101
|
MRI-Based Radiotherapy Planning to Reduce Rectal Dose in Excess of Tolerance. Prostate Cancer 2022; 2022:7930744. [PMID: 35154830 PMCID: PMC8831048 DOI: 10.1155/2022/7930744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022] Open
Abstract
Materials and Methods This prospective single-arm study enrolled 15 men treated with IG-IMRT for localized prostate cancer. All participants received a dedicated 3 Tesla MRI examination of the prostate in addition to a pelvic CT examination for treatment planning. Two volumetric modulated arc therapy (VMAT) plans with a prescription dose of 79.2 Gy were designed using identical constraints based on CT- and MRI-defined consensus volumes. The volume of rectum exposed to 70 Gy or more was compared using the Wilcoxon paired signed rank test. Results For CT-based treatment plans, the median volume of rectum receiving 70 Gy or more was 9.3 cubic centimeters (cc) (IQR 7.0 to 10.2) compared with 4.9 cc (IQR 4.1 to 7.8) for MRI-based plans. This resulted in a median volume reduction of 2.1 cc (IQR 0.5 to 5.3, P < .001). Conclusions Using MRI to plan prostate IG-IMRT to a dose of 79.2 Gy reduces the volume of rectum receiving radiation dose in excess of tolerance (70 Gy or more) and should be considered in men who are at high risk for late rectal toxicity and are not good candidates for other rectal sparing techniques such as hydrogel spacer. This trial is registered with NCT02470910.
Collapse
|
102
|
Du QH, Li J, Gan YX, Zhu HJ, Yue HY, Li XD, Ou X, Zhong QL, Luo DJ, Xie YT, Liang QF, Wang RS, Liu WQ. Potential Defects and Improvements of Equivalent Uniform Dose Prediction Model Based on the Analysis of Radiation-Induced Brain Injury. Front Oncol 2022; 11:743941. [PMID: 35087743 PMCID: PMC8786722 DOI: 10.3389/fonc.2021.743941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To study the impact of dose distribution on volume-effect parameter and predictive ability of equivalent uniform dose (EUD) model, and to explore the improvements. METHODS AND MATERIALS The brains of 103 nasopharyngeal carcinoma patients treated with IMRT were segmented according to dose distribution (brain and left/right half-brain for similar distributions but different sizes; V D with different D for different distributions). Predictive ability of EUDV D (EUD of V D ) for radiation-induced brain injury was assessed by receiver operating characteristics curve (ROC) and area under the curve (AUC). The optimal volume-effect parameter a of EUD was selected when AUC was maximal (mAUC). Correlations between mAUC, a and D were analyzed by Pearson correlation analysis. Both mAUC and a in brain and half-brain were compared by using paired samples t-tests. The optimal D V and V D points were selected for a simple comparison. RESULTS The mAUC of brain/half-brain EUD was 0.819/0.821 and the optimal a value was 21.5/22. When D increased, mAUC of EUDV D increased, while a decreased. The mAUC reached the maximum value when D was 50-55 Gy, and a was always 1 when D ≥55 Gy. The difference of mAUC/a between brain and half-brain was not significant. If a was in range of 1 to 22, AUC of brain/half-brain EUDV55 Gy (0.857-0.830/0.845-0.830) was always larger than that of brain/half-brain EUD (0.681-0.819/0.691-0.821). The AUCs of optimal dose/volume points were 0.801 (brain D2.5 cc), 0.823 (brain V70 Gy), 0.818 (half-brain D1 cc), and 0.827 (half-brain V69 Gy), respectively. Mean dose (equal to EUDV D with a = 1) of high-dose volume (V50 Gy-V60 Gy) was superior to traditional EUD and dose/volume points. CONCLUSION Volume-effect parameter of EUD is variable and related to dose distribution. EUD with large low-dose volume may not be better than simple dose/volume points. Critical-dose-volume EUD could improve the predictive ability and has an invariant volume-effect parameter. Mean dose may be the case in which critical-dose-volume EUD has the best predictive ability.
Collapse
Affiliation(s)
- Qing-Hua Du
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jian Li
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi-Xiu Gan
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hui-Jun Zhu
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hai-Ying Yue
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiang-De Li
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Ou
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiu-Lu Zhong
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan-Jing Luo
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi-Ting Xie
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qian-Fu Liang
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ren-Sheng Wang
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wen-Qi Liu
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
103
|
Jung S, Kim JI, Park JM, Shin KH, Kim JH, Choi CH. Comparison of treatment plans between static jaw and jaw tracking techniques in postmastectomy intensity-modulated radiation therapy. Phys Eng Sci Med 2022; 45:181-187. [PMID: 35041187 DOI: 10.1007/s13246-022-01100-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022]
Abstract
This study reports a dosimetric comparison between treatment plans using static jaw and jaw tracking techniques in intensity-modulated radiation therapy (IMRT) for postmastectomy radiation therapy (PMRT). Seventeen patients treated for left-sided breast cancer with implant-based reconstruction were subjected to IMRT plans. Another group of 22 patients treated for left-sided breast cancer without reconstruction was also subjected to IMRT plans. The plans were generated using the Eclipse treatment planning system with static jaw and jaw tracking techniques. The dose-volume histograms and dosimetric indices, such as mean dose (Dmean), V20 Gy, V10 Gy, and V5 Gy (volumes receiving 20, 10, and 5 Gy at the least, respectively), and generalized equivalent uniform dose for organs at risk (OARs) were analyzed. A significant difference in the value of the dosimetric indices between the static jaw and jaw tracking plans was observed. For jaw tracking plans, the Dmean of the heart for the patients with implant-based reconstruction reduced from 11.6 ± 1.1 Gy to 10.0 ± 1.8 Gy, whereas the V5 Gy reduced from 92.0 ± 4.5% to 85.1 ± 8.4%. The Dmean of the heart for patients without reconstruction reduced from 11.0 ± 2.3 Gy to 9.8 ± 2.6 Gy, whereas the V5 Gy reduced from 81.4 ± 13.6% to 66.7 ± 17.4%. The dosimetric indices of OARs in the jaw tracking plans were significantly lower than those of the OARs in the static jaw plans. The jaw tracking technique was more effective for patients without reconstruction than for those with implant-based reconstruction.
Collapse
Affiliation(s)
- Seongmoon Jung
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea
| | - Jung-In Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea
| | - Jong Min Park
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea.,Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Kyung Hwan Shin
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jin Ho Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Chang Heon Choi
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, 03080, Republic of Korea. .,Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Republic of Korea. .,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea.
| |
Collapse
|
104
|
Sarnelli A, Negrini M, Mezzenga E, Feliciani G, D'Arienzo M, Amato A, Paganelli G. Modelling a new approach for radio-ablation after resection of breast ductal carcinoma in-situ based on the BAT-90 medical device. Sci Rep 2022; 12:14. [PMID: 34996956 PMCID: PMC8741759 DOI: 10.1038/s41598-021-03807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/03/2021] [Indexed: 11/28/2022] Open
Abstract
The majority of local recurrences, after conservative surgery of breast cancer, occurs in the same anatomical area where the tumour was originally located. For the treatment of ductal carcinoma in situ (DCIS), a new medical device, named BAT-90, (BetaGlue Technologies SpA) has been proposed. BAT-90 is based on the administration of 90Y β-emitting microspheres, embedded in a bio-compatible matrix. In this work, the Geant4 simulation toolkit is used to simulate BAT-90 as a homogenous cylindrical 90Y layer placed in the middle of a bulk material. The activity needed to deliver a 20 Gy isodose at a given distance z from the BAT-90 layer is calculated for different device thicknesses, tumour bed sizes and for water and adipose bulk materials. A radiobiological analysis has been performed using both the Poisson and logistic Tumour Control Probability (TCP) models. A range of radiobiological parameters (α and β), target sizes, and densities of tumour cells were considered. Increasing α values, TCP increases too, while, for a fixed α value, TCP decreases as a function of clonogenic cell density. The models predict very solid results in case of limited tumour burden while the activity/dose ratio could be further optimized in case of larger tumour beds.
Collapse
Affiliation(s)
- Anna Sarnelli
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, FC, Italy.
| | - Matteo Negrini
- Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, 40126, Bologna, Italy
| | - Emilio Mezzenga
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giacomo Feliciani
- Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| | - Marco D'Arienzo
- Medical Physics Unit, ASL Roma 6, Via Borgo Garibaldi 12, 00041, Albano Laziale, RM, Italy
| | - Antonino Amato
- BetaGlue Technologies Spa, Lungadige Galtarossa 21, 37133, Verona, Italy
| | - Giovanni Paganelli
- Nuclear Medicine Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST), Dino Amadori", Via P. Maroncelli 40, 47014, Meldola, FC, Italy
| |
Collapse
|
105
|
Comparing Multi-Objective Local Search Algorithms for the Beam Angle Selection Problem. MATHEMATICS 2022. [DOI: 10.3390/math10010159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In intensity-modulated radiation therapy, treatment planners aim to irradiate the tumour according to a medical prescription while sparing surrounding organs at risk as much as possible. Although this problem is inherently a multi-objective optimisation (MO) problem, most of the models in the literature are single-objective ones. For this reason, a large number of single-objective algorithms have been proposed in the literature to solve such single-objective models rather than multi-objective ones. Further, a difficulty that one has to face when solving the MO version of the problem is that the algorithms take too long before converging to a set of (approximately) non-dominated points. In this paper, we propose and compare three different strategies, namely random PLS (rPLS), judgement-function-guided PLS (jPLS) and neighbour-first PLS (nPLS), to accelerate a previously proposed Pareto local search (PLS) algorithm to solve the beam angle selection problem in IMRT. A distinctive feature of these strategies when compared to the PLS algorithms in the literature is that they do not evaluate their entire neighbourhood before performing the dominance analysis. The rPLS algorithm randomly chooses the next non-dominated solution in the archive and it is used as a baseline for the other implemented algorithms. The jPLS algorithm first chooses the non-dominated solution in the archive that has the best objective function value. Finally, the nPLS algorithm first chooses the solutions that are within the neighbourhood of the current solution. All these strategies prevent us from evaluating a large set of BACs, without any major impairment in the obtained solutions’ quality. We apply our algorithms to a prostate case and compare the obtained results to those obtained by the PLS from the literature. The results show that algorithms proposed in this paper reach a similar performance than PLS and require fewer function evaluations.
Collapse
|
106
|
Mandal A, Patel G, Bharati A, Choudhary S, Mishra R, Mourya A. Development and validation of an indigenous, radiobiological model-based tumor control probability and normal tissue complication probability estimation software for routine plan evaluation in clinics. J Cancer Res Ther 2022; 18:1697-1705. [DOI: 10.4103/jcrt.jcrt_330_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
107
|
Zhang X, Griffin RJ, Galhardo EP, Penagaricano J. Feasibility Study of 3D-VMAT-Based GRID Therapy. Technol Cancer Res Treat 2022; 21:15330338221086420. [PMID: 35289202 DOI: 10.1177/15330338221086420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Spatially fractionated radiotherapy (GRID) could effectively de-bulk tumor volumes for shallow and deep-seated locally advanced tumors. A new treatment planning method using the three-dimensional-volumetric modulated arc therapy (VMAT) technique combined with a novel, software-generated, virtual GRID block (VGB) was developed which allows better conformity plans (VMAT-GRID) and maintain the GRID dosimetric characteristics. The dosimetric metrics calculated via the valley/peak ratio (Dmin/Dmax), D90/D10, gross tumor volume (GTV) mean dose (Dmean), GTV equivalent uniform dose (EUD), and normal tissue maximum dose. Methods: Twenty-five patients with tumor volumes ranging between 71.6 cc and 4683 cc at various tumor sites were retrospectively studied. The prescription was 20 Gy to the maximum point of GTV in a single fraction, and the VMAT-GRID plan was generated using 6 MV/10 MV flattening-filter-free beams. Results: The optimized VGB was designed with the median center-to-center distance of 27 mm, and 9 mm for the median diameter of the opening area in this study. These 2 values can be used to design any optimized VGB, the final VGB may be modified to generate a patient-specific VGB. The median GTV mean dose was 918 (877- 938) cGy, and the median GTV EUD dose was 818 (597-916) cGy. In terms of dose inhomogeneity, the median valley-to-peak dose ratio was 0.07 (0.02-0.26); and the median ratio of D90/D10 was 0.70 (0.38-0.94). For the organ-at-risk doses, there was a rapid dose drop-off in the normal tissue area immediately adjacent to the target, and the maximum global doses were all located inside the GTV. Conclusion: Our results indicated that the VMAT-GRID planning approach could successfully deliver dose with acceptable GRID dose metric while sparing the normal tissue especially in the region near the target due to the rapid dose drop-off and restricting maximum dose inside the target.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Radiation Oncology, Boston Medical Center, 1836Boston University School of Medicine, Boston, MA, USA.,Department of Radiation Oncology, 12215University of Arkansas for Medical Science, Little Rock, AR, USA
| | - Robert J Griffin
- Department of Radiation Oncology, 12215University of Arkansas for Medical Science, Little Rock, AR, USA
| | - Edvaldo P Galhardo
- Department of Radiation Oncology, 12215University of Arkansas for Medical Science, Little Rock, AR, USA.,Department of Radiation Oncology, Genesis Care, Bradenton, FL, USA
| | - Jose Penagaricano
- Department of Radiation Oncology, 12215University of Arkansas for Medical Science, Little Rock, AR, USA.,Department of Radiation Oncology, 25301Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
108
|
Saini S, Patnaikuni S, Chandola R, Chandrakar P, Chaudhary V. Normal tissue risk estimation using biological knowledge-based fuzzy logic in volumetric modulated Arc therapy of prostate cancer: Rectum. J Med Phys 2022; 47:126-135. [PMID: 36212203 PMCID: PMC9543004 DOI: 10.4103/jmp.jmp_91_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022] Open
Abstract
Objective: Most radiotherapy patients with prostate cancer are treated with volumetric modulated arc therapy (VMAT). Advantages of VMAT may be limited by daily treatment uncertainties such as setup errors, internal organ motion, and deformation. The position and shape of prostate target as well as normal organ, i.e., rectum volume around the target, may change during the course of treatment. The aim of the present work is to estimate rectal toxicity estimation using a novel two-level biological knowledge-based fuzzy logic method. Both prostate and rectal internal motions as well as setup uncertainties are considered without compromising target dose distribution in the present study. Materials and Methods: The Mamdani-type fuzzy logic framework was considered in two levels. The prostate target volume changes from minimum to maximum during the course of treatment. In the first level, the fuzzy logic was applied for determining biological acceptable target margin using tumor control probability and normal tissue complication probability (NTCP) parameters based on prostate target motion limits, and then, fuzzy margin was derived. The output margin of first-level fuzzy logic was compared to currently used margins. In second-level fuzzy, rectal volume variation with weekly analysis of cone-beam computed tomography (CBCT) was considered. The biological parameter (NTCP) was calculated corresponding to rectal subvolume variation with weekly CBCT image analysis. Using irradiated volume versus organ risk relationship from treatment planning, the overlapped risk volumes were estimated. Fuzzy rules and membership function were used based on setup errors, asymmetrical nature of organ motion, and limitations of normal tissue toxicity in Mamdani-type Fuzzy Inference System. Results: For total displacement, standard errors of prostate ranging from 0 to 5 mm range were considered in the present study. In the first level, fuzzy planning target volume (PTV) margin was found to be similar or up to 0.5 mm bigger than the conventional margin, but taking the modeling uncertainty into account resulted in a good match between the calculated fuzzy PTV margin and conventional margin formulations under error 0–5 mm standard deviation (SD) range. With application of fuzzy margin obtained from first-level fuzzy, overlapped rectal volumes and corresponding NTCP values were fuzzified in second-level fuzzy using rectal volume variations. The final risk factor (RF) of rectum was qualitatively assessed and found clinically acceptable for each fractional volume of irradiated to total volume and relevant NTCP values. The reason may be at 5 mm SD displacement error range, NTCP values would be within acceptable limit without compromising the tumor dose distribution though the confounding factors such as organ motion, deformation of rectum, and in-house image matching protocols exist. Conclusion: A new approach of two-level fuzzy logic may be suitable to estimate possible organ-at-risk (OAR) toxicity biologically without compromising tumor volume that includes both prostate target and OAR rectum deformation even at displacement standard errors of prostate ranging from 0 to 5 mm range which was considered in the present study. Using proposed simple and fast method, there is an interplay between volume-risk relationship and NTCP of OARs to judge real-time normal organ risk level or alter the treatment margins, particularly concern to individual factors such as comorbidities, genetic predisposition, and other lifestyle choices even at high displacement errors >5 mm SD range.
Collapse
|
109
|
Pu G, Jiang S, Yang Z, Hu Y, Liu Z. Deep reinforcement learning for treatment planning in high-dose-rate cervical brachytherapy. Phys Med 2021; 94:1-7. [PMID: 34959169 DOI: 10.1016/j.ejmp.2021.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/16/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE High-dose-rate (HDR) brachytherapy (BT) is an effective cancer treatment method in which the radiation source is placed within the body. Treatment planning is a critical component for a successful outcome. Almost all currently proposed treatment planning methods are built on stochastic heuristic algorithms, which limits the generation of higher quality plans. This study proposed a novel treatment planning method to adjust dwell times in a human-like fashion to improve the quality of the plan. METHODS We built an intelligent treatment planner network (ITPN) based on deep reinforcement learning (DRL). The network architecture of ITPN is Dueling Double-Deep Q Network. The state is the dwell time of each dwell position and the action is which dwell time to adjust and how to adjust it. A hybrid equivalent uniform dose objective function was established and assigned corresponding rewards according to its changes. Experience replay was performed with the epsilon greedy algorithm and SumTree data structure. RESULTS In the evaluation of ITPN using 20 patient cases, D90, D100 and V100 showed no significant difference compared with inverse planning simulated annealing (IPSA) optimization. However, D2cc of bladder, rectum and sigmoid, V150 and V200 were significant reduced, and homogeneity index and conformity index were significantly increased. CONCLUSION The proposed ITPN was able to generate higher quality plans based on the learned dwell time adjustment policy than IPSA. This is the first artificial intelligence system that can directly determine the dwell times of HDR BT, which demonstrated the potential feasibility of solving optimization problems via DRL.
Collapse
Affiliation(s)
- Gang Pu
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China.
| | - Shan Jiang
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China.
| | - Zhiyong Yang
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China.
| | - Yuanjing Hu
- Department of Gynecologic Oncology, Tianjin Central Hospital of Genecology and Obstetrics & Affiliated Hospital of Nankai University, Tianjin 300199, China
| | - Ziqi Liu
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
110
|
Sud S, Botticello T, Niemierko A, Daly J, Bussiere M, Shih HA. Dosimetric Comparison of Proton Versus Photon Radiosurgery for Treatment of Pituitary Adenoma. Adv Radiat Oncol 2021; 6:100806. [PMID: 34934865 PMCID: PMC8655425 DOI: 10.1016/j.adro.2021.100806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
Purpose To compare the dosimetric differences in stereotactic radiosurgery between use of passively scattered protons (PSRS) versus photons (XSRS) for pituitary adenomas. Methods and Materials Nine patients with pituitary adenomas were selected among patients receiving single-fraction proton stereotactic radiosurgery (PSRS) between 2016 and 2017. These cases were replanned with XSRS using volumetric-modulated arc therapy with 2.5 mm and 5 mm multileaf collimators (2.5XSRS and 5XSRS, respectively). PSRS was planned with a dedicated single scattering stereotactic proton unit delivered via 3 equally or unequally weighted isocentric fields. XSRS plans were created with optimization to spare organs at risk. Plans were generated using the original total treatment dose delivered in 1 fraction. Results Plans were evaluated for target volume dosimetry and estimated clinical toxicity. There was no significant difference in clinical target volume V100%, V95%, V90% or homogeneity index between treatment modalities. PSRS offered lower maximum dose (Dmax) to organs at risk and equivalent uniform dose (EUD) compared with 5XSRS and 2.5XSRS, respectively, for critical structures including optic nerve (right, Dmax 4.18, 5.32, 5.41; EUD 3.35, 4.08, 4.20) and hypothalamus (Dmax 1.71, 3.94, 3.77; EUD 0.94, 2.47, 2.39; P < .05 for PSRS vs 5XSRS and 2.5XSRS). The projected risk of secondary tumors in excess of baseline was lowest for PSRS plans (PSRS 5.28, 5XSRS 12.93, 2.5XSRS 12.66 cases per 10,000 patient-years; P = .008 for PSRS vs 5XSRS, PSRS vs 2.5XSRS, and P = .77 for 5XSRS vs 2.5XSRS). Conclusions We demonstrate that neither modality has empirically superior dosimetry and identify potential clinical advantages as well as limitations of each technique. PSRS, 5XSRS and 2.5XSRS demonstrate comparable target volume dosimetry for pituitary adenoma. PSRS compared with XSRS modalities offers modestly decreased maximum dose and EUD to critical proximal structures and decreases risk of radiation-induced secondary tumors by more than half.
Collapse
Affiliation(s)
- Shivani Sud
- Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, North Carolina
| | - Thomas Botticello
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Andrzej Niemierko
- Division of Biostatistics, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jillian Daly
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Marc Bussiere
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
- Corresponding author: Helen A. Shih MD, MS, MPH.
| |
Collapse
|
111
|
Capala J, Graves SA, Scott A, Sgouros G, James SS, Zanzonico P, Zimmerman BE. Dosimetry for Radiopharmaceutical Therapy: Current Practices and Commercial Resources. J Nucl Med 2021; 62:3S-11S. [PMID: 34857621 DOI: 10.2967/jnumed.121.262749] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
With the ongoing dramatic growth of radiopharmaceutical therapy, research and development in internal radiation dosimetry continue to advance both at academic medical centers and in industry. The basic paradigm for patient-specific dosimetry includes administration of a pretreatment tracer activity of the therapeutic radiopharmaceutical; measurement of its time-dependent biodistribution; definition of the pertinent anatomy; integration of the measured time-activity data to derive source-region time-integrated activities; calculation of the tumor, organ-at-risk, and/or whole-body absorbed doses; and prescription of the therapeutic administered activity. This paper provides an overview of the state of the art of patient-specific dosimetry for radiopharmaceutical therapy, including current methods and commercially available software and other resources.
Collapse
Affiliation(s)
| | | | - Aaron Scott
- Johns Hopkins University, Baltimore, Maryland
| | | | | | - Pat Zanzonico
- Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Brian E Zimmerman
- National Institute of Standards and Technology, Gaithersburg, Maryland
| |
Collapse
|
112
|
Schmidt MC, Pryser EA, Baumann BC, Yaqoub MM, Raman CA, Szentivanyi P, Michalski JM, Gay HA, Knutson NC, Hugo G, Sajo E, Zygmanski P, Mazur T, Dise J, Cammin J, Laugeman E, Reynoso FJ. Development and Implementation of an Open Source Template Interpretation Class Library for Automated Treatment Planning. Pract Radiat Oncol 2021; 12:e153-e160. [PMID: 34839048 DOI: 10.1016/j.prro.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE Widespread implementation of automated treatment planning in radiation therapy remains elusive due to variability in clinic and physician preferences making it difficult to ensure consistent plan parameters. We have developed an open-source class library with the aim to improve efficiency and consistency for automated treatment planning in radiation therapy. METHODS AND MATERIALS An open source class library has been developed that interprets clinical templates within a commercial treatment planning system into a treatment plan for automated planning. This code was leveraged for the automated planning of 39 patients and retrospectively compared to the 78 clinically approved manual plans. RESULTS From the initial 39 patients, 74 of 78 plans were successfully generated without manual intervention. Target dose was more homogenous for automated plans, with an average homogeneity index of 3.30 vs 3.11 for manual and automated plans, respectively (p = 0.107). Generalized equivalent uniform dose decreased in the femurs and rectum for automated plans, with mean gEUD of 3746 cGy vs 3338 cGy (p ≤ 0.001) and 5761 cGy vs 5634 cGy (p ≤ 0.001) for femurs and rectum, respectively. Dose metrics for bladder and rectum (V6500 cGy and V4000 cGy) show recognizable but insignificant improvements. All automated plans delivered for quality assurance passed a gamma analysis (>95%) with an average composite pass rate of 99.3% and 98.8% for pelvis and prostate plans, respectively. Deliverability parameters such as total monitor units and aperture complexity indicate deliverable plans. CONCLUSIONS Prostate cancer and pelvic node radiotherapy can be automated using VMAT planning and clinical templates based on a standardized clinical workflow. The class library developed in this study conveniently interfaces between the plan template and the treatment planning system to automatically generate high quality plans on customizable templates.
Collapse
Affiliation(s)
- Matthew C Schmidt
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri; Department of Physics, University of Massachusetts Lowell, Lowell, Massachusetts.
| | - Eleanor A Pryser
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Brian C Baumann
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Mahmoud M Yaqoub
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Caleb A Raman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Jeff M Michalski
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Hiram A Gay
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Nels C Knutson
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Geoffrey Hugo
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Erno Sajo
- Department of Physics, University of Massachusetts Lowell, Lowell, Massachusetts
| | - Piotr Zygmanski
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thomas Mazur
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph Dise
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Jochen Cammin
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Eric Laugeman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Francisco J Reynoso
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
113
|
Ten Eikelder SCM, Ajdari A, Bortfeld T, den Hertog D. Conic formulation of fluence map optimization problems. Phys Med Biol 2021; 66. [PMID: 34587600 DOI: 10.1088/1361-6560/ac2b82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/29/2021] [Indexed: 11/11/2022]
Abstract
The convexity of objectives and constraints in fluence map optimization (FMO) for radiation therapy has been extensively studied. Next to convexity, there is another important characteristic of optimization functions and problems, which has thus far not been considered in FMO literature: conic representation. Optimization problems that are conically representable using quadratic, exponential and power cones are solvable with advanced primal-dual interior-point algorithms. These algorithms guarantee an optimal solution in polynomial time and have good performance in practice. In this paper, we construct conic representations for most FMO objectives and constraints. This paper is the first that shows that FMO problems containing multiple biological evaluation criteria can be solved in polynomial time. For fractionation-corrected functions for which no exact conic reformulation is found, we provide an accurate approximation that is conically representable. We present numerical results on the TROTS data set, which demonstrate very stable numerical performance for solving FMO problems in conic form. With ongoing research in the optimization community, improvements in speed can be expected, which makes conic optimization a promising alternative for solving FMO problems.
Collapse
Affiliation(s)
- S C M Ten Eikelder
- Department of Econometrics and Operations Research, Tilburg University, The Netherlands
| | - A Ajdari
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - T Bortfeld
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - D den Hertog
- Department of Operations Management, University of Amsterdam, The Netherlands
| |
Collapse
|
114
|
Cahoon P, Giacometti V, Casey F, Russell E, McGarry C, Prise KM, McMahon SJ. Investigating spatial fractionation and radiation induced bystander effects: a mathematical modelling approach. Phys Med Biol 2021; 66. [PMID: 34666318 DOI: 10.1088/1361-6560/ac3119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/19/2021] [Indexed: 11/12/2022]
Abstract
Radiation induced bystander effects (RIBEs) have been shown to cause death in cells receiving little or no physical dose. In standard radiotherapy, where uniform fields are delivered and all cells are directly exposed to radiation, this phenomenon can be neglected. However, the role of RIBEs may become more influential when heterogeneous fields are considered. Mathematical modelling can be used to determine how these heterogeneous fields might influence cell survival, but most established techniques account only for the direct effects of radiation. To gain a full appreciation of how non-uniform fields impact cell survival, it is also necessary to consider the indirect effects of radiation. In this work, we utilise a mathematical model that accounts for both the direct effects of radiation on cells and RIBEs. This model is used to investigate how spatially fractionated radiotherapy plans impact cell survivalin vitro. These predictions were compared to survival in normal and cancerous cells following exposure to spatially fractionated plans using a clinical linac. The model is also used to explore how spatially fractionated radiotherapy will impact tumour controlin vivo. Results suggest that spatially fractionated plans are associated with higher equivalent uniform doses than conventional uniform plans at clinically relevant doses. The model predicted only small changes changes in normal tissue complication probability, compared to the larger protection seen clinically. This contradicts a central paradigm of radiotherapy where uniform fields are assumed to maximise cell kill and may be important for future radiotherapy optimisation.
Collapse
Affiliation(s)
- Paul Cahoon
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Valentina Giacometti
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom.,Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom
| | - Francis Casey
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom.,Nottingham Radiotherapy Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Emily Russell
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Conor McGarry
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom.,Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland, United Kingdom
| | - Kevin M Prise
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Stephen J McMahon
- Patrick G Johnson Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| |
Collapse
|
115
|
Yoshimura T, Nishioka K, Hashimoto T, Seki K, Kogame S, Tanaka S, Kanehira T, Tamura M, Takao S, Matsuura T, Kobashi K, Kato F, Aoyama H, Shimizu S. A treatment planning study of urethra-sparing intensity-modulated proton therapy for localized prostate cancer. Phys Imaging Radiat Oncol 2021; 20:23-29. [PMID: 34693040 PMCID: PMC8517200 DOI: 10.1016/j.phro.2021.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
US-IMPT can potentially reduce the risk of genitourinary toxicities. The urethral NTCP value in US-IMPT is significantly lower than in the clinical plan. TCP for CTV did not differ significantly between the clinical and US-IMPT plans.
Background and Purpose Urethra-sparing radiation therapy for localized prostate cancer can reduce the risk of radiation-induced genitourinary toxicity by intentionally underdosing the periurethral transitional zone. We aimed to compare the clinical impact of a urethra-sparing intensity-modulated proton therapy (US-IMPT) plan with that of conventional clinical plans without urethral dose reduction. Materials and Methods This study included 13 patients who had undergone proton beam therapy. The prescribed dose was 63 GyE in 21 fractions for 99% of the clinical target volume. To compare the clinical impact of the US-IMPT plan with that of the conventional clinical plan, tumor control probability (TCP) and normal tissue complication probability (NTCP) were calculated with a generalized equivalent uniform dose-based Lyman–Kutcher model using dose volume histograms. The endpoints of these model parameters for the rectum, bladder, and urethra were fistula, contraction, and urethral stricture, respectively. Results The mean NTCP value for the urethra in US-IMPT was significantly lower than that in the conventional clinical plan (0.6% vs. 1.2%, p < 0.05). There were no statistically significant differences between the conventional and US-IMPT plans regarding the mean minimum dose for the urethra with a 3-mm margin, TCP value, and NTCP value for the rectum and bladder. Additionally, the target dose coverage of all plans in the robustness analysis was within the clinically acceptable range. Conclusions Compared with the conventional clinically applied plans, US-IMPT plans have potential clinical advantages and may reduce the risk of genitourinary toxicities, while maintaining the same TCP and NTCP in the rectum and bladder.
Collapse
Affiliation(s)
- Takaaki Yoshimura
- Department of Health Sciences and Technology, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | - Kentaro Nishioka
- Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takayuki Hashimoto
- Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuya Seki
- Division of Radiological Science and Technology, Department of Health Sciences, School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shouki Kogame
- Division of Radiological Science and Technology, Department of Health Sciences, School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sodai Tanaka
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan.,Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Takahiro Kanehira
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | - Masaya Tamura
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | - Seishin Takao
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan.,Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Taeko Matsuura
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan.,Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Keiji Kobashi
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | - Fumi Kato
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Hidefumi Aoyama
- Department of Radiation Oncology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinichi Shimizu
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan.,Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
116
|
Intermittent radiotherapy as alternative treatment for recurrent high grade glioma: a modeling study based on longitudinal tumor measurements. Sci Rep 2021; 11:20219. [PMID: 34642366 PMCID: PMC8511136 DOI: 10.1038/s41598-021-99507-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Abstract
Recurrent high grade glioma patients face a poor prognosis for which no curative treatment option currently exists. In contrast to prescribing high dose hypofractionated stereotactic radiotherapy (HFSRT, [Formula: see text] Gy [Formula: see text] 5 in daily fractions) with debulking intent, we suggest a personalized treatment strategy to improve tumor control by delivering high dose intermittent radiation treatment (iRT, [Formula: see text] Gy [Formula: see text] 1 every 6 weeks). We performed a simulation analysis to compare HFSRT, iRT and iRT plus boost ([Formula: see text] Gy [Formula: see text] 3 in daily fractions at time of progression) based on a mathematical model of tumor growth, radiation response and patient-specific evolution of resistance to additional treatments (pembrolizumab and bevacizumab). Model parameters were fitted from tumor growth curves of 16 patients enrolled in the phase 1 NCT02313272 trial that combined HFSRT with bevacizumab and pembrolizumab. Then, iRT +/- boost treatments were simulated and compared to HFSRT based on time to tumor regrowth. The modeling results demonstrated that iRT + boost(- boost) treatment was equal or superior to HFSRT in 15(11) out of 16 cases and that patients that remained responsive to pembrolizumab and bevacizumab would benefit most from iRT. Time to progression could be prolonged through the application of additional, intermittently delivered fractions. iRT hence provides a promising treatment option for recurrent high grade glioma patients for prospective clinical evaluation.
Collapse
|
117
|
Köthe A, Bizzocchi N, Safai S, Lomax AJ, Weber DC, Fattori G. Investigating the potential of proton therapy for hypoxia-targeted dose escalation in non-small cell lung cancer. Radiat Oncol 2021; 16:199. [PMID: 34635135 PMCID: PMC8507157 DOI: 10.1186/s13014-021-01914-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hypoxia is known to be prevalent in solid tumors such as non-small cell lung cancer (NSCLC) and reportedly correlates with poor prognostic clinical outcome. PET imaging can provide in-vivo hypoxia measurements to support targeted radiotherapy treatment planning. We explore the potential of proton therapy in performing patient-specific dose escalation and compare it with photon volumetric modulated arc therapy (VMAT). METHODS Dose escalation has been calibrated to the patient specific tumor response of ten stage IIb-IIIb NSCLC patients by combining HX4-PET imaging and radiobiological modelling of oxygen enhancement ratio (OER) to target variable tumor hypoxia. In a dose-escalation-by-contour approach, escalated dose levels were simulated to the most hypoxic region of the primary target and its effectiveness in improving loco-regional tumor control was assessed. Furthermore, the impact on normal tissue of proton treatments including dose escalation was evaluated in comparison to the normal tissue complication probability (NTCP) of conventional VMAT plans. RESULTS Ignoring regions of tumor hypoxia can cause overestimation of TCP values by up to 10%, which can effectively be recovered on average to within 0.9% of the nominal TCP, using patient-specific dose escalations of up to 22% of the prescribed dose to PET defined hypoxic regions. Despite such dose escalations, the use of protons could also simultaneously reduce mean doses to the heart (- 14.3 GyRBE), lung (- 8.3 GyRBE), esophagus (- 6.9 GyRBE) and spinal cord (- 3.8 Gy) compared to non-escalated VMAT plans. These reductions are predicted to lead to clinically relevant decreases in NTCP for radiation-induced pneumonitis (- 11.3%), high grade heart toxicity (- 7.4%) and esophagitis (- 7.5%). CONCLUSIONS This study suggests that the administration of proton therapy for dose escalation to patient specific regions of tumor hypoxia in the treatment of NSCLC can mitigate TCP reduction due to hypoxia-induced radio resistance, while simultaneously reducing NTCP levels even when compared to non-escalated treatments delivered with state-of-the-art photon techniques.
Collapse
Affiliation(s)
- Andreas Köthe
- Center for Proton Therapy, Paul Scherrer Institute, 5232, Villigen, Switzerland. .,Department of Physics, ETH-Hönggerberg, Zurich, Switzerland.
| | - Nicola Bizzocchi
- Center for Proton Therapy, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Antony John Lomax
- Center for Proton Therapy, Paul Scherrer Institute, 5232, Villigen, Switzerland.,Department of Physics, ETH-Hönggerberg, Zurich, Switzerland
| | - Damien Charles Weber
- Center for Proton Therapy, Paul Scherrer Institute, 5232, Villigen, Switzerland.,Radiation Oncology Department, Inselspital Universitätsspital Bern, Bern, Switzerland.,Radiation Oncology Department, University Hospital of Zurich, Zurich, Switzerland
| | - Giovanni Fattori
- Center for Proton Therapy, Paul Scherrer Institute, 5232, Villigen, Switzerland
| |
Collapse
|
118
|
Anetai Y, Koike Y, Takegawa H, Nakamura S, Tanigawa N. Evaluation approach for whole dose distribution in clinical cases using spherical projection and spherical harmonics expansion: spherical coefficient tensor and score method. JOURNAL OF RADIATION RESEARCH 2021:rrab081. [PMID: 34590126 DOI: 10.1093/jrr/rrab081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Whole dose distribution results from well-conceived treatment plans including patient-specific (location, size and shape of tumor, etc.) and facility-specific (clinical policy and goal, equipment, etc.) information. To evaluate the whole dose distribution efficiently and effectively, we propose a method to apply spherical projection and real spherical harmonics (SH) expansion, thus leading to the expanded coefficients as a rank-2 tensor, SH coefficient tensor, for every patient-specific dose distribution. To verify the feature of this tensor, we introduce Isomap from the manifold learning method and multi-dimensional scaling (MDS). Subsequently, we obtained the MDS distance representing similarity, η, and the SH score, ζ, which is a Frobenius norm of the SH coefficient tensor. These were then validated in the intensity-modulated radiation therapy (IMRT) data sets of: (i) 375 mixing treated regions, (ii) 135 head and neck (HN), and (iii) 132 prostate cases, respectively. The MDS map indicated that the SH coefficient tensor enabled a quantitative feature extraction of whole dose distributions. In particular, the SH score systematically detected irregular cases as the deviation higher than +1.5 standard deviations (SD) from the average case, which matched up with clinically irregular case that required very complicated dose distributions. In summary, the proposed SH coefficient tensor is a useful representation of the whole dose distribution. The SH score from the SH coefficient tensor is a convenient and simple criterion used to characterize the entire dose distributions, which is not dependent on the data set.
Collapse
Affiliation(s)
- Yusuke Anetai
- Department of Radiology, Kansai Medical University, Shin-machi 2-5-1, Hirakata-shi, Osaka 573-0101, Japan
| | - Yuhei Koike
- Department of Radiology, Kansai Medical University, Shin-machi 2-5-1, Hirakata-shi, Osaka 573-0101, Japan
| | - Hideki Takegawa
- Department of Radiology, Kansai Medical University, Shin-machi 2-5-1, Hirakata-shi, Osaka 573-0101, Japan
| | - Satoaki Nakamura
- Department of Radiology, Kansai Medical University, Shin-machi 2-5-1, Hirakata-shi, Osaka 573-0101, Japan
| | - Noboru Tanigawa
- Department of Radiology, Kansai Medical University, Shin-machi 2-5-1, Hirakata-shi, Osaka 573-0101, Japan
| |
Collapse
|
119
|
Pramanik S, Bera S, Roy S, Ray A, Sarkar S, Majumder D. Dosimetric validation of two different radiobiological models for parotid gland functionality of tongue cancer. PRECISION RADIATION ONCOLOGY 2021. [DOI: 10.1002/pro6.1130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Srimanta Pramanik
- Department of Radiation Oncology Ruby General Hospital E.M. Bypass, Kasba, Golpark Kolkata West Bengal India
| | - Soumen Bera
- Department of Radiation Oncology Ruby General Hospital E.M. Bypass, Kasba, Golpark Kolkata West Bengal India
| | - Sanjoy Roy
- Department of Radiation Oncology Ruby General Hospital E.M. Bypass, Kasba, Golpark Kolkata West Bengal India
| | - Amitabh Ray
- Department of Radiation Oncology Ruby General Hospital E.M. Bypass, Kasba, Golpark Kolkata West Bengal India
| | - Sandip Sarkar
- Department of Radiation Oncology Ruby General Hospital E.M. Bypass, Kasba, Golpark Kolkata West Bengal India
| | - Dipanjan Majumder
- Department of Radiation Oncology Ruby General Hospital E.M. Bypass, Kasba, Golpark Kolkata West Bengal India
| |
Collapse
|
120
|
Fukata K, Kawamura H, Kubo N, Kanai T, Torikoshi M, Nakano T, Tashiro M, Ohno T. Retrospective comparison of rectal toxicity between carbon-ion radiotherapy and intensity-modulated radiation therapy based on treatment plan, normal tissue complication probability model, and clinical outcomes in prostate cancer. Phys Med 2021; 90:6-12. [PMID: 34521017 DOI: 10.1016/j.ejmp.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022] Open
Abstract
This retrospective study assessed the treatment planning data and clinical outcomes for 152 prostate cancer patients: 76 consecutive patients treated by carbon-ion radiation therapy and 76 consequtive patients treated by moderate hypo-fractionated intensity-modulated photon radiation therapy. These two modalities were compared using linear quadratic model equivalent doses in 2 Gy per fraction for rectal or rectal wall dose-volume histogram, 3.6 Gy per fraction-converted rectal dose-volume histogram, normal tissue complication probability model, and actual clinical outcomes. Carbon-ion radiation therapy was predicted to have a lower probability of rectal adverse events than intensity-modulated photon radiation therapy based on dose-volume histograms and normal tissue complication probability model. There was no difference in the clinical outcome of rectal adverse events between the two modalities compared in this study.
Collapse
Affiliation(s)
- Kyohei Fukata
- Cancer Center, School of Medicine, Keio University, Tokyo, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan; Section of Medical Physics and Engineering, Kanagawa Cancer Center, Yokohama, Japan.
| | - Hidemasa Kawamura
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan; Gunma University Heavy Ion Medical Center, Gunma, Japan
| | - Nobuteru Kubo
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Tatsuaki Kanai
- Gunma University Heavy Ion Medical Center, Gunma, Japan; Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Masami Torikoshi
- Gunma University Heavy Ion Medical Center, Gunma, Japan; International Science and Technology Center, Nur-Sultan, Kazakhstan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan; Gunma University Heavy Ion Medical Center, Gunma, Japan; Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan; Gunma University Heavy Ion Medical Center, Gunma, Japan
| |
Collapse
|
121
|
Fukada J, Fukata K, Koike N, Kota R, Shigematsu N. Mean heart dose-based normal tissue complication probability model for pericardial effusion: a study in oesophageal cancer patients. Sci Rep 2021; 11:18166. [PMID: 34518576 PMCID: PMC8437977 DOI: 10.1038/s41598-021-97605-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
We investigated the normal tissue complication probability (NTCP) of the incidence of pericardial effusion (PCE) based on the mean heart dose (MHD) in patients with oesophageal cancer treated with definitive chemoradiotherapy. The incidences of PCE in any grade (A-PCE) and symptomatic PCE (S-PCE) were evaluated separately. To identify predictors for PCE, several clinical and dose-volume parameters were analysed using a receiver operating characteristic (ROC) curve and multivariate regression analysis. To validate its clinical applicability, the generated NTCP model was compared to the Lyman–Kutcher–Burman (LKB) model. Among 229 eligible patients, A-PCE and S-PCE were observed in 100 (43.7%) and 18 (7.9%) patients, respectively. MHD showed a preferable area under the curve (AUC) value for S-PCE (AUC = 0.821) and A-PCE (AUC = 0.734). MHD was the only significant predictor for A-PCE; MHD and hypertension were selected as significant factors for S-PCE. The estimated NTCP, using the MHD-based model, showed excellent correspondence to the LKB model in A-PCE and S-PCE. The NTCP curve of A-PCE was gentler than that of S-PCE and had no threshold. The MHD-based NTCP model was simple but comparable to the LKB model for both A-PCE and S-PCE. Therefore, the estimated NTCP may provide clinically useful parameters for predicting PCE.
Collapse
Affiliation(s)
- Junichi Fukada
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Kyohei Fukata
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Naoyoshi Koike
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ryuichi Kota
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Naoyuki Shigematsu
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
122
|
De Roover R, Crijns W, Poels K, Dewit B, Draulans C, Haustermans K, Depuydt T. Automated treatment planning of prostate stereotactic body radiotherapy with focal boosting on a fast-rotating O-ring linac: Plan quality comparison with C-arm linacs. J Appl Clin Med Phys 2021; 22:59-72. [PMID: 34318996 PMCID: PMC8425873 DOI: 10.1002/acm2.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/26/2021] [Indexed: 11/14/2022] Open
Abstract
PURPOSE The integration of auto-segmentation and automated treatment planning methods on a fast-rotating O-ring linac may improve the time efficiency of online adaptive radiotherapy workflows. This study investigates whether automated treatment planning of prostate SBRT with focal boosting on the O-ring linac could generate plans that are of similar quality as those obtained through manual planning on clinical C-arm linacs. METHODS For 20 men with prostate cancer, reference treatment plans were generated on a TrueBeam STx C-arm linac with HD120 MLC and a TrueBeam C-arm linac with Millennium 120 MLC using 6 MV flattened dual arc VMAT. Manual planning on the Halcyon fast-rotating O-ring linac was performed using 6 MV FFF dual arc VMAT (HA2-DL10) and triple arc VMAT (HA3-DL10) to investigate the performance of the dual-layer MLC system. Automated planning was performed for triple arc VMAT on the Halcyon linac (ET3-DL10) using the automated planning algorithms of Ethos Treatment Planning. The prescribed dose was 35 Gy to the prostate and 30 Gy to the seminal vesicles in five fractions. The iso-toxic focal boost to the intraprostatic tumor nodule(s) was aimed to receive up to 50 Gy. Plan deliverability was verified using portal image dosimetry measurements. RESULTS Compared to the C-arm linacs, ET3-DL10 shows increased seminal vesicles PTV coverage (D99% ) and reduced high-dose spillage to the bladder (V37Gy ) and urethra (D0.035cc ) but this came at the cost of increased high-dose spillage to the rectum (V38Gy ) and a higher intermediate dose spillage (D2cm). No statistically significant differences were found when benchmarking HA2-DL10 and HA3-DL10 with the C-arm linacs. All plans passed the patient-specific QA tolerance limit. CONCLUSIONS Automated planning of prostate SBRT with focal boosting on the fast-rotating O-ring linac is feasible and achieves similar plan quality as those obtained on clinical C-arm linacs using manual planning.
Collapse
Affiliation(s)
- Robin De Roover
- Department of Radiation OncologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of OncologyKU LeuvenLeuvenBelgium
| | - Wouter Crijns
- Department of Radiation OncologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of OncologyKU LeuvenLeuvenBelgium
| | - Kenneth Poels
- Department of Radiation OncologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of OncologyKU LeuvenLeuvenBelgium
| | - Bertrand Dewit
- Department of Radiation OncologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of OncologyKU LeuvenLeuvenBelgium
| | - Cédric Draulans
- Department of Radiation OncologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of OncologyKU LeuvenLeuvenBelgium
| | - Karin Haustermans
- Department of Radiation OncologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of OncologyKU LeuvenLeuvenBelgium
| | - Tom Depuydt
- Department of Radiation OncologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of OncologyKU LeuvenLeuvenBelgium
| |
Collapse
|
123
|
Suckert T, Nexhipi S, Dietrich A, Koch R, Kunz-Schughart LA, Bahn E, Beyreuther E. Models for Translational Proton Radiobiology-From Bench to Bedside and Back. Cancers (Basel) 2021; 13:4216. [PMID: 34439370 PMCID: PMC8395028 DOI: 10.3390/cancers13164216] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
The number of proton therapy centers worldwide are increasing steadily, with more than two million cancer patients treated so far. Despite this development, pending questions on proton radiobiology still call for basic and translational preclinical research. Open issues are the on-going discussion on an energy-dependent varying proton RBE (relative biological effectiveness), a better characterization of normal tissue side effects and combination treatments with drugs originally developed for photon therapy. At the same time, novel possibilities arise, such as radioimmunotherapy, and new proton therapy schemata, such as FLASH irradiation and proton mini-beams. The study of those aspects demands for radiobiological models at different stages along the translational chain, allowing the investigation of mechanisms from the molecular level to whole organisms. Focusing on the challenges and specifics of proton research, this review summarizes the different available models, ranging from in vitro systems to animal studies of increasing complexity as well as complementing in silico approaches.
Collapse
Affiliation(s)
- Theresa Suckert
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sindi Nexhipi
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01309 Dresden, Germany
| | - Antje Dietrich
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Robin Koch
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Emanuel Bahn
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (R.K.); (E.B.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Radiation Oncology, 69120 Heidelberg, Germany
| | - Elke Beyreuther
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (T.S.); (S.N.); (A.D.); (L.A.K.-S.)
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiation Physics, 01328 Dresden, Germany
| |
Collapse
|
124
|
Chan MKH, Chiang CL. Revisiting the formalism of equivalent uniform dose based on the linear-quadratic and universal survival curve models in high-dose stereotactic body radiotherapy. Strahlenther Onkol 2021; 197:622-632. [PMID: 33245378 PMCID: PMC8219592 DOI: 10.1007/s00066-020-01713-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/02/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE To examine the equivalent uniform dose (EUD) formalism using the universal survival curve (USC) applicable to high-dose stereotactic body radiotherapy (SBRT). MATERIALS AND METHODS For nine non-small-cell carcinoma cell (NSCLC) lines, the linear-quadratic (LQ) and USC models were used to calculate the EUD of a set of hypothetical two-compartment tumor dose-volume histogram (DVH) models. The dose was varied by ±5%, ±10%, and ±20% about the prescription dose (60 Gy/3 fractions) to the first compartment, with fraction volume varying from 1% and 5% to 30%. Clinical DVHs of 21 SBRT treatments of NSCLC prescribed to the 70-83% isodose lines were also considered. The EUD of non-standard SBRT dose fractionation (EUDSBRT) was further converted to standard fractionation of 2 Gy (EUDCFRT) using the LQ and USC models to facilitate comparisons between different SBRT dose fractionations. Tumor control probability (TCP) was then estimated from the LQ- and USC-EUDCFRT. RESULTS For non-standard SBRT fractionation, the deviation of the USC- from the LQ-EUDSBRT is largely limited to 5% in the presence of dose variation up to ±20% to fractional tumor volume up to 30% in all NSCLC cell lines. Linear regression with zero constant yielded USC-EUDSBRT = 0.96 × LQ-EUDSBRT (r2 = 0.99) for the clinical DVHs. Converting EUDSBRT into standard 2‑Gy fractions by the LQ formalism produced significantly larger EUDCFRT than the USC formalism, particularly for low [Formula: see text] ratios and large fraction dose. Simplified two-compartment DVH models illustrated that both the LQ- and USC-EUDCFRT values were sensitive to cold spot below the prescription dose with little volume dependence. Their deviations were almost constant for up to 30% dose increase above the prescription. Linear regression with zero constant yielded USC-EUDCFRT = 1.56 × LQ-EUDCFRT (r2 = 0.99) for the clinical DVHs. The clinical LQ-EUDCFRT resulted in median TCP of almost 100% vs. 93.8% with USC-EUDCFRT. CONCLUSION A uniform formalism of EUD should be defined among the SBRT community in order to apply it as a single metric for dose reporting and dose-response modeling in high-dose-gradient SBRT because its value depends on the underlying cell survival model and the model parameters. Further investigations of the optimal formalism to derive the EUD through clinical correlations are warranted.
Collapse
Affiliation(s)
- Mark Ka Heng Chan
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, Essen, Germany.
- Department of Radiation Oncology, Karl-Lennert-Krebscentrum Nord, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 50, 24105, Kiel, Germany.
| | - Chi-Leung Chiang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, Hong Kong S.A.R., China
| |
Collapse
|
125
|
Nakano H, Tanabe S, Sasamoto R, Takizawa T, Utsunomiya S, Sakai M, Nakano T, Ohta A, Kaidu M, Ishikawa H. Radiobiological evaluation considering setup error on single-isocenter irradiation in stereotactic radiosurgery. J Appl Clin Med Phys 2021; 22:266-275. [PMID: 34151498 PMCID: PMC8292684 DOI: 10.1002/acm2.13322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 11/06/2022] Open
Abstract
Purpose We calculated the dosimetric indices and estimated the tumor control probability (TCP) considering six degree‐of‐freedom (6DoF) patient setup errors in stereotactic radiosurgery (SRS) using a single‐isocenter technique. Methods We used simulated spherical gross tumor volumes (GTVs) with diameters of 1.0 cm (GTV 1), 2.0 cm (GTV 2), and 3.0 cm (GTV 3), and the distance (d) between the target center and isocenter was set to 0, 5, and 10 cm. We created the dose distribution by convolving the blur component to uniform dose distribution. The prescription dose was 20 Gy and the dose distribution was adjusted so that D95 (%) of each GTV was covered by 100% of the prescribed dose. The GTV was simultaneously rotated within 0°–1.0° (δR) around the x‐, y‐, and z‐axes and then translated within 0–1.0 mm (δT) in the x‐, y‐, and z‐axis directions. D95, conformity index (CI), and conformation number (CN) were evaluated by varying the distance from the isocenter. The TCP was estimated by translating the calculated dose distribution into a biological response. In addition, we derived the x‐y‐z coordinates with the smallest TCP reduction rate that minimize the sum of squares of the residuals as the optimal isocenter coordinates using the relationship between 6DoF setup error, distance from isocenter, and GTV size. Results D95, CI, and CN were decreased with increasing isocenter distance, decreasing GTV size, and increasing setup error. TCP of GTVs without 6DoF setup error was estimated to be 77.0%. TCP were 25.8% (GTV 1), 35.0% (GTV 2), and 53.0% (GTV 3) with (d, δT,δR) = (10 cm, 1.0 mm, 1.0°). The TCP was 52.3% (GTV 1), 54.9% (GTV 2), and 66.1% (GTV 3) with (d, δT,δR) = (10 cm, 1.0 mm, 1.0°) at the optimal isocenter position. Conclusion The TCP in SRS for multiple brain metastases with a single‐isocenter technique may decrease with increasing isocenter distance and decreasing GTV size when the 6DoF setup errors are exceeded (1.0 mm, 1.0°). Additionally, it might be possible to better maintain TCP for GTVs with 6DoF setup errors by using the optimal isocenter position.
Collapse
Affiliation(s)
- Hisashi Nakano
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Satoshi Tanabe
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Ryuta Sasamoto
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, Niigata, Japan
| | - Takeshi Takizawa
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan.,Department of Radiation Oncology, Niigata Neurosurgical Hospital, Niigata, Japan
| | - Satoru Utsunomiya
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, Niigata, Japan
| | - Madoka Sakai
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Toshimichi Nakano
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Ohta
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Motoki Kaidu
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Ishikawa
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
126
|
Cheung MLM, Kan MWK, Yeung VTY, Poon DMC, Kam MKM, Lee LKY, Chan ATC. Analysis of Hepatocellular Carcinoma Stereotactic Body Radiation Therapy Dose Prescription Method Using Uncomplicated Tumor Control Probability Model. Adv Radiat Oncol 2021; 6:100739. [PMID: 34355107 PMCID: PMC8321929 DOI: 10.1016/j.adro.2021.100739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/12/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose This work was to establish an uncomplicated tumor control probability (UTCP) model using hepatocellular carcinoma (HCC) stereotactic body radiation therapy (SBRT) clinical data in our institution. The model was then used to analyze the current dose prescription method and to seek the opportunity for improvement. Methods and Materials A tumor control probability (TCP) model was generated based on local clinical data using the maximum likelihood method. A UTCP model was then formed by combining the established TCP model with the normal tissue complication probability model based on the study by Dawson et al. The authors investigated the dependence of maximum achievable UTCP on planning target volume equivalent uniform dose (EUD) at various ratio between planning target volume EUD and normal liver EUD (T/N EUD ratios). A new term uncomplicated tumor control efficiency (UTCE) was also introduced to analyze the outcome. A UTCE value of 1 implied that the theoretical maximum UTCP for the corresponding T/N EUD ratio was achieved. Results The UTCE of the HCC SBRT patients based on the current dose prescription method was found to be 0.93 ± 0.05. It was found that the UTCE could be increased to 0.99 ± 0.03 by using a new dose prescription scheme, for which the UTCP could be maximized while keeping the normal tissue complication probability value smaller than 5%. Conclusions The dose prescription method of the current HCC SBRT in our institution was analyzed using a UTCP model established based on local clinical data. It was shown that there could be a potential to increase the prescription dose of HCC SBRT. A new dose prescription scheme was proposed to achieve better UTCP. Additional clinical trials would be required to validate the proposed dose prescription scheme in the future.
Collapse
Affiliation(s)
- Michael L M Cheung
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong SAR, China.,State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Monica W K Kan
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong SAR, China.,State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vanessa T Y Yeung
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong SAR, China.,State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Darren M C Poon
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Michael K M Kam
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Louis K Y Lee
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anthony T C Chan
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong SAR, China.,State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
127
|
Brand DH, Brüningk SC, Wilkins A, Fernandez K, Naismith O, Gao A, Syndikus I, Dearnaley DP, Tree AC, van As N, Hall E, Gulliford S. Estimates of Alpha/Beta (α/β) Ratios for Individual Late Rectal Toxicity Endpoints: An Analysis of the CHHiP Trial. Int J Radiat Oncol Biol Phys 2021; 110:596-608. [PMID: 33412260 PMCID: PMC8129972 DOI: 10.1016/j.ijrobp.2020.12.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/10/2020] [Accepted: 12/24/2020] [Indexed: 12/04/2022]
Abstract
PURPOSE Changes in fraction size of external beam radiation therapy exert nonlinear effects on subsequent toxicity. Commonly described by the linear-quadratic model, fraction size sensitivity of normal tissues is expressed by the α/β ratio. We sought to study individual α/β ratios for different late rectal effects after prostate external beam radiation therapy. METHODS AND MATERIALS The CHHiP trial (ISRCTN97182923) randomized men with nonmetastatic prostate cancer 1:1:1 to 74 Gy/37 fractions (Fr), 60 Gy/20 Fr, or 57 Gy/19 Fr. Patients in the study had full dosimetric data and zero baseline toxicity. Toxicity scales were amalgamated to 6 bowel endpoints: bleeding, diarrhea, pain, proctitis, sphincter control, and stricture. Lyman-Kutcher-Burman models with or without equivalent dose in 2 Gy/Fr correction were log-likelihood fitted by endpoint, estimating α/β ratios. The α/β ratio estimate sensitivity was assessed using sequential inclusion of dose modifying factors (DMFs): age, diabetes, hypertension, inflammatory bowel or diverticular disease (IBD/diverticular), and hemorrhoids. 95% confidence intervals (CIs) were bootstrapped. Likelihood ratio testing of 632 estimator log-likelihoods compared the models. RESULTS Late rectal α/β ratio estimates (without DMF) ranged from bleeding (G1 + α/β = 1.6 Gy; 95% CI, 0.9-2.5 Gy) to sphincter control (G1 + α/β = 3.1 Gy; 95% CI, 1.4-9.1 Gy). Bowel pain modelled poorly (α/β, 3.6 Gy; 95% CI, 0.0-840 Gy). Inclusion of IBD/diverticular disease as a DMF significantly improved fits for stool frequency G2+ (P = .00041) and proctitis G1+ (P = .00046). However, the α/β ratios were similar in these no-DMF versus DMF models for both stool frequency G2+ (α/β 2.7 Gy vs 2.5 Gy) and proctitis G1+ (α/β 2.7 Gy vs 2.6 Gy). Frequency-weighted averaging of endpoint α/β ratios produced: G1 + α/β ratio = 2.4 Gy; G2 + α/β ratio = 2.3 Gy. CONCLUSIONS We estimated α/β ratios for several common late adverse effects of rectal radiation therapy. When comparing dose-fractionation schedules, we suggest using late a rectal α/β ratio ≤ 3 Gy.
Collapse
Affiliation(s)
- Douglas H Brand
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom; Urology Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Sarah C Brüningk
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Anna Wilkins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom; Urology Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom; Tumour Cell Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Katie Fernandez
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
| | - Olivia Naismith
- Radiotherapy Trials QA Group, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Annie Gao
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom; Urology Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Isabel Syndikus
- Radiotherapy Department, Clatterbridge Cancer Centre, United Kingdom
| | - David P Dearnaley
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom; Urology Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Alison C Tree
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom; Urology Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Nicholas van As
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom; Urology Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Emma Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Sarah Gulliford
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom; Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
128
|
Mahmoudi F, Shahbazi-Gahrouei D, Chegeni N. The role of the spatially fractionated radiation therapy in the management of advanced bulky tumors. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2021; 27:123-135. [DOI: 10.2478/pjmpe-2021-0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Spatially fractionated radiation therapy (SFRT) refers to the delivery of a single large dose of radiation within the target volume in a heterogeneous pattern using either a custom GRID block, multileaf collimators, and virtual methods such as helical tomotherapy or synchrotron-based microbeams. The potential impact of this technique on the regression of bulky deep-seated tumors that do not respond well to conventional radiotherapy has been remarkable. To date, a large number of patients have been treated using the SFRT techniques. However, there are yet many technical and medical challenges that have limited their routine use to a handful of clinics, most commonly for palliative intent. There is also a poor understanding of the biological mechanisms underlying the clinical efficacy of this approach. In this article, the methods of SFRT delivery together with its potential biological mechanisms are presented. Furthermore, technical challenges and clinical achievements along with the radiobiological models used to evaluate the efficacy and safety of SFRT are highlighted.
Collapse
Affiliation(s)
- Farshid Mahmoudi
- Dept. of Medical Physics, School of Medicine , Isfahan University of Medical Sciences , Isfahan , Iran
| | | | - Nahid Chegeni
- Faculty of Medicine , Ahvaz Jundishapur University of Medical Sciences , Ahvaz , Iran
| |
Collapse
|
129
|
Raturi VP, Motegi A, Zenda S, Nakamura N, Hojo H, Kageyama SI, Okumura M, Rachi T, Ohyoshi H, Tachibana H, Motegi K, Ariji T, Nakamura M, Hirano Y, Hirata H, Akimoto T. Comparison of a Hybrid IMRT/VMAT technique with non-coplanar VMAT and non-coplanar IMRT for unresectable olfactory neuroblastoma using the RayStation treatment planning system-EUD, NTCP and planning study. JOURNAL OF RADIATION RESEARCH 2021; 62:540-548. [PMID: 33839761 PMCID: PMC8127663 DOI: 10.1093/jrr/rrab010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to compare hybrid intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (Hybrid IMRT/VMAT), with non-coplanar (nc) IMRT and nc-VMAT treatment plans for unresectable olfactory neuroblastoma (ONB). Hybrid IMRT/VMAT, nc-IMRT and nc-VMAT plans were optimized for 12 patients with modified Kadish C stage ONB. Dose prescription was 65 Gy in 26 fractions. Dose-volume histogram parameters, conformation number (CN), homogeneity index (HI), integral dose and monitor units (MUs) delivered per fraction were assessed. Equivalent uniform dose (EUD) and normal tissue complication probability (NTCP) based on the EUD model (NTCPLogit) and the Lyman-Kutcher-Burman model (NTCPLKB) were also evaluated. We found that the Hybrid IMRT/VMAT plan significantly improved the CN for clinical target volume (CTV) and planning treatment volume (PTV) compared with the nc-VMAT plan. In general, sparing of organs at risk (OARs) is similar with the three techniques, although the Hybrid IMRT/VMAT plan resulted in a significantly reduced Dmax to contralateral (C/L) optic nerve compared with the nc-IMRT plan. The Hybrid IMRT/VMAT plan significantly reduce EUD to the ipsilateral (I/L) and C/L optic nerve in comparison with the nc-IMRT plan and nc-VMAT plan, but the difference in NTCP between the three technique was <1%. We concluded that the Hybrid IMRT/VMAT technique can offer improvement in terms of target conformity and EUD for optic nerves, while achieving equal or better OAR sparing compared with nc-IMRT and nc-VMAT, and can be a viable radiation technique for treating unresectable ONB. However, the clinical benefit of these small differences in dosimetric data, EUD and NTCP of optic nerves may be minimal.
Collapse
Affiliation(s)
- Vijay P Raturi
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Course of Advanced Clinical Research of Cancer, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Atsushi Motegi
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Sadamoto Zenda
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Naoki Nakamura
- Department of Radiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hidehiro Hojo
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shin-Ichiro Kageyama
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Masayuki Okumura
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Toshiya Rachi
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Hajime Ohyoshi
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Hidenobu Tachibana
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Kana Motegi
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Takaki Ariji
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Masaki Nakamura
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Yasuhiro Hirano
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Hidenari Hirata
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Tetsuo Akimoto
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Course of Advanced Clinical Research of Cancer, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
130
|
Coates JTT, Pirovano G, El Naqa I. Radiomic and radiogenomic modeling for radiotherapy: strategies, pitfalls, and challenges. J Med Imaging (Bellingham) 2021; 8:031902. [PMID: 33768134 PMCID: PMC7985651 DOI: 10.1117/1.jmi.8.3.031902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
The power of predictive modeling for radiotherapy outcomes has historically been limited by an inability to adequately capture patient-specific variabilities; however, next-generation platforms together with imaging technologies and powerful bioinformatic tools have facilitated strategies and provided optimism. Integrating clinical, biological, imaging, and treatment-specific data for more accurate prediction of tumor control probabilities or risk of radiation-induced side effects are high-dimensional problems whose solutions could have widespread benefits to a diverse patient population-we discuss technical approaches toward this objective. Increasing interest in the above is specifically reflected by the emergence of two nascent fields, which are distinct but complementary: radiogenomics, which broadly seeks to integrate biological risk factors together with treatment and diagnostic information to generate individualized patient risk profiles, and radiomics, which further leverages large-scale imaging correlates and extracted features for the same purpose. We review classical analytical and data-driven approaches for outcomes prediction that serve as antecedents to both radiomic and radiogenomic strategies. Discussion then focuses on uses of conventional and deep machine learning in radiomics. We further consider promising strategies for the harmonization of high-dimensional, heterogeneous multiomics datasets (panomics) and techniques for nonparametric validation of best-fit models. Strategies to overcome common pitfalls that are unique to data-intensive radiomics are also discussed.
Collapse
Affiliation(s)
- James T. T. Coates
- Massachusetts General Hospital & Harvard Medical School, Center for Cancer Research, Boston, Massachusetts, United States
| | - Giacomo Pirovano
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, New York, United States
| | - Issam El Naqa
- Moffitt Cancer Center and Research Institute, Department of Machine Learning, Tampa, Florida, United States
| |
Collapse
|
131
|
Cao Y, Tang D, Xiang Y, Men L, Liu C, Zhou Q, Wu J, Huo L, Song T, Wang Y, Li Z, Wei R, Shen L, Yang Z, Hong J. Study on the Appropriate Timing of Postoperative Adaptive Radiotherapy for High-Grade Glioma. Cancer Manag Res 2021; 13:3561-3572. [PMID: 33953610 PMCID: PMC8089024 DOI: 10.2147/cmar.s300094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/02/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To investigate the appropriate timing of adaptive radiotherapy (ART) for high-grade glioma. METHODS Ten patients with high-grade gliomas were selected and underwent CT/MRI (CT1/MRI1, CT2/MRI2, CT3/MRI3, and CT4/MRI4) scans before RT and during 10-, 20- and 30-fraction RT, and the corresponding RT plans (plan1, plan2, plan3 and plan4) were made. The dose of the initial plan (plan1) was projected to CT2 and CT3 using the image registration technique to obtain the projection plans (plan1-2 and plan1-3) and by superimposing the doses to obtain the ART plans (plan10+20 and plan20+10), respectively. The dosimetric differences in the target volume and organs at risk (OARs) were compared between the projection and adaptive plans. The tumor control probability (TCP) for the planning target volume (PTV) and normal tissue complication probability (NTCP) for the OARs were compared between the two adaptive plans. RESULTS Compared with the projection plan, the D2 to the PTV of ART decreased, the conformity index (CI) to the PTV increased, and the D2/Dmean to the brainstem, optic chiasm and pituitary, as well as the V20, V30, V40 and V50 to the normal brain decreased. The D2 to the pituitary and optic chiasm as well as the V20, V30, V40 and V50 to the normal brain in plan10+20 were lower than those in plan20+10, while the CI to the PTV was higher than that in plan20+10. The TCP of the PTV in plan10+20 was higher than that in plan20+10. CONCLUSION ART can improve the precision of target volume irradiation and reduce the irradiation dose to the OARs in high-grade glioma. The time point after 10 fractions of RT is appropriate for ART.
Collapse
Affiliation(s)
- Ying Cao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Du Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yining Xiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Li Men
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Chao Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Qin Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Jun Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Lei Huo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Tao Song
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Ying Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Rui Wei
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhen Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Jidong Hong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
132
|
Woods K, Chin RK, Cook KA, Sheng K, Kishan AU, Hegde JV, Tenn S, Steinberg ML, Cao M. Automated Non-Coplanar VMAT for Dose Escalation in Recurrent Head and Neck Cancer Patients. Cancers (Basel) 2021; 13:cancers13081910. [PMID: 33921062 PMCID: PMC8071369 DOI: 10.3390/cancers13081910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary The ability to escalate the radiation dose to head and neck tumors has been shown to offer improved local control, and consequently, survival for recurrent head and neck cancer (rHNC) patients. This study evaluates the HyperArc automated non-coplanar planning technique (originally developed for intracranial treatment) for 20 rHNC patients, and compares this technique to conventional planning methods. HyperArc enables significant tumor dose escalation, with average increases in mean target dose of over 11.5 Gy (26%), while maintaining clinically-equivalent doses to nearby organs. Our results show that the average probability of tumor control is 23% higher for HyperArc than conventional techniques. Abstract This study evaluates the potential for tumor dose escalation in recurrent head and neck cancer (rHNC) patients with automated non-coplanar volumetric modulated arc therapy (VMAT) stereotactic body radiation therapy (SBRT) planning (HyperArc). Twenty rHNC patients are planned with conventional VMAT SBRT to 40 Gy while minimizing organ-at-risk (OAR) doses. They are then re-planned with the HyperArc technique to match these minimal OAR doses while escalating the target dose as high as possible. Then, we compare the dosimetry, tumor control probability (TCP), and normal tissue complication probability (NTCP) for the two plan types. Our results show that the HyperArc technique significantly increases the mean planning target volume (PTV) and gross tumor volume (GTV) doses by 10.8 ± 4.4 Gy (25%) and 11.5 ± 5.1 Gy (26%) on average, respectively. There are no clinically significant differences in OAR doses, with maximum dose differences of <2 Gy on average. The average TCP is 23% (± 21%) higher for HyperArc than conventional plans, with no significant differences in NTCP for the brainstem, cord, mandible, or larynx. HyperArc can achieve significant tumor dose escalation while maintaining minimal OAR doses in the head and neck—potentially enabling improved local control for rHNC SBRT patients without increased risk of treatment-related toxicities.
Collapse
Affiliation(s)
- Kaley Woods
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA; (K.W.); (R.K.C.); (K.S.); (A.U.K.); (J.V.H.); (S.T.); (M.L.S.)
| | - Robert K. Chin
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA; (K.W.); (R.K.C.); (K.S.); (A.U.K.); (J.V.H.); (S.T.); (M.L.S.)
| | - Kiri A. Cook
- Department of Radiation Oncology, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Ke Sheng
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA; (K.W.); (R.K.C.); (K.S.); (A.U.K.); (J.V.H.); (S.T.); (M.L.S.)
| | - Amar U. Kishan
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA; (K.W.); (R.K.C.); (K.S.); (A.U.K.); (J.V.H.); (S.T.); (M.L.S.)
| | - John V. Hegde
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA; (K.W.); (R.K.C.); (K.S.); (A.U.K.); (J.V.H.); (S.T.); (M.L.S.)
| | - Stephen Tenn
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA; (K.W.); (R.K.C.); (K.S.); (A.U.K.); (J.V.H.); (S.T.); (M.L.S.)
| | - Michael L. Steinberg
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA; (K.W.); (R.K.C.); (K.S.); (A.U.K.); (J.V.H.); (S.T.); (M.L.S.)
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA; (K.W.); (R.K.C.); (K.S.); (A.U.K.); (J.V.H.); (S.T.); (M.L.S.)
- Correspondence:
| |
Collapse
|
133
|
Fröhlich G, Ágoston P, Jorgo K, Stelczer G, Polgár C, Major T. Comparative dosimetrical analysis of intensity-modulated arc therapy, CyberKnife therapy and image-guided interstitial HDR and LDR brachytherapy of low risk prostate cancer. ACTA ACUST UNITED AC 2021; 26:196-202. [PMID: 34211769 DOI: 10.5603/rpor.a2021.0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/02/2021] [Indexed: 12/26/2022]
Abstract
Background The objective of the study was to dosimetrically compare the intensity-modulated-arc-therapy (IMAT), Cyber-Knife therapy (CK), single fraction interstitial high-dose-rate (HDR) and low-dose-rate (LDR) brachytherapy (BT) in low-risk prostate cancer. Materials and methods Treatment plans of ten patients treated with CK were selected and additional plans using IMAT, HDR and LDR BT were created on the same CT images. The prescribed dose was 2.5/70 Gy in IMAT, 8/40 Gy in CK, 21 Gy in HDR and 145 Gy in LDR BT to the prostate gland. EQD2 dose-volume parameters were calculated for each technique and compared. Results EQD2 total dose of the prostate was significantly lower with IMAT and CK than with HDR and LDR BT, D90 was 79.5 Gy, 116.4 Gy, 169.2 Gy and 157.9 Gy (p < 0.001). However, teletherapy plans were more conformal than BT, COIN was 0.84, 0.82, 0.76 and 0.76 (p < 0.001), respectively. The D2 to the rectum and bladder were lower with HDR BT than with IMAT, CK and LDR BT, it was 66.7 Gy, 68.1 Gy, 36.0 Gy and 68.0 Gy (p = 0.0427), and 68.4 Gy, 78.9 Gy, 51.4 Gy and 70.3 Gy (p = 0.0091) in IMAT, CK, HDR and LDR BT plans, while D0.1 to the urethra was lower with both IMAT and CK than with BTs: 79.9 Gy, 88.0 Gy, 132.7 Gy and 170.6 Gy (p < 0.001). D2 to the hips was higher with IMAT and CK, than with BTs: 13.4 Gy, 20.7 Gy, 0.4 Gy and 1.5 Gy (p < 0.001), while D2 to the sigmoid, bowel bag, testicles and penile bulb was higher with CK than with the other techniques. Conclusions HDR monotherapy yields the most advantageous dosimetrical plans, except for the dose to the urethra, where IMAT seems to be the optimal modality in the radiotherapy of low-risk prostate cancer.
Collapse
Affiliation(s)
- Georgina Fröhlich
- Centre of Radiotherapy, National Institute of Oncology, Budapest, Hungary.,Faculty of Science, Eötvös Loránd University, Budapest, Hungary
| | - Péter Ágoston
- Centre of Radiotherapy, National Institute of Oncology, Budapest, Hungary.,Department of Oncology, Faculty of Medicine, Budapest, Hungary
| | - Kliton Jorgo
- Centre of Radiotherapy, National Institute of Oncology, Budapest, Hungary.,Department of Oncology, Faculty of Medicine, Budapest, Hungary
| | - Gábor Stelczer
- Centre of Radiotherapy, National Institute of Oncology, Budapest, Hungary
| | - Csaba Polgár
- Centre of Radiotherapy, National Institute of Oncology, Budapest, Hungary.,Department of Oncology, Faculty of Medicine, Budapest, Hungary
| | - Tibor Major
- Centre of Radiotherapy, National Institute of Oncology, Budapest, Hungary.,Department of Oncology, Faculty of Medicine, Budapest, Hungary
| |
Collapse
|
134
|
Morén B, Larsson T, Tedgren ÅC. Optimization in treatment planning of high dose-rate brachytherapy - Review and analysis of mathematical models. Med Phys 2021; 48:2057-2082. [PMID: 33576027 DOI: 10.1002/mp.14762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/12/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment planning in high dose-rate brachytherapy has traditionally been conducted with manual forward planning, but inverse planning is today increasingly used in clinical practice. There is a large variety of proposed optimization models and algorithms to model and solve the treatment planning problem. Two major parts of inverse treatment planning for which mathematical optimization can be used are the decisions about catheter placement and dwell time distributions. Both these problems as well as integrated approaches are included in this review. The proposed models include linear penalty models, dose-volume models, mean-tail dose models, quadratic penalty models, radiobiological models, and multiobjective models. The aim of this survey is twofold: (i) to give a broad overview over mathematical optimization models used for treatment planning of brachytherapy and (ii) to provide mathematical analyses and comparisons between models. New technologies for brachytherapy treatments and methods for treatment planning are also discussed. Of particular interest for future research is a thorough comparison between optimization models and algorithms on the same dataset, and clinical validation of proposed optimization approaches with respect to patient outcome.
Collapse
Affiliation(s)
- Björn Morén
- Department of Mathematics, Linköping University, Linköping, Sweden
| | - Torbjörn Larsson
- Department of Mathematics, Linköping University, Linköping, Sweden
| | - Åsa Carlsson Tedgren
- Radiation Physics, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology Pathology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
135
|
Wall PDH, Fontenot JD. Quality assurance-based optimization (QAO): Towards improving patient-specific quality assurance in volumetric modulated arc therapy plans using machine learning. Phys Med 2021; 87:136-143. [PMID: 33775567 DOI: 10.1016/j.ejmp.2021.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION Previous literature has shown general trade-offs between plan complexity and resulting quality assurance (QA) outcomes. However, existing solutions for controlling this trade-off do not guarantee corresponding improvements in deliverability. Therefore, this work explored the feasibility of an optimization framework for directly maximizing predicted QA outcomes of plans without compromising the dosimetric quality of plans designed with an established knowledge-based planning (KBP) technique. MATERIALS AND METHODS A support vector machine (SVM) was developed - using a database of 500 previous VMAT plans - to predict gamma passing rates (GPRs; 3%/3mm percent dose-difference/distance-to-agreement with local normalization) based on selected complexity features. A heuristic, QA-based optimization (QAO) framework was devised by utilizing the SVM model to iteratively modify mechanical treatment features most commonly associated with suboptimal GPRs. Specifically, leaf gaps (LGs) <50 mm were widened by random amounts, which impacts all aperture-based complexity features. 13 prostate KBP-guided VMAT plans were optimized via QAO using user-specified maximum LG displacements before corresponding changes in predicted GPRs and dose were assessed. RESULTS Predicted GPRs increased by an average of 1.14 ± 1.25% (p = 0.006) with QAO using a 3 mm maximum random LG displacement. There were small differences in dose, resulting in similarly small changes in tumor control probability (maximum increase = 0.05%) and normal tissue complication probabilities in the bladder, rectum, and femoral heads (maximum decrease = 0.2% in the rectum). CONCLUSION This study explored the feasibility of QAO and warrants future investigations of further incorporating QA endpoints into plan optimization.
Collapse
Affiliation(s)
- Phillip D H Wall
- Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Tower Drive, Baton Rouge, LA 70803-4001, USA.
| | - Jonas D Fontenot
- Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, 202 Tower Drive, Baton Rouge, LA 70803-4001, USA; Department of Physics, Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809, USA
| |
Collapse
|
136
|
Zhang H, Wu X, Zhang X, Chang SX, Megooni A, Donnelly ED, Ahmed MM, Griffin RJ, Welsh JS, Simone CB, Mayr NA. Photon GRID Radiation Therapy: A Physics and Dosimetry White Paper from the Radiosurgery Society (RSS) GRID/LATTICE, Microbeam and FLASH Radiotherapy Working Group. Radiat Res 2021; 194:665-677. [PMID: 33348375 DOI: 10.1667/rade-20-00047.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/18/2020] [Indexed: 11/03/2022]
Abstract
The limits of radiation tolerance, which often deter the use of large doses, have been a major challenge to the treatment of bulky primary and metastatic cancers. A novel technique using spatial modulation of megavoltage therapy beams, commonly referred to as spatially fractionated radiation therapy (SFRT) (e.g., GRID radiation therapy), which purposefully maintains a high degree of dose heterogeneity across the treated tumor volume, has shown promise in clinical studies as a method to improve treatment response of advanced, bulky tumors. Compared to conventional uniform-dose radiotherapy, the complexities of megavoltage GRID therapy include its highly heterogeneous dose distribution, very high prescription doses, and the overall lack of experience among physicists and clinicians. Since only a few centers have used GRID radiation therapy in the clinic, wide and effective use of this technique has been hindered. To date, the mechanisms underlying the observed high tumor response and low toxicity are still not well understood. To advance SFRT technology and planning, the Physics Working Group of the Radiosurgery Society (RSS) GRID/Lattice, Microbeam and Flash Radiotherapy Working Groups, was established after an RSS-NCI Workshop. One of the goals of the Physics Working Group was to develop consensus recommendations to standardize dose prescription, treatment planning approach, response modeling and dose reporting in GRID therapy. The objective of this report is to present the results of the Physics Working Group's consensus that includes recommendations on GRID therapy as an SFRT technology, field dosimetric properties, techniques for generating GRID fields, the GRID therapy planning methods, documentation metrics and clinical practice recommendations. Such understanding is essential for clinical patient care, effective comparisons of outcome results, and for the design of rigorous clinical trials in the area of SFRT. The results of well-conducted GRID radiation therapy studies have the potential to advance the clinical management of bulky and advanced tumors by providing improved treatment response, and to further develop our current radiobiology models and parameters of radiation therapy design.
Collapse
Affiliation(s)
- Hualin Zhang
- Department of Radiation Oncology, Northwestern Memorial Hospital, Chicago, Illinois 60611
| | - Xiaodong Wu
- Excecutive Medical Physics Associates and Biophysics Research Institute of America, Miami, Florida 33179
| | - Xin Zhang
- Department of Radiation Oncology, Boston Medical Center, Boston, Massachusetts 02118
| | - Sha X Chang
- Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27516
| | - Ali Megooni
- Department of Radiation Therapy, Comprehensive Cancer Center of Nevada, Las Vegas, Nevada 86169
| | - Eric D Donnelly
- Department of Radiation Oncology, Northwestern Memorial Hospital, Chicago, Illinois 60611
| | - Mansoor M Ahmed
- Division of Cancer Treatment and Diagnosis, Rockville, Maryland 20892
| | - Robert J Griffin
- University of Arkansas for Medical Sciences, Department of Radiation Oncology, Little Rock, Arkansas
| | - James S Welsh
- Loyola University Chicago, Edward Hines Jr. VA Hospital, Stritch School of Medicine, Department of Radiation Oncology, Maywood, Illinois 60153
| | - Charles B Simone
- New York Proton Center, Department of Radiation Oncology, New York, New York 10035
| | - Nina A Mayr
- Department of Radiation Oncology, University of Washington Medical Center, Seattle, Washington 98195
| |
Collapse
|
137
|
Kuperman VY, Lubich LM. Impact of target dose inhomogeneity on BED and EUD in lung SBRT. Phys Med Biol 2021; 66:01NT02. [PMID: 33576337 DOI: 10.1088/1361-6560/abd0d1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the effect of dose heterogeneity in the treatment target on biologically effective dose (BED) for frequently used hypofractionation regimens in stereotactic body radiation therapy (SBRT). METHODS In the case of non-uniform target dose, BED in the planning target volume (PTV) is determined by using the linear-quadratic model. An expression for BED is obtained for an arbitrary dose distribution in the PTV in the case of small variance of the target dose. Another analytical expression for BED is obtained by assuming a Gaussian dose distribution in the target. RESULTS Analytical expressions for BED as a function of the variance of the target dose have been derived. It is shown that a relatively small dose inhomogeneity (<5%-6%) can cause a significant reduction (i.e. >10%) in the corresponding BED and equivalent uniform dose (EUD) compared to the case of uniform target dose. CONCLUSIONS Small variations in the absorbed dose can significantly reduce BED and EUD in the PTV. The effect of dose non-uniformity on BED increases with increasing dose per fraction. The observed reduction in BED compared to that for uniform target dose can be several times greater for SBRT than for standard fractionation with dose per fraction varying between 1.8 and 2 Gy.
Collapse
Affiliation(s)
- Vadim Y Kuperman
- Medical Physics Support, Inc., Tampa, FL 33634, United States of America
| | | |
Collapse
|
138
|
Nagaraj J, Veluraja K. Is Synchronous Bilateral Breast Irradiation Using Flattening Filter-Free Beam-Based Volumetric-Modulated Arc Therapy Beneficial? A Dosimetric Study. J Med Phys 2021; 45:226-233. [PMID: 33953498 PMCID: PMC8074717 DOI: 10.4103/jmp.jmp_32_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 11/27/2022] Open
Abstract
Objective: The aim of this study is to validate the clinical use of flattening filter-free (FFF) beam-based volumetric-modulated arc therapy (VMAT) in synchronous bilateral breast carcinoma (SBBC) patient treatments and to compare with flattening filtered (FF) beam-based VMAT. Materials and Methods: Computed tomography images of 15 SBBC patients were taken for this study. A dose of 50 Gy in 25 fractions was prescribed to planning target volume (PTV). VMAT plans were generated using both FFF and FF 6 MV X-ray beams in Eclipse treatment planning system. PTV and organs at risk (OARs) doses were analyzed quantitatively using dose–volume histograms (DVHs) to meet plan objectives. Pretreatment point and planar dosimetry were performed. Results: The findings were reported as mean ± 1 standard deviation. PTV volume receiving 95% of the prescribed dose was 95.71% ± 0.65% for FF-VMAT and 95.45% ± 1.33% for FFF-VMAT (P = 0.743). Conformity index was 1.12 ± 0.31 (FF-VMAT) and 1.12 ± 0.02 (FFF-VMAT). Right lung mean dose was 10.95 ± 1.33 Gy (FF-VMAT) and 10.60 ± 98.5 (FFF-VMAT). Left lung mean dose was 9.73 ± 1.56 (FF-VMAT) and 9.61 ± 1.53 Gy (FFF-VMAT). Tumor control probability (TCP) was 99.68% ± 0.02% (FF-VMAT) and 99.67% ± 0.01% (FFF-VMAT) (P = 0.390). Uncomplicated TCP was 98.72% ± 0.02% (FF-VMAT) and 98.72% ± 0.01% (FFF-VMAT) (P = 0.508). Conclusion: The planning objective parameters achieved using FFF-based VMAT showed that FFF can also be used clinically to treat bilateral breast carcinomas and the low-dose lung volumes were still lesser with FFF-VMAT plans than FF-VMAT.
Collapse
Affiliation(s)
- Jagadheeskumar Nagaraj
- Department of Physics, School of Advanced Science, Vellore Institute of Technology, Vellore, Tamil Nadu, India.,Department of Radiation Oncology, Yashoda Hospitals, Hyderabad, Telangana, India
| | - K Veluraja
- Department of Physics, School of Advanced Science, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
139
|
Hundvin JA, Fjellanger K, Pettersen HES, Nygaard B, Revheim K, Sulen TH, Ekanger C, Hysing LB. Clinical iterative model development improves knowledge-based plan quality for high-risk prostate cancer with four integrated dose levels. Acta Oncol 2021; 60:237-244. [PMID: 33030972 DOI: 10.1080/0284186x.2020.1828619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Manual volumetric modulated arc therapy (VMAT) treatment planning for high-risk prostate cancer receiving whole pelvic radiotherapy (WPRT) with four integrated dose levels is complex and time consuming. We have investigated if the radiotherapy planning process and plan quality can be improved using a well-tuned model developed through a commercial system for knowledge-based planning (KBP). MATERIAL AND METHODS Treatment plans from 69 patients treated for high-risk prostate cancer with manually planned VMAT were used to develop an initial KBP model (RapidPlan, RP). Prescribed doses were 50, 60, 67.5, and 72.5 Gy in 25 fractions to the pelvic lymph nodes, prostate and seminal vesicles, prostate gland, and prostate tumour(s), respectively. This RP model was in clinical use from July 2019 to February 2020, producing another set of 69 clinically delivered treatment plans for a new patient group, which were used to develop a second RP model. Both models were validated on an independent group of 40 patients. Plan quality was compared by D 98% and the Paddick conformity index for targets, mean dose (D mean) and generalised equivalent uniform dose (gEUD) for bladder, bowel bag and rectum, and number of monitor units (MU). RESULTS Target coverage and conformity was similar between manually created and RP treatment plans. Compared to the manually created treatment plans, the final RP model reduced average D mean and gEUD with 2.7 Gy and 1.3 Gy for bladder, 1.2 Gy and 0.9 Gy for bowel bag, and 2.7 Gy and 0.8 Gy for rectum, respectively (p < .05). For rectum, the interpatient variation (i.e., 95% confidence interval) of DVHs was reduced by 23%. CONCLUSION KBP improved plan quality and consistency among treatment plans for high-risk prostate cancer. Model tuning using KBP-based clinical plans further improved model outcome.
Collapse
Affiliation(s)
| | - Kristine Fjellanger
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | - Britt Nygaard
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Kari Revheim
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Turid Husevåg Sulen
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Christian Ekanger
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Liv Bolstad Hysing
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
- Institute of Physics and Technology, University of Bergen, Bergen, Norway
| |
Collapse
|
140
|
Clinical microbeam radiation therapy with a compact source: specifications of the line-focus X-ray tube. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 14:74-81. [PMID: 33458318 PMCID: PMC7807643 DOI: 10.1016/j.phro.2020.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 02/02/2023]
Abstract
Line-focus X-ray tubes are suitable for clinical microbeam radiation therapy (MRT). A modular high-voltage supply safely enables high electron beam powers. An electron accelerator was designed to generate an eccentric focal spot. We simulated a peak-to-valley dose ratio above 20 for single-field MRT. Microbeam arc therapy spares healthy brain tissue compared to single-field MRT.
Background and purpose Microbeam radiotherapy (MRT) is a preclinical concept in radiation oncology with arrays of alternating micrometer-wide high-dose peaks and low-dose valleys. Experiments demonstrated a superior normal tissue sparing at similar tumor control rates with MRT compared to conventional radiotherapy. Possible clinical applications are currently limited to large third-generation synchrotrons. Here, we investigated the line-focus X-ray tube as an alternative microbeam source. Materials and methods We developed a concept for a high-voltage supply and an electron source. In Monte Carlo simulations, we assessed the influence of X-ray spectrum, focal spot size, electron incidence angle, and photon emission angle on the microbeam dose distribution. We further assessed the dose distribution of microbeam arc therapy and suggested to interpret this complex dose distribution by equivalent uniform dose. Results An adapted modular multi-level converter can supply high-voltage powers in the megawatt range for a few seconds. The electron source with a thermionic cathode and a quadrupole can generate an eccentric, high-power electron beam of several 100 keV energy. Highest dose rates and peak-to-valley dose ratios (PVDRs) were achieved for an electron beam impinging perpendicular onto the target surface and a focal spot smaller than the microbeam cross-section. The line-focus X-ray tube simulations demonstrated PVDRs above 20. Conclusion The line-focus X-ray tube is a suitable compact source for clinical MRT. We demonstrated its technical feasibility based on state-of-the-art high-voltage and electron-beam technology. Microbeam arc therapy is an effective concept to increase the target-to-entrance dose ratio of orthovoltage microbeams.
Collapse
|
141
|
Catucci F, Alitto AR, Masciocchi C, Dinapoli N, Gatta R, Martino A, Mazzarella C, Fionda B, Frascino V, Piras A, D’Aviero A, Preziosi F, Palazzoni G, Valentini V, Mantini G. Predicting Radiotherapy Impact on Late Bladder Toxicity in Prostate Cancer Patients: An Observational Study. Cancers (Basel) 2021; 13:175. [PMID: 33419144 PMCID: PMC7825573 DOI: 10.3390/cancers13020175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of our study was to elaborate a suitable model on bladder late toxicity in prostate cancer (PC) patients treated by radiotherapy with volumetric technique. MATERIALS AND METHODS PC patients treated between September 2010 and April 2017 were included in the analysis. An observational study was performed collecting late toxicity data of any grade, according to RTOG and CTCAE 4.03 scales, cumulative dose volumes histograms were exported for each patient. Vdose, the value of dose to a specific volume of organ at risk (OAR), impact was analyzed through the Mann-Whitney rank-sum test. Logistic regression was used as the final model. The model performance was estimated by taking 1000 samples with replacement from the original dataset and calculating the AUC average. In addition, the calibration plot (Hosmer-Lemeshow goodness-of-fit test) was used to evaluate the performance of internal validation. RStudio Software version 3.3.1 and an in house developed software package "Moddicom" were used. RESULTS Data from 175 patients were collected. The median follow-up was 39 months (min-max 3.00-113.00). We performed Mann-Whitney rank-sum test with continuity correction in the subset of patients with late bladder toxicity grade ≥ 2: a statistically significant p-value with a Vdose of 51.43 Gy by applying a logistic regression model (coefficient 4.3, p value 0.025) for the prediction of the development of late G ≥ 2 GU toxicity was observed. The performance for the model's internal validation was evaluated, with an AUC equal to 0.626. Accuracy was estimated through the elaboration of a calibration plot. CONCLUSIONS Our preliminary results could help to optimize treatment planning procedures and customize treatments.
Collapse
Affiliation(s)
- Francesco Catucci
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli, 8, 00168 Roma, Italy; (F.C.); (A.R.A.); (C.M.); (N.D.); (A.M.); (C.M.); (B.F.); (V.F.); (G.P.); (V.V.); (G.M.)
| | - Anna Rita Alitto
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli, 8, 00168 Roma, Italy; (F.C.); (A.R.A.); (C.M.); (N.D.); (A.M.); (C.M.); (B.F.); (V.F.); (G.P.); (V.V.); (G.M.)
| | - Carlotta Masciocchi
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli, 8, 00168 Roma, Italy; (F.C.); (A.R.A.); (C.M.); (N.D.); (A.M.); (C.M.); (B.F.); (V.F.); (G.P.); (V.V.); (G.M.)
| | - Nicola Dinapoli
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli, 8, 00168 Roma, Italy; (F.C.); (A.R.A.); (C.M.); (N.D.); (A.M.); (C.M.); (B.F.); (V.F.); (G.P.); (V.V.); (G.M.)
| | - Roberto Gatta
- Dipartimento di Scienze Cliniche e Sperimentali dell’Università Degli Studi di Brescia, v.le Europa, 11, 25121 Brescia, Italy;
| | - Antonella Martino
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli, 8, 00168 Roma, Italy; (F.C.); (A.R.A.); (C.M.); (N.D.); (A.M.); (C.M.); (B.F.); (V.F.); (G.P.); (V.V.); (G.M.)
| | - Ciro Mazzarella
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli, 8, 00168 Roma, Italy; (F.C.); (A.R.A.); (C.M.); (N.D.); (A.M.); (C.M.); (B.F.); (V.F.); (G.P.); (V.V.); (G.M.)
| | - Bruno Fionda
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli, 8, 00168 Roma, Italy; (F.C.); (A.R.A.); (C.M.); (N.D.); (A.M.); (C.M.); (B.F.); (V.F.); (G.P.); (V.V.); (G.M.)
| | - Vincenzo Frascino
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli, 8, 00168 Roma, Italy; (F.C.); (A.R.A.); (C.M.); (N.D.); (A.M.); (C.M.); (B.F.); (V.F.); (G.P.); (V.V.); (G.M.)
| | - Antonio Piras
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Roma, Italy; (A.P.); (F.P.)
| | - Andrea D’Aviero
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Roma, Italy; (A.P.); (F.P.)
| | - Francesco Preziosi
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Roma, Italy; (A.P.); (F.P.)
| | - Giovanni Palazzoni
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli, 8, 00168 Roma, Italy; (F.C.); (A.R.A.); (C.M.); (N.D.); (A.M.); (C.M.); (B.F.); (V.F.); (G.P.); (V.V.); (G.M.)
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Roma, Italy; (A.P.); (F.P.)
| | - Vincenzo Valentini
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli, 8, 00168 Roma, Italy; (F.C.); (A.R.A.); (C.M.); (N.D.); (A.M.); (C.M.); (B.F.); (V.F.); (G.P.); (V.V.); (G.M.)
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Roma, Italy; (A.P.); (F.P.)
| | - Giovanna Mantini
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Largo Agostino Gemelli, 8, 00168 Roma, Italy; (F.C.); (A.R.A.); (C.M.); (N.D.); (A.M.); (C.M.); (B.F.); (V.F.); (G.P.); (V.V.); (G.M.)
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Roma, Italy; (A.P.); (F.P.)
| |
Collapse
|
142
|
Nour Y, Pöttgen C, Kebir S, Lazaridis L, Lüdemann L, Guberina M, Gauler T, Scheffler B, Jabbarli R, Pierscianek D, Sure U, Schmidt T, Oster C, Hau P, Glas M, Lübcke W, Stuschke M, Guberina N. Dosimetric impact of the positioning variation of tumor treating field electrodes in the PriCoTTF-phase I/II trial. J Appl Clin Med Phys 2021; 22:242-250. [PMID: 33389825 PMCID: PMC7856507 DOI: 10.1002/acm2.13144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/06/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose The aim of the present study based on the PriCoTTF‐phase I/II trial is the quantification of skin‐normal tissue complication probabilities of patients with newly diagnosed glioblastoma multiforme treated with Tumor Treating Field (TTField) electrodes, concurrent radiotherapy, and temozolomide. Furthermore, the skin‐sparing effect by the clinically applied strategy of repetitive transducer array fixation around their center position shall be examined. Material and Methods Low‐dose cone‐beam computed tomography (CBCT) scans of all fractions of the first seven patients of the PriCoTTF‐phase I/II trial, used for image guidance, were applied for the dosimetric analysis, for precise TTField transducer array positioning and contour delineation. Within this trial, array positioning was varied from fixation‐to‐fixation period with a standard deviation of 1.1 cm in the direction of the largest variation of positioning and 0.7 cm in the perpendicular direction. Physical TTField electrode composition was examined and a respective Hounsfield Unit attributed to the TTField electrodes. Dose distributions in the planning CT with TTField electrodes in place, as derived from prefraction CBCTs, were calculated and accumulated with the algorithm Acuros XB. Dose‐volume histograms were obtained for the first and second 2 mm scalp layer with and without migrating electrodes and compared with those with fixed electrodes in an average position. Skin toxicity was quantified according to Lyman's model. Minimum doses in hot‐spots of 0.05 cm2 and 25 cm2 (ΔD0.05cm2, ΔD25cm2) size in the superficial skin layers were analyzed. Results Normal tissue complication probabilities (NTCPs) for skin necrosis ranged from 0.005% to 1.474% (median 0.111%) for the different patients without electrodes. NTCP logarithms were significantly dependent on patient (P < 0.0001) and scenario (P < 0.0001) as classification variables. Fixed positioning of TTField arrays increased skin‐NTCP by a factor of 5.50 (95%, CI: 3.66–8.27). The variation of array positioning increased skin‐NTCP by a factor of only 3.54 (95%, CI: 2.36–5.32) (P < 0.0001, comparison to irradiation without electrodes; P = 0.036, comparison to irradiation with fixed electrodes). NTCP showed a significant rank correlation with D25cm2 over all patients and scenarios (rs = 0.76; P < 0.0001). Conclusion Skin‐NTCP calculation uncovers significant interpatient heterogeneity and may be used to stratify patients into high‐ and low‐risk groups of skin toxicity. Array position variation may mitigate about one‐third of the increase in surface dose and skin‐NTCP by the TTField electrodes.
Collapse
Affiliation(s)
- Youness Nour
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Christoph Pöttgen
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Sied Kebir
- Division of Clinical Neurooncology, Department of Neurology and West German Cancer Center, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Lazaros Lazaridis
- Division of Clinical Neurooncology, Department of Neurology and West German Cancer Center, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Lutz Lüdemann
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Maja Guberina
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Thomas Gauler
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Björn Scheffler
- DKFZ-Division Translational Neurooncology at the West German Cancer Centre (WTZ), German Cancer Consortium (DKTK), Partner Site University Hospital Essen, University of Duisburg, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Germany
| | - Ramazan Jabbarli
- Department of Neurosurgery, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Daniela Pierscianek
- Department of Neurosurgery, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Ulrich Sure
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Germany.,Department of Neurosurgery, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Teresa Schmidt
- Division of Clinical Neurooncology, Department of Neurology and West German Cancer Center, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Christoph Oster
- Division of Clinical Neurooncology, Department of Neurology and West German Cancer Center, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Peter Hau
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, Regensburg University Hospital, Germany
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology and West German Cancer Center, University Hospital Essen, University of Duisburg, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Germany
| | - Wolfgang Lübcke
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Martin Stuschke
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Germany
| | - Nika Guberina
- Department of Radiotherapy, West German Cancer Center, University Hospital Essen, University of Duisburg, Essen, Germany
| |
Collapse
|
143
|
Levegrün S, Pöttgen C, Xydis K, Guberina M, Abu Jawad J, Stuschke M. Spatial and dosimetric evaluation of residual distortions of prostate and seminal vesicle bed after image-guided definitive and postoperative radiotherapy of prostate cancer with endorectal balloon. J Appl Clin Med Phys 2020; 22:226-241. [PMID: 33377614 PMCID: PMC7856505 DOI: 10.1002/acm2.13138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/27/2020] [Accepted: 11/25/2020] [Indexed: 11/18/2022] Open
Abstract
Purpose To quantify daily residual deviations from the planned geometry after image‐guided prostate radiotherapy with endorectal balloon and to evaluate their effect on the delivered dose distribution. Methods Daily kV‐CBCT imaging was used for online setup‐correction in six degrees of freedom (6‐dof) for 24 patients receiving definitive (12 RTdef patients) or postoperative (12 RTpostop patients) radiotherapy with endorectal balloon (overall 739 CBCTs). Residual deviations were evaluated using several spatial and dosimetric variables, including: (a) posterior Hausdorff distance HDpost (=maximum distance between planned and daily CTV contour), (b) point Pworst with largest HDpost over all fractions, (c) equivalent uniform dose using a cell survival model (EUDSF) and the generalized EUD concept (gEUDa with parameter a = −7 and a = −20). EUD values were determined for planned (EUDSFplan), daily (EUDSFind), and delivered dose distributions (EUDSFaccum) for plans with 6 mm (=clinical plans) and 2 mm CTV‐to‐PTV margin. Time series analyses of interfractional spatial and dosimetric deviations were conducted. Results Large HDpost values ≥ 12.5 mm (≥15 mm) were observed in 20/739 (5/739) fractions distributed across 7 (3) patients. Points Pworst were predominantly located at the posterior CTV boundary in the seminal vesicle region (16/24 patients, 6/7 patients with HDpost ≥ 12.5 mm). Time series analyses revealed a stationary white noise characteristic of HDpost and relative dose at Pworst. The EUDSF difference between planned and accumulated dose distributions was < 5.4% for all 6‐mm plans. Evaluating 2‐mm plans, EUDSF deteriorated by < 10% (<5%) in 75% (58.5%) of the patients. EUDSFaccum was well described by the median value of the EUDSFind distribution. PTV margin calculation at Pworst yielded 8.8 mm. Conclusions Accumulated dose distributions in prostate radiotherapy with endorectal balloon are forgiving of considerable residual distortions after 6‐dof patient setup if they are observed in a minority of fractions and the median value of EUDSFind determined per fraction stays within 95% of prescribed dose. Common PTV margin calculations are overly conservative because after online correction of translational and rotational errors only residual deformations need to be included. These results provide guidelines regarding online navigation, margin optimization, and treatment adaptation strategies.
Collapse
Affiliation(s)
- Sabine Levegrün
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - Christoph Pöttgen
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | | | - Maja Guberina
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - Jehad Abu Jawad
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| |
Collapse
|
144
|
Wang K, Mavroidis P, Royce TJ, Falchook AD, Collins SP, Sapareto S, Sheets NC, Fuller DB, El Naqa I, Yorke E, Grimm J, Jackson A, Chen RC. Prostate Stereotactic Body Radiation Therapy: An Overview of Toxicity and Dose Response. Int J Radiat Oncol Biol Phys 2020; 110:237-248. [PMID: 33358229 DOI: 10.1016/j.ijrobp.2020.09.054] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/26/2020] [Indexed: 01/10/2023]
Abstract
PURPOSE Ultrahypofractionationed radiation therapy for prostate cancer is increasingly studied and adopted. The American Association of Physicists in Medicine Working Group on Biological Effects of Hypofractionated Radiotherapy therefore aimed to review studies examining toxicity and quality of life after stereotactic body radiation therapy (SBRT) for prostate cancer and model its effect. METHODS AND MATERIALS We performed a systematic PubMed search of prostate SBRT studies published between 2001 and 2018. Those that analyzed factors associated with late urinary, bowel, or sexual toxicity and/or quality of life were included and reviewed. Normal tissue complication probability modelling was performed on studies that contained detailed dose/volume and outcome data. RESULTS We found 13 studies that examined urinary effects, 6 that examined bowel effects, and 4 that examined sexual effects. Most studies included patients with low-intermediate risk prostate cancer treated to 35-40 Gy. Most patients were treated with 5 fractions, with several centers using 4 fractions. Endpoints were heterogeneous and included both physician-scored toxicity and patient-reported quality of life. Most toxicities were mild-moderate (eg, grade 1-2) with a very low overall incidence of severe toxicity (eg, grade 3 or higher, usually <3%). Side effects were associated with both dosimetric and non-dosimetric factors. CONCLUSIONS Prostate SBRT appears to be overall well tolerated, with determinants of toxicity that include dosimetric factors and patient factors. Suggested dose constraints include bladder V(Rx Dose)Gy <5-10 cc, urethra Dmax <38-42 Gy, and rectum Dmax <35-38 Gy, though current data do not offer firm guidance on tolerance doses. Several areas for future research are suggested.
Collapse
Affiliation(s)
- Kyle Wang
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina
| | - Panayiotis Mavroidis
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina
| | - Trevor J Royce
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina
| | | | - Sean P Collins
- Department of Radiation Oncology, Georgetown University Hospital, Washington, DC
| | - Stephen Sapareto
- Department of Medical Physics, Banner Health System, Phoenix, Arizona
| | - Nathan C Sheets
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina
| | | | - Issam El Naqa
- Department of Machine Learning, Moffitt Cancer Center, Tampa, Florida
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jimm Grimm
- Department of Radiation Oncology, Geisinger Health System, Danville, Pennsylvania; Department of Medical Imaging and Radiation Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald C Chen
- Department of Radiation Oncology, University of Kansas, Kansas City, Kansas.
| |
Collapse
|
145
|
Hoegen P, Lang C, Akbaba S, Häring P, Splinter M, Miltner A, Bachmann M, Stahl-Arnsberger C, Brechter T, El Shafie RA, Weykamp F, König L, Debus J, Hörner-Rieber J. Cone-Beam-CT Guided Adaptive Radiotherapy for Locally Advanced Non-small Cell Lung Cancer Enables Quality Assurance and Superior Sparing of Healthy Lung. Front Oncol 2020; 10:564857. [PMID: 33363005 PMCID: PMC7756078 DOI: 10.3389/fonc.2020.564857] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/04/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose To evaluate the potential of cone-beam-CT (CB-CT) guided adaptive radiotherapy (ART) for locally advanced non-small cell lung cancer (NSCLC) for sparing of surrounding organs-at-risk (OAR). Materials and Methods In 10 patients with locally advanced NSCLC, daily CB-CT imaging was acquired during radio- (n = 4) or radiochemotherapy (n = 6) for simulation of ART. Patients were treated with conventionally fractionated intensity-modulated radiotherapy (IMRT) with total doses of 60–66 Gy (pPlan) (311 fraction CB-CTs). OAR were segmented on every daily CB-CT and the tumor volumes were modified weekly depending on tumor changes. Doses actually delivered were recalculated on daily images (dPlan), and voxel-wise dose accumulation was performed using a deformable registration algorithm. For simulation of ART, treatment plans were adapted using the new contours and re-optimized weekly (aPlan). Results CB-CT showed continuous tumor regression of 1.1 ± 0.4% per day, leading to a residual gross tumor volume (GTV) of 65.3 ± 13.4% after 6 weeks of radiotherapy (p = 0.005). Corresponding PTVs decreased to 83.7 ± 7.8% (p = 0.005). In the actually delivered plans (dPlan), both conformity (p = 0.005) and homogeneity (p = 0.059) indices were impaired compared to the initial plans (pPlan). This resulted in higher actual lung doses than planned: V20Gy was 34.6 ± 6.8% instead of 32.8 ± 4.9% (p = 0.066), mean lung dose was 19.0 ± 3.1 Gy instead of 17.9 ± 2.5 Gy (p = 0.013). The generalized equivalent uniform dose (gEUD) of the lung was 18.9 ± 3.1 Gy instead of 17.8 ± 2.5 Gy (p = 0.013), leading to an increased lung normal tissue complication probability (NTCP) of 15.2 ± 13.9% instead of 9.6 ± 7.3% (p = 0.017). Weekly plan adaptation enabled decreased lung V20Gy of 31.6 ± 6.2% (−3.0%, p = 0.007), decreased mean lung dose of 17.7 ± 2.9 Gy (−1.3 Gy, p = 0.005), and decreased lung gEUD of 17.6 ± 2.9 Gy (−1.3 Gy, p = 0.005). Thus, resulting lung NTCP was reduced to 10.0 ± 9.5% (−5.2%, p = 0.005). Target volume coverage represented by conformity and homogeneity indices could be improved by weekly plan adaptation (CI: p = 0.007, HI: p = 0.114) and reached levels of the initial plan (CI: p = 0.721, HI: p = 0.333). Conclusion IGRT with CB-CT detects continuous GTV and PTV changes. CB-CT-guided ART for locally advanced NSCLC is feasible and enables superior sparing of healthy lung at high levels of plan conformity.
Collapse
Affiliation(s)
- Philipp Hoegen
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clemens Lang
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Medical Physics in Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sati Akbaba
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Radiation Oncology, Mainz University Hospital, Mainz, Germany
| | - Peter Häring
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Medical Physics in Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mona Splinter
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,Medical Physics in Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annette Miltner
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marion Bachmann
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Thomas Brechter
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rami A El Shafie
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Fabian Weykamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
146
|
Ruggieri R, Rigo M, Naccarato S, Gurrera D, Figlia V, Mazzola R, Ricchetti F, Nicosia L, Giaj-Levra N, Cuccia F, Vitale C, Stavreva N, Pressyanov DS, Stavrev P, Pellegrini R, Alongi F. Adaptive SBRT by 1.5 T MR-linac for prostate cancer: On the accuracy of dose delivery in view of the prolonged session time. Phys Med 2020; 80:34-41. [DOI: 10.1016/j.ejmp.2020.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/02/2020] [Accepted: 09/29/2020] [Indexed: 01/11/2023] Open
|
147
|
Dale JE, Molinelli S, Vischioni B, Vitolo V, Bonora M, Magro G, Mairani A, Hasegawa A, Ohno T, Dahl O, Valvo F, Fossati P. Brainstem NTCP and Dose Constraints for Carbon Ion RT-Application and Translation From Japanese to European RBE-Weighted Dose. Front Oncol 2020; 10:531344. [PMID: 33330020 PMCID: PMC7735105 DOI: 10.3389/fonc.2020.531344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose The Italian National Center of Oncological Hadrontherapy (CNAO) has applied dose constraints for carbon ion RT (CIRT) as defined by Japan’s National Institute of Radiological Sciences (NIRS). However, these institutions use different models to predict the relative biological effectiveness (RBE). CNAO applies the Local Effect Model I (LEM I), which in most clinical situations predicts higher RBE than NIRS’s Microdosimetric Kinetic Model (MKM). Equal constraints therefore become more restrictive at CNAO. Tolerance doses for the brainstem have not been validated for LEM I-weighted dose (DLEM I). However, brainstem constraints and a Normal Tissue Complication Probability (NTCP) model were recently reported for MKM-weighted dose (DMKM), showing that a constraint relaxation to DMKM|0.7 cm3 <30 Gy (RBE) and DMKM|0.1 cm3 <40 Gy (RBE) was feasible. The aim of this work was to evaluate the brainstem NTCP associated with CNAO’s current clinical practice and to propose new brainstem constraints for LEM I-optimized CIRT at CNAO. Material and Methods We reproduced the absorbed dose of 30 representative patient treatment plans from CNAO. Subsequently, we calculated both DLEM I and DMKM, and the relationship between DMKM and DLEM I for various brainstem dose metrics was analyzed. Furthermore, the NTCP model developed for DMKM was applied to estimate the NTCPs of the delivered plans. Results The translation of CNAO treatment plans to DMKM confirmed that the former CNAO constraints were conservative compared with DMKM constraints. Estimated NTCPs were 0% for all but one case, in which the NTCP was 2%. The relationship DMKM/DLEM I could be described by a quadratic regression model which revealed that the validated DMKM constraints corresponded to DLEM I|0.7 cm3 <41 Gy (RBE) (95% CI, 38–44 Gy (RBE)) and DLEM I|0.1 cm3 <49 Gy (RBE) (95% CI, 46–52 Gy (RBE)). Conclusion Our study demonstrates that RBE-weighted dose translation is of crucial importance in order to exchange experience and thus harmonize CIRT treatments globally. To mitigate uncertainties involved, we propose to use the lower bound of the 95% CI of the translation estimates, i.e., DLEM I|0.7 cm3 <38 Gy (RBE) and DLEM I|0.1 cm3 <46 Gy (RBE) as brainstem dose constraints for 16 fraction CIRT treatments optimized with LEM I.
Collapse
Affiliation(s)
- Jon Espen Dale
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | | | - Viviana Vitolo
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | - Maria Bonora
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | - Giuseppe Magro
- National Center of Oncological Hadrontherapy, Pavia, Italy
| | - Andrea Mairani
- National Center of Oncological Hadrontherapy, Pavia, Italy.,Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany
| | - Azusa Hasegawa
- National Center of Oncological Hadrontherapy, Pavia, Italy.,Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Tatsuya Ohno
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Olav Dahl
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | | | - Piero Fossati
- National Center of Oncological Hadrontherapy, Pavia, Italy.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| |
Collapse
|
148
|
Study of normal tissue dosimetric benefit using asymmetric margin-based biological fuzzy decision making: volumetric modulated arc therapy of prostate cancer. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396920000904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractAim:Radiation therapy has historically used margins for target volume to ensure dosimetric planning criteria. The size of margin for a given treatment site is still uncertain particularly for moving targets along with set-up variations leading to a fuzziness of target volume. In this study, we have estimated the dosimetric benefit of normal structures using biological-based optimal margins. The treatment margins are derived by knowledge-based fuzzy logic technique which is considering the radiotherapy uncertainties in treatment planning.Materials and methods:All treatment plans were performed using stepped increments of asymmetric margins to estimate prostate radiobiological indices such as tumour control probability (TCP) and normal tissue complication probability (NTCP). An absolute NTCP of 5% was considered to be the maximum acceptable value while TCP of 85% was considered to be the minimal acceptable limit for each volumetric modulated arc therapy (VMAT) plan of localised prostate cancer radiotherapy. Results were used to formulate rules and membership functions for Mamdani-type fuzzy inference system (FIS). In implementing the rules for the fuzzy system for ΔNTCP values above 10%, the PTV margin was not permitted to exceed 5 mm to avoid rectal complications due to margin selection. The new margins were applied in VMAT planning of prostate cancer for standard displacement errors. The dosimetric results of normal tissue predictors were estimated such as organ mean doses, rectum V60 (volume receiving 60 Gy), bladder V65 (volume receiving 65 Gy) and other clinically significant dose–volume indicators and compared with VMAT plans using current margin formulations.Results:Dosimetric results compared well to the results obtained by current techniques. Good agreement was obtained between proposed fuzzy model margins and currently used margins in lower error magnitude, but significant results were observed at higher error magnitude when organ toxicity concerned without compromising the target volumes.Findings:The new margins may be helpful to estimate possible outcomes of normal tissue complications and thus may improve complication free survival particularly when organ motion errors are inevitable, case by case.
Collapse
|
149
|
Murphy NL, Philip R, Wozniak M, Lee BH, Donnelly ED, Zhang H. A simple dosimetric approach to spatially fractionated GRID radiation therapy using the multileaf collimator for treatment of breast cancers in the prone position. J Appl Clin Med Phys 2020; 21:105-114. [PMID: 33119939 PMCID: PMC7700924 DOI: 10.1002/acm2.13040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 01/06/2023] Open
Abstract
The purpose of this study was to explore the treatment planning methods of spatially fractionated radiation therapy (SFRT), commonly referred to as GRID therapy, in the treatment of breast cancer patients using multileaf collimator (MLC) in the prone position. A total of 12 patients with either left or right breast cancer were retrospectively chosen. The computed tomography (CT) images taken for the whole breast external beam radiation therapy (WB‐EBRT) were used for GRID therapy planning. Each GRID plan was made by using two portals and each portal had two fields with 1‐cm aperture size. The dose prescription point was placed at the center of the target volume, and a dose of 20 Gy with 6‐MV beams was prescribed. Dose‐volume histogram (DVH) curves were generated to evaluate dosimetric properties. A modified linear‐quadratic (MLQ) radiobiological response model was used to assess the equivalent uniform doses (EUD) and therapeutic ratios (TRs) of all GRID plans. The DVH curves indicated that these MLC‐based GRID therapy plans can deliver heterogeneous dose distribution in the target volume as seen with the conventional cerrobend GRID block. The plans generated by the MLC technique also demonstrated the advantage for accommodating different target shapes, sparing normal structures, and reporting dose metrics to the targets and the organs at risks. All GRID plans showed to have similar dosimetric parameters, implying the plans can be made in a consistent quality regardless of the shape of the target and the size of volume. The mean dose of lung and heart were respectively below 0.6 and 0.7 Gy. When the size of aperture is increased from 1 to 2 cm, the EUD and TR became smaller, but the peak/valley dose ratio (PVDR) became greater. The dosimetric approach of this study was proven to be simple, practical and easy to be implemented in clinic.
Collapse
Affiliation(s)
- Natasha L Murphy
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Rino Philip
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Matt Wozniak
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Brian H Lee
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Eric D Donnelly
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Hualin Zhang
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| |
Collapse
|
150
|
Cao W, Zhuang Y, Chen L, Liu X. Application of dose-volume histogram prediction in biologically related models for nasopharyngeal carcinomas treatment planning. Radiat Oncol 2020; 15:216. [PMID: 32933543 PMCID: PMC7653901 DOI: 10.1186/s13014-020-01623-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/17/2020] [Indexed: 11/29/2022] Open
Abstract
PURPOSE In this study, we employed a gated recurrent unit (GRU)-based recurrent neural network (RNN) using dosimetric information induced by individual beam to predict the dose-volume histogram (DVH) and investigated the feasibility and usefulness of this method in biologically related models for nasopharyngeal carcinomas (NPC) treatment planning. METHODS AND MATERIALS One hundred patients with NPC undergoing volumetric modulated arc therapy (VMAT) between 2018 and 2019 were randomly selected for this study. All the VMAT plans were created using the Monaco treatment planning system (Elekta, Sweden) and clinically approved: > 98% of PGTVnx received the prescribed doses of 70 Gy, > 98% of PGTVnd received the prescribed doses of 66 Gy and > 98% of PCTV received 60 Gy. Of these, the data from 80 patients were used to train the GRU-RNN, and the data from the other 20 patients were used for testing. For each NPC patient, the DVHs of different organs at risk were predicted by a trained GRU-based RNN using the information given by individual conformal beams. Based on the predicted DVHs, the equivalent uniform doses (EUD) were calculated and applied as dose constraints during treatment planning optimization. The regenerated VMAT experimental plans (EPs) were evaluated by comparing them with the clinical plans (CPs). RESULTS For the 20 test patients, the regenerated EPs guided by the GRU-RNN predictive model achieved good consistency relative to the CPs. The EPs showed better consistency in PTV dose distribution and better dose sparing for many organs at risk, and significant differences were found in the maximum/mean doses to the brainstem, brainstem PRV, spinal cord, lenses, temporal lobes, parotid glands and larynx with P-values < 0.05. On average, compared with the CPs, the maximum/mean doses to these OARs were altered by - 3.44 Gy, - 1.94 Gy, - 1.88 Gy, 0.44 Gy, 1.98 Gy, - 1.82 Gy and 2.27 Gy, respectively. In addition, significant differences were also found in brainstem and spinal cord for the dose received by 1 cc volume with 4.11 and 1.67 Gy dose reduction in EPs on average. CONCLUSION The GRU-RNN-based DVH prediction method was capable of accurate DVH prediction. The regenerated plans guided by the predicted EUDs were not inferior to the manual plans, had better consistency in PTVs and better dose sparing in critical OARs, indicating the usefulness and effectiveness of biologically related model in knowledge-based planning.
Collapse
Affiliation(s)
- Wufei Cao
- School of Physics, Sun Yat-sen University, Guangzhou, 510275 China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Yongdong Zhuang
- National Cancer Center, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116 China
| | - Lixin Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Xiaowei Liu
- School of Physics, Sun Yat-sen University, Guangzhou, 510275 China
| |
Collapse
|