101
|
Biomimetic KcsA channels with ultra-selective K + transport for monovalent ion sieving. Nat Commun 2022; 13:1701. [PMID: 35361770 PMCID: PMC8971412 DOI: 10.1038/s41467-022-29382-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
Ultra-selective and fast transport of K+ are of significance for water desalination, energy conversion, and separation processes, but current bottleneck of achieving high-efficiency and exquisite transport is attributed to the competition from ions of similar dimensions and same valence through nanochannel communities. Here, inspired by biological KcsA channels, we report biomimetic charged porous subnanometer cages that enable ultra-selective K+ transport. For nanometer to subnanometer scales, conically structured double-helix columns exhibit typical asymmetric transport behaviors and conduct rapid K+ with a transport rate of 94.4 mmol m−2 h−1, resulting in the K+/Li+ and K+/Na+ selectivity ratios of 363 and 31, respectively. Experiments and simulations indicate that these results stem from the synergistic effects of cation-π and electrostatic interactions, which impose a higher energy barrier for Li+ and Na+ and lead to selective K+ transport. Our findings provide an effective methodology for creating in vitro biomimetic devices with high-performance K+ ion sieving. Materials for the selective transport of K+ have application in a variety of fields including water desalination and separation processes. Here the authors report charged porous subnanometer cages that are inspired in biological KcsA channels; high K+ transport rates and high K+/Li+ and K+/Na+ selectivity ratios are obtained, showing great potential in advanced sieving processes and efficient water treatments.
Collapse
|
102
|
Mining Critical Metals from Seawater by Subnanostructured Membranes: Is It Viable? Symmetry (Basel) 2022. [DOI: 10.3390/sym14040681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The continuous demand for energy-critical elements such as lithium, cobalt, uranium and so on will soon exceed their availability increasing further their significance of geopolitical resources. Seawater is a relevant, not conventional source of critical metals. Synthetic membranes with subnanometer pores are the core of processes such as desalination for separating solutes from water. These membrane processes have achieved remarkable success at industrial level. However, state-of-the-art desalination membranes cannot selectively separate a single metal ion from a mixture of ions. In this review the challenges of membranes with subnanometer pores to selectivity discriminate among different metal ions are briefly discussed. The key points of the molecular-level mechanism that contribute to energy barrier for ions transport through subnanometer pores are highlighted to provide guidelines for the design of single-metal ion selective membranes.
Collapse
|
103
|
Montes de Oca JM, Dhanasekaran J, Córdoba A, Darling SB, de Pablo JJ. Ionic Transport in Electrostatic Janus Membranes. An Explicit Solvent Molecular Dynamic Simulation. ACS NANO 2022; 16:3768-3775. [PMID: 35230815 PMCID: PMC8945361 DOI: 10.1021/acsnano.1c07706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Janus, or two-sided, charged membranes offer promise as ionic current rectifiers. In such systems, pores consisting of two regions of opposite charge can be used to generate a current from a gradient in salinity. The efficiency of nanoscale Janus pores increases dramatically as their diameter becomes smaller. However, little is known about the underlying transport processes, particularly under experimentally accessible conditions. In this work, we examine the molecular basis for rectification in Janus nanopores using an applied electric field. Molecular simulations with explicit water and ions are used to examine the structure and dynamics of all molecular species in aqueous electrolyte solutions. For several macroscopic observables, the results of such simulations are consistent with experimental observations on asymmetric membranes. Our analysis reveals a number of previously unknown features, including a pronounced local reorientation of water molecules in the pores, and a segregation of ionic species that had not been anticipated by previously reported continuum analyses of Janus pores. Using these insights, a model is proposed for ionic current rectification in which electric leakage at the pore entrance controls net transport.
Collapse
Affiliation(s)
- Joan M. Montes de Oca
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Advanced
Materials for Energy-Water Systems (AMEWS) Energy Frontier Research
Center, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Johnson Dhanasekaran
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Advanced
Materials for Energy-Water Systems (AMEWS) Energy Frontier Research
Center, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Andrés Córdoba
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Advanced
Materials for Energy-Water Systems (AMEWS) Energy Frontier Research
Center, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Seth B. Darling
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Advanced
Materials for Energy-Water Systems (AMEWS) Energy Frontier Research
Center, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Juan J. de Pablo
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Advanced
Materials for Energy-Water Systems (AMEWS) Energy Frontier Research
Center, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
- Materials
Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
104
|
Heiranian M, DuChanois RM, Ritt CL, Violet C, Elimelech M. Molecular Simulations to Elucidate Transport Phenomena in Polymeric Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3313-3323. [PMID: 35235312 DOI: 10.1021/acs.est.2c00440] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite decades of dominance in separation technology, progress in the design and development of high-performance polymer-based membranes has been incremental. Recent advances in materials science and chemical synthesis provide opportunities for molecular-level design of next-generation membrane materials. Such designs necessitate a fundamental understanding of transport and separation mechanisms at the molecular scale. Molecular simulations are important tools that could lead to the development of fundamental structure-property-performance relationships for advancing membrane design. In this Perspective, we assess the application and capability of molecular simulations to understand the mechanisms of ion and water transport across polymeric membranes. Additionally, we discuss the reliability of molecular models in mimicking the structure and chemistry of nanochannels and transport pathways in polymeric membranes. We conclude by providing research directions for resolving key knowledge gaps related to transport phenomena in polymeric membranes and for the construction of structure-property-performance relationships for the design of next-generation membranes.
Collapse
Affiliation(s)
- Mohammad Heiranian
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Ryan M DuChanois
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Camille Violet
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
105
|
DuChanois RM, Heiranian M, Yang J, Porter CJ, Li Q, Zhang X, Verduzco R, Elimelech M. Designing polymeric membranes with coordination chemistry for high-precision ion separations. SCIENCE ADVANCES 2022; 8:eabm9436. [PMID: 35245114 PMCID: PMC8896795 DOI: 10.1126/sciadv.abm9436] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/11/2022] [Indexed: 05/30/2023]
Abstract
State-of-the-art polymeric membranes are unable to perform the high-precision ion separations needed for technologies essential to a circular economy and clean energy future. Coordinative interactions are a mechanism to increase sorption of a target species into a membrane, but the effects of these interactions on membrane permeability and selectivity are poorly understood. We use a multilayered polymer membrane to assess how ion-membrane binding energies affect membrane permeability of similarly sized cations: Cu2+, Ni2+, Zn2+, Co2+, and Mg2+. We report that metals with higher binding energy to iminodiacetate groups of the polymer more selectively permeate through the membrane in multisalt solutions than single-salt solutions. In contrast, weaker binding species are precluded from diffusing into the polymer membrane, which leads to passage proportional to binding energy and independent of membrane thickness. Our findings demonstrate that selectivity of polymeric membranes can markedly increase by tailoring ion-membrane binding energy and minimizing membrane thickness.
Collapse
Affiliation(s)
- Ryan M. DuChanois
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, TX 77005, USA
| | - Mohammad Heiranian
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Jason Yang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Cassandra J. Porter
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Qilin Li
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, TX 77005, USA
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Department of Materials Science and Nano Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Department of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
| | - Xuan Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology; School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rafael Verduzco
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, TX 77005, USA
- Department of Chemical and Biomolecular Engineering, Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), 6100 Main Street, MS 6398, Houston, TX 77005, USA
| |
Collapse
|
106
|
Lu J, Jiang Y, Xiong T, Yu P, Jiang W, Mao L. Light-Regulated Nanofluidic Ionic Diodes with Heterogeneous Channels Stemming from Asymmetric Growth of Metal-Organic Frameworks. Anal Chem 2022; 94:4328-4334. [PMID: 35245019 DOI: 10.1021/acs.analchem.1c05025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanofluidic ionic diodes have attracted much attention, because of the unique property of asymmetric ion transport and promising applications in molecular sensing and biosensing. However, it remains a challenge to fabricate diode-like nanofluidic system with molecular-size pores. Herein, we report a new and facile approach to construct nanofluidic ionic diode by in situ asymmetric growth of metal-organic frameworks (MOFs) in nanochannels. We implement microwave-assisted strategy to obtain asymmetric distribution of MOFs in porous anodic aluminum oxide with barrier layer on one side. After etching the barrier layer and modifying with positively charged molecules, the nanofluidic device possesses asymmetric geometry and surface charge, performing the ionic current rectification (ICR) behavior in different electrolyte concentrations. Moreover, the ICR ratio is readily regulated with visible light illumination mainly due to the enhancement of surface charge of MOFs, which is further confirmed by finite element simulation. This study provides a reliable way to build the nanofluidic platform for investigating the asymmetric ion transport through the molecular-size pores, which is envisaged to be important for molecular sensing based on ICR with molecular-size pores.
Collapse
Affiliation(s)
- Jiahao Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Yanan Jiang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.,College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
107
|
|
108
|
Wang R, Zhang J, Tang CY, Lin S. Understanding Selectivity in Solute-Solute Separation: Definitions, Measurements, and Comparability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2605-2616. [PMID: 35072469 DOI: 10.1021/acs.est.1c06176] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of membranes capable of precise solute-solute separation is still in its burgeoning stage without a standardized protocol for evaluating selectivity. Three types of membrane processes with different driving forces, including pressure-driven filtration, concentration difference-driven diffusion, and electric field-driven ion migration, have been applied in this study to characterize solute-solute selectivity of a commercial nanofiltration membrane. Our results demonstrated that selectivity values measured using different methods, or even different conditions with the same method, are generally not comparable. The cross-method incomparability is true for both apparent selectivity, defined as the ratio between concentration-normalized fluxes, and the more intrinsic selectivity, defined as the ratio between the permeabilities of solutes through the active separation layer. The difference in selectivity measured using different methods possibly stems from the fundamental differences in the driving force of ion transport, the effect of water transport, and the interaction between cations and anions. We further demonstrated the difference in selectivity measured using feed solutions containing single-salt species and that containing mixed salts. A consistent protocol with standardized testing conditions to facilitate fair performance comparison between studies is proposed.
Collapse
Affiliation(s)
- Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Junwei Zhang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
- Department of Chemical and Bimolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| |
Collapse
|
109
|
Pavluchkov V, Shefer I, Peer-Haim O, Blotevogel J, Epsztein R. Indications of ion dehydration in diffusion-only and pressure-driven nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
110
|
Xu R, Kang Y, Zhang W, Zhang X, Pan B. Oriented UiO‐67 Metal–Organic Framework Membrane with Fast and Selective Lithium‐Ion Transport. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rongming Xu
- State Key Laboratory of Pollution Control and Resource Reuse School of the Environment Nanjing University Nanjing 210023 China
- Research Center for Environmental Nanotechnology (ReCENT) Nanjing University Nanjing 210023 China
| | - Yuan Kang
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse School of the Environment Nanjing University Nanjing 210023 China
- Research Center for Environmental Nanotechnology (ReCENT) Nanjing University Nanjing 210023 China
| | - Xiwang Zhang
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse School of the Environment Nanjing University Nanjing 210023 China
- Research Center for Environmental Nanotechnology (ReCENT) Nanjing University Nanjing 210023 China
| |
Collapse
|
111
|
Ritt CL, Liu M, Pham TA, Epsztein R, Kulik HJ, Elimelech M. Machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores. SCIENCE ADVANCES 2022; 8:eabl5771. [PMID: 35030018 PMCID: PMC8759746 DOI: 10.1126/sciadv.abl5771] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Designing single-species selective membranes for high-precision separations requires a fundamental understanding of the molecular interactions governing solute transport. Here, we comprehensively assess molecular-level features that influence the separation of 18 different anions by nanoporous cellulose acetate membranes. Our analysis identifies the limitations of bulk solvation characteristics to explain ion transport, highlighted by the poor correlation between hydration energy and the measured permselectivity (R2 = 0.37). Entropy-enthalpy compensation, spanning 40 kilojoules per mole, leads to a free-energy barrier (∆G‡) variation of only ~8 kilojoules per mole across all anions. We apply machine learning to elucidate descriptors for energetic barriers from a set of 126 collected features. Notably, electrostatic features account for 75% of the overall features used to describe ∆G‡, despite the relatively uncharged state of cellulose acetate. Our work presents an approach for studying ion transport across nanoporous membranes that could enable the design of ion-selective membranes.
Collapse
Affiliation(s)
- Cody L. Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Mingjie Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tuan Anh Pham
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Razi Epsztein
- Faculty of Civil and Environmental Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author. (M.E.); (H.J.K.)
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
- Corresponding author. (M.E.); (H.J.K.)
| |
Collapse
|
112
|
Ouimet JA, Liu X, Brown DJ, Eugene EA, Popps T, Muetzel ZW, Dowling AW, Phillip WA. DATA: Diafiltration Apparatus for high-Throughput Analysis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
113
|
Chen W, Dong T, Xiang Y, Qian Y, Zhao X, Xin W, Kong XY, Jiang L, Wen L. Ionic Crosslinking-Induced Nanochannels: Nanophase Separation for Ion Transport Promotion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108410. [PMID: 34750892 DOI: 10.1002/adma.202108410] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Charge-governed ion transport is crucial to numerous industries, and the advanced membrane is the essential component. In nature, the efficient and selective ion transport is mainly governed by the charged ion channels located in cell membrane, indicating the architecture with functional differentiation. Inspired by this architecture, a membrane by ionic crosslinking sulfonated poly(arylene ether ketone) and imidazolium-functionalized poly(arylene ether sulfone) is designed and fabricated to make full use of the charges. This ionic crosslinking is designed to realize nanophase separation to aggregate the ion pathways in the membrane, which results in excellent ion selectivity and high ion conductivity. With the excellent ion transport behavior, ionic crosslinking membrane shows great potential in osmotic energy conversion, which maximum power density can be up to 16.72 W m-2 . This design of ionic crosslinking-induced nanophase separation offers a roadmap for ion transport promotion.
Collapse
Affiliation(s)
- Weipeng Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tiandu Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yun Xiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Shanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiaolu Zhao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weiwen Xin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
114
|
Gangrade AS, Cassegrain S, Chandra Ghosh P, Holdcroft S. Permselectivity of ionene-based, Aemion® anion exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
115
|
Wang K, Wang X, Januszewski B, Liu Y, Li D, Fu R, Elimelech M, Huang X. Tailored design of nanofiltration membranes for water treatment based on synthesis-property-performance relationships. Chem Soc Rev 2021; 51:672-719. [PMID: 34932047 DOI: 10.1039/d0cs01599g] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tailored design of high-performance nanofiltration (NF) membranes is desirable because the requirements for membrane performance, particularly ion/salt rejection and selectivity, differ among the various applications of NF technology ranging from drinking water production to resource mining. However, this customization greatly relies on a comprehensive understanding of the influence of membrane fabrication methods and conditions on membrane properties and the relationships between the membrane structural and physicochemical properties and membrane performance. Since the inception of NF, much progress has been made in forming the foundation of tailored design of NF membranes and the underlying governing principles. This progress includes theories regarding NF mass transfer and solute rejection, further exploitation of the classical interfacial polymerization technique, and development of novel materials and membrane fabrication methods. In this critical review, we first summarize the progress made in controllable design of NF membrane properties in recent years from the perspective of optimizing interfacial polymerization techniques and adopting new manufacturing processes and materials. We then discuss the property-performance relationships based on solvent/solute mass transfer theories and mathematical models, and draw conclusions on membrane structural and physicochemical parameter regulation by modifying the fabrication process to improve membrane separation performance. Next, existing and potential applications of these NF membranes in water treatment processes are systematically discussed according to the different separation requirements. Finally, we point out the prospects and challenges of tailored design of NF membranes for water treatment applications. This review bridges the long-existing gaps between the pressing demand for suitable NF membranes from the industrial community and the surge of publications by the scientific community in recent years.
Collapse
Affiliation(s)
- Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Xiaomao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Brielle Januszewski
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Yanling Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China. .,State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Ruoyu Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
116
|
Weitzner SE, Pham TA, Orme CA, Qiu SR, Wood BC. Beyond Thermodynamics: Assessing the Dynamical Softness of Hydrated Ions from First Principles. J Phys Chem Lett 2021; 12:11980-11986. [PMID: 34882417 DOI: 10.1021/acs.jpclett.1c03314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ion (de)hydration is a key rate-determining step in interfacial processes from corrosion to electrochemical energy storage. However, predicting the kinetics of ion (de)hydration remains challenging, prompting the use of static proxies such as hydration energy and valence. While useful for assessing thermodynamic preferences, such descriptors cannot fully capture the dynamical softness of the hydration shell that dictates kinetics. Accordingly, we use first-principles molecular dynamics to analyze hydration shell softness for a diverse set of metal cations. Three dynamic metrics are introduced to intuitively describe the bond rigidity, shape deformability, and exchange fluidity of the solvation shell. Together, these metrics capture the relevant physics in the static descriptors, while offering a far more complete and efficient representation for the overall propensity for (de)hydration. Application to the hydrated ion set demonstrates a weak connection between dynamical softness and hydration energy, confirming that dynamical descriptors of hydration are key for correctly describing ion transfer processes.
Collapse
Affiliation(s)
- Stephen E Weitzner
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Tuan Anh Pham
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Christine A Orme
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - S Roger Qiu
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Brandon C Wood
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| |
Collapse
|
117
|
Yang C, Hou L, Yao Z, Zhao J, Hou L, Zhang L. High proton selectivity membrane based on the keto-linked cationic covalent organic framework for acid recovery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
118
|
Nanochannels and nanodroplets in polymer membranes controlling ionic transport. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
119
|
Xu R, Kang Y, Zhang W, Zhang X, Pan B. Oriented UiO-67 Metal-Organic Framework Membrane with Fast and Selective Lithium-Ion Transport. Angew Chem Int Ed Engl 2021; 61:e202115443. [PMID: 34799948 DOI: 10.1002/anie.202115443] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Indexed: 11/08/2022]
Abstract
Metal-organic frameworks (MOFs) membranes with high pore density and tunable pore size down to the subnanoscale exhibit great potential in ion separation when appropriately designed and prepared. By a washing-assisted secondary growing method, a well intergrown UiO-67 membrane with preferential growth along the [022] direction was synthesized on a polyvinylpyrrolidone (PVP)-modified AAO substrate. Because of the oriented growth of UiO-67 nanocrystals, highly interconnected ion-transporting channels are created throughout the UiO-67/AAO membrane capable of achieving an ultrahigh Li+ permeance of 27.01 mol m-2 h-1 as well as very decent Li+ /Mg2+ selectivity of up to 159.4. Molecular dynamics simulations reveal that the high selectivity is associated with the large disparity of the transport energy barrier between Li+ and Mg2+ , which is caused by different extents of ion dehydration in unique bimodal and oriented membrane channels.
Collapse
Affiliation(s)
- Rongming Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.,Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China
| | - Yuan Kang
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.,Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China
| | - Xiwang Zhang
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.,Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
120
|
Kingsbury R, Hegde M, Wang J, Kusoglu A, You W, Coronell O. Tunable Anion Exchange Membrane Conductivity and Permselectivity via Non-Covalent, Hydrogen Bond Cross-Linking. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52647-52658. [PMID: 34705410 PMCID: PMC9043033 DOI: 10.1021/acsami.1c15474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ion exchange membranes (IEMs) are a key component of electrochemical processes that purify water, generate clean energy, and treat waste. Most conventional polymer IEMs are covalently cross-linked, which results in a challenging tradeoff relationship between two desirable properties─high permselectivity and high conductivity─in which one property cannot be changed without negatively affecting the other. In an attempt to overcome this limitation, in this work we synthesized a series of anion exchange membranes containing non-covalent cross-links formed by a hydrogen bond donor (methacrylic acid) and a hydrogen bond acceptor (dimethylacrylamide). We show that these monomers act synergistically to improve both membrane permselectivity and conductivity relative to a control membrane without non-covalent cross-links. Furthermore, we show that the hydrogen bond donor and acceptor loading can be used to tune permselectivity and conductivity relatively independently of one another, escaping the tradeoff observed in conventional membranes.
Collapse
Affiliation(s)
- Ryan Kingsbury
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Maruti Hegde
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jingbo Wang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ahmet Kusoglu
- Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wei You
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
121
|
Shefer I, Peer-Haim O, Leifman O, Epsztein R. Enthalpic and Entropic Selectivity of Water and Small Ions in Polyamide Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14863-14875. [PMID: 34677944 DOI: 10.1021/acs.est.1c04956] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While polyamide reverse osmosis and nanofiltration membranes have been extensively utilized in water purification and desalination processes, the molecular details governing water and solute permeation in these membranes are not fully understood. In this study, we apply transition-state theory for transmembrane permeation to systematically break down the intrinsic permeabilities of water and small ions in loose and tight polyamide nanofiltration membranes into enthalpic and entropic components using an Eyring-type equation. We analyze trends in these components to elucidate molecular phenomena that induce water-salt, monovalent-divalent, and monovalent-monovalent selectivity at different pH values. Our results suggest that in pores that are either too small or contain an electrostatically repelling mouth, the thermal activation of ions in the form of ion dehydration is less likely, promoting entropically driven selectivity with steric exclusion of hydrated ions. Instead, larger uncharged pores enable ion dehydration, inducing enthalpic selectivity that is driven by differences in the ion hydration properties. We also demonstrate that electrostatic interactions between cations and intrapore carboxyl groups hinder salt permeability, increasing the enthalpic barrier of the transport. Last, permeation tests of monovalent cations in the loose and tight polyamide membranes expose opposite rejection trends that further support the phenomenon of ion dehydration in large subnanopores.
Collapse
Affiliation(s)
- Idit Shefer
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ophir Peer-Haim
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Olga Leifman
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Razi Epsztein
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
122
|
Zhou X, Heiranian M, Yang M, Epsztein R, Gong K, White CE, Hu S, Kim JH, Elimelech M. Selective Fluoride Transport in Subnanometer TiO 2 Pores. ACS NANO 2021; 15:16828-16838. [PMID: 34637268 DOI: 10.1021/acsnano.1c07210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Synthesizing nanopores which mimic the functionality of ion-selective biological channels has been a challenging yet promising approach to advance technologies for precise ion-ion separations. Inspired by the facilitated fluoride (F-) permeation in the biological fluoride channel, we designed a highly fluoride-selective TiO2 film using the atomic layer deposition (ALD) technique. The subnanometer voids within the fabricated TiO2 film (4 Å < d < 12 Å, with two distinct peaks at 5.5 and 6.5 Å), created by the hindered diffusion of ALD precursors (d = 7 Å), resulted in more than eight times faster permeation of sodium fluoride compared to other sodium halides. We show that the specific Ti-F interactions compensate for the energy penalty of F- dehydration during the partitioning of F- ions into the pore and allow for an intrapore accumulation of F- ions. Concomitantly, the accumulation of F- ions on the pore walls also enhances the transport of sodium (Na+) cations due to electrostatic interactions. Molecular dynamics simulations probing the ion concentration and mobility within the TiO2 pore further support our proposed mechanisms for the selective F- transport and enhanced Na+ permeation in the TiO2 film. Overall, our work provides insights toward the design of ion-selective nanopores using the ALD technique.
Collapse
Affiliation(s)
- Xuechen Zhou
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mohammad Heiranian
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Meiqi Yang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Razi Epsztein
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Kai Gong
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Claire E White
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Shu Hu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
123
|
Feng D, Chen Y, Wang Z, Lin S. Janus Membrane with a Dense Hydrophilic Surface Layer for Robust Fouling and Wetting Resistance in Membrane Distillation: New Insights into Wetting Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14156-14164. [PMID: 34597031 DOI: 10.1021/acs.est.1c04443] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although membrane distillation (MD) has been identified as a promising technology to treat hypersaline wastewaters, its practical applications face two prominent challenges: membrane wetting and fouling. Herein, we report a facile and scalable approach for fabricating a Janus MD membrane comprising a dense polyvinyl alcohol (PVA) surface layer and a hydrophobic polyvinylidene fluoride (PVDF) membrane substrate. By testing the Janus membrane in direct contact MD experiments using feeds containing a sodium dodecyl sulfate (SDS) surfactant or/and mineral oil, we demonstrated that the dense Janus membrane can simultaneously resist wetting and fouling. This method represents the simplest approach to date for fabricating MD membranes with simultaneous wetting and fouling resistance. Importantly, we also unveil the mechanism of wetting resistance by measuring the breakthrough pressure and surfactant permeation (through the PVA layer) and found that wetting resistance imparted by a dense hydrophilic layer is attributable to capillary pressure. This new insight will potentially change the paradigm of fabricating wetting-resistant membranes and enable robust applications of MD and other membrane contactor processes facing challenges of pore wetting or/and membrane fouling.
Collapse
Affiliation(s)
- Dejun Feng
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuanmiaoliang Chen
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Zhangxin Wang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watershed, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| |
Collapse
|
124
|
Zofchak ES, Zhang Z, Wheatle BK, Sujanani R, Warnock SJ, Dilenschneider TJ, Hanson KG, Zhao S, Mukherjee S, Abu-Omar MM, Bates CM, Freeman BD, Ganesan V. Origins of Lithium/Sodium Reverse Permeability Selectivity in 12-Crown-4-Functionalized Polymer Membranes. ACS Macro Lett 2021; 10:1167-1173. [PMID: 35549075 DOI: 10.1021/acsmacrolett.1c00243] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Direct lithium extraction via membrane separations has been fundamentally limited by lack of monovalent ion selectivity exhibited by conventional polymeric membranes, particularly between sodium and lithium ions. Recently, a 12-Crown-4-functionalized polynorbornene membrane was shown to have the largest lithium/sodium permeability selectivity observed in a fully aqueous system to date. Using atomistic molecular dynamics simulations, we reveal that this selectivity is due to strong interactions between sodium ions and 12-Crown-4 moieties, which reduce sodium ion diffusivity while leaving lithium ion mobility relatively unaffected. Moreover, the ion diffusivities in the membrane, when scaled by their respective solution diffusivities and free ion fractions, can be collapsed to an almost universal relationship depending on solvent volume fraction.
Collapse
Affiliation(s)
- Everett S. Zofchak
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Zidan Zhang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Bill K. Wheatle
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Rahul Sujanani
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Samuel J. Warnock
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Theodore J. Dilenschneider
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Kalin G. Hanson
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Shou Zhao
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Sanjoy Mukherjee
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Mahdi M. Abu-Omar
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Christopher M. Bates
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
125
|
Warnock SJ, Sujanani R, Zofchak ES, Zhao S, Dilenschneider TJ, Hanson KG, Mukherjee S, Ganesan V, Freeman BD, Abu-Omar MM, Bates CM. Engineering Li/Na selectivity in 12-Crown-4-functionalized polymer membranes. Proc Natl Acad Sci U S A 2021; 118:e2022197118. [PMID: 34493651 PMCID: PMC8449368 DOI: 10.1073/pnas.2022197118] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lithium is widely used in contemporary energy applications, but its isolation from natural reserves is plagued by time-consuming and costly processes. While polymer membranes could, in principle, circumvent these challenges by efficiently extracting lithium from aqueous solutions, they usually exhibit poor ion-specific selectivity. Toward this end, we have incorporated host-guest interactions into a tunable polynorbornene network by copolymerizing 1) 12-crown-4 ligands to impart ion selectivity, 2) poly(ethylene oxide) side chains to control water content, and 3) a crosslinker to form robust solids at room temperature. Single salt transport measurements indicate these materials exhibit unprecedented reverse permeability selectivity (∼2.3) for LiCl over NaCl-the highest documented to date for a dense, water-swollen polymer. As demonstrated by molecular dynamics simulations, this behavior originates from the ability of 12-crown-4 to bind Na+ ions more strongly than Li+ in an aqueous environment, which reduces Na+ mobility (relative to Li+) and offsets the increase in Na+ solubility due to binding with crown ethers. Under mixed salt conditions, 12-crown-4 functionalized membranes showed identical solubility selectivity relative to single salt conditions; however, the permeability and diffusivity selectivity of LiCl over NaCl decreased, presumably due to flux coupling. These results reveal insights for designing advanced membranes with solute-specific selectivity by utilizing host-guest interactions.
Collapse
Affiliation(s)
- Samuel J Warnock
- Materials Department, University of California, Santa Barbara, CA 93106
| | - Rahul Sujanani
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Everett S Zofchak
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Shou Zhao
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA 93106
| | | | - Kalin G Hanson
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA 93106
| | - Sanjoy Mukherjee
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712;
| | - Benny D Freeman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712;
| | - Mahdi M Abu-Omar
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA 93106;
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
| | - Christopher M Bates
- Materials Department, University of California, Santa Barbara, CA 93106;
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA 93106
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106
| |
Collapse
|
126
|
Interaction-based ion selectivity exhibited by self-assembled, cross-linked zwitterionic copolymer membranes. Proc Natl Acad Sci U S A 2021; 118:2022198118. [PMID: 34493652 DOI: 10.1073/pnas.2022198118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Water filtration membranes with advanced ion selectivity are urgently needed for resource recovery and the production of clean drinking water. This work investigates the separation capabilities of cross-linked zwitterionic copolymer membranes, a self-assembled membrane system featuring subnanometer zwitterionic nanochannels. We demonstrate that selective zwitterion-anion interactions simultaneously control salt partitioning and diffusivity, with the permeabilities of NaClO4, NaI, NaBr, NaCl, NaF, and Na2SO4 spanning roughly three orders of magnitude over a wide range of feed concentrations. We model salt flux using a one-dimensional transport model based on the Maxwell-Stefan equations and show that diffusion is the dominant mode of transport for 1:1 sodium salts. Differences in zwitterion-Cl- and zwitterion-F- interactions granted these membranes with the ultrahigh Cl-/F- permselectivity (P Cl- /P F- = 24), enabling high fluoride retention and high chloride passage even from saline mixtures of NaCl and NaF.
Collapse
|
127
|
Yuan B, Zhang S, Jiang C, Hu P, Cui J, Zhao S, Wang N, Niu QJ. Alicyclic polyamide nanofilms with an asymmetric structure for Cl
−
/
SO
4
2
−
separation. AIChE J 2021. [DOI: 10.1002/aic.17419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bingbing Yuan
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education Henan Normal University Xinxiang Henan China
| | - Shanshan Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education Henan Normal University Xinxiang Henan China
| | - Chi Jiang
- Institute for Advanced Study, Shenzhen University Shenzhen Guangdong China
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering China University of Petroleum (East China) Qingdao Shandong China
| | - Ping Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education Henan Normal University Xinxiang Henan China
| | - Jiabao Cui
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education Henan Normal University Xinxiang Henan China
| | - Siheng Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education Henan Normal University Xinxiang Henan China
| | - Ning Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education Henan Normal University Xinxiang Henan China
| | - Q. Jason Niu
- Institute for Advanced Study, Shenzhen University Shenzhen Guangdong China
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering China University of Petroleum (East China) Qingdao Shandong China
| |
Collapse
|
128
|
Durmaz EN, Sahin S, Virga E, de Beer S, de Smet LCPM, de Vos WM. Polyelectrolytes as Building Blocks for Next-Generation Membranes with Advanced Functionalities. ACS APPLIED POLYMER MATERIALS 2021; 3:4347-4374. [PMID: 34541543 PMCID: PMC8438666 DOI: 10.1021/acsapm.1c00654] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 05/06/2023]
Abstract
The global society is in a transition, where dealing with climate change and water scarcity are important challenges. More efficient separations of chemical species are essential to reduce energy consumption and to provide more reliable access to clean water. Here, membranes with advanced functionalities that go beyond standard separation properties can play a key role. This includes relevant functionalities, such as stimuli-responsiveness, fouling control, stability, specific selectivity, sustainability, and antimicrobial activity. Polyelectrolytes and their complexes are an especially promising system to provide advanced membrane functionalities. Here, we have reviewed recent work where advanced membrane properties stem directly from the material properties provided by polyelectrolytes. This work highlights the versatility of polyelectrolyte-based membrane modifications, where polyelectrolytes are not only applied as single layers, including brushes, but also as more complex polyelectrolyte multilayers on both porous membrane supports and dense membranes. Moreover, free-standing membranes can also be produced completely from aqueous polyelectrolyte solutions allowing much more sustainable approaches to membrane fabrication. The Review demonstrates the promise that polyelectrolytes and their complexes hold for next-generation membranes with advanced properties, while it also provides a clear outlook on the future of this promising field.
Collapse
Affiliation(s)
- Elif Nur Durmaz
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| | - Sevil Sahin
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Ettore Virga
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
- Wetsus, European
Centre of Excellence for Sustainable Water
Technology, Oostergoweg
9, 8911 MA Leeuwarden, The Netherlands
| | - Sissi de Beer
- Sustainable
Polymer Chemistry Group, Department of Molecules and Materials MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Louis C. P. M. de Smet
- Laboratory
of Organic Chemistry, Wageningen University, 6708 WE Wageningen, The Netherlands
| | - Wiebe M. de Vos
- Membrane
Science and Technology, MESA+ Institute for Nanotechnology, Faculty
of Science and Technology, University of
Twente, Enschede 7500 AE, The Netherlands
| |
Collapse
|
129
|
Duong PHH, Shin YK, Kuehl VA, Afroz MM, Hoberg JO, Parkinson B, van Duin ACT, Li-Oakey KD. Molecular Interactions and Layer Stacking Dictate Covalent Organic Framework Effective Pore Size. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42164-42175. [PMID: 34415136 DOI: 10.1021/acsami.1c10866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Interactions among ions, molecules, and confining solid surfaces are universally challenging and intriguing topics. Lacking a molecular-level understanding of such interactions in complex organic solvents perpetuates the intractable challenge of simultaneously achieving high permeance and selectivity in selectively permeable barriers. Two-dimensional covalent organic frameworks (COFs) have demonstrated ultrahigh permeance, high selectivity, and stability in organic solvents. Using reactive force field molecular dynamics modeling and direct experimental comparisons of an imine-linked carboxylated COF (C-COF), we demonstrate that unprecedented organic solvent nanofiltration separation performance can be accomplished by the well-aligned, highly crystalline pores. Furthermore, we show that the effective, as opposed to designed, pore size and solvated solute radii can change dramatically with the solvent environment, providing insights into complex molecular interactions and enabling future application-specific material design and synthesis.
Collapse
Affiliation(s)
- Phuoc H H Duong
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82070, United States
| | - Yun Kyung Shin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Valerie A Kuehl
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82070, United States
| | - Mohammad M Afroz
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82070, United States
| | - John O Hoberg
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82070, United States
| | - Bruce Parkinson
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82070, United States
| | - Adri C T van Duin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Katie D Li-Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82070, United States
| |
Collapse
|
130
|
Lu C, Hu C, Ritt CL, Hua X, Sun J, Xia H, Liu Y, Li DW, Ma B, Elimelech M, Qu J. In Situ Characterization of Dehydration during Ion Transport in Polymeric Nanochannels. J Am Chem Soc 2021; 143:14242-14252. [PMID: 34431669 DOI: 10.1021/jacs.1c05765] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transport of hydrated ions across nanochannels is central to biological systems and membrane-based applications, yet little is known about their hydrated structure during transport due to the absence of in situ characterization techniques. Herein, we report experimentally resolved ion dehydration during transmembrane transport using modified in situ liquid ToF-SIMS in combination with MD simulations for a mechanistic reasoning. Notably, complete dehydration was not necessary for transport to occur across membranes with sub-nanometer pores. Partial shedding of water molecules from ion solvation shells, observed as a decrease in the average hydration number, allowed the alkali-metal ions studied here (lithium, sodium, and potassium) to permeate membranes with pores smaller than their solvated size. We find that ions generally cannot hold more than two water molecules during this sterically limited transport. In nanopores larger than the size of the solvation shell, we show that ionic mobility governs the ion hydration number distribution. Viscous effects, such as interactions with carboxyl groups inside the membrane, preferentially hinder the transport of the mono- and dihydrates. Our novel technique for studying ion solvation in situ represents a significant technological leap for the nanofluidics field and may enable important advances in ion separation, biosensing, and battery applications.
Collapse
Affiliation(s)
- Chenghai Lu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Xin Hua
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jingqiu Sun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hailun Xia
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yingya Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Da-Wei Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Baiwen Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
131
|
Lu Z, Wu Y, Ding L, Wei Y, Wang H. A Lamellar MXene (Ti
3
C
2
T
x
)/PSS Composite Membrane for Fast and Selective Lithium‐Ion Separation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zong Lu
- School of Chemistry and Chemical Engineering South China University of Technology 510640 Guangzhou China
| | - Ying Wu
- School of Chemistry and Chemical Engineering South China University of Technology 510640 Guangzhou China
| | - Li Ding
- School of Chemistry and Chemical Engineering South China University of Technology 510640 Guangzhou China
| | - Yanying Wei
- School of Chemistry and Chemical Engineering South China University of Technology 510640 Guangzhou China
| | - Haihui Wang
- Beijing Key Laboratory for Membrane Materials and Engineering Department of Chemical Engineering Tsinghua University 100084 Beijing China
| |
Collapse
|
132
|
Lu Z, Wu Y, Ding L, Wei Y, Wang H. A Lamellar MXene (Ti 3 C 2 T x )/PSS Composite Membrane for Fast and Selective Lithium-Ion Separation. Angew Chem Int Ed Engl 2021; 60:22265-22269. [PMID: 34379858 DOI: 10.1002/anie.202108801] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/08/2021] [Indexed: 11/12/2022]
Abstract
A two-dimensional (2D) laminar membrane with Li+ selective transport channels is obtained by stacking MXene nanosheets with the introduction of poly(sodium 4-styrene sulfonate) (PSS) with active sulfonate sites, which exhibits excellent Li+ selectivity from ionic mixture solutions of Na+ , K+ , and Mg2+ . The Li+ permeation rate through the MXene@PSS composite membrane is as high as 0.08 mol m-2 h-1 , while the Li+ /Mg2+ , Li+ /Na+ , and Li+ /K+ selectivities are 28, 15.5, and 12.7, respectively. Combining the simulation and experimental results, we further confirm that the highly selective rapid transport of partially dehydrated Li+ within subnanochannels can be attributed to the precisely controlled interlayer spacing and the relatively weaker ion-terminal (-SO3 - ) interaction. This study deepens the understanding of ion-selective permeation in confined channels and provides a general membrane design concept.
Collapse
Affiliation(s)
- Zong Lu
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Ying Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Li Ding
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Yanying Wei
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Haihui Wang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
133
|
Dai Q, Zhao Z, Shi M, Deng C, Zhang H, Li X. Ion conductive membranes for flow batteries: Design and ions transport mechanism. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
134
|
Oviroh PO, Jen TC, Ren J, Mohlala LM, Warmbier R, Karimzadeh S. Nanoporous MoS 2 Membrane for Water Desalination: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7127-7137. [PMID: 34048656 DOI: 10.1021/acs.langmuir.1c00708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Molybdenum disulfide (MoS2), a two-dimensional (2D) material, promises better desalination efficiency, benefiting from the small diffusion length. While the monolayer nanoporous MoS2 membrane has great potential in the reverse osmosis (RO) desalination membrane, multilayer MoS2 membranes are more feasible to synthesize and economical than the monolayer MoS2 membrane. Building on the monolayer MoS2 membrane knowledge, the effects of the multilayer MoS2 membrane in water desalination were explored, and the results showed that increasing the pore size from 3 to 6 Å resulted in higher permeability but with lower salt rejection. The salt rejection increases from 85% in a monolayer MoS2 membrane to about 98% in a trilayer MoS2 membrane. When averaged over all three types of membranes studied, the ions rejection follows the trend of trilayer > bilayer > monolayer. Besides, a narrow layer separation was found to play an important role in the successful rejection of salt ions in bilayer and trilayer membranes. This study aims to provide a collective understanding of this high permiselective MoS2 membrane's realization for water desalination, and the findings showed that the water permeability of the MoS2 monolayer membrane was in the order of magnitude greater than that of the conventional RO membrane and the nanoporous MoS2 membrane can have an important place in the purification of water.
Collapse
Affiliation(s)
- Peter Ozaveshe Oviroh
- Department of Mechanical Engineering Science, University of Johannesburg, Corner Kingsway and University Road, Auckland Park, 2092, Johannesburg, South Africa
| | - Tien-Chien Jen
- Department of Mechanical Engineering Science, University of Johannesburg, Corner Kingsway and University Road, Auckland Park, 2092, Johannesburg, South Africa
| | - Jianwei Ren
- Department of Mechanical Engineering Science, University of Johannesburg, Corner Kingsway and University Road, Auckland Park, 2092, Johannesburg, South Africa
| | - Lesego M Mohlala
- Department of Metallurgical Engineering, University of Johannesburg, Doornfontein, 2006, Johannesburg, South Africa
| | - Robert Warmbier
- Department of Physics, University of Johannesburg, Corner Kingsway and University Road, Auckland Park, 2092, Johannesburg, South Africa
| | - Sina Karimzadeh
- Department of Mechanical Engineering Science, University of Johannesburg, Corner Kingsway and University Road, Auckland Park, 2092, Johannesburg, South Africa
| |
Collapse
|
135
|
Lu X, Elimelech M. Fabrication of desalination membranes by interfacial polymerization: history, current efforts, and future directions. Chem Soc Rev 2021; 50:6290-6307. [PMID: 34100049 DOI: 10.1039/d0cs00502a] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Membrane desalination is a promising technology for addressing the global challenge of water scarcity by augmenting fresh water supply. Continuous progress in this technology relies on development of membrane materials. The state-of-the-art membranes used in a wide range of desalination applications are polyamide thin-film composite (TFC) membranes which are formed by interfacial polymerization (IP). Despite the wide use of such membranes in desalination, their real-world application is still hampered by several technical obstacles. These challenges of the TFC membranes largely stem from the inherent limitations of the polyamide chemistry, as well as the IP reaction mechanisms. In the past decade, we have witnessed substantial progress in the understanding of polyamide formation mechanisms and the development of new IP strategies that can potentially lead to the redesign of TFC membranes. In this Tutorial, we first present a brief history of the development of desalination membranes and highlight the major challenges of the existing TFC membranes. We then proceed to discuss the pros and cons of emerging IP-based fabrication strategies aiming at improving the performance of TFC membranes. Next, we present technical obstacles and recent efforts in the characterization of TFC membranes to enable fundamental understanding of relevant mechanisms. We conclude with a discussion of the current gap between industrial needs and academic research in designing high-performance TFC membranes, and provide an outlook on future research directions for advancing IP-based fabrication processes.
Collapse
Affiliation(s)
- Xinglin Lu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | | |
Collapse
|
136
|
Oyarzun DI, Zhan C, Hawks SA, Cerón MR, Kuo HA, Loeb CK, Aydin F, Pham TA, Stadermann M, Campbell PG. Unraveling the Ion Adsorption Kinetics in Microporous Carbon Electrodes: A Multiscale Quantum-Continuum Simulation and Experimental Approach. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23567-23574. [PMID: 33979129 DOI: 10.1021/acsami.1c01640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding sorption in porous carbon electrodes is crucial to many environmental and energy technologies, such as capacitive deionization (CDI), supercapacitor energy storage, and activated carbon filters. In each of these examples, a practical model that can describe ion electrosorption kinetics is highly desirable for accelerating material design. Here, we proposed a multiscale model to study the ion electrosorption kinetics in porous carbon electrodes by combining quantum mechanical simulations with continuum approaches. Our model integrates the Butler-Volmer (BV) equation for sorption kinetics and a continuously stirred tank reactor (CSTR) formulation with atomistic calculations of ion hydration and ion-pore interactions based on density functional theory (DFT). We validated our model experimentally by using ion mixtures in a flow-through electrode CDI device and developed an in-line UV absorption system to provide unprecedented resolution of individual ions in the separation process. We showed that the multiscale model captures unexpected experimental phenomena that cannot be explained by the traditional ion electrosorption theory. The proposed multiscale framework provides a viable approach for modeling separation processes in systems where pore sizes and ion hydration effects strongly influence the sorption kinetics, which can be leveraged to explore possible strategies for improving carbon-based and, more broadly, pore-based technologies.
Collapse
Affiliation(s)
- Diego I Oyarzun
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Cheng Zhan
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Steven A Hawks
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Maira R Cerón
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Helen A Kuo
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Colin K Loeb
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Fikret Aydin
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Tuan Anh Pham
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Michael Stadermann
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Patrick G Campbell
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| |
Collapse
|
137
|
Indika S, Wei Y, Hu D, Ketharani J, Ritigala T, Cooray T, Hansima MACK, Makehelwala M, Jinadasa KBSN, Weragoda SK, Weerasooriya R. Evaluation of Performance of Existing RO Drinking Water Stations in the North Central Province, Sri Lanka. MEMBRANES 2021; 11:membranes11060383. [PMID: 34073869 PMCID: PMC8225030 DOI: 10.3390/membranes11060383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022]
Abstract
Reverse osmosis (RO) drinking water stations have been introduced to provide safe drinking water for areas with prevailing chronic kidney disease with unknown (CKDu) etiology in the dry zone of Sri Lanka. In this investigation, RO drinking water stations established by community-based organizations (CBO) in the North Central Province (NCP) were examined. Water samples were collected from source, permeate, and concentrate in each station to determine water quality and performance. Furthermore, the operators of the systems were interviewed to evaluate operational and maintenance practices to identify major issues related to the RO systems. Results show that the majority (>93%) of RO systems had higher salt rejection rates (>92%), while water recovery varied from 19.4% to 64%. The removal efficiencies of hardness and alkalinity were averaged at 95.8% and 86.6%, respectively. Most dominant ions such as Ca2+, Mg2+, K+, Na+, Ba2+, Sr2+ Cl−, F−, and SO42− showed higher rejections at averaged values of 93.5%, 97.4%, 86.6%, 90.8%, 95.4%, 96.3%, 95.7%, 96.6%, and 99.0%, respectively. Low recovery rates, lower fluoride levels in product water, and membrane fouling were the main challenges. Lack of knowledge and training were the major issues that could shorten the lifespan of RO systems.
Collapse
Affiliation(s)
- Suresh Indika
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (S.I.); (D.H.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (S.I.); (D.H.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Institute of Fundamental Studies, Hanthana Road, Kandy 20000, Sri Lanka;
- Correspondence: ; Tel.: +86-10-6284-9690
| | - Dazhou Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (S.I.); (D.H.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jegetheeswaran Ketharani
- Department of Civil Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka; (J.K.); (K.B.S.N.J.)
| | - Tharindu Ritigala
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (S.I.); (D.H.); (T.R.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Titus Cooray
- Department of Applied Earth Sciences, Uva Wellassa University, Badulla 90000, Sri Lanka;
| | - M. A. C. K. Hansima
- Post Graduate Institute of Science (PGIS), University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Madhubashini Makehelwala
- China-Sri Lanka Joint Research and Demonstration Center for Water Technology, Ministry of Water Supply, Meewathura, Peradeniya 20400, Sri Lanka;
| | - K. B. S. N. Jinadasa
- Department of Civil Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka; (J.K.); (K.B.S.N.J.)
| | | | - Rohan Weerasooriya
- National Institute of Fundamental Studies, Hanthana Road, Kandy 20000, Sri Lanka;
| |
Collapse
|
138
|
Guan K, Jia Y, Lin Y, Wang S, Matsuyama H. Chemically Converted Graphene Nanosheets for the Construction of Ion-Exclusion Nanochannel Membranes. NANO LETTERS 2021; 21:3495-3502. [PMID: 33830772 DOI: 10.1021/acs.nanolett.1c00176] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Water and ion transport in nanochannels is an intriguing topic that has been extensively investigated in several energy- and environment-related research fields. Recently developed two-dimensional (2D) materials are ideal building blocks for constructing confined nanochannels by self-stacking. Among these, graphene oxide (GO) is the most frequently employed as the starting material because of its excellent solution processability. Since solvation of the GO nanostructure usually impairs the function of nanochannels, in this study, chemically converted graphene was prepared using a one-step method, to simultaneously acquire the desired stability and functionality of the nanochannels. The confined channels with high charge densities are capable of excluding ∼90% NaCl solutes from water in a pressure-driven filtration process. This surpasses the performance of most GO desalination membranes reported in the literature. Thus, this study provides useful information for the feasible development of ion-exclusion nanochannel membranes based on the proposed nanochannel-confined charge repulsion mechanism.
Collapse
Affiliation(s)
- Kecheng Guan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yuandong Jia
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yuqing Lin
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Shengyao Wang
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
139
|
Wang L, Rehman D, Sun PF, Deshmukh A, Zhang L, Han Q, Yang Z, Wang Z, Park HD, Lienhard JH, Tang CY. Novel Positively Charged Metal-Coordinated Nanofiltration Membrane for Lithium Recovery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16906-16915. [PMID: 33798334 DOI: 10.1021/acsami.1c02252] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanofiltration (NF) with high water flux and precise separation performance with high Li+/Mg2+ selectivity is ideal for lithium brine recovery. However, conventional polyamide-based commercial NF membranes are ineffective in lithium recovery processes due to their undesired Li+/Mg2+ selectivity. In addition, they are constrained by the water permeance selectivity trade-off, which means that a highly permeable membrane often has lower selectivity. In this study, we developed a novel nonpolyamide NF membrane based on metal-coordinated structure, which exhibits simultaneously improved water permeance and Li+/Mg2+ selectivity. Specifically, the optimized Cu-m-phenylenediamine (MPD) membrane demonstrated a high water permeance of 16.2 ± 2.7 LMH/bar and a high Li+/Mg2+ selectivity of 8.0 ± 1.0, which surpassed the trade-off of permeance selectivity. Meanwhile, the existence of copper in the Cu-MPD membrane further enhanced anti-biofouling property and the metal-coordinated nanofiltration membrane possesses a pH-responsive property. Finally, a transport model based on the Nernst-Planck equations has been developed to fit the water flux and rejection of uncharged solutes to the experiments conducted. The model had a deviation below 2% for all experiments performed and suggested an average pore radius of 1.25 nm with a porosity of 21% for the Cu-MPD membrane. Overall, our study provides an exciting approach for fabricating a nonpolyamide high-performance nanofiltration membrane in the context of lithium recovery.
Collapse
Affiliation(s)
- Li Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR 999077, P. R. China
| | - Danyal Rehman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Peng-Fei Sun
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Akshay Deshmukh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Liyuan Zhang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR 999077, P. R. China
| | - Qi Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR 999077, P. R. China
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - John H Lienhard
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR 999077, P. R. China
| |
Collapse
|
140
|
Chlorine-resistant TFN RO membranes containing modified poly(amidoamine) dendrimer-functionalized halloysite nanotubes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
141
|
Kimani EM, Kemperman AJB, van der Meer WGJ, Biesheuvel PM. Multicomponent mass transport modeling of water desalination by reverse osmosis including ion pair formation. J Chem Phys 2021; 154:124501. [PMID: 33810649 DOI: 10.1063/5.0039128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Reverse Osmosis (RO) is one of the main membrane technologies currently used for the desalination of seawater and brackish water to produce freshwater. However, the mechanism of transport and separation of ions in RO membranes is not yet fully understood. Besides acid-base reactions (i.e., including the H+-ion), at high concentrations, the salt ions can associate and form ion pairs. In this study, we investigate how to include the formation of these ion pairs in the extended Donnan steric partitioning pore model. We study the desalination of a water source where three ion pairs can be formed (NaCl, MgCl+, and MgCl2) and also include water self-dissociation and the carbonate system. The model assumes infinitely fast reactions, which means that the participating ions are locally at chemical equilibrium with one another. A square stoichiometric reaction matrix composed of active species, moieties, and reactions is formulated. As the final constraint equation, we use the charge balance. The model predicts profiles in concentration, flux, and reaction rates across the membrane for all species and calculates the retention per group of ions. Ion pair formation has an influence on the fluxes of individual ions and therefore influences the retention of ions.
Collapse
Affiliation(s)
- E M Kimani
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - A J B Kemperman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - W G J van der Meer
- Membrane Science and Technology Cluster, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - P M Biesheuvel
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| |
Collapse
|
142
|
Saavedra A, Valdés H, Mahn A, Acosta O. Comparative Analysis of Conventional and Emerging Technologies for Seawater Desalination: Northern Chile as A Case Study. MEMBRANES 2021; 11:membranes11030180. [PMID: 33807870 PMCID: PMC7999931 DOI: 10.3390/membranes11030180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 01/04/2023]
Abstract
The aim of this work was to study different desalination technologies as alternatives to conventional reverse osmosis (RO) through a systematic literature review. An expert panel evaluated thermal and membrane processes considering their possible implementation at a pilot plant scale (100 m3/d of purified water) starting from seawater at 20 °C with an average salinity of 34,000 ppm. The desalination plant would be located in the Atacama Region (Chile), where the high solar radiation level justifies an off-grid installation using photovoltaic panels. We classified the collected information about conventional and emerging technologies for seawater desalination, and then an expert panel evaluated these technologies considering five categories: (1) technical characteristics, (2) scale-up potential, (3) temperature effect, (4) electrical supply options, and (5) economic viability. Further, the potential inclusion of graphene oxide and aquaporin-based biomimetic membranes in the desalinization processes was analyzed. The comparative analysis lets us conclude that nanomembranes represent a technically and economically competitive alternative versus RO membranes. Therefore, a profitable desalination process should consider nanomembranes, use of an energy recovery system, and mixed energy supply (non-conventional renewable energy + electrical network). This document presents an up-to-date overview of the impact of emerging technologies on desalinated quality water, process costs, productivity, renewable energy use, and separation efficiency.
Collapse
Affiliation(s)
- Aldo Saavedra
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O’Higgins 3363, Estación Central 9160000, Chile; (A.S.); (A.M.)
| | - Hugo Valdés
- Centro de Innovación en Ingeniería Aplicada (CIIA), Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule (UCM), Av. San Miguel 3605, Talca 3460000, Chile
- Correspondence: ; Tel.: +56-2-71203-438
| | - Andrea Mahn
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O’Higgins 3363, Estación Central 9160000, Chile; (A.S.); (A.M.)
| | - Orlando Acosta
- Gestionare Consultores, Carlos Antunez 2025 of. 608, Providencia 7500000, Chile;
| |
Collapse
|