101
|
Mangraviti A, Tyler B, Brem H. Interstitial chemotherapy for malignant glioma: Future prospects in the era of multimodal therapy. Surg Neurol Int 2015; 6:S78-84. [PMID: 25722936 PMCID: PMC4338488 DOI: 10.4103/2152-7806.151345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/15/2014] [Indexed: 11/05/2022] Open
Abstract
The advent of interstitial chemotherapy has significantly increased therapeutic options for patients with malignant glioma. Interstitial chemotherapy can deliver high concentrations of chemotherapeutic agents, directly at the site of the brain tumor while bypassing systemic toxicities. Gliadel, a locally implanted polymer that releases the alkylating agent carmustine, given alone and in combination with various other antitumor and resistance modifying therapies, has significantly increased the median survival for patients with malignant glioma. Convection enhanced delivery, a technique used to directly infuse drugs into brain tissue, has shown promise for the delivery of immunotoxins, monoclonal antibodies, and chemotherapeutic agents. Preclinical studies include delivery of chemotherapeutic and immunomodulating agents by polymer and microchips. Interstitial chemotherapy was shown to maximize local efficacy and is an important strategy for the efficacy of any multimodal approach.
Collapse
Affiliation(s)
- Antonella Mangraviti
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA ; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA ; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA ; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
102
|
Suryadevara CM, Verla T, Sanchez-Perez L, Reap EA, Choi BD, Fecci PE, Sampson JH. Immunotherapy for malignant glioma. Surg Neurol Int 2015; 6:S68-77. [PMID: 25722935 PMCID: PMC4338494 DOI: 10.4103/2152-7806.151341] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/15/2014] [Indexed: 12/25/2022] Open
Abstract
Malignant gliomas (MG) are the most common type of primary malignant brain tumor. Most patients diagnosed with glioblastoma (GBM), the most common and malignant glial tumor, die within 12-15 months. Moreover, conventional treatment, which includes surgery followed by radiation and chemotherapy, can be highly toxic by causing nonspecific damage to healthy brain and other tissues. The shortcomings of standard-of-care have thus created a stimulus for the development of novel therapies that can target central nervous system (CNS)-based tumors specifically and efficiently, while minimizing off-target collateral damage to normal brain. Immunotherapy represents an investigational avenue with the promise of meeting this need, already having demonstrated its potential against B-cell malignancy and solid tumors in clinical trials. T-cell engineering with tumor-specific chimeric antigen receptors (CARs) is one proven approach that aims to redirect autologous patient T-cells to sites of tumor. This platform has evolved dramatically over the past two decades to include an improved construct design, and these modern CARs have only recently been translated into the clinic for brain tumors. We review here emerging immunotherapeutic platforms for the treatment of MG, focusing on the development and application of a CAR-based strategy against GBM.
Collapse
Affiliation(s)
- Carter M Suryadevara
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Terence Verla
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Luis Sanchez-Perez
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Elizabeth A Reap
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Bryan D Choi
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Peter E Fecci
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - John H Sampson
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
103
|
Kim W, Kang BR, Kim HY, Cho SM, Lee YD, Kim S, Kim JY, Kim DJ, Kim Y. Real-time imaging of glioblastoma using bioluminescence in a U-87 MG xenograft model mouse. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13765-015-0037-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
104
|
Zhang B, Zhang Y, Liao Z, Jiang T, Zhao J, Tuo Y, She X, Shen S, Chen J, Zhang Q, Jiang X, Hu Y, Pang Z. UPA-sensitive ACPP-conjugated nanoparticles for multi-targeting therapy of brain glioma. Biomaterials 2015; 36:98-109. [DOI: 10.1016/j.biomaterials.2014.09.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 08/29/2014] [Indexed: 01/07/2023]
|
105
|
Genetic modification of neurons to express bevacizumab for local anti-angiogenesis treatment of glioblastoma. Cancer Gene Ther 2014; 22:1-8. [PMID: 25501993 PMCID: PMC4293257 DOI: 10.1038/cgt.2014.58] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/03/2014] [Accepted: 10/07/2014] [Indexed: 01/12/2023]
Abstract
The median survival of glioblastoma multiforme (GBM) approximately 1 yr. Following surgical removal, systemic therapies are limited by the blood-brain barrier. To circumvent this, we developed a method to modify neurons with the genetic sequence for therapeutic monoclonal antibodies using adeno-associated virus (AAV) gene transfer vectors, directing persistent, local expression in the tumor milieu. The human U87MG GBM cell line or patient-derived early passage GBM cells were administered to the striatum of NOD/SCID immunodeficient mice. AAVrh.10BevMab, an AAVrh.10-based vector coding for bevacizumab (Avastin®), an anti-human vascular endothelial growth factor (VEGF) monoclonal antibody, was delivered to the area of the GBM xenograft. Localized expression of bevacizumab was demonstrated by quantitative PCR, ELISA and Western. Immunohistochemistry showed the bevacizumab was expressed in neurons. Concurrent administration of AAVrh.10BevMab with the U87MG tumor reduced tumor blood vessel density, and tumor volume and increased survival. Administration of AAVrh.10BevMab 1 wk after U87MG xenograft reduced growth and increased survival. Studies with patient-derived early passage GBM primary cells showed a reduction in primary tumor burden with an increased survival. This data supports the strategy of AAV-mediated CNS gene therapy to treat GBM, overcoming the blood-brain barrier through local, persistent delivery of an anti-angiogenesis monoclonal antibody.
Collapse
|
106
|
Maguire CA, Ramirez SH, Merkel SF, Sena-Esteves M, Breakefield XO. Gene therapy for the nervous system: challenges and new strategies. Neurotherapeutics 2014; 11:817-39. [PMID: 25159276 PMCID: PMC4391389 DOI: 10.1007/s13311-014-0299-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Current clinical treatments for central nervous system (CNS) diseases, such as Parkinson's disease and glioblastoma do not halt disease progression and have significant treatment morbidities. Gene therapy has the potential to "permanently" correct disease by bringing in a normal gene to correct a mutant gene deficiency, knocking down mRNA of mutant alleles, and inducing cell-death in cancer cells using transgenes encoding apoptosis-inducing proteins. Promising results in clinical trials of eye disease (Leber's congenital aumorosis) and Parkinson's disease have shown that gene-based neurotherapeutics have great potential. The recent development of genome editing technology, such as zinc finger nucleases, TALENS, and CRISPR, has made the ultimate goal of gene correction a step closer. This review summarizes the challenges faced by gene-based neurotherapeutics and the current and recent strategies designed to overcome these barriers. We have chosen the following challenges to focus on in this review: (1) delivery vehicles (both virus and nonviral), (2) use of promoters for vector-mediated gene expression in CNS, and (3) delivery across the blood-brain barrier. The final section (4) focuses on promising pre-clinical/clinical studies of neurotherapeutics.
Collapse
Affiliation(s)
- Casey A Maguire
- Department of Neurology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Molecular Neurogenetics Unit, 13th Street, Building 149, Charlestown, MA, 02129, USA,
| | | | | | | | | |
Collapse
|
107
|
Saeed M, Zeino M, Kadioglu O, Volm M, Efferth T. Overcoming of P-glycoprotein-mediated multidrug resistance of tumors in vivo by drug combinations. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.synres.2014.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
108
|
Simeonova I, Huillard E. In vivo models of brain tumors: roles of genetically engineered mouse models in understanding tumor biology and use in preclinical studies. Cell Mol Life Sci 2014; 71:4007-26. [PMID: 25008045 PMCID: PMC4175043 DOI: 10.1007/s00018-014-1675-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 06/20/2014] [Accepted: 06/30/2014] [Indexed: 01/09/2023]
Abstract
Although our knowledge of the biology of brain tumors has increased tremendously over the past decade, progress in treatment of these deadly diseases remains modest. Developing in vivo models that faithfully mirror human diseases is essential for the validation of new therapeutic approaches. Genetically engineered mouse models (GEMMs) provide elaborate temporally and genetically controlled systems to investigate the cellular origins of brain tumors and gene function in tumorigenesis. Furthermore, they can prove to be valuable tools for testing targeted therapies. In this review, we discuss GEMMs of brain tumors, focusing on gliomas and medulloblastomas. We describe how they provide critical insights into the molecular and cellular events involved in the initiation and maintenance of brain tumors, and illustrate their use in preclinical drug testing.
Collapse
Affiliation(s)
- Iva Simeonova
- Université Pierre et Marie Curie (UPMC) UMR-S975, Inserm U1127, CNRS UMR7225, Institut du Cerveau et de la Moelle Epiniere, 47 boulevard de l'Hôpital, 75013, Paris, France
| | | |
Collapse
|
109
|
Ajaz M, Jefferies S, Brazil L, Watts C, Chalmers A. Current and investigational drug strategies for glioblastoma. Clin Oncol (R Coll Radiol) 2014; 26:419-30. [PMID: 24768122 DOI: 10.1016/j.clon.2014.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 11/21/2022]
Abstract
Medical treatments for glioblastoma face several challenges. Lipophilic alkylators remain the mainstay of treatment, emphasising the primacy of good blood-brain barrier penetration. Temozolomide has emerged as a major contributor to improved patient survival. The roles of procarbazine and vincristine in the procarbazine, lomustine and vincristine (PCV) schedule have attracted scrutiny and several lines of evidence now support the use of lomustine as effective single-agent therapy. Bevacizumab has had a convoluted development history, but clearly now has no major role in first-line treatment, and may even be detrimental to quality of life in this setting. In later disease, clinically meaningful benefits are achievable in some patients, but more impressively the combination of bevacizumab and lomustine shows early promise. Over the last decade, investigational strategies in glioblastoma have largely subscribed to the targeted kinase inhibitor paradigm and have mostly failed. Low prevalence dominant driver lesions such as the FGFR-TACC fusion may represent a niche role for this agent class. Immunological, metabolic and radiosensitising approaches are being pursued and offer more generalised efficacy. Finally, trial design is a crucial consideration. Progress in clinical glioblastoma research would be greatly facilitated by improved methodologies incorporating: (i) routine pharmacokinetic and pharmacodynamic assessments by preoperative dosing; and (ii) multi-stage, multi-arm protocols incorporating new therapy approaches and high-resolution biology in order to guide necessary improvements in science.
Collapse
Affiliation(s)
- M Ajaz
- Surrey Cancer Research Institute, University of Surrey, Guildford, UK.
| | - S Jefferies
- Oncology Centre, Addenbrooke's Hospital, Cambridge, UK
| | - L Brazil
- Guy's, St Thomas' and King's College Hospitals, London, UK
| | - C Watts
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - A Chalmers
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
110
|
Salphati L, Shahidi-Latham S, Quiason C, Barck K, Nishimura M, Alicke B, Pang J, Carano RA, Olivero AG, Phillips HS. Distribution of the phosphatidylinositol 3-kinase inhibitors Pictilisib (GDC-0941) and GNE-317 in U87 and GS2 intracranial glioblastoma models-assessment by matrix-assisted laser desorption ionization imaging. Drug Metab Dispos 2014; 42:1110-6. [PMID: 24754926 DOI: 10.1124/dmd.114.057513] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults, and the limited available treatment options have not meaningfully impacted patient survival in the past decades. Such poor outcomes can be at least partly attributed to the inability of most drugs tested to cross the blood-brain barrier and reach all areas of the glioma. The objectives of these studies were to visualize and compare by matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry the brain and tumor distribution of the phosphatidylinositol 3-kinase (PI3K) inhibitors pictilisib (GDC-0941, 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine) and GNE-317 [5-(6-(3-methoxyoxetan-3-yl)-7-methyl-4-morpholinothieno[3,2-d]pyrimidin-2-yl)pyrimidin-2-amine] in U87 and GS2 orthotopic models of GBM, models that exhibit differing blood-brain barrier characteristics. Following administration to tumor-bearing mice, pictilisib was readily detected within tumors of the contrast-enhancing U87 model whereas it was not located in tumors of the nonenhancing GS2 model. In both GBM models, pictilisib was not detected in the healthy brain. In contrast, GNE-317 was uniformly distributed throughout the brain in the U87 and GS2 models. MALDI imaging revealed also that the pictilisib signal varied regionally by up to 6-fold within the U87 tumors whereas GNE-317 intratumor levels were more homogeneous. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analyses of the nontumored half of the brain showed pictilisib had brain-to-plasma ratios lower than 0.03 whereas they were greater than 1 for GNE-317, in agreement with their brain penetration properties. These results in orthotopic models representing either the contrast-enhancing or invasive areas of GBM clearly demonstrate the need for whole-brain distribution to potentially achieve long-term efficacy in GBM.
Collapse
Affiliation(s)
- Laurent Salphati
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S-L., C.Q., J.P.), Biomedical Imaging (K.B., R.A.C.), Cancer Signaling and Translational Oncology (M.N., B.A., H.S.P.), and Chemistry (A.G.O.), Genentech, Inc., South San Francisco, California
| | - Sheerin Shahidi-Latham
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S-L., C.Q., J.P.), Biomedical Imaging (K.B., R.A.C.), Cancer Signaling and Translational Oncology (M.N., B.A., H.S.P.), and Chemistry (A.G.O.), Genentech, Inc., South San Francisco, California
| | - Cristine Quiason
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S-L., C.Q., J.P.), Biomedical Imaging (K.B., R.A.C.), Cancer Signaling and Translational Oncology (M.N., B.A., H.S.P.), and Chemistry (A.G.O.), Genentech, Inc., South San Francisco, California
| | - Kai Barck
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S-L., C.Q., J.P.), Biomedical Imaging (K.B., R.A.C.), Cancer Signaling and Translational Oncology (M.N., B.A., H.S.P.), and Chemistry (A.G.O.), Genentech, Inc., South San Francisco, California
| | - Merry Nishimura
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S-L., C.Q., J.P.), Biomedical Imaging (K.B., R.A.C.), Cancer Signaling and Translational Oncology (M.N., B.A., H.S.P.), and Chemistry (A.G.O.), Genentech, Inc., South San Francisco, California
| | - Bruno Alicke
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S-L., C.Q., J.P.), Biomedical Imaging (K.B., R.A.C.), Cancer Signaling and Translational Oncology (M.N., B.A., H.S.P.), and Chemistry (A.G.O.), Genentech, Inc., South San Francisco, California
| | - Jodie Pang
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S-L., C.Q., J.P.), Biomedical Imaging (K.B., R.A.C.), Cancer Signaling and Translational Oncology (M.N., B.A., H.S.P.), and Chemistry (A.G.O.), Genentech, Inc., South San Francisco, California
| | - Richard A Carano
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S-L., C.Q., J.P.), Biomedical Imaging (K.B., R.A.C.), Cancer Signaling and Translational Oncology (M.N., B.A., H.S.P.), and Chemistry (A.G.O.), Genentech, Inc., South San Francisco, California
| | - Alan G Olivero
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S-L., C.Q., J.P.), Biomedical Imaging (K.B., R.A.C.), Cancer Signaling and Translational Oncology (M.N., B.A., H.S.P.), and Chemistry (A.G.O.), Genentech, Inc., South San Francisco, California
| | - Heidi S Phillips
- Departments of Drug Metabolism and Pharmacokinetics (L.S., S.S-L., C.Q., J.P.), Biomedical Imaging (K.B., R.A.C.), Cancer Signaling and Translational Oncology (M.N., B.A., H.S.P.), and Chemistry (A.G.O.), Genentech, Inc., South San Francisco, California
| |
Collapse
|
111
|
Saenz del Burgo L, Hernández RM, Orive G, Pedraz JL. Nanotherapeutic approaches for brain cancer management. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:905-19. [DOI: 10.1016/j.nano.2013.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/10/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
|
112
|
Miao H, Choi BD, Suryadevara CM, Sanchez-Perez L, Yang S, De Leon G, Sayour EJ, McLendon R, Herndon JE, Healy P, Archer GE, Bigner DD, Johnson LA, Sampson JH. EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma. PLoS One 2014; 9:e94281. [PMID: 24722266 PMCID: PMC3983153 DOI: 10.1371/journal.pone.0094281] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/14/2014] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and is uniformly lethal. T-cell-based immunotherapy offers a promising platform for treatment given its potential to specifically target tumor tissue while sparing the normal brain. However, the diffuse and infiltrative nature of these tumors in the brain parenchyma may pose an exceptional hurdle to successful immunotherapy in patients. Areas of invasive tumor are thought to reside behind an intact blood brain barrier, isolating them from effective immunosurveillance and thereby predisposing the development of "immunologically silent" tumor peninsulas. Therefore, it remains unclear if adoptively transferred T cells can migrate to and mediate regression in areas of invasive GBM. One barrier has been the lack of a preclinical mouse model that accurately recapitulates the growth patterns of human GBM in vivo. Here, we demonstrate that D-270 MG xenografts exhibit the classical features of GBM and produce the diffuse and invasive tumors seen in patients. Using this model, we designed experiments to assess whether T cells expressing third-generation chimeric antigen receptors (CARs) targeting the tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, would localize to and treat invasive intracerebral GBM. EGFRvIII-targeted CAR (EGFRvIII+ CAR) T cells demonstrated in vitro EGFRvIII antigen-specific recognition and reactivity to the D-270 MG cell line, which naturally expresses EGFRvIII. Moreover, when administered systemically, EGFRvIII+ CAR T cells localized to areas of invasive tumor, suppressed tumor growth, and enhanced survival of mice with established intracranial D-270 MG tumors. Together, these data demonstrate that systemically administered T cells are capable of migrating to the invasive edges of GBM to mediate antitumor efficacy and tumor regression.
Collapse
Affiliation(s)
- Hongsheng Miao
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bryan D. Choi
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Carter M. Suryadevara
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Luis Sanchez-Perez
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Shicheng Yang
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Gabriel De Leon
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Elias J. Sayour
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Roger McLendon
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - James E. Herndon
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Patrick Healy
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Gary E. Archer
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Darell D. Bigner
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Laura A. Johnson
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - John H. Sampson
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
113
|
Weber TG, Osl F, Renner A, Pöschinger T, Galbán S, Rehemtulla A, Scheuer W. Apoptosis imaging for monitoring DR5 antibody accumulation and pharmacodynamics in brain tumors noninvasively. Cancer Res 2014; 74:1913-23. [PMID: 24509903 PMCID: PMC4269941 DOI: 10.1158/0008-5472.can-13-3001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
High-grade gliomas often possess an impaired blood-brain barrier (BBB), which allows delivery of large molecules to brain tumors. However, achieving optimal drug concentrations in brain tumors remains a significant hurdle for treating patients successfully. Thus, detailed investigations of drug activities in gliomas are needed. To investigate BBB penetration, pharmacodynamics, and tumor retention kinetics of an agonistic DR5 antibody in a brain tumor xenograft model, we utilized a noninvasive imaging method for longitudinal monitoring of apoptosis induction. Brain tumors were induced by intracranial (i.c.) implantation of a luciferase-expressing tumor cell line as a reporter. To quantify accumulation of anti-DR5 in brain tumors, we generated a dosage-response curve for apoptosis induction after i.c. delivery of fluorescence-labeled anti-DR5 at different dosages. Assuming 100% drug delivery after i.c. application, the amount of accumulated antibody after i.v. application was calculated relative to its apoptosis induction. We found that up to 0.20% to 0.97% of antibody delivered i.v. reached the brain tumor, but that apoptosis induction declined quickly within 24 hours. These results were confirmed by three-dimensional fluorescence microscopy of antibody accumulation in explanted brains. Nonetheless, significant antitumor efficacy was documented after anti-DR5 delivery. We further demonstrated that antibody penetration was facilitated by an impaired BBB in brain tumors. These imaging methods enable the quantification of antibody accumulation and pharmacodynamics in brain tumors, offering a holistic approach for assessment of central nervous system-targeting drugs.
Collapse
Affiliation(s)
- Thomas G Weber
- Authors' Affiliations: Discovery Oncology, Pharmaceutical Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany; and Center for Molecular Imaging, Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | | | | | |
Collapse
|
114
|
A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther 2014; 22:1048-55. [PMID: 24572293 DOI: 10.1038/mt.2014.22] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 02/05/2014] [Indexed: 01/25/2023] Open
Abstract
G207, a mutant herpes simplex virus (HSV) type 1, is safe when inoculated into recurrent malignant glioma. We conducted a phase 1 trial of G207 to demonstrate the safety of stereotactic intratumoral administration when given 24 hours prior to a single 5 Gy radiation dose in patients with recurrent malignant glioma. Nine patients with progressive, recurrent malignant glioma despite standard therapy were included. Patients received one dose of G207 stereotactically inoculated into the multiple sites of the enhancing tumor margin and were then treated focally with 5 Gy radiation. Treatment was well tolerated, and no patient developed HSV encephalitis. The median interval between initial diagnosis and G207 inoculation was 18 months (mean: 23 months; range: 11-51 months). Six of the nine patients had stable disease or partial response for at least one time point. Three instances of marked radiographic response to treatment occurred. The median survival time from G207 inoculation until death was 7.5 months (95% confidence interval: 3.0-12.7). In conclusion, this study showed the safety and the potential for clinical response of single-dose oncolytic HSV therapy augmented with radiation in the treatment of malignant glioma patients. Additional studies with oncolytic HSV such as G207 in the treatment of human glioma are recommended.
Collapse
|
115
|
Krishan M, Gudelsky GA, Desai PB, Genter MB. Manipulation of olfactory tight junctions using papaverine to enhance intranasal delivery of gemcitabine to the brain. Drug Deliv 2014; 21:8-16. [PMID: 24116937 PMCID: PMC4750388 DOI: 10.3109/10717544.2013.840017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT Delivery of drugs from the nasal cavity to the brain is becoming more widely accepted, due to the non-invasive nature of this route and the ability to circumvent the blood brain barrier (BBB). OBJECTIVE Because of similarities in the proteins comprising the olfactory epithelial tight junction (TJ) proteins and those of the BBB, we sought to determine whether papaverine (PV), which is known to reversibly enhance BBB permeability, could increase the delivery of intranasally administered gemcitabine to the central nervous system in rats. Experimental methods: Included intranasal administration of gemcitabine, fluorescein isothiocyanate-dextran beads and PV, histopathology, immunostaining, RT-PCR, western blot analysis, immunofluorescence localization, spectrofluorometric analysis, in vivo brain microdialysis, HPLC analysis and in vitro gemcitabine recovery. RESULTS AND DISCUSSION PV transiently decreased the levels and altered immunolocalization of the TJ protein phosphorylated-occludin in the olfactory epithelium, while causing an approximately four-fold increase in gemcitabine concentration reaching the brain. The enhanced delivery was not accompanied by nasal epithelial damage or toxicity to distant organs. CONCLUSIONS The ability to transiently and safely increase drug delivery from the nose to the brain represents a non-invasive way to improve treatment of patients with brain disorders.
Collapse
Affiliation(s)
- Mansi Krishan
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH, USA
| | - Gary A. Gudelsky
- College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Pankaj B. Desai
- College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Mary Beth Genter
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
116
|
Nakada M, Kita D, Watanabe T, Hayashi Y, Hamada JI. The mechanism of chemoresistance against tyrosine kinase inhibitors in malignant glioma. Brain Tumor Pathol 2014; 31:198-207. [DOI: 10.1007/s10014-013-0174-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/27/2013] [Indexed: 11/24/2022]
|
117
|
Gaillard PJ, Appeldoorn CCM, Dorland R, van Kregten J, Manca F, Vugts DJ, Windhorst B, van Dongen GAMS, de Vries HE, Maussang D, van Tellingen O. Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLoS One 2014; 9:e82331. [PMID: 24416140 PMCID: PMC3885379 DOI: 10.1371/journal.pone.0082331] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 10/31/2013] [Indexed: 11/19/2022] Open
Abstract
Brain cancer is a devastating disease affecting many people worldwide. Effective treatment with chemotherapeutics is limited due to the presence of the blood-brain barrier (BBB) that tightly regulates the diffusion of endogenous molecules but also xenobiotics. Glutathione pegylated liposomal doxorubicin (2B3-101) is being developed as a new treatment option for patients with brain cancer. It is based on already marketed pegylated liposomal doxorubicin (Doxil®/Caelyx®), with an additional glutathione coating that safely enhances drug delivery across the BBB. Uptake of 2B3-101 by human brain capillary endothelial cells in vitro was time-, concentration- and temperature-dependent, while pegylated liposomal doxorubicin mainly remained bound to the cells. In vivo, 2B3-101 and pegylated liposomal doxorubicin had a comparable plasma exposure in mice, yet brain retention 4 days after administration was higher for 2B3-101. 2B3-101 was overall well tolerated by athymic FVB mice with experimental human glioblastoma (luciferase transfected U87MG). In 2 independent experiments a strong inhibition of brain tumor growth was observed for 2B3-101 as measured by bioluminescence intensity. The effect of weekly administration of 5 mg/kg 2B3-101 was more pronounced compared to pegylated liposomal doxorubicin (p<0.05) and saline (p<0.01). Two out of 9 animals receiving 2B3-101 showed a complete tumor regression. Twice-weekly injections of 5 mg/kg 2B3-101 again had a significant effect in inhibiting brain tumor growth (p<0.001) compared to pegylated liposomal doxorubicin and saline, and a complete regression was observed in 1 animal treated with 2B3-101. In addition, twice-weekly dosing of 2B3-101 significantly increased the median survival time by 38.5% (p<0.001) and 16.1% (p<0.05) compared to saline and pegylated liposomal doxorubicin, respectively. Overall, these data demonstrate that glutathione pegylated liposomal doxorubicin enhances the effective delivery of doxorubicin to brain tumors and could become a promising new therapeutic option for the treatment of brain malignancies.
Collapse
Affiliation(s)
| | | | | | | | | | - Danielle J. Vugts
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Bert Windhorst
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Guus A. M. S. van Dongen
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Helga E. de Vries
- Blood-Brain Barrier Research Group, Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Olaf van Tellingen
- The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AvL), Amsterdam, The Netherlands
| |
Collapse
|
118
|
Oberoi RK, Mittapalli RK, Elmquist WF. Pharmacokinetic assessment of efflux transport in sunitinib distribution to the brain. J Pharmacol Exp Ther 2013; 347:755-64. [PMID: 24113148 PMCID: PMC3836310 DOI: 10.1124/jpet.113.208959] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/10/2013] [Indexed: 01/05/2023] Open
Abstract
This study quantitatively assessed transport mechanisms that limit the brain distribution of sunitinib and investigated adjuvant strategies to improve its brain delivery for the treatment of glioblastoma multiforme (GBM). Sunitinib has not shown significant activity in GBM clinical trials, despite positive results seen in preclinical xenograft studies. We performed in vivo studies in transgenic Friend leukemia virus strain B mice: wild-type, Mdr1a/b(-/-), Bcrp1(-/-), and Mdr1a/b(-/-)Bcrp1(-/-) genotypes were examined. The brain-to-plasma area under the curve ratio after an oral dose (20 mg/kg) was similar to the steady-state tissue distribution coefficient, indicating linear distribution kinetics in mice over this concentration range. Furthermore, the distribution of sunitinib to the brain increased after administration of selective P-glycoprotein (P-gp) or breast cancer resistance protein (Bcrp) pharmacological inhibitors and a dual inhibitor, elacridar, comparable to that of the corresponding transgenic genotype. The brain-to-plasma ratio after coadministration of elacridar in wild-type mice was ≈ 12 compared with ≈ 17.3 in Mdr1a/b(-/-)Bcrp1(-/-) mice. Overall, these findings indicate that there is a cooperation at the blood-brain barrier (BBB) in restricting the brain penetration of sunitinib, and brain delivery can be enhanced by administration of a dual inhibitor. These data indicate that the presence of cooperative efflux transporters, P-gp and Bcrp, in an intact BBB can protect invasive glioma cells from chemotherapy. Thus, one may consider the use of transporter inhibition as a powerful adjuvant in the design of future clinical trials for the targeted delivery of sunitinib in GBM.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacokinetics
- Area Under Curve
- Blood-Brain Barrier/metabolism
- Brain/metabolism
- Chromatography, High Pressure Liquid
- Data Interpretation, Statistical
- Half-Life
- Indoles/metabolism
- Indoles/pharmacokinetics
- Mice
- Mice, Knockout
- Pyrroles/metabolism
- Pyrroles/pharmacokinetics
- Sunitinib
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Rajneet K Oberoi
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota
| | | | | |
Collapse
|
119
|
LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Biomaterials 2013; 34:9171-82. [DOI: 10.1016/j.biomaterials.2013.08.039] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/14/2013] [Indexed: 01/08/2023]
|
120
|
Wang Y, Xu YS, Yin LH, Xu LN, Peng JY, Zhou H, Kang W. Synergistic anti-glioma effect of Hydroxygenkwanin and Apigenin in vitro. Chem Biol Interact 2013; 206:346-355. [PMID: 24144774 DOI: 10.1016/j.cbi.2013.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 02/01/2023]
Abstract
Apigenin (AP) and Hydroxygenkwanin (HGK) are two natural flavonoid compounds. Previous studies have already demonstrated the anti-tumor capability of AP. However, it is not clear whether HGK has such property. In the current study, the anti-glioma activities of HGK and its synergistic anti-glioma effects with AP on C6 glioma cells were investigated. In addition, the possible mechanisms were also studied. MTT assay and morphologic analysis including acridine orange/ethidium bromide (AO/EB) and 4',6-diamidino-2-phenylindole (DAPI) staining were used in the research, and the results indicated that the treatment with AP or HGK could inhibit C6 glioma cell proliferation respectively. Moreover, when AP was administrated simultaneously, the anti-glioma effect of HGK was dramatically enhanced in a dose-dependent manner, which is obviously better than that of carmustine (BCNU) at the concentration 25μM for treating of 24h. Compared with control, mitochondrial membrane potential (MPP) loss and mitochondrion damage were detected by JC-1 fluorescence probes (JC-1) and transmission electron microscopy (TEM) after treatment. Obvious DNA damage and cell cycle S phase arrest were detected by alkaline comet assay and flow cytometric analysis (FCM). Additionally, up regulation of TNF-α level, activations of caspase-3, -8, over expressions of BID and BAK protein and BCL-XL protein down expression were also observed after treatment by the combination of AP and HGK. The results indicate that HGK may be an effective natural product to treat glioma, and the combination of AP and HGK may be a promising method for glioma chemotherapy.
Collapse
Affiliation(s)
- Yi Wang
- Department of Neurosurgery, 1st Affiliated Hospital of Dalian Medical University, No. 222, Dalian Zhongshan Road, Dalian 116011, Liaoning, China
| | | | | | | | | | | | | |
Collapse
|
121
|
Adkins CE, Mittapalli RK, Manda VK, Nounou MI, Mohammad AS, Terrell TB, Bohn KA, Yasemin C, Grothe TR, Lockman JA, Lockman PR. P-glycoprotein mediated efflux limits substrate and drug uptake in a preclinical brain metastases of breast cancer model. Front Pharmacol 2013; 4:136. [PMID: 24312053 PMCID: PMC3816283 DOI: 10.3389/fphar.2013.00136] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/09/2013] [Indexed: 01/16/2023] Open
Abstract
The blood–brain barrier (BBB) is a specialized vascular interface that restricts the entry of many compounds into brain. This is accomplished through the sealing of vascular endothelial cells together with tight junction proteins to prevent paracellular diffusion. In addition, the BBB has a high degree of expression of numerous efflux transporters which actively extrude compounds back into blood. However, when a metastatic lesion develops in brain the vasculature is typically compromised with increases in passive permeability (blood-tumor barrier; BTB). What is not well documented is to what degree active efflux retains function at the BTB despite the changes observed in passive permeability. In addition, there have been previous reports documenting both increased and decreased expression of P-glycoprotein (P-gp) in lesion vasculature. Herein, we simultaneously administer a passive diffusion marker (14C-AIB) and a tracer subject to P-gp efflux (rhodamine 123) into a murine preclinical model of brain metastases of breast cancer. We observed that the metastatic lesions had similar expression (p > 0.05; n = 756–1214 vessels evaluated) at the BBB and the BTB. Moreover, tissue distribution of R123 was not significantly (p > 0.05) different between normal brain and the metastatic lesion. It is possible that the similar expression of P-gp on the BBB and the BTB contribute to this phenomenon. Additionally we observed P-gp expression at the metastatic cancer cells adjacent to the vasculature which may also contribute to reduced R123 uptake into the lesion. The data suggest that despite the disrupted integrity of the BTB, efflux mechanisms appear to be intact, and may be functionally comparable to the normal BBB. The BTB is a significant hurdle to delivering drugs to brain metastasis.
Collapse
Affiliation(s)
- Chris E Adkins
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center Amarillo, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Gao H, Pang Z, Jiang X. Targeted Delivery of Nano-Therapeutics for Major Disorders of the Central Nervous System. Pharm Res 2013; 30:2485-98. [DOI: 10.1007/s11095-013-1122-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/11/2013] [Indexed: 12/22/2022]
|
123
|
Siegal T. Which drug or drug delivery system can change clinical practice for brain tumor therapy? Neuro Oncol 2013; 15:656-69. [PMID: 23502426 DOI: 10.1093/neuonc/not016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The prognosis and treatment outcome for primary brain tumors have remained unchanged despite advances in anticancer drug discovery and development. In clinical trials, the majority of promising experimental agents for brain tumors have had limited impact on survival or time to recurrence. These disappointing results are partially explained by the inadequacy of effective drug delivery to the CNS. The impediments posed by the various specialized physiological barriers and active efflux mechanisms lead to drug failure because of inability to reach the desired target at a sufficient concentration. This perspective reviews the leading strategies that aim to improve drug delivery to brain tumors and their likelihood to change clinical practice. The English literature was searched for defined search items. Strategies that use systemic delivery and those that use local delivery are critically reviewed. In addition, challenges posed for drug delivery by combined treatment with anti-angiogenic therapy are outlined. To impact clinical practice and to achieve more than just a limited local control, new drugs and delivery systems must adhere to basic clinical expectations. These include, in addition to an antitumor effect, a verified favorable adverse effects profile, easy introduction into clinical practice, feasibility of repeated or continuous administration, and compatibility of the drug or delivery system with any tumor size and brain location.
Collapse
Affiliation(s)
- Tali Siegal
- Gaffin Center for Neuro-Oncology, Hadassah Hebrew-University Medical Center, Ein Kerem, P.O. Box 12000, Jerusalem 91120, Israel.
| |
Collapse
|
124
|
Sane R, Mittapalli RK, Elmquist WF. Development and evaluation of a novel microemulsion formulation of elacridar to improve its bioavailability. J Pharm Sci 2013; 102:1343-54. [PMID: 23334925 DOI: 10.1002/jps.23450] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/27/2012] [Accepted: 01/03/2013] [Indexed: 11/09/2022]
Abstract
The study objective was to develop a formulation of elacridar to overcome its dissolution-rate-limited bioavailability. Elacridar is a P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) inhibitor that has been used to improve the brain distribution of drugs that are substrates of P-gp and BCRP. The chronic use of elacridar is restricted because of the poor solubility leading to poor oral bioavailability. A microemulsion formulation using Cremophor EL, Carbitol, and Captex 355 (6:3:1) was developed. The elacridar microemulsion was effective in the inhibition of P-gp and Bcrp in Madin-Darby canine kidney II-transfected cells. Friend Leukemia Virus Strain B (FVB) mice were used to determine the bioavailability of elacridar after a 10 mg/kg dose of elacridar in the microemulsion, intraperitoneally (i.p.) and orally (p.o.); and the absolute bioavailability was determined to be 1.3 and 0.47, respectively. Coadministration of elacridar microemulsion i.p. with p.o. erlotinib in FVB mice improved the erlotinib brain penetration threefold. The current study shows that a microemulsion formulation of elacridar is effective in improving the bioavailability of elacridar and is an effective inhibitor of P-gp and Bcrp, in vitro and in vivo. It offers an alternative to the suspension and allows a decrease in the dose required to achieve a significant inhibitory effect at the blood-brain barrier.
Collapse
Affiliation(s)
- Ramola Sane
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|