse
|
136
|
Andrei V, Andrei S, Gal AF, Rus V, Gherman LM, Boșca BA, Niculae M, Barabas R, Cadar O, Dinte E, Muntean DM, Peștean CP, Rotar H, Boca A, Chiș A, Tăut M, Candrea S, Ilea A. Immunomodulatory Effect of Novel Electrospun Nanofibers Loaded with Doxycycline as an Adjuvant Treatment in Periodontitis. Pharmaceutics 2023; 15:pharmaceutics15020707. [PMID: 36840029 PMCID: PMC9966556 DOI: 10.3390/pharmaceutics15020707] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
The immunomodulatory effect of a novel biomaterial obtained through electrospinning, based on polylactic acid (PLA) and nano-hydroxyapatite (nano-HAP), loaded with doxycycline (doxy) was evaluated in an animal model. The treatment capabilities as a local non-surgical treatment of periodontitis was investigated on the lower incisors of Wistar rats, after the induction of localized periodontitis using the ligature technique. Following the induction of the disease, the non-surgical treatment of scaling and root planing was applied, in conjunction with the application of the new material. The results of the treatment were evaluated clinically, using the tooth mobility and gingival index scores, as well as histologically. The salivary concentrations of matrix metalloproteinase 8 (MMP-8) and plasmatic concentrations of interleukin 1 (IL-1), interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) were also monitored. Two weeks after the ligature application, the periodontal disease was successfully induced in rats. The application of the novel biomaterial obtained through electrospinning was proven to be more effective in improving the clinical parameters, while decreasing the salivary MMP-8 and plasmatic IL-1 and TNF-α concentrations, compared to the simple scaling and root planing. Thus, the novel electrospun biomaterial could be a strong candidate as an adjuvant to the non-surgical periodontal therapy.
Collapse
Affiliation(s)
- Vlad Andrei
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Sanda Andrei
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence:
| | - Adrian Florin Gal
- Department of Cell Biology, Histology and Embryology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Vasile Rus
- Department of Cell Biology, Histology and Embryology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Luciana-Mădălina Gherman
- Experimental Centre of University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania
| | - Bianca Adina Boșca
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Mihaela Niculae
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Reka Barabas
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 400028 Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 400293 Cluj-Napoca, Romania
| | - Elena Dinte
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Dana-Maria Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cosmin Petru Peștean
- Department of Surgery and Intensive Care, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Horațiu Rotar
- Department of Cranio-Maxillofacial Surgery, Faculty of Dentistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400001 Cluj-Napoca, Romania
| | - Antonia Boca
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andreea Chiș
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Manuela Tăut
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Sebastian Candrea
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
137
|
Remnant Cholesterol as an Independent Predictor of Periodontitis: A Population-Based Study. DISEASE MARKERS 2023; 2023:3413356. [PMID: 36824233 PMCID: PMC9943602 DOI: 10.1155/2023/3413356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/16/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023]
Abstract
Objective Numerus studies present that remnant cholesterol (RC) as a risk factor participates in the progression of multiple diseases. The aim of this study was to assess the relationship between cholesterol and periodontitis in the US population to find a reliable lipid predictor for periodontitis. Materials and Methods Clinical data was retrieved from the National Health and Nutrition Examination Survey (NHANES) database between 2009 and 2014. The logistic regression was conducted to examine the corelationship between RC and various clinical features. Meanwhile, the dose-response relationship was measured through restricted cubic spline analysis. And the propensity score matching (PSM) was established to further investigate the potential relationship between RC and periodontitis. Results A number of 4,829 eligible participants were included in this study. It was found that the increased RC is associated with the higher risk of periodontitis after adjusting the potential confounding factors with the adjusted odds ratios (aOR) of 1.403 (95% confidence intervals (CI): 1.171-1.681, P < 0.001, univariate analysis) and 1.341 (95% CI: 1.105-1.629, P = 0.003, multivariate analysis) in the highest grade. There were significant differences in the relationship between RC and various clinical features including age, gender, body mass index (BMI), race, hypertension, and diabetes mellitus (all P < 0.001). Besides, the calculated thresholds for predicting periodontitis were 19.99 (before propensity score matching (PSM)) and 20.91 (after PSM) mg/dL. Conclusions In this study, RC was identified to be positively associated with the occurrence of periodontitis, which suggests that RC can be considered as a predictor for periodontitis.
Collapse
|
138
|
Chen WA, Dou Y, Fletcher HM, Boskovic DS. Local and Systemic Effects of Porphyromonas gingivalis Infection. Microorganisms 2023; 11:470. [PMID: 36838435 PMCID: PMC9963840 DOI: 10.3390/microorganisms11020470] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Porphyromonas gingivalis, a gram-negative anaerobe, is a leading etiological agent in periodontitis. This infectious pathogen can induce a dysbiotic, proinflammatory state within the oral cavity by disrupting commensal interactions between the host and oral microbiota. It is advantageous for P. gingivalis to avoid complete host immunosuppression, as inflammation-induced tissue damage provides essential nutrients necessary for robust bacterial proliferation. In this context, P. gingivalis can gain access to the systemic circulation, where it can promote a prothrombotic state. P. gingivalis expresses a number of virulence factors, which aid this pathogen toward infection of a variety of host cells, evasion of detection by the host immune system, subversion of the host immune responses, and activation of several humoral and cellular hemostatic factors.
Collapse
Affiliation(s)
- William A. Chen
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yuetan Dou
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Hansel M. Fletcher
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Danilo S. Boskovic
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
139
|
Dinte E, Muntean DM, Andrei V, Boșca BA, Dudescu CM, Barbu-Tudoran L, Borodi G, Andrei S, Gal AF, Rus V, Gherman LM, Cadar O, Barabas R, Niculae M, Ilea A. In Vitro and In Vivo Characterisation of a Mucoadhesive Buccal Film Loaded with Doxycycline Hyclate for Topical Application in Periodontitis. Pharmaceutics 2023; 15:pharmaceutics15020580. [PMID: 36839899 PMCID: PMC9963859 DOI: 10.3390/pharmaceutics15020580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Mucoadhesive films loaded with doxycycline hyclate (Doxy Hyc), consisting of mixtures of hydroxypropylmethyl cellulose (HPMC) E3, K4 and polyacrylic acid (Carbopol 940), were prepared by casting method, aiming to design a formulation intended for application in the oral cavity. The obtained film formulations exhibited a Doxy Hyc content between 7.52 ± 0.42 and 7.83 ± 0.41%, which had adequate mechanical properties for application in the oral cavity and pH values in the tolerance range. The x-ray diffraction studies highlighted the amorphisation of Doxy Hyc in the preparation process and the antibiotic particles present on the surface of the films, identified in the TEM images, which ensured a burst release effect in the first 15 min of the in vitro dissolution studies, after which Doxy Hyc was released by diffusion, the data presenting a good correlation with the Peppas model, n < 0.5. The formulation F1, consisting of HPMC K4 combined with C940 in a ratio of 5:3, the most performing in vitro, was tested in vivo in experimentally-induced periodontitis and demonstrated its effectiveness in improving the clinical parameters and reducing the salivary levels of matrix metalloproteinase-8 (MMP-8). The prepared Doxy Hyc loaded mucoadhesive buccal film could be used as an adjuvant for the local treatment of periodontitis, ensuring prolonged release of the antibiotic after topical application.
Collapse
Affiliation(s)
- Elena Dinte
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Dana Maria Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Vlad Andrei
- Department of Oral Rehabilitation, Faculty of Dentistry, ”Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Bianca Adina Boșca
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cristian Mircea Dudescu
- Department of Mechanical Engineering, Faculty of Automotive, Mechatronics and Mechanical Engineering, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Gheorghe Borodi
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Sanda Andrei
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Adrian Florin Gal
- Department of Cell Biology, Histology and Embryology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Vasile Rus
- Department of Cell Biology, Histology and Embryology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Luciana-Mădălina Gherman
- Experimental Centre of University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 400293 Cluj-Napoca, Romania
| | - Reka Barabas
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, 400028 Cluj-Napoca, Romania
| | - Mihaela Niculae
- Department of Infectious Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Faculty of Dentistry, ”Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
140
|
Boccia G, Di Spirito F, D’Ambrosio F, De Caro F, Pecora D, Giorgio R, Fortino L, Longanella W, Franci G, Santella B, Amato M. Microbial Air Contamination in a Dental Setting Environment and Ultrasonic Scaling in Periodontally Healthy Subjects: An Observational Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032710. [PMID: 36768076 PMCID: PMC9916071 DOI: 10.3390/ijerph20032710] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 05/14/2023]
Abstract
The risk of microbial air contamination in a dental setting, especially during aerosol-generating dental procedures (AGDPs), has long been recognized, becoming even more relevant during the COVID-19 pandemic. However, individual pathogens were rarely studied, and microbial loads were measured heterogeneously, often using low-sensitivity methods. Therefore, the present study aimed to assess microbial air contamination in the dental environment, identify the microorganisms involved, and determine their count by active air sampling at the beginning (T0), during (T1), and at the end (T2) of ultrasonic scaling in systemically and periodontally healthy subjects. Air microbial contamination was detected at T0 in all samples, regardless of whether the sample was collected from patients treated first or later; predominantly Gram-positive bacteria, including Staphylococcus and Bacillus spp. and a minority of fungi, were identified. The number of bacterial colonies at T1 was higher, although the species found were similar to that found during the T0 sampling, whereby Gram-positive bacteria, mainly Streptococcus spp., were identified. Air samples collected at T2 showed a decrease in bacterial load compared to the previous sampling. Further research should investigate the levels and patterns of the microbial contamination of air, people, and the environment in dental settings via ultrasonic scaling and other AGDPs and identify the microorganisms involved to perform the procedure- and patient-related risk assessment and provide appropriate recommendations for aerosol infection control.
Collapse
Affiliation(s)
- Giovanni Boccia
- Dai Dipartimento Di Igiene Sanitaria e Medicina Valutativa U.O.C. Igiene Ospedaliera, A.O.U. San Giovanni di Dio e Ruggi D’Aragona Largo Città di Ippocrate, 84131 Salerno, Italy
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Federica Di Spirito
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Francesco D’Ambrosio
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Francesco De Caro
- Dai Dipartimento Di Igiene Sanitaria e Medicina Valutativa U.O.C. Igiene Ospedaliera, A.O.U. San Giovanni di Dio e Ruggi D’Aragona Largo Città di Ippocrate, 84131 Salerno, Italy
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Domenico Pecora
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Riccardo Giorgio
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Luigi Fortino
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | | | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Biagio Santella
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
- Correspondence: (B.S.); (M.A.)
| | - Massimo Amato
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
- Correspondence: (B.S.); (M.A.)
| |
Collapse
|
141
|
Di Spirito F, Amato A, Di Palo MP, Cannatà D, Giordano F, D’Ambrosio F, Martina S. Periodontal Management in Periodontally Healthy Orthodontic Patients with Fixed Appliances: An Umbrella Review of Self-Care Instructions and Evidence-Based Recommendations. Dent J (Basel) 2023; 11:35. [PMID: 36826180 PMCID: PMC9954872 DOI: 10.3390/dj11020035] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The present umbrella review aimed to characterize periodontal self-care instructions, prescriptions, and motivational methods; evaluate the associated periodontal outcomes; and provide integrated, evidence-based recommendations for periodontal self-care in periodontally healthy orthodontic patients with fixed appliances. The presently applied study protocol was developed in advance, compliant with the PRISMA statement, and registered on PROSPERO (CRD42022367204). Systematic reviews published in English without date restrictions were electronically searched until 21 November 2022 across the PROSPERO Register and Cochrane Library, Web of Science (Core Collection), Scopus, and MED-LINE/PubMed databases. The study quality assessment was conducted through the AMSTAR 2 tool. Seventeen systematic reviews were included. Powered and manual toothbrushes showed no significant differences in biofilm accumulation, although some evidence revealed significant improvements in inflammatory, bleeding, and periodontal pocket depth values in the short term with powered toothbrushes. Chlorhexidine mouthwashes, but no gels, varnishes, or pastes, controlled better biofilm accumulation and gingival inflammation as adjuncts to toothbrushing, although only for a limited period. Organic products, such as aloe vera and chamomile, proved their antimicrobial properties, and herbal-based mouthwashes seemed comparable to CHX without its side effects. Motivational methods also showed beneficial effects on periodontal biofilm control and inflammation, while no evidence supported probiotics administration.
Collapse
Affiliation(s)
- Federica Di Spirito
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Alessandra Amato
- Department of Neuroscience, Reproductive Science and Dentistry, University of Naples Federico II, 80138 Naples, Italy
| | - Maria Pia Di Palo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Davide Cannatà
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Francesco Giordano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Francesco D’Ambrosio
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Stefano Martina
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| |
Collapse
|
142
|
Pardo A, Butera A, Giordano A, Gallo S, Pascadopoli M, Scribante A, Albanese M. Photodynamic Therapy in Non-Surgical Treatment of Periodontitis: A Systematic Review and Meta-Analysis. APPLIED SCIENCES 2023; 13:1086. [DOI: 10.3390/app13021086] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Aim: to evaluate the adjunctive effects of photodynamic therapy (aPDT) on nonsurgical mechanical treatment in patients with periodontitis. Materials and methods: The search strategy was conducted according to the PRISMA guidelines to answer research questions regarding the effectiveness of aPDT in association with non-surgical periodontal therapy. The mean values and standard deviations were collected by data extraction. A descriptive comparison between aPDT in association with periodontal treatment and periodontal treatment alone was performed, and meta-analyses of PPD were also performed. Both randomized controlled clinical trials (RCTs) and controlled clinical trials (CCTs) were included. Results: Out of 2059 records, 14 articles on adjunctive photodynamic therapy were included because they met the eligibility criteria. A comparison between the aPDT data and the control group showed improved PPD for photodynamic therapy (SMD −0.76, p = 0.003; I2 = 88%). Statistical analysis was then applied to the three PPD subgroups. The first group included studies that used indocyanine green in association with a wavelength of 810 nm (SMD −1.79, p < 0.00001, I2 = 88%). The second group included studies that used phenothiazine chloride at a wavelength of 660 nm (SMD −0.03, p = 0.84, I2 = 0%). The last group included studies that used methylene blue photosensitizers treated with a wavelength 628–670 nm were included (SMD −0.13, p = 0.38; I2 = 0%). Conclusions: despite the limited number of RCTs and the great heterogeneity between them, it can be concluded that aPDT in association with nonsurgical periodontal treatment improved the clinical parameters at 3 months.
Collapse
Affiliation(s)
- Alessia Pardo
- Dentistry and Maxillofacial Surgery Section, Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37121 Verona, Italy
| | - Andrea Butera
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Angela Giordano
- Dentistry and Maxillofacial Surgery Section, Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37121 Verona, Italy
| | - Simone Gallo
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Maurizio Pascadopoli
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Andrea Scribante
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Massimo Albanese
- Dentistry and Maxillofacial Surgery Section, Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37121 Verona, Italy
| |
Collapse
|
143
|
Yuan X, Zhou F, Wang H, Xu X, Xu S, Zhang C, Zhang Y, Lu M, Zhang Y, Zhou M, Li H, Zhang X, Zhang T, Song J. Systemic antibiotics increase microbiota pathogenicity and oral bone loss. Int J Oral Sci 2023; 15:4. [PMID: 36631439 PMCID: PMC9834248 DOI: 10.1038/s41368-022-00212-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 01/13/2023] Open
Abstract
Periodontitis is the most widespread oral disease and is closely related to the oral microbiota. The oral microbiota is adversely affected by some pharmacologic treatments. Systemic antibiotics are widely used for infectious diseases but can lead to gut dysbiosis, causing negative effects on the human body. Whether systemic antibiotic-induced gut dysbiosis can affect the oral microbiota or even periodontitis has not yet been addressed. In this research, mice were exposed to drinking water containing a cocktail of four antibiotics to explore how systemic antibiotics affect microbiota pathogenicity and oral bone loss. The results demonstrated, for the first time, that gut dysbiosis caused by long-term use of antibiotics can disturb the oral microbiota and aggravate periodontitis. Moreover, the expression of cytokines related to Th17 was increased while transcription factors and cytokines related to Treg were decreased in the periodontal tissue. Fecal microbiota transplantation with normal mice feces restored the gut microbiota and barrier, decreased the pathogenicity of the oral microbiota, reversed the Th17/Treg imbalance in periodontal tissue, and alleviated alveolar bone loss. This study highlights the potential adverse effects of long-term systemic antibiotics-induced gut dysbiosis on the oral microbiota and periodontitis. A Th17/Treg imbalance might be related to this relationship. Importantly, these results reveal that the periodontal condition of patients should be assessed regularly when using systemic antibiotics in clinical practice.
Collapse
Affiliation(s)
- Xulei Yuan
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Fuyuan Zhou
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - He Wang
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xinxin Xu
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Shihan Xu
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Chuangwei Zhang
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yanan Zhang
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Miao Lu
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Zhang
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Mengjiao Zhou
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Han Li
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ximu Zhang
- grid.459985.cChongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Tingwei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - Jinlin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
144
|
Tan X, Liu S, Hu X, Zhang R, Su X, Qian R, Mai Y, Xu Z, Jing W, Tian W, Xie L. Near-Infrared-Enhanced Dual Enzyme-Mimicking Ag-TiO 2-x@Alginate Microspheres with Antibactericidal and Oxygeneration Abilities to Treat Periodontitis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:391-406. [PMID: 36562459 DOI: 10.1021/acsami.2c17065] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The effective treatment for periodontitis is to completely and sustainedly eradicate the bacterial pathogens from the complex periodontal pockets. Local sustained-release antibiotics as a complementary treatment after scaling and root planning can sustainedly combat bacterial pathogens in the periodontal pockets to help treat the disease, but the increasing concern of bacterial resistance limits its future use. Here, we reported a local antibacterial system based on microsized multifunctional Ag-TiO2-x encapsulated in alginate (ATA) microspheres. We confirmed that ATA displayed strong photothermally enhanced dual enzyme-mimicking (peroxidase-like and catalase-like) activities and weak photocatalytic activity under 808 nm near-infrared (NIR) irradiation, which could boost the generation of reactive oxygen species (ROS) and O2 in the presence of low-level H2O2. As a result, the ATA/H2O2/NIR system exhibited efficient antibacterial activity against Porphyromonas gingivalis and Streptococcus gordonii in both planktonic and biofilm forms. With the help of ROS, ATA could release Ag+ in concentrations sufficient to inhibit periodontal pathogens as well. Moreover, the in situ-generated oxygen was supposed to alleviate the local hypoxic environment and would help downregulate the lipopolysaccharide-mediated inflammatory response of periodontal stem cells. The in vivo rat periodontitis treatment results demonstrated that the ATA/H2O2/NIR system reduced the bacterial load, relieved inflammation, and improved tissue healing. Our work developed a new local prolonged bactericidal and oxygenation system for enhanced periodontitis. Avoiding the usage of antibiotics and nanomaterials, this strategy showed great promise in adjunctive periodontitis treatment and also in other biomedical applications.
Collapse
Affiliation(s)
- Xinzhi Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Suru Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingyu Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruitao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaofan Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruojing Qian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yao Mai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhaoyu Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Jing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
145
|
Paterson M, Johnston W, Sherriff A, Culshaw S. Periodontal instrumentation technique: an exploratory analysis of clinical outcomes and financial aspects. Br Dent J 2023:10.1038/s41415-022-5405-1. [PMID: 36624308 PMCID: PMC9838345 DOI: 10.1038/s41415-022-5405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/31/2022] [Indexed: 01/11/2023]
Abstract
Objective This exploratory post hoc analysis sought to investigate clinical outcomes comparing non-surgical treatment for periodontal disease using exclusively hand instruments, exclusively ultrasonic instruments or a combination approach. Differences in time efficiency and equipment use with each treatment method were evaluated.Methods In total, 55 patients with periodontitis were treated across two studies (randomised controlled trial and cohort study) with non-surgical periodontal therapy using hand instruments (HI), ultrasonic instruments (UI) or a combination approach (CI). All patients were re-evaluated 90 days after treatment. Clinical parameters, time taken and financial implications of non-surgical periodontal therapy were explored with a descriptive analysis within this post hoc analysis.Results There were no clinically relevant differences in clinical parameters across all groups at day 90. Inter-group comparisons showed no clinically relevant differences in treatment outcome between groups. UI required less time on average to complete treatment compared to HI. UI provided using a half mouth approach had fewest overall episodes of expenditure and lowest maintenance costs.Conclusions Comparison of clinical outcomes between HI, UI and CI yielded no clinically relevant differences. When comparing HI and UI, UI had a shorter treatment time on average. Full mouth treatment was associated with the least patient visits. UI was least costly on a recurring basis.
Collapse
Affiliation(s)
- Michael Paterson
- Oral Sciences, Glasgow Dental Hospital and School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.
| | - William Johnston
- Oral Sciences, Glasgow Dental Hospital and School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Andrea Sherriff
- Community Oral Health, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Shauna Culshaw
- Oral Sciences, Glasgow Dental Hospital and School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
146
|
Cai R, Wang L, Zhang W, Liu B, Wu Y, Pang J, Ma C. The role of extracellular vesicles in periodontitis: pathogenesis, diagnosis, and therapy. Front Immunol 2023; 14:1151322. [PMID: 37114060 PMCID: PMC10126335 DOI: 10.3389/fimmu.2023.1151322] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Periodontitis is a prevalent disease and one of the leading causes of tooth loss. Biofilms are initiating factor of periodontitis, which can destroy periodontal tissue by producing virulence factors. The overactivated host immune response is the primary cause of periodontitis. The clinical examination of periodontal tissues and the patient's medical history are the mainstays of periodontitis diagnosis. However, there is a lack of molecular biomarkers that can be used to identify and predict periodontitis activity precisely. Non-surgical and surgical treatments are currently available for periodontitis, although both have drawbacks. In clinical practice, achieving the ideal therapeutic effect remains a challenge. Studies have revealed that bacteria produce extracellular vesicles (EVs) to export virulence proteins to host cells. Meanwhile, periodontal tissue cells and immune cells produce EVs that have pro- or anti-inflammatory effects. Accordingly, EVs play a critical role in the pathogenesis of periodontitis. Recent studies have also presented that the content and composition of EVs in saliva and gingival crevicular fluid (GCF) can serve as possible periodontitis diagnostic indicators. In addition, studies have indicated that stem cell EVs may encourage periodontal regeneration. In this article, we mainly review the role of EVs in the pathogenesis of periodontitis and discuss their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Rong Cai
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Bing Liu
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jianliang Pang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| | - Chufan Ma
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| |
Collapse
|
147
|
Dong T, Lin WZ, Zhu XH, Yuan KY, Hou LL, Huang ZW. Osteomodulin protects dental pulp stem cells from cisplatin-induced apoptosis in vitro. Stem Cell Rev Rep 2023; 19:188-200. [PMID: 35781607 DOI: 10.1007/s12015-022-10399-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 01/29/2023]
Abstract
Human dental pulp stem cells (hDPSCs) are considered promising multipotent cell sources for tissue regeneration. Regulation of apoptosis and maintaining the cell homeostasis is a critical point for the application of hDPSCs. Osteomodulin (OMD), a member of the small leucine-rich proteoglycan family, was proved an important regulatory protein of hDPSCs in our previous research. Thus, the role of OMD in the apoptosis of hDPSCs was explored in this study. The expression of OMD following apoptotic induction was investigated and then the hDPSCs stably overexpressing or knocking down OMD were established by lentiviral transfection. The proportion of apoptotic cells and apoptosis-relative genes and proteins were examined with flow cytometry, Hoechst staining, Caspase 3 activity assay, qRT-PCR and western blotting. RNA-Seq analysis was used to explore possible biological function and mechanism. Results showed that the expression of OMD decreased following the apoptotic induction. Overexpression of OMD enhanced the viability of hDPSCs, decreased the activity of Caspase-3 and protected hDPSCs from apoptosis. Knockdown of OMD showed the opposite results. Mechanistically, OMD may act as a negative modulator of apoptosis via activation of the Akt/Glycogen synthase kinase 3β (GSK-3β)/β-Catenin signaling pathway and more functional and mechanistic possibilities were revealed with RNA-Seq analysis. The present study provided evidence of OMD as a negative regulator of apoptosis in hDPSCs. Akt/GSK-3β/β-Catenin signaling pathway was involved in this process and more possible mechanism detected needed further exploration. This anti-apoptotic function of OMD provided a promising application prospect for hDPSCs in tissue regeneration.
Collapse
Affiliation(s)
- Ting Dong
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wen-Zhen Lin
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiao-Han Zhu
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ke-Yong Yuan
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Li-Li Hou
- Department of Nursing, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Zheng-Wei Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
148
|
Roslund K, Uosukainen M, Järvik K, Hartonen K, Lehto M, Pussinen P, Groop PH, Metsälä M. Antibiotic treatment and supplemental hemin availability affect the volatile organic compounds produced by P. gingivalis in vitro. Sci Rep 2022; 12:22534. [PMID: 36581644 PMCID: PMC9800405 DOI: 10.1038/s41598-022-26497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022] Open
Abstract
We have measured the changes in the production of volatile organic compounds (VOCs) by the oral pathogen Porphyromonas gingivalis, when treated in vitro with the antibiotic amoxicillin. We have also measured the VOC production of P. gingivalis grown in the presence and absence of supplemental hemin. Planktonic bacterial cultures were treated with different amounts of amoxicillin in the lag phase of the bacterial growth. Planktonic bacteria were also cultured with and without supplemental hemin in the culture medium. Concentrations of VOCs were measured with proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) and further molecular identification was done with gas chromatography-mass spectrometry (GC-MS) using solid phase microextraction (SPME) for sampling. The cell growth of P. gingivalis in the cultures was estimated with optical density measurements at the wavelength of 600 nm (OD600). We found that the production of methanethiol, hydrogen sulfide and several short- to medium-chain fatty acids was decreased with antibiotic treatment using amoxicillin. Compounds found to increase with the antibiotic treatment were butyric acid and indole. In cultures without supplemental hemin, indole and short- to medium-chain fatty acid production was significantly reduced. Acetic acid production was found to increase when supplemental hemin was not available. Our results suggest that the metabolic effects of both antibiotic treatment and supplemental hemin availability are reflected in the VOCs produced by P. gingivalis and could be used as markers for bacterial cell growth and response to threat. Analysis of these volatiles from human samples, such as the exhaled breath, could be used in the future to rapidly monitor response to antibacterial treatment.
Collapse
Affiliation(s)
- Kajsa Roslund
- grid.7737.40000 0004 0410 2071Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Moona Uosukainen
- grid.7737.40000 0004 0410 2071Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Katriin Järvik
- grid.7737.40000 0004 0410 2071Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Kari Hartonen
- grid.7737.40000 0004 0410 2071Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Markku Lehto
- grid.7737.40000 0004 0410 2071Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Clinical and Molecular Metabolism, Faculty of Medicine Research Programs, University of Helsinki, Helsinki, Finland
| | - Pirkko Pussinen
- grid.7737.40000 0004 0410 2071Oral and Maxillofacial Diseases, Helsinki University Hospital, University of Helsinki, Helsinki, Finland ,grid.9668.10000 0001 0726 2490Institute of Dentistry, University of Eastern Finland, Kuopio, Finland
| | - Per-Henrik Groop
- grid.7737.40000 0004 0410 2071Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland ,grid.7737.40000 0004 0410 2071Clinical and Molecular Metabolism, Faculty of Medicine Research Programs, University of Helsinki, Helsinki, Finland ,grid.1002.30000 0004 1936 7857Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC Australia
| | - Markus Metsälä
- grid.7737.40000 0004 0410 2071Department of Chemistry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
149
|
Yu W, Hu S, Yang R, Lin L, Mao C, Jin M, Gu Y, Li G, Jiang B, Gong Y, Lu E. Upregulated Vanins and their potential contribution to periodontitis. BMC Oral Health 2022; 22:614. [PMID: 36527111 PMCID: PMC9758802 DOI: 10.1186/s12903-022-02583-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although Vanins are closely related to neutrophil regulation and response to oxidative stress, and play essential roles in inflammatory diseases with clinical significance, their contribution to periodontitis remains to be determined. This research was designed to assess the expression of Vanins in human gingiva, and to define the relationship between Vanins and periodontitis. METHODS Forty-eight patients with periodontitis and forty-two periodontal healthy individuals were enrolled for gingival tissue sample collection. Expression levels of VNN1, VNN2 and VNN3 were evaluated by RT-qPCR and validated in datasets GSE10334 and GSE16134. Western blot and immunohistochemistry identified specific proteins within gingiva. The histopathological changes in gingival sections were investigated using HE staining. Correlations between Vanins and clinical parameters, PD and CAL; between Vanins and inflammation, IL1B; and between Vanins and MPO in periodontitis were investigated by Spearman's correlation analysis respectively. Associations between VNN2 and indicators of neutrophil adherence and migration were further validated in two datasets. RESULTS Vanins were at higher concentrations in diseased gingival tissues in both RT-qPCR and dataset analysis (p < 0.01). Assessment using western blot and immunohistochemistry presented significant upregulations of VNN1 and VNN2 in periodontitis (p < 0.05). The higher expression levels of Vanins, the larger the observed periodontal parameters PD and CAL (p < 0.05), and IL1B (p < 0.001). Moreover, positive correlations existed between VNN2 and MPO, and between VNN2 and neutrophil-related indicators. CONCLUSION Our study demonstrated upregulation of Vanins in periodontitis and the potential contribution of VNN2 to periodontitis through neutrophils-related pathological processes.
Collapse
Affiliation(s)
- Weijun Yu
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Shucheng Hu
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Ruhan Yang
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Lu Lin
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Chuanyuan Mao
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Min Jin
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Yuting Gu
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Guanglong Li
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Bin Jiang
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Yuhua Gong
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Eryi Lu
- grid.16821.3c0000 0004 0368 8293Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| |
Collapse
|
150
|
Li Q, Luo K, Su Z, Huang F, Wu Y, Zhou F, Li Y, Peng X, Li J, Ren B. Dental calculus: A repository of bioinformation indicating diseases and human evolution. Front Cell Infect Microbiol 2022; 12:1035324. [PMID: 36579339 PMCID: PMC9791188 DOI: 10.3389/fcimb.2022.1035324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
Dental calculus has long been considered as a vital contributing factor of periodontal diseases. Our review focuses on the role of dental calculus as a repository and discusses the bioinformation recently reported to be concealed in dental calculus from three perspectives: time-varying oral condition, systemic diseases, and anthropology at various times. Molecular information representing an individual's contemporary oral health status could be detected in dental calculus. Additionally, pathogenic factors of systemic diseases were found in dental calculus, including bacteria, viruses and toxic heavy metals. Thus, dental calculus has been proposed to play a role as biological data storage for detection of molecular markers of latent health concerns. Through the study of environmental debris in dental calculus, an overview of an individual's historical dietary habits and information about the environment, individual behaviors and social culture changes can be unveiled. This review summarizes a new role of dental calculus as a repository of bioinformation, with potential use in the prediction of oral diseases, systemic diseases, and even anthropology.
Collapse
Affiliation(s)
- Qinyang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kaihua Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhifei Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangting Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yajie Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangjie Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China,*Correspondence: Jiyao Li, ; Biao Ren,
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China,*Correspondence: Jiyao Li, ; Biao Ren,
| |
Collapse
|