101
|
Metformin effect on driving cell survival pathway through inhibition of UVB-induced ROS formation in human keratinocytes. Mech Ageing Dev 2020; 192:111387. [PMID: 33080281 DOI: 10.1016/j.mad.2020.111387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/17/2020] [Accepted: 10/12/2020] [Indexed: 11/24/2022]
Abstract
Human skin functions go beyond serving only as a mechanical barrier. As a complex organ, the skin is capable to cope with external stressors cutaneous by neuroendocrine systems to control homeostasis. However, constant skin exposure to ultraviolet (UV) radiation causes progressive damage to cellular skin constituents, mainly due excessive reactive oxygen species (ROS) production. The present study shows new approaches of metformin (MET) as an antioxidant agent. Currently, MET is the first line treatment of type 2 diabetes and has attracted attention, based on its broad mechanism of action. Therefore, we evaluated MET antioxidant potential in cell-free systems and in UVB irradiated human keratinocyte HaCaT cells. In cell-free system assays MET did not show intrinsic scavenging activity on DPPH radicals or superoxide (O2-) xanthine/luminol/xanthine oxidase-generated. Cell-based results demonstrated that MET was able to reduce UVB-induced intracellular ROS and NADPH oxidase-dependent superoxide (O2-) production. MET posttreatment of HaCaT cells reduced ERK 1/2 phosphorylation, NADPH oxidase activity, and cell death by apoptosis. These findings suggest that the protection mechanism of MET may be through the inhibition of ROS formation enzyme. These results showed that MET might be a promising antioxidant agent against UV radiation induced skin damage.
Collapse
|
102
|
Jian T, Chen J, Ding X, Lv H, Li J, Wu Y, Ren B, Tong B, Zuo Y, Su K, Li W. Flavonoids isolated from loquat (Eriobotrya japonica) leaves inhibit oxidative stress and inflammation induced by cigarette smoke in COPD mice: the role of TRPV1 signaling pathways. Food Funct 2020; 11:3516-3526. [PMID: 32253400 DOI: 10.1039/c9fo02921d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic, progressive lung disease with few successful treatments, and is strongly associated with cigarette smoking (CS). Since the novel coronavirus has spread worldwide seriously, there is growing concern that patients who have chronic respiratory conditions like COPD can easily be infected and are more prone to having severe illness and even mortality because of lung dysfunction. Loquat leaves have long been used as an important material for both pharmaceutical and functional applications in the treatment of lung disease in Asia, especially in China and Japan. Total flavonoids (TF), the main active components derived from loquat leaves, showed remarkable anti-inflammatory and antioxidant activities. However, their protective activity against CS-induced COPD airway inflammation and oxidative stress and its underlying mechanism still remain not well-understood. The present study uses a CS-induced mouse model to estimate the morphological changes in lung tissue. The results demonstrated that TF suppressed the histological changes in the lungs of CS-challenged mice, as evidenced by reduced generation of pro-inflammatory cytokines including interleukin 6 (IL-6), IL-1β, tumor necrosis factor α (TNF-α), nitric oxide (NO), and inducible nitric oxide synthase (iNOS) and diminished the protein expression of transient receptor potential vanilloid 1 (TRPV1). Moreover, TF also inhibited phosphorylation of IKK, IκB and NFκB and increased p-Akt. Interestingly, TF could inhibit CS-induced oxidative stress in the lungs of COPD mice. TF treatment significantly inhibited the level of malondialdehyde (MDA) and increased the activity of superoxide dismutase (SOD). In addition, TF markedly downregulated TRPV1 and cytochrome P450 2E1 (CYP2E1) and upregulated the expression of SOD-2, while the p-JNK level was observed to be inhibited in COPD mice. Taken together, our findings showed that the protective effect and putative mechanism of the action of TF resulted in the inhibition of inflammation and oxidative stress through the regulation of TRPV1 and the related signal pathway in lung tissues. It suggested that TF derived from loquat leaves could be considered to be an alternative or a new functional material and used for the treatment of CS-induced COPD.
Collapse
Affiliation(s)
- Tunyu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China. and Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoqin Ding
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Han Lv
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Jiawei Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Yuexian Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Bingru Ren
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Bei Tong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Yuanyuan Zuo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Kelei Su
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210000, China and Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Weilin Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China. and Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
103
|
Ramadan G, Fouda WA, Ellamie AM, Ibrahim WM. Dietary supplementation of Sargassum latifolium modulates thermo-respiratory response, inflammation, and oxidative stress in bacterial endotoxin-challenged male Barki sheep. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33863-33871. [PMID: 32533495 DOI: 10.1007/s11356-020-09568-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Endotoxemia is mainly caused by translocation of bacterial lipopolysaccharides (LPS) into the bloodstream. This in turn enhances systemic inflammation and inappropriate production of reactive oxygen species, leading to oxidative injury of vital internal organs and other dangerous effects that can be life-threatening. Here, we evaluated/compared the modulatory effects of consuming two different doses (2% and 4% of the diet) of brown seaweeds (Sargassum latifolium) for 40 consecutive days on thermo-respiratory response, inflammation, and oxidative stress in Barki male sheep (Ovis aries) challenged twice with bacterial LPS (1.25 μg/kg body weight, injected intravenously on days 28 and 35 of the experimental period). The results showed that the diet containing Sargassum latifolium (especially at 4%) modulated significantly (P < 0.05-0.001) the increase in the thermo-respiratory response (skin and rectal temperatures, and respiration rate) and the obtained systemic inflammation (blood leukocytosis, the elevation in the erythrocyte sedimentation rate, and the increase in serum proinflammatory cytokines and heat shock protein-70 concentrations) in the LPS-challenged sheep. In addition, it improved significantly (P < 0.001, especially at 4%) the total antioxidant capacity of the blood of LPS-challenged sheep by increasing the catalase and superoxide dismutase activities. Moreover, it decreased the blood markers of tissue damage (malondialdehyde concentration and the activities of alanine aminotransferase and lactate dehydrogenase) in the LPS-challenged sheep. In conclusion, the diet containing 4% Sargassum latifolium may have potential impact in protecting the ruminant livestock from the serious effects of endotoxemia through improving the animals' antioxidant defense system and regulating their inflammatory and thermo-respiratory responses.
Collapse
Affiliation(s)
- Gamal Ramadan
- Zoology Department, Faculty of Science, Ain Shams University, Khalifa El-Maamon st., Abbasiya sq, Cairo, 11566, Egypt.
| | - Wafaa A Fouda
- Physiology of Animal and Poultry Department, Animal and Poultry Production Division, Desert Research Center, Cairo, Egypt
| | - Ashgan M Ellamie
- Physiology of Animal and Poultry Department, Animal and Poultry Production Division, Desert Research Center, Cairo, Egypt
| | - Wael M Ibrahim
- Botany Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
104
|
Brunetta HS, Politis-Barber V, Petrick HL, Dennis KMJH, Kirsh AJ, Barbeau PA, Nunes EA, Holloway GP. Nitrate attenuates high fat diet-induced glucose intolerance in association with reduced epididymal adipose tissue inflammation and mitochondrial reactive oxygen species emission. J Physiol 2020; 598:3357-3371. [PMID: 32449521 DOI: 10.1113/jp279455] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/19/2020] [Indexed: 12/20/2023] Open
Abstract
KEY POINTS Dietary nitrate is a prominent therapeutic strategy to mitigate some metabolic deleterious effects related to obesity. Mitochondrial dysfunction is causally linked to adipose tissue inflammation and insulin resistance. Whole-body glucose tolerance is prevented by nitrate independent of body weight and energy expenditure. Dietary nitrate reduces epididymal adipose tissue inflammation and mitochondrial reactive oxygen species emission while preserving insulin signalling. Metabolic beneficial effects of nitrate consumption are associated with improvements in mitochondrial redox balance in hypertrophic adipose tissue. ABSTRACT Evidence has accumulated to indicate that dietary nitrate alters energy expenditure and the metabolic derangements associated with a high fat diet (HFD), but the mechanism(s) of action remain incompletely elucidated. Therefore, we aimed to determine if dietary nitrate (4 mm sodium nitrate via drinking water) could prevent HFD-mediated glucose intolerance in association with improved mitochondrial bioenergetics within both white (WAT) and brown (BAT) adipose tissue in mice. HFD feeding caused glucose intolerance (P < 0.05) and increased body weight. As a result of higher body weight, energy expenditure increased proportionally. HFD-fed mice displayed greater mitochondrial uncoupling and a twofold increase in uncoupling protein 1 content within BAT. Within epididymal white adipose tissue (eWAT), HFD increased cell size (i.e. hypertrophy), mitochondrial H2 O2 emission, oxidative stress, c-Jun N-terminal kinase phosphorylation and leucocyte infiltration, and induced insulin resistance. Remarkably, dietary nitrate consumption attenuated and/or mitigated all these responses, including rendering mitochondria more coupled within BAT, and normalizing mitochondrial H2 O2 emission and insulin-mediated Akt-Thr308 phosphorylation within eWAT. Intriguingly, the positive effects of dietary nitrate appear to be independent of eWAT mitochondrial respiratory capacity and content. Altogether, these data suggest that dietary nitrate attenuates the development of HFD-induced insulin resistance in association with attenuating WAT inflammation and redox balance, independent of changes in either WAT or BAT mitochondrial respiratory capacity/content.
Collapse
Affiliation(s)
- Henver S Brunetta
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- Department of Physiological Sciences, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Valerie Politis-Barber
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Heather L Petrick
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kaitlyn M J H Dennis
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Aleah J Kirsh
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Pierre-Andre Barbeau
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Everson A Nunes
- Department of Physiological Sciences, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
105
|
Eastman CL, D'Ambrosio R, Ganesh T. Modulating neuroinflammation and oxidative stress to prevent epilepsy and improve outcomes after traumatic brain injury. Neuropharmacology 2020; 172:107907. [PMID: 31837825 PMCID: PMC7274911 DOI: 10.1016/j.neuropharm.2019.107907] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in young adults worldwide. TBI survival is associated with persistent neuropsychiatric and neurological impairments, including posttraumatic epilepsy (PTE). To date, no pharmaceutical treatment has been found to prevent PTE or ameliorate neurological/neuropsychiatric deficits after TBI. Brain trauma results in immediate mechanical damage to brain cells and blood vessels that may never be fully restored given the limited regenerative capacity of brain tissue. This primary insult unleashes cascades of events, prominently including neuroinflammation and massive oxidative stress that evolve over time, expanding the brain injury, but also clearing cellular debris and establishing homeostasis in the region of damage. Accumulating evidence suggests that oxidative stress and neuroinflammatory sequelae of TBI contribute to posttraumatic epileptogenesis. This review will focus on possible roles of reactive oxygen species (ROS), their interactions with neuroinflammation in posttraumatic epileptogenesis, and emerging therapeutic strategies after TBI. We propose that inhibitors of the professional ROS-generating enzymes, the NADPH oxygenases and myeloperoxidase alone, or combined with selective inhibition of cyclooxygenase mediated signaling may have promise for the treatment or prevention of PTE and other sequelae of TBI. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Clifford L Eastman
- Department of Neurological Surgery, 325 Ninth Ave., Seattle, WA, 98104, USA.
| | - Raimondo D'Ambrosio
- Department of Neurological Surgery, 325 Ninth Ave., Seattle, WA, 98104, USA; Regional Epilepsy Center, University of Washington, 325 Ninth Ave., Seattle, WA, 98104, USA
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA, 30322, Georgia.
| |
Collapse
|
106
|
Wang Z, Yang J, Qi J, Jin Y, Tong L. Activation of NADPH/ROS pathway contributes to angiogenesis through JNK signaling in brain endothelial cells. Microvasc Res 2020; 131:104012. [PMID: 32428522 DOI: 10.1016/j.mvr.2020.104012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 01/01/2023]
Abstract
Recent evidences have shown that reactive oxygen species (ROS) are involved in regulating angiogenesis and preventing tissue injury. However, the precise molecular mechanisms behind ROS-induced angiogenesis are still unknown. The aim of the present study was to investigate the effects of ROS-induced angiogenesis in rat brain microvessel endothelial cells (rBMECs) and identify involving the signal pathways. For initial experiments, the rBMECs were incubated with different concentrations of hydrogen peroxide (H2O2). For the second experiments, the rBMECs were respectively treated with ROS scavenger dimethylthiourea (DMTU), NADPH oxidase (Nox) inhibitor apocynin, small interfering RNAs-mediated knock down Nox2 or Nox4, or pretreated with c-Jun N-terminal kinase (JNK) inhibitor SP600125. The cell proliferation, migration, tube formation, and the expressions of several important neuroangiogenic factors including vascular endothelial growth factor (VEGF), brain derived neurotrophic factor (BDNF), matrix metalloproteinase (MMP) -9 and phos-JNK were measured. Low level of H2O2 significantly promoted endothelial cell (EC) proliferation, migration and tube formation and upregulated levels of VEGF, BDNF, MMP-9 and phos-JNK. DMTU and apocynin significantly inhibited endothelial angiogenesis and downregulated these protein levels. As expected, knockdown of Nox2 or Nox4 expression blocked endothelial angiogenesis and downregulated the expressions of pro-neuroangiogenic factors. Furthermore, H2O2-induced endothelial angiogenesis and high expressions of pro-neuroangiogenic factors were decreased by SP600125. In conclusion, Nox-derived ROS were required for endothelial angiogenesis. Low level of ROS may activate JNK signaling pathway and upregulate pro-neuroangiogenic factors, ultimately mediating endothelial angiogenesis.
Collapse
Affiliation(s)
- Zairan Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Jiping Yang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China.
| | - Jinchong Qi
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Yonghui Jin
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| | - Liyan Tong
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, China
| |
Collapse
|
107
|
The Hematopoietic Oxidase NOX2 Regulates Self-Renewal of Leukemic Stem Cells. Cell Rep 2020; 27:238-254.e6. [PMID: 30943405 PMCID: PMC6931909 DOI: 10.1016/j.celrep.2019.03.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/23/2018] [Accepted: 02/28/2019] [Indexed: 12/17/2022] Open
Abstract
The NADPH-dependent oxidase NOX2 is an important effector of immune cell function, and its activity has been linked to oncogenic signaling. Here, we describe a role for NOX2 in leukemia-initiating stem cell populations (LSCs). In a murine model of leukemia, suppression of NOX2 impaired core metabolism, attenuated disease development, and depleted functionally defined LSCs. Transcriptional analysis of purified LSCs revealed that deficiency of NOX2 collapses the self-renewal program and activates inflammatory and myeloid-differentiation-associated programs. Downstream of NOX2, we identified the forkhead transcription factor FOXC1 as a mediator of the phenotype. Notably, suppression of NOX2 or FOXC1 led to marked differentiation of leukemic blasts. In xenotransplantation models of primary human myeloid leukemia, suppression of either NOX2 or FOXC1 significantly attenuated disease development. Collectively, these findings position NOX2 as a critical regulator of malignant hematopoiesis and highlight the clinical potential of inhibiting NOX2 as a means to target LSCs.
Collapse
|
108
|
He Z, Wang X, Zhang H, Liang B, Zhang J, Zhang Z, Yang Y. High expression of folate cycle enzyme MTHFD1L correlates with poor prognosis and increased proliferation and migration in colorectal cancer. J Cancer 2020; 11:4213-4221. [PMID: 32368304 PMCID: PMC7196253 DOI: 10.7150/jca.35014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/03/2019] [Indexed: 12/14/2022] Open
Abstract
Aims: To investigate the expression and clinical significance of methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L) in colorectal cancer (CRC) and its effect on CRC cells proliferation and migration. Methods: 59 fresh CRC tissue samples and matched normal tissues, 176 archive CRC tissue samples and 8 CRC cell lines were tested MTHFD1L by western blot and immunohistochemistry, respectively. The relationship between MTHFD1L expression, clinical significance and prognosis was analyzed by chi-square test and survival analysis. MTT assay, plate clonal formation assay and scratch assay were used to verify the effect of MTHFD1L on the proliferation and migration in CRC cell lines. Results: The results showed that the protein level of MTHFD1L in CRC was significantly higher than that in adjacent normal tissues (p<0.01). The expression of MTHFD1L in CRC was positively correlated with the degree of tumor differentiation, TNM classification, tumor invasion, lymph node metastasis, and distant metastasis. Survival analysis showed that CRC patients with high MTHFD1L expression had a lower 5-year survival rate and the expression of MTHFD1L was an independent adverse factor for the CRC prognosis (p<0.05). Down-regulation of MTHFD1L inhibited the proliferation and migration of DLD-1 and HCT116 CRC cell lines. Conclusion: These findings reveal that MTHFD1L is highly expressive in CRC and associated with poor prognosis, and MTHDF1L can increase colorectal cancer cell proliferation and migration. Therefore, MTHFD1L may serve as a predictor and a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Zhongyun He
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR, China
| | - Xia Wang
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR, China
| | - Huizhong Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, PR, China
| | - Baoxia Liang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR, China
| | - Jinling Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR, China
| | - Zhenfeng Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR, China
| | - Yi Yang
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR, China.,Boba Evergrande International Hospital, Qionghai, PR, China
| |
Collapse
|
109
|
Qiu T, Zhou H, Li S, Tian N, Li Z, Wang R, Sun P, Peng J, Du J, Ma X, Diao Y, Lv L, Wang L, Li H. Effects of Saccharides from Arctium lappa L. Root on FeCl 3-Induced Arterial Thrombosis via the ERK/NF- κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7691352. [PMID: 32308808 PMCID: PMC7132581 DOI: 10.1155/2020/7691352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022]
Abstract
Saccharides from Arctium lappa. L. root (ALR-S) is a high-purity fructosaccharide separated from the medicinal plant Arctium lappa. L. root. These compounds showed many pharmacological effects in previous studies. In the present study, the antithrombotic effects of ALR-S in arterial thrombosis via inhibiting platelet adhesion and rebalancing thrombotic and antithrombotic factor expression and secretion were found in rats and human aortic endothelial cells (HAECs). This study also showed that inhibition of oxidative stress (OS), which is closely involved in the expression of coagulation- and thrombosis-related proteins, was involved in the antithrombotic effects of ALR-S. Furthermore, studies using FeCl3-treated HAECs showed that ALR-S induced the abovementioned effects at least partly by blocking the ERK/NF-κB pathway. Moreover, U0126, a specific inhibitor of ERK, exhibited the same effects with ALR-S on a thrombotic process in FeCl3-injured HAECs, suggesting the thrombotic role of the ERK/NF-κB pathway and the antithrombotic role of blocking the ERK/NF-κB pathway by ALR-S. In conclusion, our study revealed that the ERK/NF-κB pathway is a potential therapeutic target in arterial thrombosis and that ALR-S has good characteristics for the cure of arterial thrombosis via regulating the ERK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Tiantian Qiu
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning Province, China
| | - Hailun Zhou
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning Province, China
| | - Suying Li
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning Province, China
| | - Nuoya Tian
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhe Li
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning Province, China
| | - Rui Wang
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning Province, China
| | - Pengyuan Sun
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning Province, China
| | - Jinyong Peng
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning Province, China
| | - Jianling Du
- Department of Endocrinology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xiaochi Ma
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yunpeng Diao
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning Province, China
| | - Li Lv
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning Province, China
| | - Li Wang
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning Province, China
| | - Hua Li
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning Province, China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
110
|
Wang F, Wang F, Li F, Wang D, Li H, He X, Zhang J. Methane attenuates lung ischemia-reperfusion injury via regulating PI3K-AKT-NFκB signaling pathway. J Recept Signal Transduct Res 2020; 40:209-217. [PMID: 32079441 DOI: 10.1080/10799893.2020.1727925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective: This study aims to investigate the protective effects and possible mechanism of methane-rich saline (MS) on lung ischemia-reperfusion injury (LIRI) in rats.Methods: MS (2 ml/kg and 20 ml/kg) was injected intraperitoneally in rats after LIRI. Lung injury was assayed by Hematoxylin-eosin (HE) staining and wet-to-dry weight (W/D). The cells in the bronchoalveolar lavage fluid (BALF) and blood were counted. Oxidative stress was examined by the level of malondialdehyde (MDA) and superoxide dismutase (SOD). Inflammatory factors including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-10 (IL-10) were determined by ELISA. Lung tissue apoptosis was detected by TUNEL staining and western blotting of Bcl-2, Bax, and caspase-3. The expressions of IкBα, p38, PI3K, AKT, and NF-κB were analyzed with Western blotting.Results: MS effectively decreased the lung W/D ratio as well as the lung pathological damage and reduced the localized infiltration of inflammatory cells. Methane suppressed the expression of the PI3K-AKT-NFκB signaling pathway during the lung IR injury, which inhibited the activation of NF-kB and decreased the level of inflammatory cytokines, such as TNF-α, IL-1β, and IL-10. Moreover, we found that MS treatment relieved reactive oxygen species (ROS) damage by downregulating MDA and upregulating SOD. MS treatment also regulated apoptosis-related proteins, such as Bcl-2, Bax, and caspase-3.Conclusions: MS could repair LIRI and reduce the release of oxidative stress, inflammatory cytokines, and cell apoptosis via the PI3K-AKT-NFκB signaling pathway, which may provide a novel and promising strategy for the treatment of LIRI.
Collapse
Affiliation(s)
- Fang Wang
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Feidi Wang
- Hou Zonglian Medical Experimental Class, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fengtao Li
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dong Wang
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haopeng Li
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xijing He
- Department of Orthopaedics, the Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jingyao Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
111
|
Fluorescent Light Energy (FLE) Acts on Mitochondrial Physiology Improving Wound Healing. J Clin Med 2020; 9:jcm9020559. [PMID: 32085605 PMCID: PMC7073965 DOI: 10.3390/jcm9020559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Fluorescent light energy (FLE) has been used to treat various injured tissues in a non-pharmacological and non-thermal fashion. It was applied to stimulate cell proliferation, accelerate healing in chronic and acute wounds, and reduce pain and inflammation. FLE has been shown to reduce pro-inflammatory cytokines while promoting an environment conducive to healing. A possible mechanism of action of FLE is linked to regulation of mitochondrial homeostasis. This work aims to investigate the effect of FLE on mitochondrial homeostasis in an in vitro model of inflammation. Confocal microscopy and gene expression profiling were performed on cultures of inflamed human dermal fibroblasts treated with either direct light from a multi-LED lamp, or FLE from either an amorphous gel or sheet hydrogel matrix. Assessment using confocal microscopy revealed mitochondrial fragmentation in inflamed cells, likely due to exposure to inflammatory cytokines, however, mitochondrial networks were restored to normal 24-h after treatment with FLE. Moreover, gene expression analysis found that treatment with FLE resulted in upregulation of uncoupling protein 1 (UCP1) and carnitine palmitoyltransferase 1B (CPT1B) genes, which encode proteins favoring mitochondrial ATP production through oxidative phosphorylation and lipid β-oxidation, respectively. These observations demonstrate a beneficial effect of FLE on mitochondrial homeostasis in inflamed cells.
Collapse
|
112
|
Liu J, Tian S, Fu M, He Y, Yu H, Cao X, Cao Y, Xu H. Protective Effects of Anthocyanins from
Coreopsis tinctoria
against Oxidative Stress Induced by Hydrogen Peroxide in MIN6 Cells. Chem Biodivers 2020; 17:e1900587. [DOI: 10.1002/cbdv.201900587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jianli Liu
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Siqi Tian
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Mingyang Fu
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Yin He
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Hui Yu
- Shenyang He Eye Hospital INC Shenyang 110034 P. R. China
| | - Xiangyu Cao
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Yiyang Cao
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Hanyuan Xu
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| |
Collapse
|
113
|
Oxidative stress in pregnancy complicated by preeclampsia. Arch Biochem Biophys 2020; 681:108255. [PMID: 31904364 DOI: 10.1016/j.abb.2020.108255] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 12/18/2022]
Abstract
Preeclampsia is a multisystemic disorder of pregnancy that causes perinatal morbidity and mortality. Studies published in the last decade have contributed to a better understanding of physiopathogenesis through key mechanisms involved, such as altered immune response, endothelial dysfunction, oxidative stress and systemic inflammatory response, as well as genetic susceptibility. Oxidative stress (OS) plays an important role in the development of preeclampsia, since it alters placental remodeling and placental vascular endothelial dysfunction, resulting in an ischemia/reperfusion injury with an increase in xanthine oxidase activity that produces high levels of reactive oxygen species (ROS). ROS can be generated through many pathways within cells, mitochondria, endoplasmic reticulum (ER) and enzymes such as NADPH oxidase are the most important sources, causing widespread and indiscriminate damage to cells and tissues, which leads to an intravascular inflammatory response and maternal systemic endothelial dysfunction characteristic of this prenatal syndrome. Therefore, the following review aims to identify the main risk factors and the role of OS as a pathophysiological mechanism in the development of preeclampsia.
Collapse
|
114
|
Daré RG, Oliveira MM, Truiti MC, Nakamura CV, Ximenes VF, Lautenschlager SO. Abilities of protocatechuic acid and its alkyl esters, ethyl and heptyl protocatechuates, to counteract UVB-induced oxidative injuries and photoaging in fibroblasts L929 cell line. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 203:111771. [DOI: 10.1016/j.jphotobiol.2019.111771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/04/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
|
115
|
Yoshikawa N, Saito Y, Manabe H, Nakaoka T, Uchida R, Furukawa R, Muramatsu T, Sugiyama Y, Kimura M, Saito H. Glucose Depletion Enhances the Stem Cell Phenotype and Gemcitabine Resistance of Cholangiocarcinoma Organoids through AKT Phosphorylation and Reactive Oxygen Species. Cancers (Basel) 2019; 11:E1993. [PMID: 31835877 PMCID: PMC6966500 DOI: 10.3390/cancers11121993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022] Open
Abstract
Cancer cells are strongly dependent on the glycolytic pathway for generation of energy even under aerobic condition through a phenomenon known as the Warburg effect. Rapid proliferation of cancer cells is often accompanied by high glucose consumption and abnormal angiogenesis, which may lead to glucose depletion. In the present study, we investigated how cholangiocarcinoma cells adapt to glucose depletion using a 3D organoid culture system. We cultured organoids derived from cholangiocarcinoma under glucose-free condition and investigated cell proliferation, expression of stem cell markers and resistance to gemcitabine. Cholangiocarcinoma organoids cultured under glucose-free condition showed reduced proliferation but were able to survive. We also observed an increase in the expression of stem cell markers including LGR5 and enhancement of stem cell phenotypic characteristics such as resistance to gemcitabine through AKT phosphorylation and reactive oxygen species. These findings indicate that cholangiocarcinoma cells are able to adapt to glucose depletion through enhancement of their stem cell phenotype in response to changes in microenvironmental conditions.
Collapse
Affiliation(s)
| | - Yoshimasa Saito
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shiba-kohen, Minato-ku, Tokyo 105-8512, Japan; (N.Y.); (H.M.); (T.N.); (R.U.); (R.F.); (T.M.); (M.K.); (H.S.)
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
El Haouari M. Platelet Oxidative Stress and its Relationship with Cardiovascular Diseases in Type 2 Diabetes Mellitus Patients. Curr Med Chem 2019; 26:4145-4165. [PMID: 28982316 DOI: 10.2174/0929867324666171005114456] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 01/01/2023]
Abstract
Enhanced platelet activation and thrombosis are linked to various cardiovascular diseases (CVD). Among other mechanisms, oxidative stress seems to play a pivotal role in platelet hyperactivity. Indeed, upon stimulation by physiological agonists, human platelets generate and release several types of reactive oxygen species (ROS) such as O2 -, H2O2 or OH-, further amplifying the platelet activation response via various signalling pathways, including, formation of isoprostanes, Ca2+ mobilization and NO inactivation. Furthermore, excessive platelet ROS generation, incorporation of free radicals from environment and/or depletion of antioxidants induce pro-oxidant, pro-inflammatory and platelet hyperaggregability effects, leading to the incidence of cardiovascular events. Here, we review the current knowledge regarding the effect of oxidative stress on platelet signaling pathways and its implication in CVD such as type 2 diabetes mellitus. We also summarize the role of natural antioxidants included in vegetables, fruits and medicinal herbs in reducing platelet function via an oxidative stress-mediated mechanism.
Collapse
Affiliation(s)
- Mohammed El Haouari
- Centre Regional des Metiers de l'Education et de la Formation de Taza (CRMEF - Taza), B.P: 1178 - Taza Gare, Morocco
| |
Collapse
|
117
|
Oxidative Stress in Cell Death and Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9030563. [PMID: 31781356 PMCID: PMC6875219 DOI: 10.1155/2019/9030563] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/11/2019] [Indexed: 01/10/2023]
Abstract
ROS functions as a second messenger and modulates multiple signaling pathways under the physiological conditions. However, excessive intracellular ROS causes damage to the molecular components of the cell, which promotes the pathogenesis of various human diseases. Cardiovascular diseases are serious threats to human health with extremely high rates of morbidity and mortality. Dysregulation of cell death promotes the pathogenesis of cardiovascular diseases and is the clinical target during the disease treatment. Numerous studies show that ROS production is closely linked to the cell death process and promotes the occurrence and development of the cardiovascular diseases. In this review, we summarize the regulation of intracellular ROS, the roles of ROS played in the development of cardiovascular diseases, and the programmed cell death induced by intracellular ROS. We also focus on anti-ROS system and the potential application of anti-ROS strategy in the treatment of cardiovascular diseases.
Collapse
|
118
|
Chinnapaka S, Zheng G, Chen A, Munirathinam G. Nitro aspirin (NCX4040) induces apoptosis in PC3 metastatic prostate cancer cells via hydrogen peroxide (H 2O 2)-mediated oxidative stress. Free Radic Biol Med 2019; 143:494-509. [PMID: 31446057 PMCID: PMC6848783 DOI: 10.1016/j.freeradbiomed.2019.08.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/07/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAID) have shown promise as anticancer agents by inducing cell death apart from their antipyretic, anti-inflammatory and anti-thrombogenic effects. In our current study, we investigated the oxidative stress mediated cell death mechanism of a NSAID derivative NCX4040 (a nitric oxide (NO) releasing form of aspirin) in castration-resistant prostate cancer (CRPC) PC3 cell line. Our data revealed that NCX4040 is more potent than its parent compound aspirin or NO releasing compound DETA NONOate. NCX4040 significantly induced hydrogen peroxide formation with ensuing oxidative stress and mitochondrial depolarization resulting in lipid peroxidation, cell cycle arrest, inhibition of colony growth and induction of apoptosis in PC3 cells. Moreover, NCX4040 inhibited migration potential of PC3 cells by depolymerizing F-actin and promoting anoikis. Interestingly, elevated levels of NADPH oxidase 1 (NOX1), superoxide dismutase (SOD) 1 and 2 were observed upon NCX4040 treatment. However, down regulation of anti-apoptotic markers B-cell lymphoma 2 (Bcl2) and anti-oxidant thioredoxin reductase 1 (TXNRD1) expression were observed. In addition, NCX4040 down regulated cyclin D1 expression in PC3 cells further supporting the anticancer effect of NCX4040. Western blot analysis revealed that significant down regulation of key anti-apoptotic markers such as cellular inhibitor of apoptosis protein-1 (cIAP1), X-linked inhibitor of apoptosis (XIAP), survivin, and Cellular-Myc (c-Myc). On the other hand, NCX4040-treated cells showed upregulation of phosho histone H2AX (pH2AX), cleaved caspase3 and cleaved Poly [ADP-ribose] polymerase 1 (PARP1). Taken together, our data demonstrate that NCX4040 treatment enhances free radical formation which in turn induces oxidative stress leading to mitochondrial mediated cell death in metastatic PC3 cells.
Collapse
Affiliation(s)
- Somaiah Chinnapaka
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | - Guoxing Zheng
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | - Aoshuang Chen
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA.
| |
Collapse
|
119
|
Kim T, Li D, Terasaka T, Nicholas DA, Knight VS, Yang JJ, Lawson MA. SRXN1 Is Necessary for Resolution of GnRH-Induced Oxidative Stress and Induction of Gonadotropin Gene Expression. Endocrinology 2019; 160:2543-2555. [PMID: 31504396 PMCID: PMC6779075 DOI: 10.1210/en.2019-00283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
A defining characteristic of the hypothalamus-pituitary-gonad reproductive endocrine axis is the episodic secretion of the pituitary gonadotropin hormones LH and FSH by the anterior pituitary gonadotropes. Hormone secretion is dictated by pulsatile stimulation, with GnRH released by hypothalamic neurons that bind and activate the G protein-coupled GnRH receptor expressed by gonadotropes. Hormone secretion and synthesis of gonadotropins are influenced by the amplitude and frequency of GnRH stimulation; variation in either affects the proportion of LH and FSH secreted and the differential regulation of hormone subunit gene expression. Therefore, proper decoding of GnRH signals is essential for appropriate gonadotropin synthesis and secretion. The GnRH receptor robustly activates downstream signaling cascades to facilitate exocytosis and stimulate gene expression and protein synthesis. It is necessary to rapidly quench signaling to preserve sensitivity and adaptability to changing pulse patterns. Reactive oxygen species (ROS) generated by receptor-activated oxidases fulfill the role of rapid signaling intermediates that facilitate robust and transient signaling. However, excess ROS can be detrimental and, unchecked, can confuse signal interpretation. We demonstrate that sulfiredoxin (SRXN1), an ATP-dependent reductase, is essential for normal responses to GnRH receptor signaling and plays a central role in resolution of ROS induced by GnRH stimulation. SRXN1 expression is mitogen-activated protein kinase dependent, and knockdown reduces Lhb and Fshb glycoprotein hormone subunit mRNA and promoter activity. Loss of SRXN1 leads to increased basal and GnRH-stimulated ROS levels. We conclude that SRXN1 is essential for normal responses to GnRH stimulation and plays an important role in ROS management.
Collapse
Affiliation(s)
- Taeshin Kim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Danmei Li
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Tomohiro Terasaka
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Dequina A Nicholas
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Vashti S Knight
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Joyce J Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Mark A Lawson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
- Correspondence: Mark A. Lawson, PhD, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego Mail Code 0674, 9500 Gilman Drive, La Jolla, California 92093. E-mail:
| |
Collapse
|
120
|
Xie K, Varatnitskaya M, Maghnouj A, Bader V, Winklhofer KF, Hahn S, Leichert LI. Activation leads to a significant shift in the intracellular redox homeostasis of neutrophil-like cells. Redox Biol 2019; 28:101344. [PMID: 31639650 PMCID: PMC6807386 DOI: 10.1016/j.redox.2019.101344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/19/2019] [Accepted: 10/11/2019] [Indexed: 11/28/2022] Open
Abstract
Neutrophils produce a cocktail of oxidative species during the so-called oxidative burst to attack phagocytized bacteria. However, little is known about the neutrophils' redox homeostasis during the oxidative burst and there is currently no consensus about the interplay between oxidative species and cellular signaling, e.g. during the initiation of the production of neutrophil extracellular traps (NETs). Using the genetically encoded redox sensor roGFP2, expressed in the cytoplasm of the neutrophil-like cell line PLB-985, we saw that stimulation by both PMA and E. coli resulted in oxidation of the thiol residues in this probe. In contrast to the redox state of phagocytized bacteria, which completely breaks down, the neutrophils' cytoplasmic redox state switched from its intital -318 ± 6 mV to a new, albeit higher oxidized, steady state of -264 ± 5 mV in the presence of bacteria. This highly significant oxidation of the cytosol (p value = 7 × 10-5) is dependent on NOX2 activity, but independent of the most effective thiol oxidant produced in neutrophils, MPO-derived HOCl. While the shift in the intracellular redox potential is correlated with effective NETosis, it is, by itself not sufficient: Inhibition of MPO, while not affecting the cytosolic oxidation, significantly decreased NETosis. Furthermore, inhibition of PI3K, which abrogates cytosolic oxidation, did not fully prevent NETosis induced by phagocytosis of bacteria. Thus, we conclude that NET-formation is regulated in a multifactorial way, in part by changes of the cytosolic thiol redox homeostasis in neutrophils, depending on the circumstance under which the generation of NETs was initiated.
Collapse
Affiliation(s)
- Kaibo Xie
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Marharyta Varatnitskaya
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany
| | - Abdelouahid Maghnouj
- Ruhr University Bochum, Department of Molecular Gastrointestinal Oncology, Bochum, Germany
| | - Verian Bader
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry, Molecular Cell Biology, Bochum, Germany
| | - Konstanze F Winklhofer
- Ruhr University Bochum, Institute for Biochemistry and Pathobiochemistry, Molecular Cell Biology, Bochum, Germany
| | - Stephan Hahn
- Ruhr University Bochum, Department of Molecular Gastrointestinal Oncology, Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Bochum, Germany.
| |
Collapse
|
121
|
Fisher JJ, Bartho LA, Perkins AV, Holland OJ. Placental mitochondria and reactive oxygen species in the physiology and pathophysiology of pregnancy. Clin Exp Pharmacol Physiol 2019; 47:176-184. [PMID: 31469913 DOI: 10.1111/1440-1681.13172] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
Mitochondria are central to cell function. The placenta forms the interface between maternal and fetal systems, and placental mitochondria have critical roles in maintaining pregnancy. The placenta is unusual in having two adjacent cell layers (cytotrophoblasts and the syncytiotrophoblast) with vastly different mitochondria that have distinct functions in health and disease. Mitochondria both produce the majority of reactive oxygen species (ROS), and are sensitive to ROS. ROS are important in allowing cells to sense their environment through mitochondrial-centred signalling, and this signalling also helps cells/tissues adapt to changing environments. However, excessive ROS are damaging, and increased ROS levels are associated with pregnancy complications, including the important disorders preeclampsia and gestational diabetes mellitus. Here we review the function of placental mitochondria in healthy pregnancy, and also in pregnancy complications. Placental mitochondria are critical to cell function, and mitochondrial damage is a feature of pregnancy complications. However, the responsiveness of mitochondria to ROS signalling may be central to placental adaptations that mitigate damage, and placental mitochondria are an attractive target for the development of therapeutics to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Joshua J Fisher
- School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Lucy A Bartho
- School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Anthony V Perkins
- School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Olivia J Holland
- School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| |
Collapse
|
122
|
The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci Rep 2019; 39:BSR20191601. [PMID: 31371631 PMCID: PMC6712439 DOI: 10.1042/bsr20191601] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
Cryopreservation has facilitated advancement of biological research by allowing the storage of cells over prolonged periods of time. While cryopreservation at extremely low temperatures would render cells metabolically inactive, cells suffer insults during the freezing and thawing process. Among such insults, the generation of supra-physiological levels of reactive oxygen species (ROS) could impair cellular functions and survival. Antioxidants are potential additives that were reported to partially or completely reverse freeze-thaw stress-associated impairments. This review aims to discuss the potential sources of cryopreservation-induced ROS and the effectiveness of antioxidant administration when used individually or in combination.
Collapse
|
123
|
Bilgen F, Ural A, Kurutas EB, Bekerecioglu M. The effect of oxidative stress and Raftlin levels on wound healing. Int Wound J 2019; 16:1178-1184. [PMID: 31407472 DOI: 10.1111/iwj.13177] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/27/2019] [Indexed: 01/03/2023] Open
Abstract
Reactive oxygen species (ROS) are crucial in all wound-healing processes. Raftlin also plays an important role in the induction of the autoimmune response and the vascular inflammatory response. Inflammatory mediators induce continuous synthesis and secretion. To the best of our knowledge, although there are studies in the literature on antioxidant enzyme levels (superoxide dismutase [SOD], catalase [CAT]) and oxidative stress markers, there are no studies on the comparison of these levels in wound patients with the activities of Raftlin, which is known to play a role in the vascular endothelial response. The aim of this study was to compare the levels of oxidative stress and antioxidant response between wound patients and a control group and to compare the levels of Raftlin between the two groups, which is a new biomarker in inflammatory diseases. Between January 2018 and September 2018, 30 healthy control patients and 30 patients with wounds were enrolled in the study as volunteers. Tissue samples were collected and were sent to the biochemistry laboratory to determine the levels of oxidative stress, antioxidant enzymes, and Raftlin, which play an important role in wound healing. The following were evaluated: SOD and CAT levels (as a measure of antioxidant enzymes); malondialdehyde (MDA) levels (as a measure of free oxygen radicals); and Raftlin, which is a lipid raft protein used in determining the level of inflammatory and autoimmune response. The analyses determined a statistically significant correlation between MDA, SOD, CAT, and Raftlin values in wound patients (p<0.05). Raftlin was a considerable parameter in determining the prognostic process of wound healing. The levels of tissue Raftlin were significantly higher in wounded patients. A significant increase in MDA, SOD, and CAT activities of the wounded patients also suggested that the oxidant and antioxidant effect was balanced and that external antioxidant supplementation was not required.
Collapse
Affiliation(s)
- Fatma Bilgen
- Department of Plastic, Reconstructive and Aesthetic Surgery, Kahramanmaraş Sutcu Imam University School of Medicine, Kahramanmaras, Turkey
| | - Alper Ural
- Department of Plastic, Reconstructive and Aesthetic Surgery, Kahramanmaraş Sutcu Imam University School of Medicine, Kahramanmaras, Turkey
| | - Ergul B Kurutas
- Biochemistry AB, Kahramanmaraş Sutcu Imam University School of Medicine, Kahramanmaras, Turkey
| | - Mehmet Bekerecioglu
- Department of Plastic, Reconstructive and Aesthetic Surgery, Kahramanmaraş Sutcu Imam University School of Medicine, Kahramanmaras, Turkey
| |
Collapse
|
124
|
Lacombe J, Brengues M, Mangé A, Bourgier C, Gourgou S, Pèlegrin A, Ozsahin M, Solassol J, Azria D. Quantitative proteomic analysis reveals AK2 as potential biomarker for late normal tissue radiotoxicity. Radiat Oncol 2019; 14:142. [PMID: 31399108 PMCID: PMC6688300 DOI: 10.1186/s13014-019-1351-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022] Open
Abstract
Background Biomarkers for predicting late normal tissue toxicity to radiotherapy are necessary to personalize treatments and to optimize clinical benefit. Many radiogenomic studies have been published on this topic. Conversely, proteomics approaches are not much developed, despite their advantages. Methods We used the isobaric tags for relative and absolute quantitation (iTRAQ) proteomic approach to analyze differences in protein expression levels in ex-vivo irradiated (8 Gy) T lymphocytes from patients with grade ≥ 2 radiation-induced breast fibrosis (grade ≥ 2 bf+) and patients with grade < 2 bf + after curative intent radiotherapy. Patients were selected from two prospective clinical trials (COHORT and PHRC 2005) and were used as discovery and confirmation cohorts. Results Among the 1979 quantified proteins, 23 fulfilled our stringent biological criteria. Immunoblotting analysis of four of these candidate proteins (adenylate kinase 2, AK2; annexin A1; heat shock cognate 71 kDa protein; and isocitrate dehydrogenase 2) confirmed AK2 overexpression in 8 Gy-irradiated T lymphocytes from patients with grade ≥ 2 bf + compared with patients with grade < 2 bf+. As these candidate proteins are involved in oxidative stress regulation, we also evaluated radiation-induced reactive oxygen species (ROS) production in peripheral blood mononuclear cells from patients with grade ≥ 2 bf + and grade < 2 bf+. Total ROS level, and especially superoxide anion level, increased upon ex-vivo 8 Gy-irradiation in all patients. Analysis of NADPH oxidases (NOXs), a major source of superoxide ion in the cell, showed a significant increase of NOX4 mRNA and protein levels after irradiation in both patient groups. Conversely, only NOX4 mRNA level was significantly different between groups (grade ≥ 2 bf + and grade < 2 bf+). Conclusion These findings identify AK2 as a potential radiosensitivity candidate biomarker. Overall, our proteomic approach highlights the important role of oxidative stress in late radiation-induced toxicity, and paves the way for additional studies on NOXs and superoxide ion metabolism. Electronic supplementary material The online version of this article (10.1186/s13014-019-1351-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jérôme Lacombe
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | - Muriel Brengues
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | - Alain Mangé
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | - Céline Bourgier
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | | | - André Pèlegrin
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France
| | | | - Jérôme Solassol
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France.,Department of Pathology and Onco-Biology, CHU Montpellier, Montpellier, France
| | - David Azria
- IRCM, INSERM, University Montpellier, ICM, Montpellier, France. .,Department of Radiation Oncology, ICM, 34298, Montpellier Cedex 5, France.
| |
Collapse
|
125
|
Reactive Oxygen Species in Osteoclast Differentiation and Possible Pharmaceutical Targets of ROS-Mediated Osteoclast Diseases. Int J Mol Sci 2019; 20:ijms20143576. [PMID: 31336616 PMCID: PMC6678498 DOI: 10.3390/ijms20143576] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) and free radicals are essential for transmission of cell signals and other physiological functions. However, excessive amounts of ROS can cause cellular imbalance in reduction–oxidation reactions and disrupt normal biological functions, leading to oxidative stress, a condition known to be responsible for the development of several diseases. The biphasic role of ROS in cellular functions has been a target of pharmacological research. Osteoclasts are derived from hematopoietic progenitors in the bone and are essential for skeletal growth and remodeling, for the maintenance of bone architecture throughout lifespan, and for calcium metabolism during bone homeostasis. ROS, including superoxide ion (O2−) and hydrogen peroxide (H2O2), are important components that regulate the differentiation of osteoclasts. Under normal physiological conditions, ROS produced by osteoclasts stimulate and facilitate resorption of bone tissue. Thus, elucidating the effects of ROS during osteoclast differentiation is important when studying diseases associated with bone resorption such as osteoporosis. This review examines the effect of ROS on osteoclast differentiation and the efficacy of novel chemical compounds with therapeutic potential for osteoclast related diseases.
Collapse
|
126
|
Stalin J, Garrido-Urbani S, Heitz F, Szyndralewiez C, Jemelin S, Coquoz O, Ruegg C, Imhof BA. Inhibition of host NOX1 blocks tumor growth and enhances checkpoint inhibitor-based immunotherapy. Life Sci Alliance 2019; 2:2/4/e201800265. [PMID: 31249132 PMCID: PMC6599972 DOI: 10.26508/lsa.201800265] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 01/17/2023] Open
Abstract
Blocking NOX1 with the novel small molecule inhibitor GKT771 inhibits tumor growth in mice by targeting tumor lymph/angiogenesis and promoting antitumor immune cells recruitment. GKT771 emerges as a novel and promising anticancer drug worth translating into the clinics. NADPH oxidases catalyze the production of reactive oxygen species and are involved in physio/pathological processes. NOX1 is highly expressed in colon cancer and promotes tumor growth. To investigate the efficacy of NOX1 inhibition as an anticancer strategy, tumors were grown in immunocompetent, immunodeficient, or NOX1-deficient mice and treated with the novel NOX1-selective inhibitor GKT771. GKT771 reduced tumor growth, lymph/angiogenesis, recruited proinflammatory macrophages, and natural killer T lymphocytes to the tumor microenvironment. GKT771 treatment was ineffective in immunodeficient mice bearing tumors regardless of their NOX-expressing status. Genetic ablation of host NOX1 also suppressed tumor growth. Combined treatment with the checkpoint inhibitor anti-PD1 antibody had a greater inhibitory effect on colon carcinoma growth than each compound alone. In conclusion, GKT771 suppressed tumor growth by inhibiting angiogenesis and enhancing the recruitment of immune cells. The antitumor activity of GKT771 requires an intact immune system and enhances anti-PD1 antibody activity. Based on these results, we propose blocking of NOX1 by GKT771 as a potential novel therapeutic strategy to treat colorectal cancer, particularly in combination with checkpoint inhibition.
Collapse
Affiliation(s)
- Jimmy Stalin
- Department of Pathology and Immunology, Medical Faculty, University of Geneva, Geneva, Switzerland .,Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Sarah Garrido-Urbani
- Department of Pathology and Immunology, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Freddy Heitz
- Genkyotex S.A Forum 2, Archamps Technopole, Saint-Julien-en-Genevois, France
| | | | - Stephane Jemelin
- Department of Pathology and Immunology, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Oriana Coquoz
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Curzio Ruegg
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Beat A Imhof
- Department of Pathology and Immunology, Medical Faculty, University of Geneva, Geneva, Switzerland .,Medicity Research Laboratory, University of Turku, Turku, Finland
| |
Collapse
|
127
|
Di Meo S, Napolitano G, Venditti P. Mediators of Physical Activity Protection against ROS-Linked Skeletal Muscle Damage. Int J Mol Sci 2019; 20:E3024. [PMID: 31226872 PMCID: PMC6627449 DOI: 10.3390/ijms20123024] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022] Open
Abstract
Unaccustomed and/or exhaustive exercise generates excessive free radicals and reactive oxygen and nitrogen species leading to muscle oxidative stress-related damage and impaired contractility. Conversely, a moderate level of free radicals induces the body's adaptive responses. Thus, a low oxidant level in resting muscle is essential for normal force production, and the production of oxidants during each session of physical training increases the body's antioxidant defenses. Mitochondria, NADPH oxidases and xanthine oxidases have been identified as sources of free radicals during muscle contraction, but the exact mechanisms underlying exercise-induced harmful or beneficial effects yet remain elusive. However, it is clear that redox signaling influences numerous transcriptional activators, which regulate the expression of genes involved in changes in muscle phenotype. The mitogen-activated protein kinase family is one of the main links between cellular oxidant levels and skeletal muscle adaptation. The family components phosphorylate and modulate the activities of hundreds of substrates, including transcription factors involved in cell response to oxidative stress elicited by exercise in skeletal muscle. To elucidate the complex role of ROS in exercise, here we reviewed the literature dealing on sources of ROS production and concerning the most important redox signaling pathways, including MAPKs that are involved in the responses to acute and chronic exercise in the muscle, particularly those involved in the induction of antioxidant enzymes.
Collapse
Affiliation(s)
- Sergio Di Meo
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy.
| | - Gaetana Napolitano
- Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli Parthenope, via Acton n. 38-I-80133 Napoli, Italy.
| | - Paola Venditti
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy.
| |
Collapse
|
128
|
Flavin Oxidase-Induced ROS Generation Modulates PKC Biphasic Effect of Resveratrol on Endothelial Cell Survival. Biomolecules 2019; 9:biom9060209. [PMID: 31151226 PMCID: PMC6628153 DOI: 10.3390/biom9060209] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Dietary intake of natural antioxidants is thought to impart protection against oxidative-associated cardiovascular diseases. Despite many in vivo studies and clinical trials, this issue has not been conclusively resolved. Resveratrol (RES) is one of the most extensively studied dietary polyphenolic antioxidants. Paradoxically, we have previously demonstrated that high RES concentrations exert a pro-oxidant effect eventually elevating ROS levels leading to cell death. Here, we further elucidate the molecular determinants underpinning RES-induced oxidative cell death. Methods: Using human umbilical vein endothelial cells (HUVECs), the effect of increasing concentrations of RES on DNA synthesis and apoptosis was studied. In addition, mRNA and protein levels of cell survival or apoptosis genes, as well as protein kinase C (PKC) activity were determined. Results: While high concentrations of RES reduce PKC activity, inhibit DNA synthesis and induce apoptosis, low RES concentrations elicit an opposite effect. This biphasic concentration-dependent effect (BCDE) of RES on PKC activity is mirrored at the molecular level. Indeed, high RES concentrations upregulate the proapoptotic Bax, while downregulating the antiapoptotic Bcl-2, at both mRNA and protein levels. Similarly, high RES concentrations downregulate the cell cycle progression genes, c-myc, ornithine decarboxylase (ODC) and cyclin D1 protein levels, while low RES concentrations display an increasing trend. The BCDE of RES on PKC activity is abrogated by the ROS scavenger Tempol, indicating that this enzyme acts downstream of the RES-elicited ROS signaling. The RES-induced BCDE on HUVEC cell cycle machinery was also blunted by the flavin inhibitor diphenyleneiodonium (DPI), implicating flavin oxidase-generated ROS as the mechanistic link in the cellular response to different RES concentrations. Finally, PKC inhibition abrogates the BCDE elicited by RES on both cell cycle progression and pro-apoptotic gene expression in HUVECs, mechanistically implicating PKC in the cellular response to different RES concentrations. Conclusions: Our results provide new molecular insight into the impact of RES on endothelial function/dysfunction, further confirming that obtaining an optimal benefit of RES is concentration-dependent. Importantly, the BCDE of RES could explain why other studies failed to establish the cardio-protective effects mediated by natural antioxidants, thus providing a guide for future investigation looking at cardio-protection by natural antioxidants.
Collapse
|
129
|
Abstract
Recently, we showed that synthetic anion transporters DSC4P-1 and SA-3 had activity related to cancer cell death. They were found to increase intracellular chloride and sodium ion concentrations. They were also found to induce apoptosis (DSC4P-1) and both induce apoptosis and inhibit autophagy (SA-3). However, determinants underlying these phenomenological findings were not elucidated. The absence of mechanistic understanding has limited the development of yet-improved systems. Here, we show that three synthetic anion transporters, DSC4P-1, SA-3, and 8FC4P, induce osmotic stress in cells by increasing intracellular ion concentrations. This triggers the generation of reactive oxygen species via a sequential process and promotes caspase-dependent apoptosis. In addition, two of the transporters, SA-3 and 8FC4P, induce autophagy by increasing the cytosolic calcium ion concentration promoted by osmotic stress. However, they eventually inhibit the autophagy process as a result of their ability to disrupt lysosome function through a transporter-mediated decrease in a lysosomal chloride ion concentration and an increase in the lysosomal pH.
Collapse
|
130
|
Reactive Oxygen Species Signaling Promotes Hypoxia-Inducible Factor 1α Stabilization in Sonic Hedgehog-Driven Cerebellar Progenitor Cell Proliferation. Mol Cell Biol 2019; 39:MCB.00268-18. [PMID: 30692272 DOI: 10.1128/mcb.00268-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
Cerebellar development is a highly regulated process involving numerous factors acting with high specificity, both temporally and by location. Part of this process involves extensive proliferation of cerebellar granule neuron precursors (CGNPs) induced by Sonic Hedgehog (SHH) signaling, but downstream effectors of mitogenic signaling are still being elucidated. Using primary CGNP cultures, a well-established model for SHH-driven proliferation, we show that SHH-treated CGNPs feature high levels of hypoxia-inducible factor 1α (HIF1α), which is known to promote glycolysis, stemness, and angiogenesis. In CGNPs cultured under normoxic conditions, HIF1α is posttranslationally stabilized in a manner dependent upon reactive oxygen species (ROS) and NADPH oxidase (NOX), both of which are also upregulated in these cells. Inhibition of NOX activity resulted in HIF1α destabilization and reduced levels of cyclin D2, a marker of CGNP proliferation. As CGNPs are the putative cells of origin for the SHH subtype of medulloblastoma and aberrant SHH signaling is implicated in other neoplasms, these studies may also have future relevance in the context of cancer. Taken together, our findings suggest that a better understanding of nonhypoxic HIF1α stabilization through NOX-induced ROS generation can provide insights into normal cell proliferation in cerebellar development and SHH-driven cell proliferation in cancers with aberrant SHH signaling.
Collapse
|
131
|
Wang M, Zhang Y, Xu M, Zhang H, Chen Y, Chung KF, Adcock IM, Li F. Roles of TRPA1 and TRPV1 in cigarette smoke -induced airway epithelial cell injury model. Free Radic Biol Med 2019; 134:229-238. [PMID: 30639616 DOI: 10.1016/j.freeradbiomed.2019.01.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/26/2018] [Accepted: 01/03/2019] [Indexed: 01/05/2023]
Abstract
Transient receptor potential protein (TRP) ion channels TRPA1 and TRPV1 may be important in mediating airway tissue injury and inflammation. This study was designed to clarify the role of TRPA1 and TRPV1 channels in cigarette smoke extract (CSE)-induced damage to bronchial and alveolar epithelial cells. Alveolar epithelial (A549) cells and bronchial epithelial (Beas-2B) cells were treated with CSE in the presence and absence of a TRPA1 inhibitor (100 μM, A967079), a TRPV1 inhibitor (100 μM, AMG9810) or both. DCFH-DA and MitoSOX Red probes were used to assay intracellular and mitochondrial oxidative stress, respectively. The mRNA levels of inflammatory mediators (IL-1β, IL-8, IL-18, IL-33) and antioxidants (HO-1, NQO1, MnSOD, catalase) and the protein expression levels of mitochondrial and inflammasome factors (MFN2, OPA1, DRP1, MFF, NLRP3,caspase-1) were respectively detected by RT-PCR and Western Blot. The results were validated in TRPA1 shRNA and TRPV1 shRNA cells. In both cell types, 10% CSE increased intracellular and mitochondrial oxidative stress, induced Ca2+ influx, increased inflammatory gene expression, reduced antioxidant gene expression and inhibited the activities of mitochondrial respiratory chain (MRC) complexes. 10% CSE increased the expression of mitochondrial fission proteins (MFF and DRP1), Caspase-1 and NLRP3 protein expression and decreased that of mitochondrial fusion proteins (MFN2 and OPA1). Both inhibitors and gene-knockout of TRPA1 and TRPV1 reduced oxidative stress, blocked Ca2+ influx, and inhibited inflammatory and increased antioxidant gene expression. They also prevented the changes in mitochondrial fission and fusion proteins and in MRC complexes activities induced by CSE. Both TRPA1 and TRPV1 mediate CSE-induced damage of bronchial and alveolar epithelial cells via modulation of oxidative stress, inflammation and mitochondrial damage and their inhibition should be considered as potential therapy for COPD.
Collapse
Affiliation(s)
- Muyun Wang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, NO.241, West HuaiHai Road, Shanghai 200030, PR China; Department of Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, NO.218, Jixi Road, Hefei, Anhui, 230022, .PR China
| | - Yanbei Zhang
- Department of Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, NO.218, Jixi Road, Hefei, Anhui, 230022, .PR China
| | - Mengmeng Xu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, NO.241, West HuaiHai Road, Shanghai 200030, PR China; Department of Respiratory and Critical Care, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, NO.218, Jixi Road, Hefei, Anhui, 230022, .PR China
| | - Hai Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, NO.241, West HuaiHai Road, Shanghai 200030, PR China
| | - Yuqing Chen
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, NO.241, West HuaiHai Road, Shanghai 200030, PR China
| | - Kian Fan Chung
- Airway Disease Section, National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK
| | - Feng Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, NO.241, West HuaiHai Road, Shanghai 200030, PR China.
| |
Collapse
|
132
|
Liang X, Wang Z, Gao M, Wu S, Zhang J, Liu Q, Yu Y, Wang J, Liu W. Cyclic stretch induced oxidative stress by mitochondrial and NADPH oxidase in retinal pigment epithelial cells. BMC Ophthalmol 2019; 19:79. [PMID: 30885167 PMCID: PMC6421648 DOI: 10.1186/s12886-019-1087-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/12/2019] [Indexed: 01/24/2023] Open
Abstract
Background Vitreomacular adhesion (VMA) has been reported to associated with age-related macular degeneration (AMD). Understanding the mechanisms underlying cyclic stretch induced in retinal pigment epithelial cells (RPE) may be important for the treatment of VMA-related AMD. Method Cyclic stretch (1HZ, 20% elongation) was applied to cultured ARPE-19 cells for 15 min, 2 h, 6 h, 12 h, 24 h by flexcell FX-5000 Tension system. Total reactive oxygen species (ROS) were detected using DCFH-DA. Mitochondrial superoxide were detected using MitoSOX Red mitochondrial superoxide indicator. NADPH oxidases (NOX) and signaling pathways, such as p38 and PKC, were detected using western blot. Apocycin (Apo) were used as NOX inhibitors. Result High levels of total ROS were detected from 15 min to 24 h, whereas mitochondrial superoxide were higher only in early time. NOX2 were significantly increased at 24 h. NOX4 were significantly increased at 2 h and reach its peak at 24 h. P-p38 was significantly increased at 12 h and 24 h. P-PKC was significantly increased at 15 min and kept a persistent high level. The upregulated expression of NOX4 by cyclic stretch can be significantly decreased under p-PKC inhibitor other than p-p38 inhibitor. Conclusion Cyclic stretch induce oxidative stress from both mitochodrial and NADPH oxidase in RPE cells, which may prompt oxidative damage in VMA-related AMD.
Collapse
Affiliation(s)
- Xida Liang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Zengyi Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Meng Gao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Qian Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Yanping Yu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Jing Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Wu Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
133
|
Shen J, Rastogi R, Geng X, Ding Y. Nicotinamide adenine dinucleotide phosphate oxidase activation and neuronal death after ischemic stroke. Neural Regen Res 2019; 14:948-953. [PMID: 30761998 PMCID: PMC6404502 DOI: 10.4103/1673-5374.250568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a multisubunit enzyme complex that utilizes nicotinamide adenine dinucleotide phosphate to produce superoxide anions and other reactive oxygen species. Under normal circumstances, reactive oxygen species mediate a number of important cellular functions, including the facilitation of adaptive immunity. In pathogenic circumstances, however, excess reactive oxygen species generated by NOX promotes apoptotic cell death. In ischemic stroke, in particular, it has been shown that both NOX activation and derangements in glucose metabolism result in increased apoptosis. Moreover, recent studies have established that glucose, as a NOX substrate, plays a vital role in the pathogenesis of reperfusion injury. Thus, NOX inhibition has the potential to mitigate the deleterious impact of hyperglycemia on stroke. In this paper, we provide an overview of this research, coupled with a discussion of its implications for the development of NOX inhibition as a strategy for the treatment of ischemic stroke. Both inhibition using apocynin, as well as the prospect of developing more specific inhibitors based on what is now understood of the biology of NOX assembly and activation, will be highlighted in the course of our discussion.
Collapse
Affiliation(s)
- Jiamei Shen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Radhika Rastogi
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
134
|
Yao Y, Zhang H, Wang Z, Ding J, Wang S, Huang B, Ke S, Gao C. Reactive oxygen species (ROS)-responsive biomaterials mediate tissue microenvironments and tissue regeneration. J Mater Chem B 2019; 7:5019-5037. [DOI: 10.1039/c9tb00847k] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ROS-responsive biomaterials alleviate the oxidative stress in tissue microenvironments, promoting tissue regeneration and disease therapy.
Collapse
Affiliation(s)
- Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhaoyi Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Shuqin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Baiqiang Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Shifeng Ke
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
135
|
Yang J. The role of reactive oxygen species in angiogenesis and preventing tissue injury after brain ischemia. Microvasc Res 2018; 123:62-67. [PMID: 30594490 DOI: 10.1016/j.mvr.2018.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023]
Abstract
Oxidative stress, which is defined as an imbalance between proxidant and antioxidant systems, is the essential mechanism involving in the ischemic process. During the early stage of brain ischemia, reactive oxygen species (ROS) are increased. Increased ROS are thought of a consequence of brain ischemia and exacerbating disease due to inducing cell death, apoptosis and senescence by oxidative stress. During brain tissue repair, ROS are act as signaling molecules and may be benefical for regulating angiogenesis and preventing tissue injury. New blood vessel formation is essentially required for rescuing tissue from brain ischemia. In ischemic conditions, ROS promotes angiogenesis, either directly or via the generation of active oxidation products. ROS-induced angiogenesis involves several signaling pathways. This paper reviewed current understanding of the role of ROS as a mediator and modulator of angiogenesis in brain ischemia.
Collapse
Affiliation(s)
- Jiping Yang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang 050000, Hebei Province, China.
| |
Collapse
|
136
|
Mahbouli S, Talvas J, der Vartanian A, Ortega S, Rougé S, Vasson MP, Rossary A. Activation of antioxidant defences of human mammary epithelial cells under leptin depend on neoplastic state. BMC Cancer 2018; 18:1264. [PMID: 30563501 PMCID: PMC6299648 DOI: 10.1186/s12885-018-5141-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/27/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Obesity is associated with oxidative stress, a major factor in carcinogenesis, and with high leptin concentration. The aim of this study was to determine the effects of leptin on the antioxidant response in three human mammary epithelial cells each presenting a different neoplastic status: healthy human mammary epithelial cells (HMEC), oestrogen-receptor positive MCF-7 cells and triple-negative MDA-MB-231 cells. METHODS This in vitro kinetic study characterized the cell antioxidant response after 1, 6 and 24 h in the presence of leptin (10 or 100 ng/ml).The antioxidant response was defined in terms of cell glutathione content, gene expression and catalytic activity of antioxidant enzymes (i.e. glutathione peroxidase 1 (Gpx1), glutathione reductase (GR), glutathione S transferase (GST), heme-oxygenase 1 (HO-1) and cyclooxygenase-2 (COX-2)). Oxidative stress occurrence was assessed by lipid hydro peroxide (HPLIP) and isoprostane concentrations in culture media at 24 h. RESULTS At both concentrations used, leptin induced ROS production in all cell models, contributing to various antioxidant responses linked to neoplastic cell status. HMEC developed a highly inducible antioxidant response based on antioxidant enzyme activation and an increase in cell GSH content at 10 ng/ml of leptin. However, at 100 ng/ml of leptin, activation of antioxidant response was lower. Conversely, in tumour cells, MCF-7 and MDA-MB-231, leptin did not induce an efficient antioxidant response, at either concentration, resulting in an increase of lipid peroxidation products. CONCLUSIONS Leptin can modulate the oxidative status of mammary epithelial cells differently according to their neoplastic state. These novel results shed light on oxidative status changes in mammary cells in the presence of leptin.
Collapse
Affiliation(s)
- Sinda Mahbouli
- Université Clermont Auvergne, INRA, UMR 1019, Unité de Nutrition Humaine, CRNH-Auvergne, F-63000, Clermont-Ferrand, France
| | - Jérémie Talvas
- Université Clermont Auvergne, INRA, UMR 1019, Unité de Nutrition Humaine, CRNH-Auvergne, F-63000, Clermont-Ferrand, France
| | - Audrey der Vartanian
- Université Clermont Auvergne, INRA, UMR 1019, Unité de Nutrition Humaine, CRNH-Auvergne, F-63000, Clermont-Ferrand, France
| | - Sophie Ortega
- Université Clermont Auvergne, INRA, UMR 1019, Unité de Nutrition Humaine, CRNH-Auvergne, F-63000, Clermont-Ferrand, France
| | - Stéphanie Rougé
- Université Clermont Auvergne, INRA, UMR 1019, Unité de Nutrition Humaine, CRNH-Auvergne, F-63000, Clermont-Ferrand, France
| | - Marie-Paule Vasson
- Université Clermont Auvergne, INRA, UMR 1019, Unité de Nutrition Humaine, CRNH-Auvergne, F-63000, Clermont-Ferrand, France.,CHU Clermont-Ferrand, Centre Jean Perrin, Unité de Nutrition, CLARA, F-63000, Clermont-Ferrand, France
| | - Adrien Rossary
- Université Clermont Auvergne, INRA, UMR 1019, Unité de Nutrition Humaine, CRNH-Auvergne, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
137
|
Oxidative Stress in Cardiac Tissue of Patients Undergoing Coronary Artery Bypass Graft Surgery: The Effects of Overweight and Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6598326. [PMID: 30647815 PMCID: PMC6311809 DOI: 10.1155/2018/6598326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022]
Abstract
Background Obesity is one of the major cardiovascular risk factors and is associated with oxidative stress and myocardial dysfunction. We hypothesized that obesity affects cardiac function and morbidity by causing alterations in enzymatic redox patterns. Methods Sixty-one patients undergoing coronary artery bypass grafting (CABG) were included in the study. Excessive right atrial myocardial tissue emerging from the operative connection to the extracorporeal circulation was harvested. Patients were assigned to control (n = 19, body mass index (BMI): <25 kg/m2), overweight (n = 25, 25 kg/m2 < BMI < 30 kg/m2), or obese (n = 17, BMI: >30 kg/m2) groups. Oxidative enzyme systems were studied directly in the cardiac muscles of patients undergoing CABG who were grouped according to BMI. Molecular biological methods and high-performance liquid chromatography were used to detect the expression and activity of oxidative enzymes and the formation of reactive oxygen species (ROS). Results We found increased levels of ROS and increased expression of ROS-producing enzymes (i.e., p47phox, xanthine oxidase) and decreased antioxidant defense mechanisms (mitochondrial aldehyde dehydrogenase, heme oxygenase-1, and eNOS) in line with elevated inflammatory markers (vascular cell adhesion molecule-1) in the right atrial myocardial tissue and by trend also in serum (sVCAM-1 and CCL5/RANTES). Conclusion Increasing BMI in patients undergoing CABG is related to altered myocardial redox patterns, which indicates increased oxidative stress with inadequate antioxidant compensation. These changes suggest that the myocardium of obese patients suffering from coronary artery disease is more susceptible to cardiomyopathy and possible damage by ischemia and reperfusion, for example, during cardiac surgery.
Collapse
|
138
|
Fulop T, Witkowski JM, Olivieri F, Larbi A. The integration of inflammaging in age-related diseases. Semin Immunol 2018; 40:17-35. [PMID: 30287177 DOI: 10.1016/j.smim.2018.09.003] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
|
139
|
Kim SK, Rho SJ, Kim SH, Kim SY, Song SH, Yoo JY, Kim CH, Lee SH. Protective effects of diphenyleneiodonium, an NADPH oxidase inhibitor, on lipopolysaccharide-induced acute lung injury. Clin Exp Pharmacol Physiol 2018; 46:153-162. [PMID: 30403294 DOI: 10.1111/1440-1681.13050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 11/29/2022]
Abstract
NADPH oxidase (NOX) plays an important role in inflammatory response by producing reactive oxygen species (ROS). The inhibition of NOX has been shown to induce anti-inflammatory effects in a few experimental models. The aim of this study was to investigate the effects of diphenyleneiodonium (DPI), a NOX inhibitor, on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in a rat model. Sprague-Dawley rats were intraperitoneally administered by DPI (5 mg/kg) 30 minutes after intratracheal instillation of LPS (3 mg/kg). After 6 hours, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. The NOX activity in lung tissue was significantly increased in LPS-treated rats. It was significantly attenuated by DPI. DPI-treated rats showed significant reduction in the intracellular ROS, the number of inflammatory cells, and cytokines (TNF-α and IL-6) in BALF compared with LPS-treated rats. In lung tissue, DPI-treated rats showed significantly decreased malondialdehyde content and increased activity of glutathione peroxidase and superoxide dismutase compared with LPS-treated rats. Lung injury score, myeloperoxidase activity, and inducible nitric oxide synthase expression were significantly decreased in DPI-treated rats compared with LPS-treated animals. Western blotting analysis demonstrated that DPI significantly suppressed LPS-induced activation of NF-κB and ERK1/2 and SAPK/JNK in MAPK pathway. Our results suggest that DPI may have protective effects on LPS-induced ALI thorough anti-oxidative and anti-inflammatory effects which may be due to inactivation of the NF-κB, ERK1/2, and SAPK/JNK pathway. These results suggest the therapeutic potential of DPI as an anti-inflammatory agent in ALI.
Collapse
Affiliation(s)
- Sung Kyoung Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Seung Joon Rho
- Research Institute of Medical Science, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Seung Hoon Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Shin Young Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - So Hyang Song
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Jin Young Yoo
- Department of Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Chi Hong Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Sang Haak Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| |
Collapse
|
140
|
Kiseleva RY, Glassman PM, Greineder CF, Hood ED, Shuvaev VV, Muzykantov VR. Targeting therapeutics to endothelium: are we there yet? Drug Deliv Transl Res 2018; 8:883-902. [PMID: 29282646 DOI: 10.1007/s13346-017-0464-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vascular endothelial cells represent an important therapeutic target in many pathologies, including inflammation, oxidative stress, and thrombosis; however, delivery of drugs to this site is often limited by the lack of specific affinity of therapeutics for these cells. Selective delivery of both small molecule drugs and therapeutic proteins to the endothelium has been achieved through the use of targeting ligands, such as monoclonal antibodies, directed against endothelial cell surface markers, particularly cell adhesion molecules (CAMs). Careful selection of target molecules and targeting agents allows for precise delivery to sites of inflammation, thereby maximizing therapeutic drug concentrations at the site of injury. A good understanding of the physiological and pathological determinants of drug and drug carrier pharmacokinetics and biodistribution may allow for a priori identification of optimal properties of drug carrier and targeting agent. Targeted delivery of therapeutics such as antioxidants and antithrombotic agents to the injured endothelium has shown efficacy in preclinical models, suggesting the potential for translation into clinical practice. As with all therapeutics, demonstration of both efficacy and safety are required for successful clinical implementation, which must be considered not only for the individual components (drug, targeting agent, etc.) but also for the sum of the parts (e.g., the drug delivery system), as unexpected toxicities may arise with complex delivery systems. While the use of endothelial targeting has not been translated into the clinic to date, the preclinical results summarized here suggest that there is hope for successful implementation of these agents in the years to come.
Collapse
Affiliation(s)
- Raisa Yu Kiseleva
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104-5158, USA
| | - Patrick M Glassman
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104-5158, USA
| | - Colin F Greineder
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104-5158, USA
| | - Elizabeth D Hood
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104-5158, USA
| | - Vladimir V Shuvaev
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104-5158, USA
| | - Vladimir R Muzykantov
- Department of Pharmacology, The Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104-5158, USA.
| |
Collapse
|
141
|
Moldogazieva NT, Lutsenko SV, Terentiev AA. Reactive Oxygen and Nitrogen Species-Induced Protein Modifications: Implication in Carcinogenesis and Anticancer Therapy. Cancer Res 2018; 78:6040-6047. [PMID: 30327380 DOI: 10.1158/0008-5472.can-18-0980] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/23/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022]
Abstract
Cancer is a complex disorder extremely dependent on its microenvironment and highly regulated by multiple intracellular and extracellular stimuli. Studies show that reactive oxygen and nitrogen species (RONS) play key roles in cancer initiation and progression. Accumulation of RONS caused by imbalance between RONS generation and activity of antioxidant system (AOS) has been observed in many cancer types. This leads to alterations in gene expression levels, signal transduction pathways, and protein quality control machinery, that is, processes that regulate cancer cell proliferation, migration, invasion, and apoptosis. This review focuses on the latest advancements evidencing that RONS-induced modifications of key redox-sensitive residues in regulatory proteins, that is, cysteine oxidation/S-sulfenylation/S-glutathionylation/S-nitrosylation and tyrosine nitration, represent important molecular mechanisms underlying carcinogenesis. The oxidative/nitrosative modifications cause alterations in activities of intracellular effectors of MAPK- and PI3K/Akt-mediated signaling pathways, transcription factors (Nrf2, AP-1, NFκB, STAT3, and p53), components of ubiquitin/proteasomal and autophagy/lysosomal protein degradation systems, molecular chaperones, and cytoskeletal proteins. Redox-sensitive proteins, RONS-generating enzymes, and AOS components can serve as targets for relevant anticancer drugs. Chemotherapeutic agents exert their action via RONS generation and induction of cancer cell apoptosis, while drug resistance associates with RONS-induced cancer cell survival; this is exploited in selective anticancer therapy strategies. Cancer Res; 78(21); 6040-7. ©2018 AACR.
Collapse
Affiliation(s)
- Nurbubu T Moldogazieva
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Sergey V Lutsenko
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
142
|
Kaeidi A, Hajializadeh Z, Jahandari F, Fatemi I. Leptin attenuates oxidative stress and neuronal apoptosis in hyperglycemic condition. Fundam Clin Pharmacol 2018; 33:75-83. [DOI: 10.1111/fcp.12411] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Ayat Kaeidi
- Physiology-Pharmacology Research Center; Research Institute of Basic Medical Sciences; Rafsanjan University of Medical Sciences; Rafsanjan Iran
- Department of Physiology and Pharmacology; School of Medicine; Rafsanjan University of Medical Sciences; Rafsanjan Iran
| | - Zahra Hajializadeh
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences; Kerman University of Medical Sciences, Ebn-e Sina Avenue; Kerman 7619813159 Iran
| | - Farank Jahandari
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences; Kerman University of Medical Sciences, Ebn-e Sina Avenue; Kerman 7619813159 Iran
| | - Iman Fatemi
- Physiology-Pharmacology Research Center; Research Institute of Basic Medical Sciences; Rafsanjan University of Medical Sciences; Rafsanjan Iran
- Department of Physiology and Pharmacology; School of Medicine; Rafsanjan University of Medical Sciences; Rafsanjan Iran
| |
Collapse
|
143
|
Horn A, Jaiswal JK. Cellular mechanisms and signals that coordinate plasma membrane repair. Cell Mol Life Sci 2018; 75:3751-3770. [PMID: 30051163 PMCID: PMC6541445 DOI: 10.1007/s00018-018-2888-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 02/08/2023]
Abstract
Plasma membrane forms the barrier between the cytoplasm and the environment. Cells constantly and selectively transport molecules across their plasma membrane without disrupting it. Any disruption in the plasma membrane compromises its selective permeability and is lethal, if not rapidly repaired. There is a growing understanding of the organelles, proteins, lipids, and small molecules that help cells signal and efficiently coordinate plasma membrane repair. This review aims to summarize how these subcellular responses are coordinated and how cellular signals generated due to plasma membrane injury interact with each other to spatially and temporally coordinate repair. With the involvement of calcium and redox signaling in single cell and tissue repair, we will discuss how these and other related signals extend from single cell repair to tissue level repair. These signals link repair processes that are activated immediately after plasma membrane injury with longer term processes regulating repair and regeneration of the damaged tissue. We propose that investigating cell and tissue repair as part of a continuum of wound repair mechanisms would be of value in treating degenerative diseases.
Collapse
Affiliation(s)
- Adam Horn
- Center for Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC, 20010-2970, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC, 20010-2970, USA.
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
144
|
Mutagen-induced phytotoxicity in maize seed germination is dependent on ROS scavenging capacity. Sci Rep 2018; 8:14078. [PMID: 30232360 PMCID: PMC6145914 DOI: 10.1038/s41598-018-32271-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/05/2018] [Indexed: 11/11/2022] Open
Abstract
Ethidium bromide (EB) and acridine orange (AO) bind to nucleic acids and are thus considered as potential mutagens. In this study, the effects of EB and AO on the germination behaviours of white, yellow, red, and purple maize seeds were investigated. The results indicate that low concentrations of EB (50 μg mL−1) and AO (500 μg mL−1) promote germination, particularly for the white and yellow seeds. However, high concentrations of EB (0.5 mg mL−1) and AO (5 mg mL−1) significantly inhibit germination, with the level of inhibition decreasing in the following order: white > yellow > red > purple. In addition, EB and AO induce H2O2 production in a concentration-dependent manner. The effects of these mutagens on seed germination were partly reversed by dimethyl thiourea, a scavenger of reactive oxygen species (ROS), and diphenylene iodonium (DPI), an inhibitor of NADPH oxidase, while the effects were enhanced by treatment with H2O2 and 3-amino-1,2,4-triazole, a specific inhibitor of catalase. In addition, AO and EB profoundly increased NADPH oxidase activities in germinating seeds. The treatment of seeds with EB and AO did not affect the growth or drought tolerance of the resultant seedlings. The findings suggest that the mechanism of mutagen toxicity is related to the induction of ROS production.
Collapse
|
145
|
Ames PRJ, Bucci T, Merashli M, Amaral M, Arcaro A, Gentile F, Nourooz-Zadeh J, DelgadoAlves J. Oxidative/nitrative stress in the pathogenesis of systemic sclerosis: are antioxidants beneficial? Free Radic Res 2018; 52:1063-1082. [PMID: 30226391 DOI: 10.1080/10715762.2018.1525712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Systemic sclerosis (SSc) is a multisystem autoimmune disease: characterised from the clinical side by progressive vasculopathy and fibrosis of the skin and different organs and from the biochemical side by fibroblast deregulation with excessive production of collagen and increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). The latter contributes to an overproduction of reactive oxygen species that through an autocrine loop maintains NOX4 in a state of activation. Reactive oxygen and nitrogen species are implicated in the origin and perpetuation of several clinical manifestations of SSc having vascular damage in common; attempts to dampen oxidative and nitrative stress through different agents with antioxidant properties have not translated into a sustained clinical benefit. Objective of this narrative review is to describe the origin and clinical implications of oxidative and nitrative stress in SSc, with particular focus on the central role of NOX4 and its interactions, to re-evaluate the antioxidant approaches so far used to limit disease progression, to appraise the complexity of antioxidant treatment and to touch on novel pathways elements of which may represent specific treatment targets in the not so distant future.
Collapse
Affiliation(s)
- Paul R J Ames
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal.,b Department of Haematology , Dumfries Royal Infirmary , Dumfries , UK
| | - Tommaso Bucci
- c Division of Allergy and Clinical Immunology, Department of Internal Medicine , University of Salerno , Baronissi , Italy
| | - Mira Merashli
- d Department of Rheumatology , American University of Beirut , Beirut , Lebanon
| | - Marta Amaral
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal
| | - Alessia Arcaro
- e Department of Medicine & Health Sciences , Universita' del Molise , Campobasso , Italy
| | - Fabrizio Gentile
- e Department of Medicine & Health Sciences , Universita' del Molise , Campobasso , Italy
| | - Jaffar Nourooz-Zadeh
- f Nephrology & Kidney Transplantation Research Center , Urmia University of Medical Sciences , Urmia , Iran
| | - Jose DelgadoAlves
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal.,g Immunomediated Systemic Diseases Unit, Medicine 4 , Hospital Fernando Fonseca , Amadora , Portugal
| |
Collapse
|
146
|
Svegliati S, Spadoni T, Moroncini G, Gabrielli A. NADPH oxidase, oxidative stress and fibrosis in systemic sclerosis. Free Radic Biol Med 2018; 125:90-97. [PMID: 29694853 DOI: 10.1016/j.freeradbiomed.2018.04.554] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/11/2018] [Accepted: 04/15/2018] [Indexed: 12/16/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by damage of small vessels, immune abnormalities and exaggerated production of extracellular matrix. The etiology of the disease is unknown and the pathogenesis ill defined. However, there is consistent evidence that oxidative stress contributes to the establishment and progression of the disease. This review examines the most relevant research regarding the involvement of free radicals and of nicotinamide adenine dinucleotide phosphate oxidases (NADPH oxidases; NOX) in the pathogenesis of systemic sclerosis.
Collapse
Affiliation(s)
- Silvia Svegliati
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Italy
| | - Tatiana Spadoni
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Italy
| | - Gianluca Moroncini
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Italy
| | - Armando Gabrielli
- Dipartimento di Scienze Cliniche e Molecolari, Clinica Medica, Università Politecnica delle Marche, Italy.
| |
Collapse
|
147
|
Fawzy EI, El Makawy AI, El-Bamby MM, Elhamalawy HO. Improved effect of pumpkin seed oil against the bisphenol-A adverse effects in male mice. Toxicol Rep 2018; 5:857-863. [PMID: 30167376 PMCID: PMC6111037 DOI: 10.1016/j.toxrep.2018.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/27/2018] [Accepted: 08/16/2018] [Indexed: 12/27/2022] Open
Abstract
The present study was conducted to evaluate the ameliorative role of pumpkin seed oil (PSO) against potential adverse effects of bisphenol-A (BPA) in male mice. BPA was administered to the mice orally at a dose of 50 mg/kg body weight once a day for 28 successive days. While, PSO was administered to the mice orally at 1 mL/kg b w either before, with or after treatment of BPA, once a day for 28 successive days. The studied parameters were DNA damage evaluation using comet assay in liver and testes cells and micronucleus test in bone marrow; and histopathological examination of liver and testes tissues. Results revealed that BPA induced DNA damage in tested cells and marked histopathological alterations in liver and testes. In contrast, PSO treatments alleviated DNA damage and improved the histopathological alterations in liver and testes tissues. Furthermore, administration of mice with the PSO before BPA treatment was the best regimen in the alleviation of the adverse effects of BPA, followed by administration of PSO after then with treatment of BPA. It can be concluded that PSO may has a protective role against BPA genotoxicity and histopathological alterations in male mice.
Collapse
Affiliation(s)
- Eissa I Fawzy
- Department of Environment and Bio-Agriculture, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Aida I El Makawy
- Department of Cell Biology, National Research Center, Dokki, Giza, Egypt
| | - M Mahmoud El-Bamby
- Department of Environment and Bio-Agriculture, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - H Osama Elhamalawy
- Department of Environment and Bio-Agriculture, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
148
|
Mita Y, Kataoka Y, Saito Y, Kashi T, Hayashi K, Iwasaki A, Imanishi T, Miyasaka T, Noguchi N. Distribution of oxidized DJ-1 in Parkinson's disease-related sites in the brain and in the peripheral tissues: effects of aging and a neurotoxin. Sci Rep 2018; 8:12056. [PMID: 30104666 PMCID: PMC6089991 DOI: 10.1038/s41598-018-30561-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023] Open
Abstract
DJ-1 plays an important role in antioxidant defenses, and a reactive cysteine at position 106 (Cys106) of DJ-1, a critical residue of its biological function, is oxidized under oxidative stress. DJ-1 oxidation has been reported in patients with Parkinson's disease (PD), but the relationship between DJ-1 oxidation and PD is still unclear. In the present study using specific antibody for Cys106-oxidized DJ-1 (oxDJ-1), we analyzed oxDJ-1 levels in the brain and peripheral tissues in young and aged mice and in a mouse model of PD induced using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). OxDJ-1 levels in the brain, heart, and skeletal muscle were high compared with other tissues. In the brain, oxDJ-1 was detected in PD-related brain sites such as the substantia nigra (SN) of the midbrain, olfactory bulb (OB), and striatum. In aged wild-type mice, oxDJ-1 levels in the OB, striatum, and heart tended to decrease, while those in the skeletal muscle increased significantly. Expression of dopamine-metabolizing enzymes significantly increased in the SN and OB of aged DJ-1-/- mice, accompanied by a complementary increase in glutathione peroxidase 1. MPTP treatment concordantly changed oxDJ-1 levels in PD-related brain sites and heart. These results indicate that the effects of physiological metabolism, aging, and neurotoxin change oxDJ-1 levels in PD-related brain sites, heart, and skeletal muscle where mitochondrial load is high, suggesting a substantial role of DJ-1 in antioxidant defenses and/or dopamine metabolism in these tissues.
Collapse
Affiliation(s)
- Yuichiro Mita
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yuto Kataoka
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yoshiro Saito
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan.
| | - Takuma Kashi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Kojiro Hayashi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Asa Iwasaki
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Takanori Imanishi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Tomohiro Miyasaka
- Neuropathology, Department of Life and Medical Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Noriko Noguchi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan.
| |
Collapse
|
149
|
Zhang Y, Deng B, Li Z. Inhibition of NADPH oxidase increases defense enzyme activities and improves maize seed germination under Pb stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:187-192. [PMID: 29702459 DOI: 10.1016/j.ecoenv.2018.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/08/2018] [Accepted: 04/17/2018] [Indexed: 05/20/2023]
|
150
|
Lazaro I, Lopez-Sanz L, Bernal S, Oguiza A, Recio C, Melgar A, Jimenez-Castilla L, Egido J, Madrigal-Matute J, Gomez-Guerrero C. Nrf2 Activation Provides Atheroprotection in Diabetic Mice Through Concerted Upregulation of Antioxidant, Anti-inflammatory, and Autophagy Mechanisms. Front Pharmacol 2018; 9:819. [PMID: 30108504 PMCID: PMC6080546 DOI: 10.3389/fphar.2018.00819] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Interactive relationships between metabolism, inflammation, oxidative stress, and autophagy in the vascular system play a key role in the pathogenesis of diabetic cardiovascular disease. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a stress-sensitive guarantor of cellular homeostasis, which cytoprotective contributions extend beyond the antioxidant defense. We investigated the beneficial effects and underlying mechanisms of the Nrf2 inducer tert-butyl hydroquinone (tBHQ) on diabetes-driven atherosclerosis. In the experimental model of streptozotocin-induced diabetes in apolipoprotein E-deficient mice, treatment with tBHQ increased Nrf2 activity in macrophages and vascular smooth muscle cells within atherosclerotic lesions. Moreover, tBHQ significantly decreased the size, extension and lipid content of atheroma plaques, and attenuated inflammation by reducing lesional macrophages (total number and M1/M2 phenotype balance), foam cell size and chemokine expression. Atheroprotection was accompanied by both systemic and local antioxidant effects, characterized by lower levels of superoxide anion and oxidative DNA marker 8-hydroxy-2'-deoxyguanosine, reduced expression of NADPH oxidase subunits, and increased antioxidant capacity. Interestingly, tBHQ treatment upregulated the gene and protein expression of autophagy-related molecules and also enhanced autophagic flux in diabetic mouse aorta. In vitro, Nrf2 activation by tBHQ suppressed cytokine-induced expression of pro-inflammatory and oxidative stress genes, altered macrophage phenotypes, and promoted autophagic activity. Our results reinforce pharmacological Nrf2 activation as a promising atheroprotective approach in diabetes, according to the plethora of cytoprotective mechanisms involved in the resolution of inflammation and oxidative stress, and restoring autophagy.
Collapse
Affiliation(s)
- Iolanda Lazaro
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Laura Lopez-Sanz
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Susana Bernal
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Ainhoa Oguiza
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Carlota Recio
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Ana Melgar
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Luna Jimenez-Castilla
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Julio Madrigal-Matute
- Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, New York City, NY, United States
| | - Carmen Gomez-Guerrero
- Renal, Vascular and Diabetes Research Lab, IIS-Fundacion Jimenez Diaz, Autonoma University of Madrid, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| |
Collapse
|