101
|
Trunk K, Coulthurst SJ, Quinn J. A New Front in Microbial Warfare-Delivery of Antifungal Effectors by the Type VI Secretion System. J Fungi (Basel) 2019; 5:jof5020050. [PMID: 31197124 PMCID: PMC6617251 DOI: 10.3390/jof5020050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022] Open
Abstract
Microbes typically exist in mixed communities and display complex synergistic and antagonistic interactions. The Type VI secretion system (T6SS) is widespread in Gram-negative bacteria and represents a contractile nano-machine that can fire effector proteins directly into neighbouring cells. The primary role assigned to the T6SS is to function as a potent weapon during inter-bacterial competition, delivering antibacterial effectors into rival bacterial cells. However, it has recently emerged that the T6SS can also be used as a powerful weapon against fungal competitors, and the first fungal-specific T6SS effector proteins, Tfe1 and Tfe2, have been identified. These effectors act via distinct mechanisms against a variety of fungal species to cause cell death. Tfe1 intoxication triggers plasma membrane depolarisation, whilst Tfe2 disrupts nutrient uptake and induces autophagy. Based on the frequent coexistence of bacteria and fungi in microbial communities, we propose that T6SS-dependent antifungal activity is likely to be widespread and elicited by a suite of antifungal effectors. Supporting this hypothesis, homologues of Tfe1 and Tfe2 are found in other bacterial species, and a number of T6SS-elaborating species have been demonstrated to interact with fungi. Thus, we envisage that antifungal T6SS will shape many polymicrobial communities, including the human microbiota and disease-causing infections.
Collapse
Affiliation(s)
- Katharina Trunk
- Institute for Cell and Molecular Biosciences, Faculty of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Sarah J Coulthurst
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - Janet Quinn
- Institute for Cell and Molecular Biosciences, Faculty of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
102
|
Timsit JF, Schwebel C, Styfalova L, Cornet M, Poirier P, Forrestier C, Ruckly S, Jacob MC, Souweine B. Impact of bronchial colonization with Candida spp. on the risk of bacterial ventilator-associated pneumonia in the ICU: the FUNGIBACT prospective cohort study. Intensive Care Med 2019; 45:834-843. [PMID: 31020361 DOI: 10.1007/s00134-019-05622-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/13/2019] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Respiratory tract Candida spp. colonization is associated with more frequent bacterial ventilator-associated pneumonia (VAP). However, this colonization could be causally related to VAP or simply reflect the immune paralysis associated with multiple organ failure. OBJECTIVE To prospectively evaluate the relationship between Candida spp. colonization and bacterial VAP in mechanically ventilated patients with multiple organ failure. INCLUSION Patients receiving mechanical ventilation for > 4 days and presenting multiple organ failure were included. Tracheal colonization with Candida spp. was evaluated at inclusion (day 0, D0) and every 4 days until extubation. Quantitative proximal and tracheal cultures were performed at each VAP episode. Monocyte human leukocyte antigen-DR isotype (mHLA-DR) expression and the ratio of polymononuclear leukocytes to lymphocytes were used to evaluate immunoparalysis at D0 and D7. The relationship between fungal colonization and VAP was modelled using cause-specific models for repeated events with adjustment for time-dependent confounders and immune factors. RESULTS A total of 213 patients, with a median age of 64, simplified acute physiology score II (SAPS II) score 55 and sequential organ failure assessment (SOFA) score 10, mainly admitted for medical reasons (n = 197, 92%), were enrolled in 2012-2015. The median ICU stay was 24 days and the mortality rate was 32% (69 cases). Median mHLA-DR was 5916 Ab-bound/cell [3863-8934]; median lymphocyte count, 0.9Giga/L [0.6-1.3]; neutrophil-to-lymphocyte ratio, 10.9 [6.5-19.7]. Overall, 146 cases (68.5%) had tracheal colonization with Candida spp. An episode of VAP occurred (either for the first or only time) in 62 (29.1%) cases 5.5 days (median) after D0; a second episode occurred in 12 (5.6%) cases, 15.5 days (median) after D0. After adjustment, bronchial colonization with Candida was not associated with VAP [adjusted cause-specific hazard ratio = 0.98 (0.59-1.65), p = 0.95]. CONCLUSION In patients with mechanical ventilation for more than 4 days and multiple organ failure, bronchial colonization with Candida spp. was not associated with VAP, even after adjustment for immune function.
Collapse
Affiliation(s)
- Jean-Francois Timsit
- Medical and Infectious Diseases ICU, Bichat-Claude Bernard Hospital, APHP, Paris, France.
- INSERM, IAME UMR 1137, Paris-Diderot Sorbonne-Paris Cité University, Paris, France.
| | - Carole Schwebel
- Medical ICU, Albert Michallon University Hospital, Grenoble, France
| | | | - Muriel Cornet
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, 38000, Grenoble, France
- Institute of Engineering, Univ. Grenoble Alpes, Grenoble, France
| | - Philippe Poirier
- Laboratoire de Parasitologie-Mycologie, CHU Clermont-Ferrand, CNRS, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | | | - Stéphane Ruckly
- INSERM, IAME UMR 1137, Paris-Diderot Sorbonne-Paris Cité University, Paris, France
- OUTCOMEREA Network, Aulnay Sous Bois, France
| | - Marie-Christine Jacob
- Department of Immunology, Grenoble-Alpes University Hospital (CHUGA) 38700 Grenoble, France
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences,, Université Grenoble Alpes,, 38700, Grenoble, France
| | - Bertrand Souweine
- Medical ICU, Gabriel-Montpied University Hospital,, Clermont-Ferrand,, France
| |
Collapse
|
103
|
Krüger W, Vielreicher S, Kapitan M, Jacobsen ID, Niemiec MJ. Fungal-Bacterial Interactions in Health and Disease. Pathogens 2019; 8:E70. [PMID: 31117285 PMCID: PMC6630686 DOI: 10.3390/pathogens8020070] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Fungi and bacteria encounter each other in various niches of the human body. There, they interact directly with one another or indirectly via the host response. In both cases, interactions can affect host health and disease. In the present review, we summarized current knowledge on fungal-bacterial interactions during their commensal and pathogenic lifestyle. We focus on distinct mucosal niches: the oral cavity, lung, gut, and vagina. In addition, we describe interactions during bloodstream and wound infections and the possible consequences for the human host.
Collapse
Affiliation(s)
- Wibke Krüger
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Sarah Vielreicher
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Mario Kapitan
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
- Institute of Microbiology, Friedrich Schiller University, Jena 07743, Germany.
| | - Maria Joanna Niemiec
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| |
Collapse
|
104
|
Li K, Ma H. Rotation and Retention Dynamics of Rod-Shaped Colloids with Surface Charge Heterogeneity in Sphere-in-Cell Porous Media Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5471-5483. [PMID: 30925063 DOI: 10.1021/acs.langmuir.9b00748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Colloid surface charge heterogeneity was incorporated into a three-dimensional trajectory model, which simulated particle translation and rotation via a force/torque analysis, to study the transport and retention dynamics of rod-shaped colloids over a wide size range in porous media under unfavorable conditions (energy barriers to deposition exist). Our previous study Li , K. ; Ma , H. Deposition Dynamics of Rod-Shaped Colloids during Transport in Porous Media under Favorable Conditions , Langmuir , 2018 , 34 , 9 , 2967 - 2980 , 10.1021/acs.langmuir.7b03983 for rod transport under favorable conditions (lacking energy barriers) demonstrated that particle rotation due to the coupled effect of flow hydrodynamics and Brownian rotation governed rod transport and retention. In this work, we showed that the shape of a colloid affected both transport process and colloid-collector interactions, but shape alone could not make rods to overcome energy barriers of over tens of kT for attachment under unfavorable conditions. The location of colloid surface heterogeneity did not affect transport but predominantly affected colloid-surface interactions by influencing the likelihood of heterogeneity patches facing the collector due to particle rotation. For surface heterogeneity located on the end(s) of a colloid, rods displayed enhanced retention compared with spheres; for surface heterogeneity located on the middle band, rods showed less retention compared with spheres. It was more effective to arrest a traveling rod when surface heterogeneity was located on the end relative to the side, because the tumbling motion greatly increased the likelihood of the end to intercept collector surfaces, and also because a rod would experience less repulsion with an end-on orientation relative to the collector surface compared to a side-on orientation due to the curvature effect. The influences of the particle aspect ratio on retention strongly depended upon the location of colloid surface heterogeneity. Our findings demonstrated that rods had distinct rotation and retention behaviors from spheres under conditions typically encountered in the environment; thus, particle rotation should be considered when studying the transport process of nonspherical colloids or spherical particles with inhomogeneous surface properties.
Collapse
Affiliation(s)
- Ke Li
- Department of Geology and Geophysics , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Huilian Ma
- Department of Geology and Geophysics , University of Utah , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
105
|
Fourie R, Pohl CH. Beyond Antagonism: The Interaction Between Candida Species and Pseudomonas aeruginosa. J Fungi (Basel) 2019; 5:jof5020034. [PMID: 31010211 PMCID: PMC6617365 DOI: 10.3390/jof5020034] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022] Open
Abstract
There are many examples of the interaction between prokaryotes and eukaryotes. One such example is the polymicrobial colonization/infection by the various opportunistic pathogenic yeasts belonging to the genus Candida and the ubiquitous bacterium, Pseudomonas aeruginosa. Although this interaction has simplistically been characterized as antagonistic to the yeast, this review highlights the complexity of the interaction with various factors influencing both microbes. The first section deals with the interactions in vitro, looking specifically at the role of cell wall components, quorum sensing molecules, phenazines, fatty acid metabolites and competition for iron in the interaction. The second part of this review places all these interactions in the context of various infection or colonization sites, i.e., lungs, wounds, and the gastrointestinal tract. Here we see that the role of the host, as well as the methodology used to establish co-infection, are important factors, influencing the outcome of the disease. Suggested future perspectives for the study of this interaction include determining the influence of newly identified participants of the QS network of P. aeruginosa, oxylipin production by both species, as well as the genetic and phenotypic plasticity of these microbes, on the interaction and outcome of co-infection.
Collapse
Affiliation(s)
- Ruan Fourie
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9301, South Africa.
| | - Carolina H Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9301, South Africa.
| |
Collapse
|
106
|
The Spectrum of Interactions between Cryptococcus neoformans and Bacteria. J Fungi (Basel) 2019; 5:jof5020031. [PMID: 31013706 PMCID: PMC6617360 DOI: 10.3390/jof5020031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 01/08/2023] Open
Abstract
Cryptococcus neoformans is a major fungal pathogen that infects immunocompromised people and causes life-threatening meningoencephalitis. C. neoformans does not occur in isolation either in the environment or in the human host, but is surrounded by other microorganisms. Bacteria are ubiquitously distributed in nature, including soil, and make up the dominant part of the human microbiota. Pioneering studies in the 1950s demonstrated antifungal activity of environmental bacteria against C. neoformans. However, the mechanisms and implications of these interactions remain largely unknown. Recently, interest in polymicrobial interaction studies has been reignited by the development of improved sequencing methodologies, and by the realization that such interactions may have a huge impact on ecology and human health. In this review, we summarize our current understanding of the interaction of bacteria with C. neoformans.
Collapse
|
107
|
Kousser C, Clark C, Sherrington S, Voelz K, Hall RA. Pseudomonas aeruginosa inhibits Rhizopus microsporus germination through sequestration of free environmental iron. Sci Rep 2019; 9:5714. [PMID: 30952923 PMCID: PMC6450908 DOI: 10.1038/s41598-019-42175-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/26/2019] [Indexed: 01/24/2023] Open
Abstract
Rhizopus spp are the most common etiological agents of mucormycosis, causing over 90% mortality in disseminated infection. Key to pathogenesis is the ability of fungal spores to swell, germinate, and penetrate surrounding tissues. Antibiotic treatment in at-risk patients increases the probability of the patient developing mucormycosis, suggesting that bacteria have the potential to control the growth of the fungus. However, research into polymicrobial relationships involving Rhizopus spp has not been extensively explored. Here we show that co-culturing Rhizopus microsporus and Pseudomonas aeruginosa results in the inhibition of spore germination. This inhibition was mediated via the secretion of bacterial siderophores, which induced iron stress on the fungus. Addition of P. aeruginosa siderophores to R. microsporus spores in the zebrafish larval model of infection resulted in inhibition of fungal germination and reduced host mortality. Therefore, during infection antibacterial treatment may relieve bacterial imposed nutrient restriction resulting in secondary fungal infections.
Collapse
Affiliation(s)
- Courtney Kousser
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Callum Clark
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sarah Sherrington
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kerstin Voelz
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Rebecca A Hall
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
108
|
Irazoki O, Hernandez SB, Cava F. Peptidoglycan Muropeptides: Release, Perception, and Functions as Signaling Molecules. Front Microbiol 2019; 10:500. [PMID: 30984120 PMCID: PMC6448482 DOI: 10.3389/fmicb.2019.00500] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Peptidoglycan (PG) is an essential molecule for the survival of bacteria, and thus, its biosynthesis and remodeling have always been in the spotlight when it comes to the development of antibiotics. The peptidoglycan polymer provides a protective function in bacteria, but at the same time is continuously subjected to editing activities that in some cases lead to the release of peptidoglycan fragments (i.e., muropeptides) to the environment. Several soluble muropeptides have been reported to work as signaling molecules. In this review, we summarize the mechanisms involved in muropeptide release (PG breakdown and PG recycling) and describe the known PG-receptor proteins responsible for PG sensing. Furthermore, we overview the role of muropeptides as signaling molecules, focusing on the microbial responses and their functions in the host beyond their immunostimulatory activity.
Collapse
Affiliation(s)
| | | | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
109
|
Bernard C, Lemoine V, Hoogenkamp MA, Girardot M, Krom BP, Imbert C. Candida albicans enhances initial biofilm growth of Cutibacterium acnes under aerobic conditions. BIOFOULING 2019; 35:350-360. [PMID: 31088179 DOI: 10.1080/08927014.2019.1608966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Candida albicans and Cutibacterium acnes are opportunistic pathogens that co-colonize the human body. They are involved in biofilm-related infections of implanted medical devices. The objective of this study was to evaluate the ability of these species to interact and form polymicrobial biofilms. SEM imaging and adhesion assays showed that C. acnes adhesion to C. albicans did not have a preference for a specific morphological state of C. albicans; bacteria adhered to both hyphal and yeast forms of C. albicans. C. albicans did not influence growth of C. acnes under anaerobic growth conditions, however under aerobic growth condition, C. albicans enhanced early C. acnes biofilm formation. This favorable impact of C. albicans was not mediated by secreted compounds accumulating in the medium, but required the presence of metabolically active C. albicans. The ability of these microorganisms to interact together could modulate the physiopathology of infections.
Collapse
Affiliation(s)
- Clément Bernard
- a Laboratoire Ecologie Biologie des Interactions - UMR CNRS 7267 , Université de Poitiers , Poitiers , France
| | - Virginie Lemoine
- a Laboratoire Ecologie Biologie des Interactions - UMR CNRS 7267 , Université de Poitiers , Poitiers , France
| | - Michel A Hoogenkamp
- b Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA) , Vrije Universiteit Amsterdam and the University of Amsterdam , Amsterdam , The Netherlands
| | - Marion Girardot
- a Laboratoire Ecologie Biologie des Interactions - UMR CNRS 7267 , Université de Poitiers , Poitiers , France
| | - Bastiaan P Krom
- b Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA) , Vrije Universiteit Amsterdam and the University of Amsterdam , Amsterdam , The Netherlands
- c ESCMID Study Group for Biofilms (ESGB)
| | - Christine Imbert
- a Laboratoire Ecologie Biologie des Interactions - UMR CNRS 7267 , Université de Poitiers , Poitiers , France
- c ESCMID Study Group for Biofilms (ESGB)
| |
Collapse
|
110
|
Coexistence of Candida species and bacteria in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis 2019; 38:1071-1077. [PMID: 30739228 PMCID: PMC6520323 DOI: 10.1007/s10096-019-03493-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) patients become colonized by pathogenic bacteria as well as by Candida species. The interplay between different microorganisms may play a key role in the prognosis of CF. The aim of the study was to analyze the coexistence patterns of bacteria and Candida spp. in sputum samples of patients with CF and to compare these patterns with the results of patients with other respiratory disorders (ORD). Sputum samples from 130 patients with CF and 186 patients with ORD were cultured on six different agar plates promoting the growth of bacteria and yeasts. Bacterial and Candida species were identified with MALDI-TOF MS. Pathogenic bacteria were found in 69.2% of the sputum samples of the CF patients, and in 44.1% the patients with ORD. CF patients tended to have growth of Pseudomonas aeruginosa and Staphylococcus aureus in sputum more often than patients with ORD. Overall, there was no difference in the coexistence of pathogenic bacteria and Candida spp. in these patient groups. However, when analyzed at the species level, P. aeruginosa and S. aureus coexisted with Candida spp. more frequently in sputum samples of CF patients compared with patients with ORD. Also, when analyzed according to age, it was shown that the adult (≥ 18 years) CF patients had a higher rate of coexistence of any pathogenic bacteria and Candida spp. than the children with CF and the adult patients with ORD. The rate for colonization with Candida together with pathogenic bacteria is increased in adult patients with CF.
Collapse
|
111
|
Cao T, Morales-Soto N, Jia J, Baig NF, Dunham SJB, Ellis J, Sweedler JV, Shrout JD, Bohn PW. Spatiotemporal Dynamics of Molecular Messaging in Bacterial Co-Cultures Studied by Multimodal Chemical Imaging. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10863:108630A. [PMID: 33790492 PMCID: PMC8009051 DOI: 10.1117/12.2501349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Microbial community behavior is coupled to a set of genetically-regulated chemical signals that correlate with cell density - the quorum sensing (QS) system - and there is growing appreciation that the QS-regulated behavior of bacteria is chemically, spatially, and temporally complex. In addition, while it has been known for some time that different species use different QS networks, we are beginning to appreciate that different strains of the same bacterial species also differ in their QS networks. Here we combine mass spectrometric imaging (MSI) and confocal Raman microscopy (CRM) approaches to investigate co-cultures involving different strains (FRD1 and PAO1C) of the same species (Pseudomonas aeruginosa) as well as those involving different species (P. aeruginosa and E. coli). Combining MSI and CRM makes it possible to supersede the limits imposed by individual imaging approaches and enables the spatial mapping of individual bacterial species and their microbial products within a mixed bacterial community growing in situ on surfaces. MSI is used to delineate the secretion of a specific rhamnolipid surfactant as well as alkyl quinolone (AQ) messengers between FRD1 and PAO1C strains of P. aeruginosa, showing that the spatial distribution and production rate of AQ messengers in PAO1C far outstrips that of FRD1. In the case of multiple species, CRM is used to show that the prolific secretion of AQs by the PAO1C strain of P. aeruginosa is used to mediate its interaction with co-cultured E. coli.
Collapse
Affiliation(s)
- Tianyuan Cao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Nydia Morales-Soto
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jin Jia
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Nameera F Baig
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720
| | - Sage J B Dunham
- Entech Instruments, 2207 Agate Court, Simi Valley, CA 93065
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Joseph Ellis
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
112
|
Cheng Y, Yam JKH, Cai Z, Ding Y, Zhang LH, Deng Y, Yang L. Population dynamics and transcriptomic responses of Pseudomonas aeruginosa in a complex laboratory microbial community. NPJ Biofilms Microbiomes 2019; 5:1. [PMID: 30675369 PMCID: PMC6334633 DOI: 10.1038/s41522-018-0076-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 12/13/2018] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa tends to be among the dominant species in multi-species bacterial consortia in diverse environments. To understand P. aeruginosa's physiology and interactions with co-existing bacterial species in different conditions, we established physiologically reproducible 18 species communities, and found that P. aeruginosa dominated in mixed-species biofilm communities but not in planktonic communities. P. aeruginosa's H1 type VI secretion system was highly induced in mixed-species biofilm consortia, compared with its monospecies biofilm, which was further demonstrated to play a key role in P. aeruginosa's enhanced fitness over other bacterial species. In addition, the type IV pili and Psl exopolysaccharide were required for P. aeruginosa to compete with other bacterial species in the biofilm community. Our study showed that the physiology of P. aeruginosa is strongly affected by interspecies interactions, and both biofilm determinants and type VI secretion system contribute to higher P. aeruginosa's fitness over other species in complex biofilm communities.
Collapse
Affiliation(s)
- Yingying Cheng
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore 637551
| | - Joey Kuok Hoong Yam
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore 637551
| | - Zhao Cai
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore 637551
| | - Yichen Ding
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore 637551
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China 510642
| | - Yinyue Deng
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, South China Agricultural University, Guangzhou, China 510642
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore 637551
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore 637551
- School of Medicine, Southern University of Science and Technology, Shenzhen, China 518055
| |
Collapse
|
113
|
Kruppa MD, Jacobs J, King-Hook K, Galloway K, Berry A, Kintner J, Whittimore JD, Fritz R, Schoborg RV, Hall JV. Binding of Elementary Bodies by the Opportunistic Fungal Pathogen Candida albicans or Soluble β-Glucan, Laminarin, Inhibits Chlamydia trachomatis Infectivity. Front Microbiol 2019; 9:3270. [PMID: 30692972 PMCID: PMC6339894 DOI: 10.3389/fmicb.2018.03270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 01/10/2023] Open
Abstract
Microbial interactions represent an understudied facet of human health and disease. In this study, the interactions that occur between Chlamydia trachomatis and the opportunistic fungal pathogen, Candida albicans were investigated. Candida albicans is a common component of the oral and vaginal microbiota responsible for thrush and vaginal yeast infections. Normally, Candida exist in the body as yeast. However, disruptions to the microbiota create conditions that allow expanded growth of Candida, conversion to the hyphal form, and tissue invasion. Previous studies have shown that a myriad of outcomes can occur when Candida albicans interacts with pathogenic bacteria. To determine if C. trachomatis physically interacts with C. albicans, we incubated chlamydial elementary bodies (EB) in medium alone or with C. albicans yeast or hyphal forms for 1 h. Following incubation, the samples were formaldehyde-fixed and processed for immunofluorescence assays using anti-chlamydial MOMP or anti- chlamydial LPS antibodies. Replicate samples were replenished with culture medium and incubated at 35°C for 0–120 h prior to fixation for immunofluorescence analysis or collection for EB infectivity assays. Data from this study indicates that both C. trachomatis serovar E and C. muridarum EB bind to C. albicans yeast and hyphal forms. This interaction was not blocked by pre-incubation of EB with the Candida cell wall components, mannan or β-glucans, suggesting that EB interact with a Candida cell wall protein or other structure. Bound EB remained attached to C. albicans for a minimum of 5 days (120 h). Infectivity assays demonstrated that EB bound to C. albicans are infectious immediately following binding (0h). However, once bound to C. albicans, EB infectivity decreased at a faster rate than EB in medium alone. At 6h post binding, 40% of EB incubated in medium alone remained infectious compared to only 16% of EB bound to C. albicans. Likewise, pre-incubation of EB with laminarin, a soluble preparation of β-glucan, alone or in combination with other fungal cell wall components significantly decreases chlamydial infectivity in HeLa cells. These data indicate that interactions between EB and C. albicans inhibit chlamydial infectivity, possibly by physically blocking EB interactions with host cell receptors.
Collapse
Affiliation(s)
- Michael D Kruppa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jeremy Jacobs
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Kelsey King-Hook
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Keleigh Galloway
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Amy Berry
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jennifer Kintner
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Judy D Whittimore
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Rolf Fritz
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Robert V Schoborg
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Jennifer V Hall
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
114
|
Sivasubramaniam R, Douglas R. The microbiome and chronic rhinosinusitis. World J Otorhinolaryngol Head Neck Surg 2018; 4:216-221. [PMID: 30506054 PMCID: PMC6251963 DOI: 10.1016/j.wjorl.2018.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a multifactorial condition in which the microbiota plays a pathogenic role. The nature of the interaction between the microbiota and the local immune system is very complex and has not been fully elucidated. Recent improvements in the microbiological techniques have greatly advanced our understanding of the complex nature of this interaction. This paper summarizes the current state of the rapidly evolving research on this subject. Defining the nature of the role of the microbiota in CRS is important because of the associated therapeutic implications.
Collapse
Affiliation(s)
- Rahuram Sivasubramaniam
- Department of Otorhinolaryngology Head and Neck Surgery, Auckland City Hospital, Park Road, Grafton, Auckland 1023, New Zealand
| | - Richard Douglas
- Department of Surgery, The University of Auckland, Grafton, Auckland, New Zealand
- Corresponding author.
| |
Collapse
|
115
|
Shin D, Byun WS, Moon K, Kwon Y, Bae M, Um S, Lee SK, Oh DC. Coculture of Marine Streptomyces sp. With Bacillus sp. Produces a New Piperazic Acid-Bearing Cyclic Peptide. Front Chem 2018; 6:498. [PMID: 30406080 PMCID: PMC6201156 DOI: 10.3389/fchem.2018.00498] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/01/2018] [Indexed: 11/30/2022] Open
Abstract
Microbial culture conditions in the laboratory, which conventionally involve the cultivation of one strain in one culture vessel, are vastly different from natural microbial environments. Even though perfectly mimicking natural microbial interactions is virtually impossible, the cocultivation of multiple microbial strains is a reasonable strategy to induce the production of secondary metabolites, which enables the discovery of new bioactive natural products. Our coculture of marine Streptomyces and Bacillus strains isolated together from an intertidal mudflat led to discover a new metabolite, dentigerumycin E (1). Dentigerumycin E was determined to be a new cyclic hexapeptide incorporating three piperazic acids, N-OH-Thr, N-OH-Gly, β-OH-Leu, and a pyran-bearing polyketide acyl chain mainly by analysis of its NMR and MS spectroscopic data. The putative PKS-NRPS biosynthetic gene cluster for dentigerumycin E was found in the Streptomyces strain, providing clear evidence that this cyclic peptide is produced by the Streptomyces strain. The absolute configuration of dentigerumycin E was established based on the advanced Marfey's method, ROESY NMR correlations, and analysis of the amino acid sequence of the ketoreductase domain in the biosynthetic gene cluster. In biological evaluation of dentigerumycin E (1) and its chemical derivatives [2-N,16-N-deoxydenteigerumycin E (2) and dentigerumycin methyl ester (3)], only dentigerumycin E exhibited antiproliferative and antimetastatic activities against human cancer cells, indicating that N-OH and carboxylic acid functional groups are essential for the biological activity.
Collapse
Affiliation(s)
- Daniel Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Woong Sub Byun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Kyuho Moon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Yun Kwon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Munhyung Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Soohyun Um
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
116
|
Lai GC, Tan TG, Pavelka N. The mammalian mycobiome: A complex system in a dynamic relationship with the host. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1438. [PMID: 30255552 PMCID: PMC6586165 DOI: 10.1002/wsbm.1438] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022]
Abstract
Mammalian barrier surfaces are densely populated by symbiont fungi in much the same way the former are colonized by symbiont bacteria. The fungal microbiota, otherwise known as the mycobiota, is increasingly recognized as a critical player in the maintenance of health and homeostasis of the host. Here we discuss the impact of the mycobiota on host physiology and disease, the factors influencing mycobiota composition, and the current technologies used for identifying symbiont fungal species. Understanding the tripartite interactions among the host, mycobiota, and other members of the microbiota, will help to guide the development of novel prevention and therapeutic strategies for a variety of human diseases. This article is categorized under:
Physiology > Mammalian Physiology in Health and Disease Laboratory Methods and Technologies > Genetic/Genomic Methods Models of Systems Properties and Processes > Organismal Models
Collapse
|
117
|
Zhang S, Merino N, Okamoto A, Gedalanga P. Interkingdom microbial consortia mechanisms to guide biotechnological applications. Microb Biotechnol 2018; 11:833-847. [PMID: 30014573 PMCID: PMC6116752 DOI: 10.1111/1751-7915.13300] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023] Open
Abstract
Microbial consortia are capable of surviving diverse conditions through the formation of synergistic population-level structures, such as stromatolites, microbial mats and biofilms. Biotechnological applications are poised to capitalize on these unique interactions. However, current artificial co-cultures constructed for societal benefits, including biosynthesis, agriculture and bioremediation, face many challenges to perform as well as natural consortia. Interkingdom microbial consortia tend to be more robust and have higher productivity compared with monocultures and intrakingdom consortia, but the control and design of these diverse artificial consortia have received limited attention. Further, feasible research techniques and instrumentation for comprehensive mechanistic insights have only recently been established for interkingdom microbial communities. Here, we review these recent advances in technology and our current understanding of microbial interaction mechanisms involved in sustaining or developing interkingdom consortia for biotechnological applications. Some of the interactions among members from different kingdoms follow similar mechanisms observed for intrakingdom microbial consortia. However, unique interactions in interkingdom consortia, including endosymbiosis or interkingdom-specific cell-cell interactions, provide improved mitigation to external stresses and inhibitory compounds. Furthermore, antagonistic interactions among interkingdom species can promote fitness, diversification and adaptation, along with the production of beneficial metabolites and enzymes for society. Lastly, we shed light on future research directions to develop study methods at the level of metabolites, genes and meta-omics. These potential research methods could lead to the control and utilization of highly diverse microbial communities.
Collapse
Affiliation(s)
- Shu Zhang
- Global Research Center for Environment and Energy based on Nanomaterials ScienceNational Institute for Material Science1‐1 NamikiTsukubaIbarakiJapan
- Department of Molecular Microbiology and ImmunologyNorris Comprehensive Cancer CenterUniversity of Southern California1441 Eastlake StreetLos AngelesCA90033USA
- Present address:
Section of Infection and ImmunityHerman Ostrow School of DentistryUniversity of Southern CaliforniaCA90089‐0641USA
| | - Nancy Merino
- Earth‐Life Science InstituteTokyo Institute of Technology, 2‐12‐1‐I7E‐323Ookayama, Meguro‐kuTokyo 152‐8550Japan
- Department of Earth SciencesUniversity of Southern California, 835 Bloom Walk, SHS 562Los AngelesCA 90089‐0740USA
| | - Akihiro Okamoto
- Global Research Center for Environment and Energy based on Nanomaterials ScienceNational Institute for Material Science1‐1 NamikiTsukubaIbarakiJapan
| | - Phillip Gedalanga
- Department of Health ScienceCalifornia State University Fullerton, 800 North State College BoulevardFullertonCA 92831‐3599USA
| |
Collapse
|
118
|
Chen Y, Wang J, Yang N, Wen Z, Sun X, Chai Y, Ma Z. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat Commun 2018; 9:3429. [PMID: 30143616 PMCID: PMC6109063 DOI: 10.1038/s41467-018-05683-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 07/16/2018] [Indexed: 02/07/2023] Open
Abstract
Interactions between bacteria and fungi have great environmental, medical, and agricultural importance, but the molecular mechanisms are largely unknown. Here, we study the interactions between the bacterium Pseudomonas piscium, from the wheat head microbiome, and the plant pathogenic fungus Fusarium graminearum. We show that a compound secreted by the bacteria (phenazine-1-carboxamide) directly affects the activity of fungal protein FgGcn5, a histone acetyltransferase of the SAGA complex. This leads to deregulation of histone acetylation at H2BK11, H3K14, H3K18, and H3K27 in F. graminearum, as well as suppression of fungal growth, virulence, and mycotoxin biosynthesis. Therefore, an antagonistic bacterium can inhibit growth and virulence of a plant pathogenic fungus by manipulating fungal histone modification.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Jing Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Nan Yang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ziyue Wen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xuepeng Sun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
119
|
Trunk K, Peltier J, Liu YC, Dill BD, Walker L, Gow NAR, Stark MJR, Quinn J, Strahl H, Trost M, Coulthurst SJ. The type VI secretion system deploys antifungal effectors against microbial competitors. Nat Microbiol 2018; 3:920-931. [PMID: 30038307 PMCID: PMC6071859 DOI: 10.1038/s41564-018-0191-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 06/07/2018] [Indexed: 12/28/2022]
Abstract
Interactions between bacterial and fungal cells shape many polymicrobial communities. Bacteria elaborate diverse strategies to interact and compete with other organisms, including the deployment of protein secretion systems. The type VI secretion system (T6SS) delivers toxic effector proteins into host eukaryotic cells and competitor bacterial cells, but, surprisingly, T6SS-delivered effectors targeting fungal cells have not been reported. Here we show that the 'antibacterial' T6SS of Serratia marcescens can act against fungal cells, including pathogenic Candida species, and identify the previously undescribed effector proteins responsible. These antifungal effectors, Tfe1 and Tfe2, have distinct impacts on the target cell, but both can ultimately cause fungal cell death. 'In competition' proteomics analysis revealed that T6SS-mediated delivery of Tfe2 disrupts nutrient uptake and amino acid metabolism in fungal cells, and leads to the induction of autophagy. Intoxication by Tfe1, in contrast, causes a loss of plasma membrane potential. Our findings extend the repertoire of the T6SS and suggest that antifungal T6SSs represent widespread and important determinants of the outcome of bacterial-fungal interactions.
Collapse
Affiliation(s)
- Katharina Trunk
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Julien Peltier
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Yi-Chia Liu
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Brian D Dill
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Louise Walker
- Aberdeen Fungal Group, Institute of Medical Sciences, MRC Centre for Medical Mycology at the University of Aberdeen, Aberdeen, UK
| | - Neil A R Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, MRC Centre for Medical Mycology at the University of Aberdeen, Aberdeen, UK
| | - Michael J R Stark
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Janet Quinn
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Newcastle University, Newcastle-upon-Tyne, UK
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK.
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK.
| | - Sarah J Coulthurst
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
120
|
Nevalainen H, Kaur J, Han Z, Kautto L, Ramsperger M, Meyer W, Chen SCA. Biological, biochemical and molecular aspects of Scedosporium aurantiacum, a primary and opportunistic fungal pathogen. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2018.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
121
|
Lee K, Pletcher SD, Lynch SV, Goldberg AN, Cope EK. Heterogeneity of Microbiota Dysbiosis in Chronic Rhinosinusitis: Potential Clinical Implications and Microbial Community Mechanisms Contributing to Sinonasal Inflammation. Front Cell Infect Microbiol 2018; 8:168. [PMID: 29876323 PMCID: PMC5974464 DOI: 10.3389/fcimb.2018.00168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/02/2018] [Indexed: 12/27/2022] Open
Abstract
Recent studies leveraging next-generation sequencing and functional approaches to understand the human microbiota have demonstrated the presence of diverse, niche-specific microbial communities at nearly every mucosal surface. These microbes contribute to the development and function of physiologic and immunological features that are key to host health status. Not surprisingly, several chronic inflammatory diseases have been attributed to dysbiosis of microbiota composition or function, including chronic rhinosinusitis (CRS). CRS is a heterogeneous disease characterized by inflammation of the sinonasal cavity and mucosal microbiota dysbiosis. Inflammatory phenotypes and bacterial community compositions vary considerably across individuals with CRS, complicating current studies that seek to address causality of a dysbiotic microbiome as a driver or initiator of persistent sinonasal inflammation. Murine models have provided some experimental evidence that alterations in local microbial communities and microbially-produced metabolites influence health status. In this perspective, we will discuss the clinical implications of distinct microbial compositions and community-level functions in CRS and how mucosal microbiota relate to the diverse inflammatory endotypes that are frequently observed. We will also describe specific microbial interactions that can deterministically shape the pattern of co-colonizers and the resulting metabolic products that drive or exacerbate host inflammation. These findings are discussed in the context of CRS-associated inflammation and in other chronic inflammatory diseases that share features observed in CRS. An improved understanding of CRS patient stratification offers the opportunity to personalize therapeutic regimens and to design novel treatments aimed at manipulation of the disease-associated microbiota to restore sinus health.
Collapse
Affiliation(s)
- Keehoon Lee
- Department of Biological Sciences, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Steven D Pletcher
- Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Susan V Lynch
- Division of Medicine, Department of Gastroenterology, University of California, San Francisco, San Francisco, CA, United States
| | - Andrew N Goldberg
- Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Emily K Cope
- Department of Biological Sciences, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
122
|
Byrd JA, Caldwell DY, Nisbet DJ. The identification of fungi collected from the ceca of commercial poultry. Poult Sci 2018; 96:2360-2365. [PMID: 28339796 DOI: 10.3382/ps/pew486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022] Open
Abstract
Under normal conditions, fungi are ignored unless a disease/syndrome clinical signs are reported. The scientific communities are largely unaware of the roles fungi play in normal production parameters. Numerous preharvest interventions have demonstrated that beneficial bacteria can play a role in improving productions parameters; however, most researchers have ignored the impact that fungi may have on production. The goal of the present study was to record fungi recovered from commercial broiler and layer houses during production. Over 3,000 cecal samples were isolated using conventional culture methodology and over 890 samples were further characterized using an automated repetitive sequence-based PCR (rep-PCR) methodology. Eighty-eight different fungal and yeast species were identified, including Aspergillus spp., Penicillium spp., and Sporidiobolus spp, and 18 unknown genera were separated using rep-PCR. The results from the present study will provide a normal fungi background genera under commercial conditions and will be a stepping stone for investigating the impact of fungi on the gastrointestinal tract and on the health of poultry.
Collapse
Affiliation(s)
- J A Byrd
- USDA, ARS, SPARC, Food and Feed Safety Research Unit, College Station, TX
| | - D Y Caldwell
- USDA, ARS, SPARC, Food and Feed Safety Research Unit, College Station, TX
| | - D J Nisbet
- USDA, ARS, SPARC, Food and Feed Safety Research Unit, College Station, TX
| |
Collapse
|
123
|
O'Brien S, Fothergill JL. The role of multispecies social interactions in shaping Pseudomonas aeruginosa pathogenicity in the cystic fibrosis lung. FEMS Microbiol Lett 2018; 364:3958795. [PMID: 28859314 PMCID: PMC5812498 DOI: 10.1093/femsle/fnx128] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is a major pathogen in the lungs of cystic fibrosis (CF) patients. However, it is now recognised that a diverse microbial community exists in the airways comprising aerobic and anaerobic bacteria as well as fungi and viruses. This rich soup of microorganisms provides ample opportunity for interspecies interactions, particularly when considering secreted compounds. Here, we discuss how P. aeruginosa-secreted products can have community-wide effects, with the potential to ultimately shape microbial community dynamics within the lung. We focus on three well-studied traits associated with worsening clinical outcome in CF: phenazines, siderophores and biofilm formation, and discuss how secretions can shape interactions between P. aeruginosa and other commonly encountered members of the lung microbiome: Staphylococcus aureus, the Burkholderia cepacia complex, Candida albicans and Aspergillus fumigatus. These interactions may shape the evolutionary trajectory of P. aeruginosa while providing new opportunities for therapeutic exploitation of the CF lung microbiome.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Center for Adaptation to a Changing Environment (ACE), ETH Zürich, 8092 Zürich, Switzerland.,Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Joanne L Fothergill
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7B3, UK
| |
Collapse
|
124
|
Cavalheiro M, Teixeira MC. Candida Biofilms: Threats, Challenges, and Promising Strategies. Front Med (Lausanne) 2018; 5:28. [PMID: 29487851 PMCID: PMC5816785 DOI: 10.3389/fmed.2018.00028] [Citation(s) in RCA: 411] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/26/2018] [Indexed: 12/19/2022] Open
Abstract
Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis, and Candida parapsilosis, highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed.
Collapse
Affiliation(s)
- Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel Cacho Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
125
|
Tran DM, Sugimoto H, Nguyen DA, Watanabe T, Suzuki K. Identification and characterization of chitinolytic bacteria isolated from a freshwater lake. Biosci Biotechnol Biochem 2018; 82:343-355. [DOI: 10.1080/09168451.2017.1422969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
To develop a novel type of biocontrol agent, we focus on bacteria that are characterized by both chitinase activity and biofilm development. Chitinolytic bacteria were isolated from sediments and chitin flakes immersed in the water of a sand dune lake, Sakata, in Niigata, Japan. Thirty-one isolates from more than 5100 isolated strains were examined chitinase activity and biofilm formation. Phylogenetic analysis of these isolates based on the 16S rRNA gene sequences revealed that most isolates belonged to the family Aeromonadaceae, followed by Paenibacillaceae, Enterobacteriaceae, and Neisseriaceae. The specific activity of chitinase of four selected strains was higher than that of a reference strain. The molecular size of one chitinase produced by Andreprevotia was greater than that of typical bacterial chitinases. The dialyzed culture supernatant containing chitinases of the four strains suppressed hyphal growth of Trichoderma reesei. These results indicate that these four strains are good candidates for biocontrol agents.
Collapse
Affiliation(s)
- Dinh Minh Tran
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot City, Vietnam
| | - Hayuki Sugimoto
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Dzung Anh Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot City, Vietnam
| | - Takeshi Watanabe
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Kazushi Suzuki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
126
|
Abstract
A growing body of literature has demonstrated relationships between the composition of the airway microbiota (mixed-species communities of microbes that exist in the respiratory tract) and critical features of immune response and pulmonary function. These studies provide evidence that airway inflammatory status and capacity for repair are coassociated with specific taxonomic features of the airway microbiome. Although directionality has yet to be established, the fact that microbes are known drivers of inflammation and tissue damage suggests that in the context of chronic inflammatory airway disease, the composition and, more importantly, the function, of the pulmonary microbiome represent critical factors in defining airway disease outcomes.
Collapse
|
127
|
Jung B, Park J, Kim N, Li T, Kim S, Bartley LE, Kim J, Kim I, Kang Y, Yun K, Choi Y, Lee HH, Ji S, Lee KS, Kim BY, Shon JC, Kim WC, Liu KH, Yoon D, Kim S, Seo YS, Lee J. Cooperative interactions between seed-borne bacterial and air-borne fungal pathogens on rice. Nat Commun 2018; 9:31. [PMID: 29295978 PMCID: PMC5750236 DOI: 10.1038/s41467-017-02430-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 11/30/2017] [Indexed: 11/23/2022] Open
Abstract
Bacterial-fungal interactions are widely found in distinct environments and contribute to ecosystem processes. Previous studies of these interactions have mostly been performed in soil, and only limited studies of aerial plant tissues have been conducted. Here we show that a seed-borne plant pathogenic bacterium, Burkholderia glumae (Bg), and an air-borne plant pathogenic fungus, Fusarium graminearum (Fg), interact to promote bacterial survival, bacterial and fungal dispersal, and disease progression on rice plants, despite the production of antifungal toxoflavin by Bg. We perform assays of toxoflavin sensitivity, RNA-seq analyses, lipid staining and measures of triacylglyceride content to show that triacylglycerides containing linolenic acid mediate resistance to reactive oxygen species that are generated in response to toxoflavin in Fg. As a result, Bg is able to physically attach to Fg to achieve rapid and expansive dispersal to enhance disease severity.
Collapse
Affiliation(s)
- Boknam Jung
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Namgyu Kim
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Taiying Li
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Soyeon Kim
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Laura E Bartley
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Jinnyun Kim
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Inyoung Kim
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Yoonhee Kang
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Kihoon Yun
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Younghae Choi
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Hyun-Hee Lee
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Sungyeon Ji
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Kwang Sik Lee
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Bo Yeon Kim
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Jong Cheol Shon
- BK21 Plus KNU Multi-Omics-Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Won Cheol Kim
- BK21 Plus KNU Multi-Omics-Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics-Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Dahye Yoon
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46269, Korea
| | - Suhkman Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46269, Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan, 46269, Korea.
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea.
| |
Collapse
|
128
|
Witherden EA, Moyes DL. Mycobiome and Gut Inflammation. IMMUNITY AND INFLAMMATION IN HEALTH AND DISEASE 2018:271-280. [DOI: 10.1016/b978-0-12-805417-8.00022-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
129
|
Abstract
INTRODUCTION Biofilm formation represents a protected mode of growth that renders bacterial cells less susceptible to antimicrobials and to killing by host immune effector mechanisms and so enables the pathogens to survive in hostile environments and also to disperse and colonize new niches. Biofilm disease includes device-related infections, chronic infections in the absence of a foreign body, and even malfunction of medical devices. Areas covered: This review puts forward a new medical entity that represents a major public health issue, which we have named 'biofilm-related disease'. We highlight the characteristics of biofilm disease including its pathogenesis, microbiological features, clinical presentation, and treatment challenges. Expert commentary: The diversity of biofilm-associated infections is increasing over time and its impact may be underestimated. This peculiar form of development endows associated bacteria with a high tolerance to conventional antimicrobial agents. A small percentage of persister cells developing within the biofilm is known to be highly tolerant to antibiotics and has typically been involved in causing relapse of infections. Knowledge of the pivotal role played by biofilm-growing microorganisms in related infections will provide new treatment dynamics for this biofilm-related disease.
Collapse
Affiliation(s)
- Jose Luis Del Pozo
- a Infectious Diseases Division , Clínica Universidad de Navarra , Pamplona , Spain.,b Department of Clinical Microbiology , Clínica Universidad de Navarra , Pamplona , Spain.,c Laboratory of Microbial Biofilms , Clínica Universidad de Navarra , Pamplona , Spain
| |
Collapse
|
130
|
Zhang I, Pletcher SD, Goldberg AN, Barker BM, Cope EK. Fungal Microbiota in Chronic Airway Inflammatory Disease and Emerging Relationships with the Host Immune Response. Front Microbiol 2017; 8:2477. [PMID: 29312187 PMCID: PMC5733051 DOI: 10.3389/fmicb.2017.02477] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/29/2017] [Indexed: 12/22/2022] Open
Abstract
The respiratory tract is a complex system that is inhabited by niche-specific communities of microbes including bacteria, fungi, and viruses. These complex microbial assemblages are in constant contact with the mucosal immune system and play a critical role in airway health and immune homeostasis. Changes in the composition and diversity of airway microbiota are frequently observed in patients with chronic inflammatory diseases including chronic rhinosinusitis (CRS), cystic fibrosis, allergy, and asthma. While the bacterial microbiome of the upper and lower airways has been the focus of many recent studies, the contribution of fungal microbiota to inflammation is an emerging research interest. Within the context of allergic airway disease, fungal products are important allergens and fungi are potent inducers of inflammation. In addition, murine models have provided experimental evidence that fungal microbiota in peripheral organs, notably the gastrointestinal (GI) tract, influence pulmonary health. In this review, we explore the role of the respiratory and GI microbial communities in chronic airway inflammatory disease development with a specific focus on fungal microbiome interactions with the airway immune system and fungal-bacterial interactions that likely contribute to inflammatory disease. These findings are discussed in the context of clinical and immunological features of fungal-mediated disease in CRS, allergy, and asthmatic patients. While this field is still nascent, emerging evidence suggests that dysbiotic fungal and bacterial microbiota interact to drive or exacerbate chronic airway inflammatory disease.
Collapse
Affiliation(s)
- Irene Zhang
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Steven D. Pletcher
- Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Andrew N. Goldberg
- Department of Otolaryngology Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Bridget M. Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Emily K. Cope
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
131
|
Huseyin CE, O'Toole PW, Cotter PD, Scanlan PD. Forgotten fungi-the gut mycobiome in human health and disease. FEMS Microbiol Rev 2017; 41:479-511. [PMID: 28430946 DOI: 10.1093/femsre/fuw047] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
The human body is home to a complex and diverse microbial ecosystem that plays a central role in host health. This includes a diversity of fungal species that is collectively referred to as our 'mycobiome'. Although research into the mycobiome is still in its infancy, its potential role in human disease is increasingly recognised. Here we review the existing literature available on the human mycobiota with an emphasis on the gut mycobiome, including how fungi interact with the human host and other microbes. In doing so, we provide a comprehensive critique of the methodologies available to research the human mycobiota as well as highlighting the latest research findings from mycological surveys of different groups of interest including infants, obese and inflammatory bowel disease cohorts. This in turn provides new insights and directions for future studies in this burgeoning research area.
Collapse
Affiliation(s)
- Chloe E Huseyin
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.,APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland.,School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Paul W O'Toole
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland.,School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.,APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland
| | - Pauline D Scanlan
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland
| |
Collapse
|
132
|
Lyden A, Lombardi L, Sire W, Li P, Simpson JC, Butler G, Lee GU. Characterization of carboxylate nanoparticle adhesion with the fungal pathogen Candida albicans. NANOSCALE 2017; 9:15911-15922. [PMID: 29019498 DOI: 10.1039/c7nr04724j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Candida albicans is the lead fungal pathogen of nosocomial bloodstream infections worldwide and has mortality rates of 43%. Nanoparticles have been identified as a means to improve medical outcomes for Candida infections, enabling sample concentration, serving as contrast agents for in vivo imaging, and delivering therapeutics. However, little is known about how nanoparticles interact with the fungal cell wall. In this report we used laser scanning confocal microscopy to examine the interaction of fluorescent polystyrene nanoparticles of specific surface chemistry and diameter with C. albicans and mutant strains deficient in various C. albicans surface proteins. Carboxylate-functionalized nanoparticles adsorbed mainly to the hyphae of wild-type C. albicans. The dissociative binding constant of the nanoparticles was ∼150, ∼30 and ∼2.5 pM for 40, 100 nm and 200 nm diameter particles, respectively. A significant reduction in particle binding was observed with a Δals3 strain compared to wild-type strains, identifying the Als3 adhesin as the main mediator of this nanoparticle adhesion. In the absence of Als3, nanoparticles bound to germ tubes and yeast cells in a pattern resembling the localization of Als1, indicating Als1 also plays a role. Nanoparticle surface charge was shown to influence binding - positively charged amine-functionalized nanoparticles failed to bind to the hyphal cell wall. Binding of carboxylate-functionalized nanoparticles was observed in the presence of serum, though interactions were reduced. These observations show that Als3 and Als1 are important targets for nanoparticle-mediated diagnostics and therapeutics, and provide direction for optimal diameter and surface characteristics of nanoparticles that bind to the fungal cell wall.
Collapse
Affiliation(s)
- Amy Lyden
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | |
Collapse
|
133
|
Witherden EA, Shoaie S, Hall RA, Moyes DL. The Human Mucosal Mycobiome and Fungal Community Interactions. J Fungi (Basel) 2017; 3:jof3040056. [PMID: 29371572 PMCID: PMC5753158 DOI: 10.3390/jof3040056] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/23/2017] [Accepted: 10/05/2017] [Indexed: 01/21/2023] Open
Abstract
With the advent of high-throughput sequencing techniques, the astonishing extent and complexity of the microbial communities that reside within and upon us has begun to become clear. Moreover, with advances in computing and modelling methods, we are now beginning to grasp just how dynamic our interactions with these communities are. The diversity of both these communities and their interactions—both within the community and with us—are dependent on a multitude of factors, both microbial- and host-mediated. Importantly, it is becoming clear that shifts in the makeup of these communities, or their responses, are linked to different disease states. Although much of the work to define these interactions and links has been investigating bacterial communities, recently there has been significant growth in the body of knowledge, indicating that shifts in the host fungal communities (mycobiome) are also intimately linked to disease status. In this review, we will explore these associations, along with the interactions between fungal communities and their human and microbial habitat, and discuss the future applications of systems biology in determining their role in disease status.
Collapse
Affiliation(s)
- Elizabeth A Witherden
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London SE1 9RT, UK.
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London SE1 9RT, UK.
- Centre for Translational Microbiome Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden.
| | - Rebecca A Hall
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London SE1 9RT, UK.
| |
Collapse
|
134
|
Nazik H, Joubert LM, Secor PR, Sweere JM, Bollyky PL, Sass G, Cegelski L, Stevens DA. Pseudomonas phage inhibition of Candida albicans. MICROBIOLOGY-SGM 2017; 163:1568-1577. [PMID: 28982395 DOI: 10.1099/mic.0.000539] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa (Pa) and Candida albicans (Ca) are major bacterial and fungal pathogens in immunocompromised hosts, and notably in the airways of cystic fibrosis patients. The bacteriophages of Pa physically alter biofilms, and were recently shown to inhibit the biofilms of Aspergillus fumigatus. To understand the range of this viral-fungal interaction, we studied Pa phages Pf4 and Pf1, and their interactions with Ca biofilm formation and preformed Ca biofilm. Both forms of Ca biofilm development, as well as planktonic Ca growth, were inhibited by either phage. The inhibition of biofilm was reversed by the addition of iron, suggesting that the mechanism of phage action on Ca involves denial of iron. Birefringence studies on added phage showed an ordered structure of binding to Ca. Electron microscopic observations indicated phage aggregation in the biofilm extracellular matrix. Bacteriophage-fungal interactions may be a general feature with several pathogens in the fungal kingdom.
Collapse
Affiliation(s)
- Hasan Nazik
- Division of Infectious Diseases, Department of Medicine, Stanford University Medical School, Stanford, CA, USA.,California Institute for Medical Research, San Jose, CA, USA
| | - Lydia-Marie Joubert
- Cell Sciences Imaging Facility, Stanford University Medical School, Stanford, CA, USA
| | - Patrick R Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Johanna M Sweere
- Division of Infectious Diseases, Department of Medicine, Stanford University Medical School, Stanford, CA, USA.,Immunology Program, Stanford University, Stanford, CA, USA
| | - Paul L Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University Medical School, Stanford, CA, USA.,Immunology Program, Stanford University, Stanford, CA, USA
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA, USA.,Division of Infectious Diseases, Department of Medicine, Stanford University Medical School, Stanford, CA, USA
| | | | - David A Stevens
- California Institute for Medical Research, San Jose, CA, USA.,Division of Infectious Diseases, Department of Medicine, Stanford University Medical School, Stanford, CA, USA
| |
Collapse
|
135
|
Abstract
Candida albicans is among the most prevalent fungal species of the human microbiota and asymptomatically colonizes healthy individuals. However, it is also an opportunistic pathogen that can cause severe, and often fatal, bloodstream infections. The medical impact of C. albicans typically depends on its ability to form biofilms, which are closely packed communities of cells that attach to surfaces, such as tissues and implanted medical devices. In this Review, we provide an overview of the processes involved in the formation of C. albicans biofilms and discuss the core transcriptional network that regulates biofilm development. We also consider some of the advantages that biofilms provide to C. albicans in comparison with planktonic growth and explore polymicrobial biofilms that are formed by C. albicans and certain bacterial species.
Collapse
|
136
|
Disarming Fungal Pathogens: Bacillus safensis Inhibits Virulence Factor Production and Biofilm Formation by Cryptococcus neoformans and Candida albicans. mBio 2017; 8:mBio.01537-17. [PMID: 28974618 PMCID: PMC5626971 DOI: 10.1128/mbio.01537-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacteria interact with each other in nature and often compete for limited nutrient and space resources. However, it is largely unknown whether and how bacteria also interact with human fungal pathogens naturally found in the environment. Here, we identified a soil bacterium, Bacillus safensis, which potently blocked several key Cryptococcus neoformans virulence factors, including formation of the antioxidant pigment melanin and production of the antiphagocytic polysaccharide capsule. The bacterium also inhibited de novo cryptococcal biofilm formation but had only modest inhibitory effects on already formed biofilms or planktonic cell growth. The inhibition of fungal melanization was dependent on direct cell contact and live bacteria. B. safensis also had anti-virulence factor activity against another major human-associated fungal pathogen, Candida albicans. Specifically, dual-species interaction studies revealed that the bacterium strongly inhibited C. albicans filamentation and biofilm formation. In particular, B. safensis physically attached to and degraded candidal filaments. Through genetic and phenotypic analyses, we demonstrated that bacterial chitinase activity against fungal cell wall chitin is a factor contributing to the antipathogen effect of B. safensis. Pathogenic fungi are estimated to contribute to as many human deaths as tuberculosis or malaria. Two of the most common fungal pathogens, Cryptococcus neoformans and Candida albicans, account for up to 1.4 million infections per year with very high mortality rates. Few antifungal drugs are available for treatment, and development of novel therapies is complicated by the need for pathogen-specific targets. Therefore, there is an urgent need to identify novel drug targets and new drugs. Pathogens use virulence factors during infection, and it has recently been proposed that targeting these factors instead of the pathogen itself may represent a new approach to develop antimicrobials. Here, we identified a soil bacterium that specifically blocked virulence factor production and biofilm formation by C. neoformans and C. albicans. We demonstrate that the bacterial antipathogen mechanism is based in part on targeting the fungal cell wall, a structure not found in human cells.
Collapse
|
137
|
Chronic Rhinosinusitis and the Evolving Understanding of Microbial Ecology in Chronic Inflammatory Mucosal Disease. Clin Microbiol Rev 2017; 30:321-348. [PMID: 27903594 DOI: 10.1128/cmr.00060-16] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chronic rhinosinusitis (CRS) encompasses a heterogeneous group of debilitating chronic inflammatory sinonasal diseases. Despite considerable research, the etiology of CRS remains poorly understood, and debate on potential roles of microbial communities is unresolved. Modern culture-independent (molecular) techniques have vastly improved our understanding of the microbiology of the human body. Recent studies that better capture the full complexity of the microbial communities associated with CRS reintroduce the possible importance of the microbiota either as a direct driver of disease or as being potentially involved in its exacerbation. This review presents a comprehensive discussion of the current understanding of bacterial, fungal, and viral associations with CRS, with a specific focus on the transition to the new perspective offered in recent years by modern technology in microbiological research. Clinical implications of this new perspective, including the role of antimicrobials, are discussed in depth. While principally framed within the context of CRS, this discussion also provides an analogue for reframing our understanding of many similarly complex and poorly understood chronic inflammatory diseases for which roles of microbes have been suggested but specific mechanisms of disease remain unclear. Finally, further technological advancements on the horizon, and current pressing questions for CRS microbiological research, are considered.
Collapse
|
138
|
Fungal Pathogens in CF Airways: Leave or Treat? Mycopathologia 2017; 183:119-137. [PMID: 28770417 DOI: 10.1007/s11046-017-0184-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023]
Abstract
Chronic airway infection plays an essential role in the progress of cystic fibrosis (CF) lung disease. In the past decades, mainly bacterial pathogens, such as Pseudomonas aeruginosa, have been the focus of researchers and clinicians. However, fungi are frequently detected in CF airways and there is an increasing body of evidence that fungal pathogens might play a role in CF lung disease. Several studies have shown an association of fungi, particularly Aspergillus fumigatus and Candida albicans, with the course of lung disease in CF patients. Mechanistically, in vitro and in vivo studies suggest that an impaired immune response to fungal pathogens in CF airways renders them more susceptible to fungi. However, it remains elusive whether fungi are actively involved in CF lung disease pathologies or whether they rather reflect a dysregulated airway colonization and act as microbial bystanders. A key issue for dissecting the role of fungi in CF lung disease is the distinction of dynamic fungal-host interaction entities, namely colonization, sensitization or infection. This review summarizes key findings on pathophysiological mechanisms and the clinical impact of fungi in CF lung disease.
Collapse
|
139
|
Uppuluri P, Busscher HJ, Chakladar J, van der Mei HC, Chaffin WL. Transcriptional Profiling of C. albicans in a Two Species Biofilm with Rothia dentocariosa. Front Cell Infect Microbiol 2017; 7:311. [PMID: 28752078 PMCID: PMC5508013 DOI: 10.3389/fcimb.2017.00311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/26/2017] [Indexed: 11/13/2022] Open
Abstract
Biofilms on silicone rubber voice prostheses are the major cause for frequent failure and replacement of these devices. The presence of both bacterial and yeast strains has been suggested to be crucial for the development of voice prosthetic biofilms. Polymicrobial biofilms that include Candida albicans and Rothia dentocariosa are the leading cause of voice prosthesis failure. An in vitro biofilm comprising these two organisms was developed on silicone rubber, a material used for Groningen button voice prosthesis. We found that this biofilm environment was not conducive for C. albicans growth or differentiation. Global transcriptional analyses of C. albicans biofilm cells grown with R. dentocariosa revealed that genes with functions related to cell cycle progression and hyphal development were repressed >2-fold. The mixed species biofilms were more compact and less robust compared to C. albicans mono-species biofilms, even when developed under conditions of continuous nutrient flow. Under these conditions R. dentocariosa also significantly inhibited C. albicans biofilm dispersal. Preferential adherence of R. dentocariosa to candidal hyphae was mediated by the adhesin Als3.
Collapse
Affiliation(s)
- Priya Uppuluri
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center, TorranceTorrance, CA, United States
| | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center GroningenGroningen, Netherlands
| | - Jaideep Chakladar
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center, TorranceTorrance, CA, United States
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center GroningenGroningen, Netherlands
| | - W LaJean Chaffin
- Microbiology and Immunology, Texas Tech University Health Sciences CenterLubbock, TX, United States
| |
Collapse
|
140
|
Yang Y, Thomas J, Li Y, Vilchèze C, Derbyshire KM, Jacobs WR, Ojha AK. Defining a temporal order of genetic requirements for development of mycobacterial biofilms. Mol Microbiol 2017. [PMID: 28628249 DOI: 10.1111/mmi.13734] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Most mycobacterial species spontaneously form biofilms, inducing unique growth physiologies and reducing drug sensitivity. Biofilm growth progresses through three genetically programmed stages: substratum attachment, intercellular aggregation and architecture maturation. Growth of Mycobacterium smegmatis biofilms requires multiple factors including a chaperonin (GroEL1) and a nucleoid-associated protein (Lsr2), although how their activities are linked remains unclear. Here it is shown that Lsr2 participates in intercellular aggregation, but substratum attachment of Lsr2 mutants is unaffected, thereby genetically distinguishing these developmental stages. Further, a suppressor mutation in a glycopeptidolipid synthesis gene (mps) that results in hyperaggregation of cells and fully restores the form and functions of Δlsr2 mutant biofilms was identified. Suppression by the mps mutation is specific to Δlsr2; it does not rescue the maturation-deficient biofilms of a ΔgroEL1 mutant, thereby differentiating the process of aggregation from maturation. Gene expression analysis supports a stepwise process of maturation, highlighted by temporally separated, transient inductions of iron and nitrogen import genes. Furthermore, GroEL1 activity is required for induction of nitrogen, but not iron, import genes. Together, the findings begin to define molecular checkpoints during development of mycobacterial biofilms.
Collapse
Affiliation(s)
- Yong Yang
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Joseph Thomas
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yunlong Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Catherine Vilchèze
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Keith M Derbyshire
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Howard Hughes Medical Institute, Bronx, NY, USA
| | - Anil K Ojha
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
141
|
Abstract
Candida species are the most common infectious fungal species in humans; out of the approximately 150 known species, Candida albicans is the leading pathogenic species, largely affecting immunocompromised individuals. Apart from its role as the primary etiology for various types of candidiasis, C. albicans is known to contribute to polymicrobial infections. Polymicrobial interactions, particularly between C. albicans and bacterial species, have gained recent interest in which polymicrobial biofilm virulence mechanisms have been studied including adhesion, invasion, quorum sensing, and development of antimicrobial resistance. These trans-kingdom interactions, either synergistic or antagonistic, may help modulate the virulence and pathogenicity of both Candida and bacteria while uniquely impacting the pathogen-host immune response. As antibiotic and antifungal resistance increases, there is a great need to explore the intermicrobial cross-talk with a focus on the treatment of Candida-associated polymicrobial infections. This article explores the current literature on the interactions between Candida and clinically important bacteria and evaluates these interactions in the context of pathogenesis, diagnosis, and disease management.
Collapse
|
142
|
Physiological and Molecular Understanding of Bacterial Polysaccharide Monooxygenases. Microbiol Mol Biol Rev 2017; 81:81/3/e00015-17. [PMID: 28659491 DOI: 10.1128/mmbr.00015-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria have long been known to secrete enzymes that degrade cellulose and chitin. The degradation of these two polymers predominantly involves two enzyme families that work synergistically with one another: glycoside hydrolases (GHs) and polysaccharide monooxygenases (PMOs). Although bacterial PMOs are a relatively recent addition to the known biopolymer degradation machinery, there is an extensive amount of literature implicating PMO in numerous physiological roles. This review focuses on these diverse and physiological aspects of bacterial PMOs, including facilitating endosymbiosis, conferring a nutritional advantage, and enhancing virulence in pathogenic organisms. We also discuss the correlation between the presence of PMOs and bacterial lifestyle and speculate on the advantages conferred by PMOs under these conditions. In addition, the molecular aspects of bacterial PMOs, as well as the mechanisms regulating PMO expression and the function of additional domains associated with PMOs, are described. We anticipate that increasing research efforts in this field will continue to expand our understanding of the molecular and physiological roles of bacterial PMOs.
Collapse
|
143
|
Chen SCA, Patel S, Meyer W, Chapman B, Yu H, Byth K, Middleton PG, Nevalainen H, Sorrell TC. Pseudomonas aeruginosa Inhibits the Growth of Scedosporium and Lomentospora In Vitro. Mycopathologia 2017; 183:251-261. [PMID: 28512704 DOI: 10.1007/s11046-017-0140-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/05/2017] [Indexed: 12/27/2022]
Abstract
In vitro bacterial-fungal interaction studies in cystic fibrosis (CF) have mainly focused on interactions between bacteria and Candida. Here we investigated the effect of Pseudomonas aeruginosa on the growth of Scedosporium/Lomentospora spp. Standard suspensions of P. aeruginosa (16 non-mucoid and nine mucoid isolates) were dropped onto paper disks, placed on lawns of Lomentospora prolificans (formerly Scedosporium prolificans) strain WM 14.140 or Scedosporium aurantiacum strain WM 11.78 on solid agar. The median inhibitory activity (mIz) was calculated for each fungal-bacterial combination. As a group, mIz values for non-mucoid phenotype P. aeruginosa strains were significantly lower than those for mucoid strains (P < 0.001); 14/16 (87.5%) non-mucoid strains had mIz <1.0 against both fungi versus just 3/9 mucoid strains (33.4%) (P = 0.01). One non-mucoid (PA14) and one mucoid (CIDMLS-PA-28) P. aeruginosa strain effecting inhibition were selected for further studies. Inhibition of both L. prolificans and S. aurantiacum by these strains was confirmed using the XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide) reduction assay. Following incubation with XTT, inhibition of fungal growth was determined as the ratio of absorbance in liquid culture with Pseudomonas to that in control fungal cultures. An absorbance ratio of <1.0 consistent with bacterial inhibition of fungal growth was observed for all four P. aeruginosa-fungal combinations (P < 0.05). Fluorescence microscopy, subsequent to co-culture of either fungal isolate with P. aeruginosa strain PA14 or CIDMLS-PA-28 revealed poorly formed hyphae, compared with control fungal cultures. P. aeruginosa inhibits growth of L. prolificans and S. aurantiacum in vitro, with non-mucoid strains more commonly having an inhibitory effect. As P. aeruginosa undergoes phenotype transitions from non-mucoid to the mucoid form with progression of CF lung disease, this balance may influence the appearance of Scedosporium fungi in the airways.
Collapse
Affiliation(s)
- Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, 3rd Level, ICPMR Building, Westmead, NSW, 2145, Australia. .,Molecular Mycology Research Laboratory, Center for Infectious Diseases and Microbiology, Sydney Medical School-Westmead Hospital, University of Sydney, Westmead, NSW, Australia. .,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW, Australia.
| | - Shilpa Patel
- Molecular Mycology Research Laboratory, Center for Infectious Diseases and Microbiology, Sydney Medical School-Westmead Hospital, University of Sydney, Westmead, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW, Australia.,The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Center for Infectious Diseases and Microbiology, Sydney Medical School-Westmead Hospital, University of Sydney, Westmead, NSW, Australia
| | - Belinda Chapman
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, 3rd Level, ICPMR Building, Westmead, NSW, 2145, Australia.,The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Hong Yu
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, 3rd Level, ICPMR Building, Westmead, NSW, 2145, Australia
| | - Karen Byth
- Research and Education Network, University of Sydney, Westmead, NSW, Australia
| | - Peter G Middleton
- The Westmead Institute for Medical Research, Westmead, NSW, Australia.,Department of Respiratory and Sleep Medicine, Ludwig Engel Centre for Respiratory Research, Westmead Hospital, Westmead, NSW, Australia
| | - Helena Nevalainen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Tania C Sorrell
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, 3rd Level, ICPMR Building, Westmead, NSW, 2145, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW, Australia.,The Westmead Institute for Medical Research, Westmead, NSW, Australia
| |
Collapse
|
144
|
Pendleton KM, Huffnagle GB, Dickson RP. The significance of Candida in the human respiratory tract: our evolving understanding. Pathog Dis 2017; 75:3102948. [PMID: 28423168 DOI: 10.1093/femspd/ftx029] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/12/2017] [Indexed: 02/06/2023] Open
Abstract
Candida is an opportunistic pathogen and the most commonly isolated fungal genus in humans. Though Candida is often detected in respiratory specimens from humans with and without lung disease, its significance remains undetermined. While historically considered a commensal organism with low virulence potential, the status of Candida as an innocent bystander has recently been called into question by both clinical observations and animal experimentation. We here review what is currently known and yet to be determined about the clinical, microbiological and pathophysiological significance of the detection of Candida spp. in the human respiratory tract.
Collapse
Affiliation(s)
- Kathryn M Pendleton
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gary B Huffnagle
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert P Dickson
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
145
|
Graham CE, Cruz MR, Garsin DA, Lorenz MC. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. Proc Natl Acad Sci U S A 2017; 114:4507-4512. [PMID: 28396417 PMCID: PMC5410809 DOI: 10.1073/pnas.1620432114] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecalis, a Gram-positive bacterium, and Candida albicans, a fungus, occupy overlapping niches as ubiquitous constituents of the gastrointestinal and oral microbiome. Both species also are among the most important and problematic, opportunistic nosocomial pathogens. Surprisingly, these two species antagonize each other's virulence in both nematode infection and in vitro biofilm models. We report here the identification of the E. faecalis bacteriocin, EntV, produced from the entV (ef1097) locus, as both necessary and sufficient for the reduction of C. albicans virulence and biofilm formation through the inhibition of hyphal formation, a critical virulence trait. A synthetic version of the mature 68-aa peptide potently blocks biofilm development on solid substrates in multiple media conditions and disrupts preformed biofilms, which are resistant to current antifungal agents. EntV68 is protective in three fungal infection models at nanomolar or lower concentrations. First, nematodes treated with the peptide at 0.1 nM are completely resistant to killing by C. albicans The peptide also protects macrophages and augments their antifungal activity. Finally, EntV68 reduces epithelial invasion, inflammation, and fungal burden in a murine model of oropharyngeal candidiasis. In all three models, the peptide greatly reduces the number of fungal cells present in the hyphal form. Despite these profound effects, EntV68 has no effect on C. albicans viability, even in the presence of significant host-mimicking stresses. These findings demonstrate that EntV has potential as an antifungal agent that targets virulence rather than viability.
Collapse
Affiliation(s)
- Carrie E Graham
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030
| | - Melissa R Cruz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030
| | - Danielle A Garsin
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030;
- The University of Texas Center for Antimicrobial Resistance and Microbial Genomics, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030;
- The University of Texas Center for Antimicrobial Resistance and Microbial Genomics, The University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
146
|
Velmourougane K, Prasanna R, Saxena AK. Agriculturally important microbial biofilms: Present status and future prospects. J Basic Microbiol 2017; 57:548-573. [PMID: 28407275 DOI: 10.1002/jobm.201700046] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 11/07/2022]
Abstract
Microbial biofilms are a fascinating subject, due to their significant roles in the environment, industry, and health. Advances in biochemical and molecular techniques have helped in enhancing our understanding of biofilm structure and development. In the past, research on biofilms primarily focussed on health and industrial sectors; however, lately, biofilms in agriculture are gaining attention due to their immense potential in crop production, protection, and improvement. Biofilms play an important role in colonization of surfaces - soil, roots, or shoots of plants and enable proliferation in the desired niche, besides enhancing soil fertility. Although reports are available on microbial biofilms in general; scanty information is published on biofilm formation by agriculturally important microorganisms (bacteria, fungi, bacterial-fungal) and their interactions in the ecosystem. Better understanding of agriculturally important bacterial-fungal communities and their interactions can have several implications on climate change, soil quality, plant nutrition, plant protection, bioremediation, etc. Understanding the factors and genes involved in biofilm formation will help to develop more effective strategies for sustainable and environment-friendly agriculture. The present review brings together fundamental aspects of biofilms, in relation to their formation, regulatory mechanisms, genes involved, and their application in different fields, with special emphasis on agriculturally important microbial biofilms.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau Nath Bhanjan, Uttar Pradesh, India
| |
Collapse
|
147
|
Dirhamnolipids secreted from Pseudomonas aeruginosa modify anjpegungal susceptibility of Aspergillus fumigatus by inhibiting β1,3 glucan synthase activity. ISME JOURNAL 2017; 11:1578-1591. [PMID: 28338676 PMCID: PMC5584477 DOI: 10.1038/ismej.2017.32] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/05/2017] [Accepted: 01/22/2017] [Indexed: 12/16/2022]
Abstract
Pseudomonas aeruginosa and Aspergillus fumigatus are the two microorganisms responsible for most of the chronic infections in cystic fibrosis patients. P. aeruginosa is known to produce quorum-sensing controlled rhamnolipids during chronic infections. Here we show that the dirhamnolipids secreted from P. aeruginosa (i) induce A. fumigatus to produce an extracellular matrix, rich in galactosaminogalactan, 1,8-dihydroxynaphthalene (DHN)- and pyo-melanin, surrounding their hyphae, which facilitates P. aeruginosa binding and (ii) inhibit A. fumigatus growth by blocking β1,3 glucan synthase (GS) activity, thus altering the cell wall architecture. A. fumigatus in the presence of diRhls resulted in a growth phenotype similar to that upon its treatment with anjpegungal echinocandins, showing multibranched hyphae and thicker cell wall rich in chitin. The diRhl structure containing two rhamnose moieties attached to fatty acyl chain is essential for the interaction with β1,3 GS; however, the site of action of diRhls on GS is different from that of echinocandins, and showed synergistic anjpegungal effect with azoles.
Collapse
|
148
|
Wang D, Xu A, Elmerich C, Ma LZ. Biofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditions. ISME JOURNAL 2017; 11:1602-1613. [PMID: 28338674 DOI: 10.1038/ismej.2017.30] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/26/2016] [Accepted: 01/22/2017] [Indexed: 12/14/2022]
Abstract
The multicellular communities of microorganisms known as biofilms are of high significance in agricultural setting, yet it is largely unknown about the biofilm formed by nitrogen-fixing bacteria. Here we report the biofilm formation by Pseudomonas stutzeri A1501, a free-living rhizospheric bacterium, capable of fixing nitrogen under microaerobic and nitrogen-limiting conditions. P. stutzeri A1501 tended to form biofilm in minimal media, especially under nitrogen depletion condition. Under such growth condition, the biofilms formed at the air-liquid interface (termed as pellicles) and the colony biofilms on agar plates exhibited nitrogenase activity in air. The two kinds of biofilms both contained large ovoid shape 'cells' that were multiple living bacteria embedded in a sac of extracellular polymeric substances (EPSs). We proposed to name such large 'cells' as A1501 cyst. Our results suggest that the EPS, especially exopolysaccharides enabled the encased bacteria to fix nitrogen while grown under aerobic condition. The formation of A1501 cysts was reversible in response to the changes of carbon or nitrogen source status. A1501 cyst formation depended on nitrogen-limiting signaling and the presence of sufficient carbon sources, yet was independent of an active nitrogenase. The pellicles formed by Azospirillum brasilense, another free-living nitrogen-fixing rhizobacterium, which also exhibited nitrogenase activity and contained the large EPS-encapsuled A1501 cyst-like 'cells'. Our data imply that free-living nitrogen-fixing bacteria could convert the easy-used carbon sources to exopolysaccharides in order to enable nitrogen fixation in a natural aerobic environment.
Collapse
Affiliation(s)
- Di Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Anming Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Luyan Z Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
149
|
Seghir A, Boucherit-Otmani Z, Sari-Belkharroubi L, Boucherit K. Risque infectieux lié à la formation des biofilms multi-espèces ( Candida – bactéries) sur cathéters vasculaires périphériques. J Mycol Med 2017; 27:20-27. [DOI: 10.1016/j.mycmed.2016.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/30/2016] [Accepted: 10/30/2016] [Indexed: 10/20/2022]
|
150
|
Quorum sensing by farnesol revisited. Curr Genet 2017; 63:791-797. [DOI: 10.1007/s00294-017-0683-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 12/18/2022]
|