101
|
Li P, Sayer EJ, Jia Z, Liu W, Wu Y, Yang S, Wang C, Yang L, Chen D, Bai Y, Liu L. Deepened winter snow cover enhances net ecosystem exchange and stabilizes plant community composition and productivity in a temperate grassland. GLOBAL CHANGE BIOLOGY 2020; 26:3015-3027. [PMID: 32107822 DOI: 10.1111/gcb.15051] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Global warming has greatly altered winter snowfall patterns, and there is a trend towards increasing winter snow in semi-arid regions in China. Winter snowfall is an important source of water during early spring in these water-limited ecosystems, and it can also affect nutrient supply. However, we know little about how changes in winter snowfall will affect ecosystem productivity and plant community structure during the growing season. Here, we conducted a 5-year winter snow manipulation experiment in a temperate grassland in Inner Mongolia. We measured ecosystem carbon flux from 2014 to 2018 and plant biomass and species composition from 2015 to 2018. We found that soil moisture increased under deepened winter snow in early growing season, particularly in deeper soil layers. Deepened snow increased the net ecosystem exchange of CO2 (NEE) and reduced intra- and inter-annual variation in NEE. Deepened snow did not affect aboveground plant biomass (AGB) but significantly increased root biomass. This suggested that the enhanced NEE was allocated to the belowground, which improved water acquisition and thus contributed to greater stability in NEE in deep-snow plots. Interestingly, the AGB of grasses in the control plots declined over time, resulting in a shift towards a forb-dominated system. Similar declines in grass AGB were also observed at three other locations in the region over the same time frame and are attributed to 4 years of below-average precipitation during the growing season. By contrast, grass AGB was stabilized under deepened winter snow and plant community composition remained unchanged. Hence, our study demonstrates that increased winter snowfall may stabilize arid grassland systems by reducing resource competition, promoting coexistence between plant functional groups, which ultimately mitigates the impacts of chronic drought during the growing season.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Emma J Sayer
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Zhou Jia
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weixing Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuntao Wu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sen Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengzhang Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dima Chen
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, China
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
102
|
Prather RM, Castillioni K, Welti EAR, Kaspari M, Souza L. Abiotic factors and plant biomass, not plant diversity, strongly shape grassland arthropods under drought conditions. Ecology 2020; 101:e03033. [PMID: 32112407 DOI: 10.1002/ecy.3033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/30/2020] [Accepted: 02/24/2020] [Indexed: 11/07/2022]
Abstract
Arthropod abundance and diversity often track plant biomass and diversity at the local scale. However, under altered precipitation regimes and anthropogenic disturbances, plant-arthropod relationships are expected to be increasingly controlled by abiotic, rather than biotic, factors. We used an experimental precipitation gradient combined with human management in a temperate mixed-grass prairie to examine (1) how two drivers, altered precipitation and biomass removal, can synergistically affect abiotic factors and plant communities and (2) how these effects can cascade upward, impacting the arthropod food web. Both drought and hay harvest increased soil surface temperature, and drought decreased soil moisture. Arthropod abundance decreased with low soil moisture and, contrary to our predictions, decreased with increased plant biomass. Arthropod diversity increased with soil moisture, decreased with high surface temperatures, and tracked arthropod abundance but was unaffected by plant diversity or quality. Our experiment demonstrates that arthropod abundance is directly constrained by abiotic factors and plant biomass, in turn constraining local arthropod diversity. If robust, this result suggests climate change in the southern Great Plains may directly reduce arthropod diversity.
Collapse
Affiliation(s)
- Rebecca M Prather
- Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Karen Castillioni
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Ellen A R Welti
- Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Michael Kaspari
- Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Lara Souza
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| |
Collapse
|
103
|
Host-microbiota interaction helps to explain the bottom-up effects of climate change on a small rodent species. ISME JOURNAL 2020; 14:1795-1808. [PMID: 32313262 PMCID: PMC7305154 DOI: 10.1038/s41396-020-0646-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 01/02/2023]
Abstract
The population cycles of small rodents have puzzled biologists for centuries. There is a growing recognition of the cascading effects of climate change on the population dynamics of rodents. However, the ultimate cause for the bottom-up effects of precipitation is poorly understood, from a microbial perspective. Here, we conducted a precipitation manipulation experiment in the field, and three feeding trials with controlled diets in the laboratory. We found precipitation supplementation facilitated the recovery of a perennial rhizomatous grass (Leymus chinensis) species, which altered the diet composition and increase the intake of fructose and fructooligosaccharides for Brandt’s vole. Lab results showed that this nutrient shift was accompanied by the modulation of gut microbiota composition and functional pathways (especially for the degradation or biosynthesis of L-histidine). Particularly, the relative abundance of Eubacterium hallii was consistently increased after feeding voles with more L. chinensis, fructose or fructooligosaccharide. These modulations ultimately increased the production of short chain fatty acids (SCFAs) and boosted the growth of vole. This study provides evidence that the precipitation pulses cascades through the plant community to affect rodent gut microbiome. Our results highlight the importance of considering host-microbiota interaction when investigating rodent population responses to climate change.
Collapse
|
104
|
Comparative drought resistance of temperate grassland species: testing performance trade-offs and the relation to distribution. Oecologia 2020; 192:1023-1036. [PMID: 32114638 PMCID: PMC7165153 DOI: 10.1007/s00442-020-04625-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/13/2020] [Indexed: 11/04/2022]
Abstract
To improve projections of consequences of increasing intensity and frequency of drought events for grasslands, we need a thorough understanding of species performance responses to drought, of performance trade-offs and how drought resistance is related to species distributions. However, comparative and quantitative assessments of whole-plant drought resistance that allow to rigorously address these aspects are lacking for temperate grassland species. We conducted a common garden experiment with 40 common temperate grassland species to compare species survival and growth under intense drought and well-irrigated conditions. Overall, survival and growth were significantly reduced under drought, with the effect varying across species. Species ranking of drought damage and survival remained consistent with progressing drought. No performance trade-offs emerged between optimal growth and drought resistance of survival (‘growth–stress tolerance’ trade-off hypothesis), or between growth under well-watered and dry conditions (‘growth rates’ trade-off hypothesis). Species local- and large-scale association with moisture (Ellenberg F value and rainfall niche) was not related to their drought resistance. Overall, our results imply that trade-offs and differences of species fundamental drought resistance are not the main drivers of hydrological niche differentiation, species coexistence and their distribution across moisture gradients. The comparative experimental assessment of species whole-plant drought responses we present provides a basis to increase our understanding of current grassland responses to variation of moisture regimes and for projecting consequences of future changes.
Collapse
|
105
|
Wilsey B. Restoration in the face of changing climate: importance of persistence, priority effects, and species diversity. Restor Ecol 2020. [DOI: 10.1111/rec.13132] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Brian Wilsey
- Department of Ecology, Evolution, and Organismal Biology Iowa State University 251 Bessey Hall, Ames IA 50011 U.S.A
| |
Collapse
|
106
|
Gong YH, Zhao DM, Ke WB, Fang C, Pei JY, Sun GJ, Ye JS. Legacy effects of precipitation amount and frequency on the aboveground plant biomass of a semi-arid grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135899. [PMID: 31864167 DOI: 10.1016/j.scitotenv.2019.135899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Precipitation is known to have legacy effects on plant diversity and production of many terrestrial ecosystems. Precipitation regimes are expected to become more variable with increasing extreme precipitation events. However, how previous-year precipitation regimes affect the current-year aboveground biomass (AGB) remains largely unknown. Here we measured long-term (2004-2017) AGB in a semi-arid grassland of the Chinese Loess Plateau to evaluate the impact of previous-year precipitation amount on current-year AGB. Furthermore, to assess the response of current-year AGB to previous-year precipitation regimes, we conducted a field manipulation experiment that included three precipitation regimes during 2014-2017: (i) ambient precipitation, (ii) monthly added four 5 mm rain events, and (iii) monthly added one 20 mm event. Both the long-term (2004-2017) observations under ambient precipitation and short-term (2014-2017) measurements under manipulative treatments showed significant positive effects of previous-year precipitation on current-year AGB. Our path analysis suggested that previous-year precipitation frequency had negative effects on the current-year density and mean height of grass (Leymus secalinus) while had positive effects on forb (Artemisia capillaris). The forb had much smaller height and AGB (65% and 53% less, respectively) than the grass. Consequently, the AGB reduced in the weekly small events treatment, causing the sensitivity of AGB to precipitation to decrease. Therefore, our findings indicated that the impacts of precipitation regimes on plant community dynamics should be taken into consideration while assessing the precipitation legacy effect on ecosystem production.
Collapse
Affiliation(s)
- Yan-Hong Gong
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Dong-Min Zhao
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Wen-Bin Ke
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Chao Fang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China; PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Jiu-Ying Pei
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Guo-Jun Sun
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Jian-Sheng Ye
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China.
| |
Collapse
|
107
|
CAM plant expansion favored indirectly by asymmetric climate warming and increased rainfall variability. Oecologia 2020; 193:1-13. [PMID: 32076818 DOI: 10.1007/s00442-020-04624-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/11/2020] [Indexed: 10/25/2022]
Abstract
Recent observational evidence suggests that nighttime temperatures are increasing faster than daytime temperatures, while in some regions precipitation events are becoming less frequent and more intense. The combined ecological impacts of these climatic changes on crassulacean acid metabolism (CAM) plants and their interactions with other functional groups (i.e., grass communities) remain poorly understood. Here we developed a growth chamber experiment to investigate how two CAM-grass communities in desert ecosystems of the southwestern United States and northern Mexico respond to asymmetric warming and increasing rainfall variability. Grasses generally showed competitive advantages over CAM plants with increasing rainfall variability under ambient temperature conditions. In contrast, asymmetric warming caused mortality of both grass species (Bouteloua eriopoda and Bouteloua curtipendula) in both rainfall treatments due to enhanced drought stress. Grass mortality indirectly favored CAM plants even though the biomass of both CAM species Cylindropuntia imbricata and Opuntia phaeacantha significantly decreased. The stem's volume-to-surface ratio of C. imbricata was significantly higher in mixture than in monoculture under ambient temperature (both P < 0.0014); however, the difference became insignificant under asymmetric warming (both P > 0.1625), suggesting that warming weakens the negative effects of interspecific competition on CAM plant growth. Our findings suggest that while the increase in intra-annual rainfall variability enhances grass productivity, asymmetric warming may lead to grass mortality, thereby indirectly favoring the expansion of co-existing CAM plants. This study provides novel experimental evidence showing how the ongoing changes in global warming and rainfall variability affect CAM-grass growth and interactions in dryland ecosystems.
Collapse
|
108
|
Wu J, Wu H, Ding Y, Qin J, Li H, Liu S, Zeng D. Interannual and seasonal variations in carbon exchanges over an alpine meadow in the northeastern edge of the Qinghai-Tibet Plateau, China. PLoS One 2020; 15:e0228470. [PMID: 32045420 PMCID: PMC7012402 DOI: 10.1371/journal.pone.0228470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/15/2020] [Indexed: 11/18/2022] Open
Abstract
The alpine meadow is highly sensitive to global climate change due to its high elevation and cold environment. To understand the dynamics of ecosystem carbon cycling, CO2 fluxes were measured over the Suli alpine meadow, which is located at the upper reach of the Shule River basin at the northeastern edge of the Qinghai-Tibet Plateau (QTP), China. The measurements were taken from October 2008 to September 2012 using the eddy covariance technique. Obvious seasonal and inter-annual variations were observed in the CO2 flux. The annual net carbon exchange ranged from -195.28 g·CO2·m-2 to -118.49 g·CO2·m-2, indicating that the alpine meadow ecosystem in this area played a role as a carbon sink. The inter-annual variability in the net carbon exchange was significantly related to the length of the growing season for the alpine meadow. The results showed that the months of June, July and August were the strongest CO2 absorption periods, while April, May and October were the strongest CO2 release periods. The annual net exchanges of CO2 in the four years were -118.49 g·CO2·m-2, -130.75 g·CO2·m-2, -195.83 g·CO2·m-2 and -160.65 g·CO2·m-2, and the average value was -151.43 g·CO2·m-2. On a seasonal scale, the monthly CO2 fluxes were largely controlled by temperature. At the annual scale, there was no dominant factor that influenced the interannual variations in the CO2 flux.
Collapse
Affiliation(s)
- Jinkui Wu
- Key Laboratory of Ecological Hydrology and Basin Sciences in Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Hao Wu
- College of hydraulic science and engineering, Yangzhou University, Yangzhou, China
- * E-mail:
| | - Yongjian Ding
- Key Laboratory of Ecological Hydrology and Basin Sciences in Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Jia Qin
- Key Laboratory of Ecological Hydrology and Basin Sciences in Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Hongyuan Li
- Key Laboratory of Ecological Hydrology and Basin Sciences in Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Shiwei Liu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Di Zeng
- Key Laboratory of Ecological Hydrology and Basin Sciences in Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
109
|
Jia Y, Shi Z, Chen Z, Walder F, Tian C, Feng G. Soil moisture threshold in controlling above- and belowground community stability in a temperate desert of Central Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134650. [PMID: 31731166 DOI: 10.1016/j.scitotenv.2019.134650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Terrestrial ecosystems are composed of above- and belowground community, which have been researched separately for many years even though the two subsystems clearly interact with each other. And it is still less understood how the above- and belowground ecosystems co-response to the changing precipitation in this changing world. To understand the interdependence and co-responses of plant-arbuscular mycorrhizal (AM) fungi symbioses to this facet of climate change, we examined the plant and AM fungal diversity and abundance along both, a transect from east to west of the desert which exhibits an annual precipitation gradient and a topographical transect of a typical sand dune which exhibits a gradient of soil moisture but equal precipitation, in a temperate desert in Central Asia. The results showed that community structure and biomass of plants and AM fungi along both transects were positively correlated and related to either precipitation or soil moisture, strongly support the Habitat Hypothesis. We found a soil moisture threshold between 0.64% and 0.86%, below which the variability of plant coverage, plant species richness, spore density and Shannon-wiener diversity index of both plant and AM fungal communities increased sharply yielding in an average threshold of 0.73% for the stability of plant-AMF symbioses. Our results highlight that increasing precipitation contributes to above- and belowground, and particularly to the overall AM-symbiotic stability in a desert ecosystem. This emphasizes the susceptibility and the importance plant-AMF symbioses for ecosystem stability to climate changes across different scales.
Collapse
Affiliation(s)
- Yangyang Jia
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaoyong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang 471003, China
| | - Zhichao Chen
- Henan Polytechnic University, Jiaozuo 454003, China
| | - Florian Walder
- Plant-Soil-Interactions, Research Division Agroecology and Environment, Agroscope, Zurich 8046, Switzerland
| | - Changyan Tian
- Xinjiang Institute Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Gu Feng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
110
|
Li M, Zhang X, He Y, Niu B, Wu J. Assessment of the vulnerability of alpine grasslands on the Qinghai-Tibetan Plateau. PeerJ 2020; 8:e8513. [PMID: 32071818 PMCID: PMC7007972 DOI: 10.7717/peerj.8513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/04/2020] [Indexed: 01/19/2023] Open
Abstract
Assessing ecosystem vulnerability to climate change is critical for sustainable and adaptive ecosystem management. Alpine grasslands on the Qinghai-Tibetan Plateau are considered to be vulnerable to climate change, yet the ecosystem tends to maintain stability by increasing resilience and decreasing sensitivity. To date, the spatial pattern of grassland vulnerability to climate change and the mechanisms that vegetation applies to mitigate the impacts of climate change on grasslands by altering relevant ecosystem characteristics, especially sensitivity and resilience, remain unknown. In this study, we first assessed the spatial pattern of grassland vulnerability to climate change by integrating exposure, sensitivity, and resilience simultaneously, and then identified its driving forces. The results show that grasslands with high vulnerability were mainly located on the edges of the plateau, whereas alpine grasslands in the hinterlands of the plateau showed a low vulnerability. This spatial pattern of alpine grassland vulnerability was controlled by climatic exposure, and grassland sensitivity and resilience to climate change might also exacerbate or alleviate the degree of vulnerability. Climate change had variable impacts on different grassland types. Desert steppes were more vulnerable to climate change than alpine meadows and alpine steppes because of the high variability in environmental factors and their low ability to recover from perturbations. Our findings also confirm that grazing intensity, a quantitative index of the most important human disturbance on alpine grasslands in this plateau, was significantly correlated with ecosystem vulnerability. Moderate grazing intensity was of benefit for increasing grassland resilience and then subsequently reducing grassland vulnerability. Thus, this study suggests that future assessments of ecosystem vulnerability should not ignore anthropogenic disturbances, which might benefit environmental protection and sustainable management of grasslands on the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Meng Li
- Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Science, Beijing, China
| | - Xianzhou Zhang
- Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yongtao He
- Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ben Niu
- Lhasa National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jianshuang Wu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
111
|
Felton AJ, Slette IJ, Smith MD, Knapp AK. Precipitation amount and event size interact to reduce ecosystem functioning during dry years in a mesic grassland. GLOBAL CHANGE BIOLOGY 2020; 26:658-668. [PMID: 31386797 DOI: 10.1111/gcb.14789] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Ongoing intensification of the hydrological cycle is altering rainfall regimes by increasing the frequency of extreme wet and dry years and the size of individual rainfall events. Despite long-standing recognition of the importance of precipitation amount and variability for most terrestrial ecosystem processes, we lack understanding of their interactive effects on ecosystem functioning. We quantified this interaction in native grassland by experimentally eliminating temporal variability in growing season rainfall over a wide range of precipitation amounts, from extreme wet to dry conditions. We contrasted the rain use efficiency (RUE) of above-ground net primary productivity (ANPP) under conditions of experimentally reduced versus naturally high rainfall variability using a 32-year precipitation-ANPP dataset from the same site as our experiment. We found that increased growing season rainfall variability can reduce RUE and thus ecosystem functioning by as much as 42% during dry years, but that such impacts weaken as years become wetter. During low precipitation years, RUE is lowest when rainfall event sizes are relatively large, and when a larger proportion of total rainfall is derived from large events. Thus, a shift towards precipitation regimes dominated by fewer but larger rainfall events, already documented over much of the globe, can be expected to reduce the functioning of mesic ecosystems primarily during drought, when ecosystem processes are already compromised by low water availability.
Collapse
Affiliation(s)
- Andrew J Felton
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
- Department of Wildland Resources and The Ecology Center, Utah State University, Logan, UT, USA
| | - Ingrid J Slette
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Melinda D Smith
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Alan K Knapp
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
112
|
Mainland and island populations of Mussaenda kwangtungensis differ in their phyllosphere fungal community composition and network structure. Sci Rep 2020; 10:952. [PMID: 31969602 PMCID: PMC6976661 DOI: 10.1038/s41598-020-57622-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/03/2020] [Indexed: 01/12/2023] Open
Abstract
We compared community composition and co-occurrence patterns of phyllosphere fungi between island and mainland populations within a single plant species (Mussaenda kwangtungensis) using high-throughput sequencing technology. We then used 11 microsatellite loci for host genotyping. The island populations differed significantly from their mainland counterparts in phyllosphere fungal community structure. Topological features of co-occurrence network showed geographic patterns wherein fungal assemblages were less complex, but more modular in island regions than mainland ones. Moreover, fungal interactions and community composition were strongly influenced by the genetic differentiation of host plants. This study may advance our understanding of assembly principles and ecological interactions of phyllosphere fungal communities, as well as improve our ability to optimize fungal utilization for the benefit of people.
Collapse
|
113
|
García-Romero L, Hesp PA, Peña-Alonso C, Miot da Silva G, Hernández-Calvento L. Climate as a control on foredune mode in Southern Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133768. [PMID: 31756793 DOI: 10.1016/j.scitotenv.2019.133768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/02/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Foredunes are formed by aeolian sand deposition in vegetation on the backshore of beaches. In this paper, the foredune mode (nebkha, discontinuous foredune, and continuous foredune), and transgressive dunefield development is studied along the Great Australian Bight (GAB), 2668 km of coastline. Orthophotos are used to classify the foredune mode, coastal landforms and the vegetation, through geographic information systems (GIS), with fieldwork support. The results show that the foredune mode is strongly controlled by rainfall and temperature with respect to latitude, and to drift potential with respect to longitude across the GAB. Between 200 and 300 mm annual rainfall, nebkha predominate. When the annual rainfall is between 300 and 400, at latitude 32°, a clear pattern is not observed in foredune mode and this is identified as a transition zone. Discontinuous foredunes and continuous foredunes are strongly represented in regions experiencing above 400 mm annual rainfall. The main contribution of this study is the identification of foredune modes which are not only related to a climatic gradient and latitude, but also related to variations in longitude, vegetation cover and diversity, and dune mobility indices. Finally, there are other environmental relationships between the wind and longitude, where the geomorphology of the bay could be playing an important role.
Collapse
Affiliation(s)
- Leví García-Romero
- Grupo de Geografía Física y Medio Ambiente, Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Unidad Asociada ULPGC-CSIC, Spain.
| | - Patrick A Hesp
- Beach and Dune Systems (BEADS) Laboratory, College of Science and Engineering, Flinders University, South Australia, Australia.
| | - Carolina Peña-Alonso
- Grupo de Geografía Física y Medio Ambiente, Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Unidad Asociada ULPGC-CSIC, Spain.
| | - Graziela Miot da Silva
- Beach and Dune Systems (BEADS) Laboratory, College of Science and Engineering, Flinders University, South Australia, Australia.
| | - Luis Hernández-Calvento
- Grupo de Geografía Física y Medio Ambiente, Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Unidad Asociada ULPGC-CSIC, Spain.
| |
Collapse
|
114
|
Wang Y, Li X, Liu L, Zhao J, Sun J. Life history response of Echinops gmelinii Turcz. to variation in the rainfall pattern in a temperate desert. PeerJ 2019; 7:e8159. [PMID: 31803540 PMCID: PMC6886482 DOI: 10.7717/peerj.8159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/04/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Current and future changes in rainfall amount and frequency may particularly impact annual plants in desert ecosystems. The winter annual Echinops gmelinii Turcz. is widely distributed in the desert habitats of northern China and is a dominant pioneer annual plant following sand stabilization in the Tengger Desert. This species plays a vital role in dune stabilization during spring and early summer, when wind erosion is the most severe and frequent. However, seedling emergence and regeneration in sandy soil are mainly determined by rainfall patterns. Therefore, understanding the life history response of this species to rainfall variation is necessary for understanding the change of population dynamics under the future climate change. METHODS A field simulation rainfall pot experiment using rainout shelter was conducted that included five amounts and five frequencies of rainfall based on historical and predicted values to monitor the life history responses of E. gmelinii in a near-natural habitat. RESULTS We found that rainfall amount and frequency significantly affected seedling survival, growth and reproduction. The plant height, biomass, capitula number, seed number, seed mass and reproductive effort, but not the root/shoot ratio, significantly increased with increasing rainfall. Further, these traits exhibited the greatest response to low-frequency and larger rainfall events, especially the optimal rainfall frequency of 10-day intervals. Offspring seed germination showed increasing trends with decreasing rainfall, suggesting that the maternal effects may have occurred. CONCLUSIONS Our study shows that the plasticity in growth and reproduction of E. gmelinii in response to rainfall variations may help it to gain dominance in the harsh and unpredictable desert environment. Furthermore, population development of this winter annual species should be promoted under the likely future scenarios of large rainfall events and increasing cool-season precipitation in temperate desert.
Collapse
Affiliation(s)
- Yanli Wang
- Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinrong Li
- Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Lichao Liu
- Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Jiecai Zhao
- Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Jingyao Sun
- Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
115
|
Peyre G, Balslev H, Font X, Tello JS. Fine-Scale Plant Richness Mapping of the Andean Páramo According to Macroclimate. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
116
|
Maitra P, Zheng Y, Chen L, Wang YL, Ji NN, Lü PP, Gan HY, Li XC, Sun X, Zhou XH, Guo LD. Effect of drought and season on arbuscular mycorrhizal fungi in a subtropical secondary forest. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
117
|
Zhong M, Song J, Zhou Z, Ru J, Zheng M, Li Y, Hui D, Wan S. Asymmetric responses of plant community structure and composition to precipitation variabilities in a semi-arid steppe. Oecologia 2019; 191:697-708. [PMID: 31578614 DOI: 10.1007/s00442-019-04520-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
Changing precipitation regimes can profoundly affect plant growth in terrestrial ecosystems, especially in arid and semi-arid regions. However, how changing precipitation, especially extreme precipitation events, alters plant diversity and community composition is still poorly understood. A 3-year field manipulative experiment with seven precipitation treatments, including - 60%, - 40%, - 20%, 0% (as a control), + 20%, + 40%, and + 60% of ambient growing-season precipitation, was conducted in a semi-arid steppe in the Mongolian Plateau. Results showed total plant community cover and forb cover were enhanced with increased precipitation and reduced under decreased precipitation, whereas grass cover was suppressed under the - 60% treatment only. Plant community and grass species richness were reduced by the - 60% treatment only. Moreover, our results demonstrated that total plant community cover was more sensitive to decreased than increased precipitation under normal and extreme precipitation change, and species richness was more sensitive to decreased than increased precipitation under extreme precipitation change. The community composition and low field water holding capacity may drive this asymmetric response. Accumulated changes in community cover may eventually lead to changes in species richness. However, compared to control, Shannon-Weiner index (H) did not respond to any precipitation treatment, and Pielou's evenness index (E) was reduced under the + 60% treatment across the 3 year, but not in each year. Thus, the findings suggest that plant biodiversity in the semi-arid steppe may have a strong resistance to precipitation pattern changes through adjusting its composition in a short term.
Collapse
Affiliation(s)
- Mingxing Zhong
- International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jian Song
- College of Life Science, Hebei University, Baoding, 071002, Hebei, China
| | - Zhenxing Zhou
- International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jingyi Ru
- International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Mengmei Zheng
- International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Ying Li
- International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Shiqiang Wan
- International Joint Research Laboratory for Global Change Ecology, College of Life Sciences, Henan University, Kaifeng, 475004, Henan, China. .,College of Life Science, Hebei University, Baoding, 071002, Hebei, China.
| |
Collapse
|
118
|
Wang Y, Sun J, Liu M, Zeng T, Tsunekawa A, Mubarak AA, Zhou H. Precipitation-use efficiency may explain net primary productivity allocation under different precipitation conditions across global grassland ecosystems. Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
119
|
Grazing Affects the Ecological Stoichiometry of the Plant–Soil–Microbe System on the Hulunber Steppe, China. SUSTAINABILITY 2019. [DOI: 10.3390/su11195226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Grazing affects nutrient cycling processes in grasslands, but little is known by researchers about effects on the nutrient stoichiometry of plant–soil–microbe systems. In this study, the influence of grazing intensity (0, 0.23, 0.34, 0.46, 0.69, and 0.92 AU ha−1) on carbon (C), nitrogen (N) and phosphorus (P) and their stoichiometric ratios in plants, soil, and microbes was investigated in a Hulunber meadow steppe, Northeastern China. The C:N and C:P ratios of shoots decreased with grazing increased. Leaf N:P ratios <10 suggested that the plant communities under grazing were N-limited. Heavy grazing intensities increased the C:N and C:P ratios of microbial biomass, but grazing intensity had no significant effects on the stoichiometry of soil nutrients. The coupling relationship of C:N ratio in plant–soil–microbial systems was tightly significant compared to C:P ratio and N:P ratio according to the correlation results. The finding suggested grazing exacerbated the competition between plants and microorganisms for N and P nutrition by the stoichiometric changes (%) in each grazing level relative to the no grazing treatment. Therefore, for the sustainability of grasslands in Inner Mongolia, N inputs need to be increased and high grazing intensities reduced in meadow steppe ecosystems, and the grazing load should be controlled within G0.46.
Collapse
|
120
|
Padilla FM, Mommer L, de Caluwe H, Smit-Tiekstra AE, Visser EJW, de Kroon H. Effects of extreme rainfall events are independent of plant species richness in an experimental grassland community. Oecologia 2019; 191:177-190. [PMID: 31401664 PMCID: PMC6732129 DOI: 10.1007/s00442-019-04476-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 07/22/2019] [Indexed: 11/23/2022]
Abstract
Global climate models predict more frequent periods of drought stress alternated by heavier, but fewer rainfall events in the future. Biodiversity studies have shown that such changed drought stress may be mitigated by plant species richness. Here, we investigate if grassland communities, differing in species richness, respond differently to climatic extremes within the growing season. In a 3-year outdoor mesocosm experiment, four grassland species in both monoculture and mixture were subjected to a rainfall distribution regime with two levels: periods of severe drought in the summer intermitted by extreme rainfall events versus regular rainfall over time. Both treatments received the same amount of water over the season. Extreme rainfall combined with drought periods resulted in a 15% decrease in aboveground biomass in the second and third year, compared to the regular rainfall regime. Root biomass was also reduced in the extreme rainfall treatment, particularly in the top soil layer (- 40%). All species developed higher water use efficiencies (less negative leaf δ13C) in extreme rainfall than in regular rainfall. These responses to the rainfall/drought treatment were independent of species richness, although the mixtures were on an average more productive in terms of biomass than the monocultures. Our experimental results suggest that mixtures are similarly able to buffer these within-season rainfall extremes than monocultures, which contrasts with findings in the studies on natural droughts. Our work demonstrates the importance of investigating the interactions between rainfall distribution and drought periods for understanding effects of climate change on plant community performance.
Collapse
Affiliation(s)
- Francisco M Padilla
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, PO Box 9010, 6500 GL, Nijmegen, The Netherlands
- Department of Agronomy, University of Almería, La Cañada, 04120, Almería, Spain
| | - Liesje Mommer
- Plant Ecology and Nature Conservation Group, Wageningen University, P.O. box 47, 6700 AA, Wageningen, The Netherlands
| | - Hannie de Caluwe
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, PO Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Annemiek E Smit-Tiekstra
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, PO Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Eric J W Visser
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, PO Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Hans de Kroon
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, PO Box 9010, 6500 GL, Nijmegen, The Netherlands.
| |
Collapse
|
121
|
Zakharova L, Meyer K, Seifan M. Trait-based modelling in ecology: A review of two decades of research. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
122
|
Zhang B, Cadotte MW, Chen S, Tan X, You C, Ren T, Chen M, Wang S, Li W, Chu C, Jiang L, Bai Y, Huang J, Han X. Plants alter their vertical root distribution rather than biomass allocation in response to changing precipitation. Ecology 2019; 100:e02828. [PMID: 31323118 DOI: 10.1002/ecy.2828] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/25/2019] [Indexed: 11/07/2022]
Abstract
Elucidating the variation of allocation pattern of ecosystem net primary productivity (NPP) and its underlying mechanisms is critically important for understanding the changes of aboveground and belowground ecosystem functions. Under optimal partitioning theory, plants should allocate more NPP to the organ that acquires the most limiting resource, and this expectation has been widely used to explain and predict NPP allocation under changing precipitation. However, confirmatory evidence for this theory has mostly come from observed spatial variation in the relationship between precipitation and NPP allocation across ecosystems, rather than directly from the influences of changing precipitation on NPP allocation within systems. We performed a 6-yr five-level precipitation manipulation experiment in a semiarid steppe to test whether changes in NPP allocation can be explained by the optimal partitioning theory, and how water requirement of plant community is maintained if NPP allocation is unaltered. The 30 precipitation levels (5 levels × 6 yr) were divided into dry, nominal, and wet precipitation ranges, relative to historical precipitation variation over the past six decades. We found that NPP in both aboveground (ANPP) and belowground (BNPP) increased nonlinearly as precipitation increased, while the allocation of NPP to BNPP (fBNPP ) showed a concave quadratic relationship with precipitation. The declined fBNPP as precipitation increased in the dry range supported the optimal partitioning theory. However, in the nominal range, NPP allocation was not influenced by the changed precipitation; instead, BNPP was distributed more in the surface soil horizon (0-10 cm) as precipitation increased, and conversely more in the deeper soil layers (10-30 cm) as precipitation decreased. This response in root foraging appears to be a strategy to satisfy plant water requirements and partially explains the stable NPP allocation patterns. Overall, our results suggest that plants can adjust their vertical BNPP distribution in response to drought stress, and that only under extreme drought does the optimal partitioning theory strictly apply, highlighting the context dependency of the adaption and growth of plants under changing precipitation.
Collapse
Affiliation(s)
- Bingwei Zhang
- Department of Ecology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.,State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Shiping Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingru Tan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cuihai You
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingting Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minling Chen
- College of Chinese Language and Culture, Jinan University, Guangzhou, 510610, China
| | - Shanshan Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Weijing Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chengjin Chu
- Department of Ecology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhui Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
123
|
Vitra A, Deléglise C, Meisser M, Risch AC, Signarbieux C, Lamacque L, Delzon S, Buttler A, Mariotte P. Responses of plant leaf economic and hydraulic traits mediate the effects of early- and late-season drought on grassland productivity. AOB PLANTS 2019; 11:plz023. [PMID: 31065332 PMCID: PMC6499892 DOI: 10.1093/aobpla/plz023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Drought can occur at different times during the grassland growing season, likely having contrasting effects on forage production when happening early or later in the season. However, knowledge about the interacting effects of the timing of drought and the development stage of the vegetation during the growing season is still scarce, thus limiting our ability to accurately predict forage quantity losses. To investigate plant community responses to drought seasonality (early- vs. late-season), we established a drought experiment in two permanent grasslands of the Swiss Jura Mountains that are used for forage production. We measured three plant functional traits, including two leaf traits related to plant economics (specific leaf area, SLA; leaf dry matter content, LDMC) and one hydraulic trait related to physiological function (predicted percentage loss of hydraulic conductance, PLCp), of the most abundant species, and plant above-ground biomass production. Plant species composition was also determined to calculate community-weighted mean (CWM) traits. First, we observed that CWM trait values strongly varied during the growing season. Second, we found that late-season drought had stronger effects on CWM trait values than early-season drought and that the plant hydraulic trait was the most variable functional trait. Using a structural equation model, we also showed that reduction in soil moisture had no direct impacts on above-ground biomass production. Instead, we observed that the drought-induced decrease in above-ground biomass production was mediated by a higher CWM PLCp (i.e. higher risk of hydraulic failure) and lower CWM SLA under drought. Change in CWM SLA in response to drought was the best predictor of community above-ground biomass production. Our findings reveal the importance of drought timing together with the plant trait responses to assess drought impacts on grassland biomass production and suggest that incorporating these factors into mechanistic models could considerably improve predictions of climate change impacts.
Collapse
Affiliation(s)
- Amarante Vitra
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Laboratory of Ecological Systems (ECOS), Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Site Lausanne, Lausanne, Switzerland
| | - Claire Deléglise
- Agroscope, Grazing Systems Group, Route de Duillier, Nyon, Switzerland
- Université Grenoble Alpes, Irstea, LESSEM, Grenoble, France
| | - Marco Meisser
- Agroscope, Grazing Systems Group, Route de Duillier, Nyon, Switzerland
| | - Anita C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Community Ecology, Zuercherstrasse, Birmensdorf, Switzerland
| | - Constant Signarbieux
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Laboratory of Ecological Systems (ECOS), Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Site Lausanne, Lausanne, Switzerland
| | - Lia Lamacque
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Laboratory of Ecological Systems (ECOS), Switzerland
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
- ITEIPMAI, Domaine de la Vesc, Montboucher-sur-Jabron, France
| | - Sylvain Delzon
- UMR BIOGECO, INRA–UB, University of Bordeaux 1, Bat, Talence, France
| | - Alexandre Buttler
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Laboratory of Ecological Systems (ECOS), Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Site Lausanne, Lausanne, Switzerland
- Laboratoire de Chrono-Environnement, UMR CNRS 6249, UFR des Sciences et Techniques, Université de Franche-Comté, Besançon, France
| | - Pierre Mariotte
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Laboratory of Ecological Systems (ECOS), Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Site Lausanne, Lausanne, Switzerland
| |
Collapse
|
124
|
Zhou W, Huang L, Yang H, Ju W, Yue T. Interannual variation in grassland net ecosystem productivity and its coupling relation to climatic factors in China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1583-1597. [PMID: 30623271 DOI: 10.1007/s10653-018-0236-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Grassland, as an important part of land cover, plays an important role in the global carbon cycle and carbon balance. Net ecosystem productivity (NEP) is a key indicator of the carbon cycle process and an important factor in assessing ecosystem security and maintaining ecosystem balance. In this paper, Boreal Ecosystem Productivity Simulator (BEPS) combining meteorological data, leaf area index, and land cover type data were used to simulate the grassland NEP of China from 1979 to 2008. This model was also used to analyze the responses to changes in climate factors, interannual variation in carbon conversion efficiency, drought stress coefficient, and water use efficiency of grassland in China. Results showed that from 1979 to 2008, the mean annual grassland NEP was 13.6 g C/m2 with weak carbon sinks. The grassland NEP distribution increased from northwest to southeast across China. Regions with NEP of > 0 (C sink) accounted for 73.1% of the total grassland area of China. The total C sequestration reached 26.6 Tg yearly, and grassland NEP was positive from 1979 to 2008. The annual changing characteristics were analyzed. Grassland NEP was positive with carbon sink from June to September, which was negative with carbon source in the remaining months. The carbon conversion efficiency and water use efficiency of the grassland increased significantly within 30 years. NEP showed positive correlation with precipitation (accounting for 74.2% of the total grassland area was positively correlated) but weakly positive correlation with temperature (50.2% of the case). Furthermore, significant positive correlation was found between grassland NEP and precipitation, especially in northeastern and central Inner Mongolia, northern Tianshan of Xinjiang, southwestern Tibet, and southern Qinghai Lake.
Collapse
Affiliation(s)
- Wei Zhou
- College of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing, 400074, China.
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy Sciences, Beijing, 100101, China.
| | - Lu Huang
- College of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Han Yang
- College of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Weimin Ju
- International Institute of Earth System Science, Nanjing University, Nanjing, 210093, China
| | - Tianxiang Yue
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy Sciences, Beijing, 100101, China
| |
Collapse
|
125
|
Ploughe LW, Dukes JS. Understory plant composition and nitrogen transformations resistant to changes in seasonal precipitation. Ecosphere 2019. [DOI: 10.1002/ecs2.2747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Laura W. Ploughe
- Department of Biological Sciences Purdue University 915 West State Street West Lafayette Indiana 47907 USA
| | - Jeffrey S. Dukes
- Department of Biological Sciences Purdue University 915 West State Street West Lafayette Indiana 47907 USA
- Department of Forestry and Natural Resources Purdue University 715 West State Street West Lafayette Indiana 47907 USA
| |
Collapse
|
126
|
Stability of Ecosystem CO2 Flux in Response to Changes in Precipitation in a Semiarid Grassland. SUSTAINABILITY 2019. [DOI: 10.3390/su11092597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carbon dioxide (CO2) flux provides feedback between C cycling and the climatic system. There is considerable uncertainty regarding the direction and magnitude of the responses of this process to precipitation changes, hindering accurate prediction of C cycling in a changing world. We examined the responses of ecosystem CO2 flux to ambient precipitation and experimentally decreased (−35%) and increased precipitation (+20%) in a semiarid grassland in China between July 2013 and September 2015. The measured CO2 flux components included the gross ecosystem productivity (GEP), net ecosystem CO2 exchange (NEE), ecosystem respiration (Re), and soil respiration (Rs). The results showed that the seasonal and diurnal patterns of most components of ecosystem CO2 flux were minimally affected by precipitation treatments, with less than 4% changes averaged across the three growing seasons. GEP and NEE had a quadratic relationship, while Re and Rs increased exponentially with soil temperature. GEP, RE, and Rs, however, decreased with soil moisture. Decreased precipitation reduced the dependence of CO2 flux on soil temperature but partly increased the dependence on soil moisture; in contrast, increased precipitation had the opposite influence. Our results suggested a relatively stable CO2 flux in this semiarid grassland across the tested precipitation regimes.
Collapse
|
127
|
Okach DO, Ondier JO, Rambold G, Tenhunen J, Huwe B, Jung EY, Otieno DO. Interaction of livestock grazing and rainfall manipulation enhances herbaceous species diversity and aboveground biomass in a humid savanna. JOURNAL OF PLANT RESEARCH 2019; 132:345-358. [PMID: 30980217 DOI: 10.1007/s10265-019-01105-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
Understanding of the interaction of livestock grazing and rainfall variability may aid in predicting the patterns of herbaceous species diversity and biomass production. We manipulated the amount of ambient rainfall received in grazed and ungrazed savanna in Lambwe Valley-Kenya. The combined influence of livestock grazing and rainfall on soil moisture, herbaceous species diversity, and aboveground biomass patterns was assessed. We used the number of species (S), Margalef's richness index (Dmg), Shannon index of diversity (H), and Pileou's index of evenness (J) to analyze the herbaceous community structure. S, Dmg, H and J were higher under grazing whereas volumetric soil water contents (VWC) and aboveground biomass (AGB) decreased with grazing. Decreasing (50%) or increasing (150%) the ambient rainfall by 50% lowered species richness and diversity. Seasonality in rainfall influenced the variation in VWC, S, Dmg, H, and AGB but not J (p = 0.43). Overall, Dmg declined with increasing VWC. However, the AGB and Dmg mediated the response of H and J to the changes in VWC. The highest H occurred at AGB range of 400-800 g m-2. We attribute the lower diversity in the ungrazed plots to the dominance (relative abundance > 70%) of Hyparrhenia fillipendulla (Hochst) Stapf. and Brachiaria decumbens Stapf. Grazing exclusion, which controls AGB, hindered the coexistence among species due to the competitive advantage in resource utilization by the more dominant species. Our findings highlight the implication of livestock grazing and rainfall variability in maintaining higher diversity and aboveground biomass production in the herbaceous layer community for sustainable ecosystem management.
Collapse
Affiliation(s)
- Daniel Osieko Okach
- Department of Plant Ecology, University of Bayreuth, 95440, Bayreuth, Germany.
| | - Joseph O Ondier
- Department of Botany, Maseno University, Private Bag, Maseno, Kenya
| | - Gerhard Rambold
- Department of Mycology, University of Bayreuth, 95447, Bayreuth, Germany
| | - John Tenhunen
- Department of Plant Ecology, University of Bayreuth, 95440, Bayreuth, Germany
| | - Bernd Huwe
- Department of Soil Physics, University of Bayreuth, 95447, Bayreuth, Germany
| | - Eun Young Jung
- Department of Plant Ecology, University of Bayreuth, 95440, Bayreuth, Germany
| | - Dennis O Otieno
- Department of Plant Ecology, University of Bayreuth, 95440, Bayreuth, Germany
- Jaramogi Oginga Odinga University of Science and Technology, Bondo, 40601-210, Kenya
| |
Collapse
|
128
|
VanWallendael A, Soltani A, Emery NC, Peixoto MM, Olsen J, Lowry DB. A Molecular View of Plant Local Adaptation: Incorporating Stress-Response Networks. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:559-583. [PMID: 30786237 DOI: 10.1146/annurev-arplant-050718-100114] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ecological specialization in plants occurs primarily through local adaptation to different environments. Local adaptation is widely thought to result in costly fitness trade-offs that result in maladaptation to alternative environments. However, recent studies suggest that such trade-offs are not universal. Further, there is currently a limited understanding of the molecular mechanisms responsible for fitness trade-offs associated with adaptation. Here, we review the literature on stress responses in plants to identify potential mechanisms underlying local adaptation and ecological specialization. We focus on drought, high and low temperature, flooding, herbivore, and pathogen stresses. We then synthesize our findings with recent advances in the local adaptation and plant molecular biology literature. In the process, we identify mechanisms that could cause fitness trade-offs and outline scenarios where trade-offs are not a necessary consequence of adaptation. Future studies should aim to explicitly integrate molecular mechanisms into studies of local adaptation.
Collapse
Affiliation(s)
- Acer VanWallendael
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Ali Soltani
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
| | - Nathan C Emery
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Murilo M Peixoto
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jason Olsen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan 48824, USA
| | - David B Lowry
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
- Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
129
|
Hinojosa MB, Laudicina VA, Parra A, Albert-Belda E, Moreno JM. Drought and its legacy modulate the post-fire recovery of soil functionality and microbial community structure in a Mediterranean shrubland. GLOBAL CHANGE BIOLOGY 2019; 25:1409-1427. [PMID: 30681232 DOI: 10.1111/gcb.14575] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
The effects of drought on soil dynamics after fire are poorly known, particularly its long-term (i.e., years) legacy effects once rainfall returns to normal. Understanding this is particularly important for nutrient-poor soils in semi-arid regions affected by fire, in which rainfall is projected to decrease with climate change. Here, we studied the effects of post-fire drought and its legacy on soil microbial community structure and functionality in a Cistus-Erica shrubland (Spain). Rainfall total and patterns were experimentally modified to produce an unburned control (natural rainfall) and four burned treatments: control (natural rainfall), historical control (long-term average rainfall), moderate drought (percentile 8 historical rainfall, 5 months of drought per year), and severe drought (percentile 2, 7 months of drought). Soil nutrients and microbial community composition (ester-linked fatty acid approach) and functionality (enzyme activities and C mineralization rate) were monitored during the first 4 years after fire under rainfall treatments, plus two additional ones without them (six post-fire years). We found that the recovery of burned soils was lower under drought. Post-fire drought increased nitrate in the short term and reduced available phosphorus, exchangeable potassium, soil organic matter, enzyme activities, and carbon mineralization rate. Moreover, drought decreased soil total microbial biomass and fungi, with bacteria becoming relatively more abundant. Two years after discontinuing the drought treatments, the drought legacy was significant for available phosphorus and enzyme activities. Although microbial biomass did not show any drought legacy effect, the proportion of fungi and bacteria (mainly gram-positive) did, being lower and higher, respectively, in former drought-treated plots. We show that drought has an important impact on soil processes, and that some of its effects persist for at least 2 years after the drought ended. Therefore, drought and its legacy effects can be important for modeling biogeochemical processes in burned soils under future climate change.
Collapse
Affiliation(s)
- María Belén Hinojosa
- Departamento de Ciencias Ambientales, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, Toledo, Spain
| | - Vito Armando Laudicina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Palermo, Italy
| | - Antonio Parra
- Departamento de Ciencias Ambientales, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, Toledo, Spain
| | - Enrique Albert-Belda
- Departamento de Ciencias Ambientales, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, Toledo, Spain
| | - José Manuel Moreno
- Departamento de Ciencias Ambientales, Universidad de Castilla-La Mancha, Campus Fábrica de Armas, Toledo, Spain
| |
Collapse
|
130
|
March-Salas M, Fitze PS. A multi-year experiment shows that lower precipitation predictability encourages plants' early life stages and enhances population viability. PeerJ 2019; 7:e6443. [PMID: 30867983 PMCID: PMC6410692 DOI: 10.7717/peerj.6443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/14/2019] [Indexed: 11/20/2022] Open
Abstract
Climate change is a key factor that may cause the extinction of species. The associated reduced weather predictability may alter the survival of plants, especially during their early life stages, when individuals are most fragile. While it is expected that extreme weather events will be highly detrimental for species, the effects of more subtle environmental changes have been little considered. In a four-year experiment on two herbaceous plants, Papaver rhoeas and Onobrychis viciifolia, we manipulated the predictability of precipitation by changing the temporal correlation of precipitation events while maintaining average precipitation constant, leading to more and less predictable treatments. We assessed the effect of predictability on plant viability in terms of seedling emergence, survival, seed production, and population growth rate. We found greater seedling emergence, survival, and population growth for plants experiencing lower intra-seasonal predictability, but more so during early compared to late life stages. Since predictability levels were maintained across four generations, we have also tested whether descendants exhibited transgenerational responses to previous predictability conditions. In P. rhoeas, descendants had increased the seedling emergence compared to ancestors under both treatments, but more so under lower precipitation predictability. However, higher predictability in the late treatment induced higher survival in descendants, showing that these conditions may benefit long-term survival. This experiment highlights the ability of some plants to rapidly exploit environmental resources and increase their survival under less predictable conditions, especially during early life stages. Therefore, this study provides relevant evidence of the survival capacity of some species under current and future short-term environmental alterations.
Collapse
Affiliation(s)
- Martí March-Salas
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain.,Department of Biodiversity and Ecologic Restoration, Instituto Pirenaico de Ecología (IPE-CSIC), Jaca, Spain.,Escuela Internacional de Doctorado, Universidad Rey Juan Carlos (URJC), Madrid, Spain
| | - Patrick S Fitze
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain.,Department of Biodiversity and Ecologic Restoration, Instituto Pirenaico de Ecología (IPE-CSIC), Jaca, Spain
| |
Collapse
|
131
|
Barnett DT, Adler PB, Chemel BR, Duffy PA, Enquist BJ, Grace JB, Harrison S, Peet RK, Schimel DS, Stohlgren TJ, Vellend M. The plant diversity sampling design for The National Ecological Observatory Network. Ecosphere 2019. [DOI: 10.1002/ecs2.2603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- David T. Barnett
- Battelle Memorial Institute 1685 38th Street Suite 100 Boulder Colorado 80301 USA
| | - Peter B. Adler
- Department of Wildland Resources and the Ecology Center Utah State University 5230 Old Main Logan Utah 84322 USA
| | - Benjamin R. Chemel
- Northern Rockies Conservation Cooperative 185 Center Street Jackson Wyoming 83001 USA
| | - Paul A. Duffy
- Neptune and Company Inc. 1435 Garrison Street Suite 100 Lakewood Colorado 80215 USA
| | - Brian J. Enquist
- Department of Ecology and Evolutionary Biology University of Arizona PO Box 210088, 1041 E Lowell Street Tucson Arizona 85721 USA
| | - James B. Grace
- U.S. Geological Survey, Wetland and Aquatic Research Center 700 Cajundome Boulevard Lafayette Louisiana 70506 USA
| | - Susan Harrison
- Department of Environmental Science and Policy University of California Davis California 95616 USA
| | - Robert K. Peet
- Department of Biology University of North Carolina Chapel Hill North Carolina 27599‐3280 USA
| | - David S. Schimel
- NASA Jet Propulsion Lab 4800 Grove Drive Pasadena California 91109 USA
| | - Thomas J. Stohlgren
- Natural Resource Ecology Laboratory Colorado State University Fort Collins Colorado 80523‐1499 USA
| | - Mark Vellend
- Département de biologie Université de Sherbrooke 2500, boulevard de l'Université Sherbrooke Quebec J1K 2R1 Canada
| |
Collapse
|
132
|
Zhang F, Quan Q, Ma F, Tian D, Zhou Q, Niu S. Differential responses of ecosystem carbon flux components to experimental precipitation gradient in an alpine meadow. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Fangyue Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Quan Quan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Fangfang Ma
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China
| | - Qingping Zhou
- Institute of Qinghai‐Tibetan Plateau Southwest Minzu University Chengdu China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
133
|
D'Onofrio D, Sweeney L, von Hardenberg J, Baudena M. Grass and tree cover responses to intra-seasonal rainfall variability vary along a rainfall gradient in African tropical grassy biomes. Sci Rep 2019; 9:2334. [PMID: 30787370 PMCID: PMC6382848 DOI: 10.1038/s41598-019-38933-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/04/2018] [Indexed: 11/10/2022] Open
Abstract
Although it is well known that mean annual rainfall (MAR) and rainfall seasonality have a key role in influencing the distribution of tree and grass cover in African tropical grassy biomes (TGBs), the impact of intra-seasonal rainfall variability on these distributions is less agreed upon. Since the prevalent mechanisms determining biome occurrence and distribution change with MAR, this research investigates the role of intra-seasonal rainfall variability for three different MAR ranges, assessing satellite data on grass and tree cover, rainfall and fire intervals at a sub-continental scale in sub-Saharan Africa. For MAR below 630 mm y−1, rainfall frequency had a positive relationship with grass cover; this relationship however became mostly negative at intermediate MAR (630–1200 mm y−1), where tree cover correspondingly mostly increased with rainfall frequency. In humid TGBs, tree cover decreased with rainfall intensity. Overall, intra-seasonal rainfall variability plays a role in determining vegetation cover, especially in mesic TGBs, where the relative dominance of trees and grasses has previously been largely unexplained. Importantly, the direction of the effect of intra-seasonal variability changes with MAR. Given the predicted increases in rainfall intensity in Africa as a consequence of climate change, the effects on TGBs are thus likely to vary depending on the MAR levels.
Collapse
Affiliation(s)
- Donatella D'Onofrio
- Institute of Atmospheric Sciences and Climate, National Research Council (ISAC-CNR), Corso Fiume 4, 10133, Torino, Italy.,Copernicus Institute of Sustainable Development, Environmental Science Group, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, The Netherlands
| | - Luke Sweeney
- Copernicus Institute of Sustainable Development, Environmental Science Group, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, The Netherlands
| | - Jost von Hardenberg
- Institute of Atmospheric Sciences and Climate, National Research Council (ISAC-CNR), Corso Fiume 4, 10133, Torino, Italy
| | - Mara Baudena
- Copernicus Institute of Sustainable Development, Environmental Science Group, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, The Netherlands.
| |
Collapse
|
134
|
Temporal Variability of Precipitation and Biomass of Alpine Grasslands on the Northern Tibetan Plateau. REMOTE SENSING 2019. [DOI: 10.3390/rs11030360] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The timing regimes of precipitation can exert profound impacts on grassland ecosystems. However, it is still unclear how the peak aboveground biomass (AGBpeak) of alpine grasslands responds to the temporal variability of growing season precipitation (GSP) on the northern Tibetan Plateau. Here, the temporal variability of precipitation was defined as the number and intensity of precipitation events as well as the time interval between consecutive precipitation events. We conducted annual field measurements of AGBpeak between 2009 and 2016 at four sites that were representative of alpine meadow, meadow-steppe, alpine steppe, and desert-steppe. Thus, an empirical model was established with the time series of the field-measured AGBpeak and the corresponding enhanced vegetation index (EVI) (R2 = 0.78), which was used to estimate grassland AGBpeak at the regional scale. The relative importance of the three indices of the temporal variability of precipitation, events, intensity, and time interval on grassland AGBpeak was quantified by principal component regression and shown in a red–green–blue (RGB) composition map. The standardized importance values were used to calculate the vegetation sensitivity index to the temporal variability of precipitation (VSIP). Our results showed that the standardized VSIP was larger than 60 for only 15% of alpine grassland pixels and that AGBpeak did not change significantly for more than 60% of alpine grassland pixels over the past decades, which was likely due to the nonsignificant changes in the temporal variability of precipitation in most pixels. However, a U-shaped relationship was found between VSIP and GSP across the four representative grassland types, indicating that the sensitivity of grassland AGBpeak to precipitation was dependent on the types of grassland communities. Moreover, we found that the temporal variability of precipitation explained more of the field-measured AGBpeak variance than did the total amount of precipitation alone at the site scale, which implies that the mechanisms underlying how the temporal variability of precipitation controls the AGBpeak of alpine grasslands should be better understood at the local scale. We hypothesize that alpine grassland plants promptly respond to the temporal variability of precipitation to keep community biomass production more stable over time, but this conclusion should be further tested. Finally, we call for a long-term experimental study that includes multiple natural and anthropogenic factors together, such as warming, nitrogen deposition, and grazing and fencing, to better understand the mechanisms of alpine grassland stability on the Tibetan Plateau.
Collapse
|
135
|
Hawke T, Bates H, Hand S, Archer M, Broome L. Dietary analysis of an uncharacteristic population of the Mountain Pygmy-possum (Burramys parvus) in the Kosciuszko National Park, New South Wales, Australia. PeerJ 2019; 7:e6307. [PMID: 30697490 PMCID: PMC6348096 DOI: 10.7717/peerj.6307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/18/2018] [Indexed: 11/20/2022] Open
Abstract
Background The Mountain Pygmy-possum (Burramys parvus) is a critically endangered marsupial, endemic to alpine regions of southern Australia. We investigated the diet of a recently discovered population of the possum in northern Kosciuszko National Park, NSW, Australia. This new population occurs at elevations well below the once-presumed lower elevation limit of 1,600 m. Goals and Methods Faecal material was analysed to determine if dietary composition differed between individuals in the newly discovered northern population and those in the higher elevation southern population, and to examine how diet was influenced by rainfall in the southern population and seasonal changes in resource availability in the northern population. Results and Discussion The diet of B. parvus in the northern population comprised of arthropods, fruits and seeds. Results indicate the diet of both populations shares most of the same invertebrate orders and plant species. However, in the absence of preferred food types available to the southern population, individuals of the northern population opportunistically consumed different species that were similar to those preferred by individuals in higher altitude populations. Differing rainfall amounts had a significant effect on diet, with years of below average rainfall having a greater percentage composition and diversity of invertebrates. Seasonal variation was also recorded, with the northern population increasing the diversity of invertebrates in their diet during the Autumn months when Bogong Moths (Agrotis infusa) were absent from those sites, raising questions about the possum's dependence on the species. Conclusions Measurable effects of rainfall amount and seasonal variation on the dietary composition suggest that predicted climatic variability will have a significant impact on its diet, potentially impacting its future survival. Findings suggest that it is likely that B. parvus is not restricted by dietary requirements to its current pattern of distribution. This new understanding needs to be considered when formulating future conservation strategies for this critically endangered species.
Collapse
Affiliation(s)
- Tahneal Hawke
- PANGEA Research Centre, Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Hayley Bates
- PANGEA Research Centre, Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Suzanne Hand
- PANGEA Research Centre, Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Michael Archer
- PANGEA Research Centre, Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Linda Broome
- Office of Environment and Heritage, Queanbeyan, NSW, Australia
| |
Collapse
|
136
|
Gherardi LA, Sala OE. Effect of interannual precipitation variability on dryland productivity: A global synthesis. GLOBAL CHANGE BIOLOGY 2019; 25:269-276. [PMID: 30338886 DOI: 10.1111/gcb.14480] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Climate-change assessments project increasing precipitation variability through increased frequency of extreme events. However, the effects of interannual precipitation variance per se on ecosystem functioning have been largely understudied. Here, we report on the effects of interannual precipitation variability on the primary production of global drylands, which include deserts, steppes, shrublands, grasslands, and prairies and cover about 40% of the terrestrial earth surface. We used a global database that has 43 datasets, which are uniformly distributed in parameter space and each has at least 10 years of data. We found (a) that at the global scale, precipitation variability has a negative effect on aboveground net primary production. (b) Expected increases in interannual precipitation variability for the year 2,100 may result in a decrease of up to 12% of the global terrestrial carbon sink. (c) The effect of precipitation interannual variability on dryland productivity changes from positive to negative along a precipitation gradient. Arid sites with mean precipitation under 300 mm/year responded positively to increases in precipitation variability, whereas sites with mean precipitation over 300 mm/year responded negatively. We propose three complementary mechanisms to explain this result: (a) concave-up and concave-down precipitation-production relationships in arid vs. humid systems, (b) shift in the distribution of water in the soil profile, and (c) altered frequency of positive and negative legacies. Our results demonstrated that enhanced precipitation variability will have direct impacts on global drylands that can potentially affect the future terrestrial carbon sink.
Collapse
Affiliation(s)
- Laureano A Gherardi
- Global Drylands Center, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Osvaldo E Sala
- Global Drylands Center, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- School of Sustainability, Arizona State University, Tempe, Arizona
| |
Collapse
|
137
|
Differing Responses to Rainfall Suggest More Than One Functional Type of Grassland in South Africa. REMOTE SENSING 2018. [DOI: 10.3390/rs10122055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Grasslands, which represent around 40% of the terrestrial area, are mostly located in arid and semi-arid zones. Semiarid ecosystems in Africa have been identified as being particularly vulnerable to the impacts of increased human pressure on land, as well as enhanced climate variability. Grasslands are indeed very responsive to variations in precipitation. This study evaluates the sensitivity of the grassland ecosystem to precipitation variability in space and time, by identifying the factors controlling this response, based on monthly precipitation data from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) and the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) data from the Multi-angle Imaging SpectroRadiometer-High Resolution (MISR-HR) datasets, used as proxy for productivity, at 60 grassland sites in South Africa. Our results show that MISR-HR products adequately capture the spatial and temporal variability in productivity at scales that are relevant to this study, and they are therefore a good tool to study climate change impacts on ecosystem at small spatial scales over large spatial and temporal domains. We show that combining several determinants and accounting for legacies improves our ability to understand patterns, identify areas of vulnerability, and predict the future of grassland productivity. Mean annual precipitation is a good predictor of mean grassland productivity. The grasslands with a mean annual rainfall above about 530 mm have a different functional response to those receiving less than that amount of rain, on average. On the more arid and less fertile soils, large inter-annual variability reduces productivity. Our study suggests that grasslands on the more marginal soils are the most vulnerable to climate change.
Collapse
|
138
|
Bachle S, Griffith DM, Nippert JB. Intraspecific Trait Variability in Andropogon gerardii, a Dominant Grass Species in the US Great Plains. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
139
|
Chen X, Deng Q, Lin G, Lin M, Wei H. Changing rainfall frequency affects soil organic carbon concentrations by altering non-labile soil organic carbon concentrations in a tropical monsoon forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:762-769. [PMID: 29990924 DOI: 10.1016/j.scitotenv.2018.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/19/2018] [Accepted: 07/03/2018] [Indexed: 05/14/2023]
Abstract
Soil stores a substantial proportion of carbon (C), making it the greatest terrestrial C pool and pivotal to stabilizing the global climate system. Rainfall amounts and regimes have been changing in many places, but effects of precipitation changes on soil organic C (SOC) stabilization are not completely understood. Considerable attention has been focused on the consequences of changes in rainfall amounts, with rainfall regimes having been less studied. This study was conducted in a tropical climax forest to clarify the effects of rainfall changes on SOC fractions, with permanganate oxidation and density fractionations employed to divide the labile and non-labile SOC fractions. Two rainfall manipulation treatments, i.e., increased rainfall frequency with the total rainfall amount unchanged (IRF) and decreased rainfall amount by 50% with rainfall frequency unaltered (DRA), were conducted for two years, with ambient rainfall (AR) as the control. As a result, the IRF treatment increased the SOC concentration that mainly originated from increases in the non-labile SOC content. Relative to the AR control, the DRA treatment did not change the total SOC concentration although the labile SOC concentration increased. This typically is due to a small proportion of the labile fraction to the total SOC content. Our results suggest that this water-rich mature forest is resistant to rainfall amount changes to a great extent (e.g., decrease of 50% as in the present study) from the SOC stabilization perspective, while changes in rainfall frequency could exert more notable effects.
Collapse
Affiliation(s)
- Xiaomei Chen
- School of Geographical Sciences, Guangzhou University, Guangzhou 510006, China
| | - Qi Deng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Guojun Lin
- Institute of Water Resources Protection in Yangtze River, Wuhan 430051, China
| | - Meizhen Lin
- School of Geographical Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hui Wei
- Department of Ecology, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
140
|
Ryalls JMW, Moore BD, Johnson SN. Silicon uptake by a pasture grass experiencing simulated grazing is greatest under elevated precipitation. BMC Ecol 2018; 18:53. [PMID: 30514265 PMCID: PMC6280423 DOI: 10.1186/s12898-018-0208-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/22/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Grasses are hyper-accumulators of silicon (Si) and often up-regulate Si following herbivory. Positive correlations exist between Si and plant water content, yet the extent to which Si uptake responses can be mediated by changes in soil water availability has rarely been studied and never, to our knowledge, under field conditions. We used field-based rain-exclusion shelters to investigate how simulated grazing (shoot clipping) and altered rainfall patterns (drought and elevated precipitation, representing 50% and 150% of ambient precipitation levels, respectively) affected initial patterns of root- and shoot-Si uptake in a native Australian grass (Microlaena stipoides) in Si-supplemented and untreated soils. RESULTS Si supplementation increased soil water retention under ambient and elevated precipitation but not under drought, although this had little effect on Si uptake and growth (tiller numbers or root biomass) of M. stipoides. Changes in rainfall patterns and clipping had strong individual effects on plant growth and Si uptake and storage, whereby clipping increased Si uptake by M. stipoides under all rainfall treatments but to the greatest extent under elevated precipitation. Moreover, above-ground-below-ground Si distribution only changed following elevated precipitation by decreasing the ratio of root:shoot Si concentrations. CONCLUSIONS Results highlight the importance of soil water availability for Si uptake and suggest a role for both active and passive Si transport mechanisms. Such manipulative field studies may provide a more realistic insight into how grasses initially respond to herbivory in terms of Si-based defence under different environmental conditions.
Collapse
Affiliation(s)
- James M. W. Ryalls
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW Australia
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Ben D. Moore
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW Australia
| | - Scott N. Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW Australia
| |
Collapse
|
141
|
Grass invasion and drought interact to alter the diversity and structure of native plant communities. Ecology 2018; 99:2692-2702. [DOI: 10.1002/ecy.2536] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/21/2018] [Accepted: 08/30/2018] [Indexed: 11/07/2022]
|
142
|
Felton AJ, Knapp AK, Smith MD. Carbon exchange responses of a mesic grassland to an extreme gradient of precipitation. Oecologia 2018; 189:565-576. [PMID: 30411149 DOI: 10.1007/s00442-018-4284-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/21/2018] [Indexed: 11/24/2022]
Abstract
Growing evidence indicates that ecosystem processes may be differentially sensitive to dry versus wet years, and that current understanding of how precipitation affects ecosystem processes may not be predictive of responses to extremes. In an experiment within a mesic grassland, we addressed this uncertainty by assessing responses of two key carbon exchange processes-aboveground net primary production (ANPP) and soil respiration (Rs)-to an extensive gradient of growing season precipitation. This gradient comprised 11 levels that specifically included extreme values in precipitation; defined as the 1st, 5th, 95th, and 99th percentiles of the 112-year climate record. Across treatments, our experimental precipitation gradient linearly increased soil moisture availability in the rooting zone (upper 20 cm). Relative to ANPP under nominal precipitation amounts (defined as between the 15th and 85th percentiles), the magnitude of ANPP responses were greatest to extreme increases in precipitation, with an underlying linear response to both precipitation and soil moisture gradients. By contrast, Rs exhibited marginally greater responses to dry versus wet extremes, with a saturating relationship best explaining responses of Rs to both precipitation and soil moisture. Our findings indicate a linear relationship between ANPP and precipitation after incorporating responses to precipitation extremes in the ANPP-precipitation relationship, yet in contrast saturating responses of Rs. As a result, current linear ANPP-precipitation relationships (up to ~ 1000 mm) within mesic grasslands appear to hold as appropriate benchmarks for ecosystems models, yet such models should incorporate nonlinearities in responses of Rs amid increased frequencies and magnitudes of precipitation extremes.
Collapse
Affiliation(s)
- Andrew J Felton
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, 251 Pitkin Street, Fort Collins, CO, 80523, USA.
| | - Alan K Knapp
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, 251 Pitkin Street, Fort Collins, CO, 80523, USA
| | - Melinda D Smith
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, 251 Pitkin Street, Fort Collins, CO, 80523, USA
| |
Collapse
|
143
|
Tang Y, Jiang J, Chen C, Chen Y, Wu X. Rainfall pulse response of carbon fluxes in a temperate grass ecosystem in the semiarid Loess Plateau. Ecol Evol 2018; 8:11179-11189. [PMID: 30519435 PMCID: PMC6262730 DOI: 10.1002/ece3.4587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 11/08/2022] Open
Abstract
Rainfall pulses can significantly influence carbon cycling in water-limited ecosystems. The magnitude of carbon flux component responses to precipitation may vary depending on precipitation amount and antecedent soil moisture, associated with nonlinear responses of plants and soil microbes. The present study was carried out in a temperate grass ecosystem during 2013-2015 in the semiarid Loess Plateau of China, to examine the response of carbon fluxes to precipitation using the "threshold-delay" model. The unique contribution of environmental variables such as precipitation amount and antecedent soil moisture before rainfall (SWC_antecedent) to carbon fluxes in response to rainfall was also investigated. The lower threshold of effective rainfall was 6.6 mm for gross ecosystem production (GEP), 8.5 mm for net ecosystem production (NEP), and 4.5 mm for ecosystem respiration (RE); and the upper threshold of effective rainfall was 21.4 mm for GEP and NEP, and 16.8 mm for RE. Rainfall amount was positively affected the relative rainfall responses of GEP, NEP, and RE. However, SWC_antecedent at 20 cm soil depth offset the response of GEP to rainfall pulses, and SWC_antecedent at 5 cm soil depth offset the response of NEP and RE to rainfall pulses, with corresponding partial slopes of linear regressions of -0.50, -0.40, and -0.52. These results indicated that NEP was more sensitive to rainfall pulses and RE was more sensitive to SWC_antecedent. These results demonstrate the importance of rainfall events of <10 mm and that the negative effect of SWC_antecedent should also be considered when estimating ecosystem carbon fluxes in this semiarid region.
Collapse
Affiliation(s)
- Yakun Tang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauInstitute of Soil and Water ConservationNorthwest A&F UniversityYanglingChina
| | - Jun Jiang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauInstitute of Soil and Water ConservationNorthwest A&F UniversityYanglingChina
| | - Chen Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauInstitute of Soil and Water ConservationNorthwest A&F UniversityYanglingChina
| | - Yunming Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauInstitute of Soil and Water ConservationNorthwest A&F UniversityYanglingChina
| | - Xu Wu
- State Key Laboratory of Soil Erosion and Dry‐land Farming on the Loess PlateauInstitute of Soil and Water ConservationChinese Academy of Sciences and the Ministry of Water ResourcesYanglingChina
- University of Chinese Academy of ScienceBeijingChina
| |
Collapse
|
144
|
Asbjornsen H, Campbell JL, Jennings KA, Vadeboncoeur MA, McIntire C, Templer PH, Phillips RP, Bauerle TL, Dietze MC, Frey SD, Groffman PM, Guerrieri R, Hanson PJ, Kelsey EP, Knapp AK, McDowell NG, Meir P, Novick KA, Ollinger SV, Pockman WT, Schaberg PG, Wullschleger SD, Smith MD, Rustad LE. Guidelines and considerations for designing field experiments simulating precipitation extremes in forest ecosystems. Methods Ecol Evol 2018. [DOI: 10.1111/2041-210x.13094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Heidi Asbjornsen
- Department of Natural Resources and the EnvironmentUniversity of New Hampshire Durham New Hampshire
- Earth Systems Research CenterInstitute for Earth, Oceans, and SpaceUniversity of New Hampshire Durham New Hampshire
| | - John L. Campbell
- Northern Research StationUSDA Forest Service Durham New Hampshire
| | - Katie A. Jennings
- Department of Natural Resources and the EnvironmentUniversity of New Hampshire Durham New Hampshire
- Earth Systems Research CenterInstitute for Earth, Oceans, and SpaceUniversity of New Hampshire Durham New Hampshire
| | - Matthew A. Vadeboncoeur
- Earth Systems Research CenterInstitute for Earth, Oceans, and SpaceUniversity of New Hampshire Durham New Hampshire
| | - Cameron McIntire
- Department of Natural Resources and the EnvironmentUniversity of New Hampshire Durham New Hampshire
| | | | | | - Taryn L. Bauerle
- School of Integrative Plant ScienceCornell University Ithaca New York
| | - Michael C. Dietze
- Department of Earth and EnvironmentBoston University Boston Massachusetts
| | - Serita D. Frey
- Department of Natural Resources and the EnvironmentUniversity of New Hampshire Durham New Hampshire
| | - Peter M. Groffman
- Department of Earth and Environmental SciencesAdvanced Science Research Center at the Graduate Center of the City University of New York and Brooklyn College New York New York
| | - Rosella Guerrieri
- Centre for Ecological Research and Forestry Applications (CREAF)Universidad Autonoma de Barcelona Barcelona Spain
| | - Paul J. Hanson
- Environmental Sciences DivisionOak Ridge National Laboratory Oak Ridge Tennessee
| | - Eric P. Kelsey
- Department of Atmospheric Science and ChemistryPlymouth State University Plymouth New Hampshire
- Mount Washington Observatory North Conway New Hampshire
| | - Alan K. Knapp
- Department of Biology and Graduate Degree Program in EcologyColorado State University Fort Collins Colorado
| | | | - Patrick Meir
- Research School of BiologyAustralian National University Canberra ACT Australia
- School of GeosciencesUniversity of Edinburgh Edinburgh UK
| | - Kimberly A. Novick
- School of Public and Environmental AffairsIndiana University Bloomington Indiana
| | - Scott V. Ollinger
- Department of Natural Resources and the EnvironmentUniversity of New Hampshire Durham New Hampshire
| | - Will T. Pockman
- Department of BiologyUniversity of New Mexico Albuquerque New Mexico
| | | | - Stan D. Wullschleger
- Environmental Sciences DivisionOak Ridge National Laboratory Oak Ridge Tennessee
| | - Melinda D. Smith
- Department of Biology and Graduate Degree Program in EcologyColorado State University Fort Collins Colorado
| | | |
Collapse
|
145
|
Lemoine NP, Griffin-Nolan RJ, Lock AD, Knapp AK. Drought timing, not previous drought exposure, determines sensitivity of two shortgrass species to water stress. Oecologia 2018; 188:965-975. [PMID: 30269254 DOI: 10.1007/s00442-018-4265-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/25/2018] [Indexed: 11/26/2022]
Abstract
Climate change will alter global precipitation patterns, making it increasingly important that we understand how ecosystems will be impacted by more frequent and severe droughts. Yet most drought studies examine a single, within-season drought, and we know relatively little about the impacts of multiple droughts that occur within a single growing season. This distinction is important because many plant species are able to acclimate physiologically, such that the effects of multiple droughts on ecosystem function deviate significantly from the effects of cumulative, independent droughts. Unfortunately, we know relatively little about the ability of dominant species to acclimate to drought in drought-sensitive ecosystems like semi-arid grasslands. Here, we tested for physiological acclimation to multiple drought events in two dominant shortgrass steppe species: Bouteloua gracilis (C4) and Elymus elymoides (C3). Neither species exhibited physiological acclimation to drought; leaf water potential, stomatal conductance, and photosynthesis rates were all similarly affected by a single, late period drought and a second, late period drought. Biomass was lowest in plants exposed to two droughts, but this is likely due to the cumulative effects of both an early and late period drought. Our results suggest that late period droughts do exert weaker effects on biomass production of two dominant shortgrass species, but that the weaker effects are due to ontogenetic changes in plant physiology as opposed to physiological acclimation against multiple droughts. As a consequence, current ecosystem models that incorporate grass phenology and seasonal physiology should provide accurate predictions of primary production under future climates.
Collapse
Affiliation(s)
- Nathan P Lemoine
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA.
| | - Robert J Griffin-Nolan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Abigail D Lock
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Alan K Knapp
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
146
|
Kim M, Boithias L, Cho KH, Sengtaheuanghoung O, Ribolzi O. Modeling the Impact of Land Use Change on Basin-scale Transfer of Fecal Indicator Bacteria: SWAT Model Performance. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:1115-1122. [PMID: 30272793 DOI: 10.2134/jeq2017.11.0456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Land use change from annual crops to commercial tree plantations can modify flow and transport processes at the watershed scale, including the fate and transport of fecal indicator bacteria (FIB), such as . The Soil and Water Assessment Tool (SWAT) is a useful means for integrating watershed characteristics and simulating water and contaminants. The objective of this study was to provide a comprehensive assessment of the impact of land use change on microbial transfer from soils to streams using the SWAT model. This study was conducted for the Houay Pano watershed located in northern Lao People's Democratic Republic. Under the observed weather conditions, the SWAT model predicted a decrease from 2011 to 2012 and an increase from 2012 to 2013 in surface runoff, suspended solids, and transferred from the soil surface to streams. The amount of precipitation was important in simulating surface runoff, and it subsequently affected the fate and transport of suspended solids and bacteria. In simulations of identical weather conditions and different land uses, fate and transport was more sensitive to the initial number of than to its drivers (i.e., surface runoff and suspended solids), and leaf area index was a significant factor influencing the determination of the initial number of on the soil surface. On the basis of these findings, this study identifies several limitations of the SWAT fertilizer and bacteria modules and suggests measures to improve our understanding of the impacts of land use change on FIB in tropical watersheds.
Collapse
|
147
|
Fang Q, Wang G, Xue B, Liu T, Kiem A. How and to what extent does precipitation on multi-temporal scales and soil moisture at different depths determine carbon flux responses in a water-limited grassland ecosystem? THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1255-1266. [PMID: 29710579 DOI: 10.1016/j.scitotenv.2018.04.225] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/10/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
In water-limited ecosystems, hydrological processes significantly affect the carbon flux. The semi-arid grassland ecosystem is particularly sensitive to variations in precipitation (PRE) and soil moisture content (SMC), but to what extent is not fully understood. In this study, we estimated and analyzed how hydrological variables, especially PRE at multi-temporal scales (diurnal, monthly, phenological-related, and seasonal) and SMC at different soil depths (0-20 cm, 20-40 cm, 40-60 cm, 60-80 cm) affect the carbon flux. For these aims, eddy covariance data were combined with a Vegetation Photosynthesis and Respiration Model (VPRM) to simulate the regional gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem exchange of CO2 (NEE). Interestingly, carbon flux showed no relationship with diurnal PRE or phenological-related PRE (precipitation in the growing season and non-growing season). However, carbon flux was significantly related to monthly PRE and to seasonal PRE (spring + summer, autumn). The GPP, Reco, and NEE increased in spring and summer but decreased in autumn with increasing precipitation due to the combined effect of salinization in autumn. The GPP, Reco, and NEE were more responsive to SMC at 0-20 cm depth than at deeper depths due to the shorter roots of herbaceous vegetation. The NEE increased with increasing monthly PRE because soil microbes responded more quickly than plants. The NEE significantly decreased with increasing SMC in shallow surface due to a hysteresis effect on water transport. The results of our study highlight the complex processes that determine how and to what extent PRE at multi-temporal scale and SMC at different depths affect the carbon flux response in a water-limited grassland.
Collapse
Affiliation(s)
- Qingqing Fang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Guoqiang Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Baolin Xue
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Tingxi Liu
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia Autonomous Region 010018, China
| | - Anthony Kiem
- School of Environmental and Life Sciences (Earth Sciences), University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
148
|
Peña-Peniche A, Ruvalcaba-Ortega I, Rojas-Soto O. Climate complexity in the migratory cycle of Ammodramus bairdii. PLoS One 2018; 13:e0202678. [PMID: 30148886 PMCID: PMC6110464 DOI: 10.1371/journal.pone.0202678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022] Open
Abstract
One way to understand the ecology of bird migration is to analyze how birds use their ecological niche during their annual cycle. Ammodramus bairdii is a grassland specialist sparrow that breeds in southern Canada and the northern U.S.A. and winters in the Chihuahuan Desert. A continuous and alarming decrease of its populations has been observed over the last 50 years, and studying its seasonal distribution and associated climatic niches could help improve strategies for its conservation. We analyzed the temporal use of its Grinnellian niche (GN) -set of environmental conditions under which a species can establish and persist; in this case the climatic attributes-. We modeled the GN for the reproductive and winter seasons and projected them onto each other (inter-prediction), and also onto transient migratory periods. To measure niche breadth and their overlap, minimum convex polygons (MCP) were calculated for the climatic space. The niches of each of the two seasons were tested for similarity using the PCA axes of climatic variables. The geographic areas with optimal, suboptimal and marginal conditions were identified, based on the distance to the centroid of the GN. The models for each season revealed no geographic inter-prediction among them, with the exception of winter to migratory seasons. The niche breadth of the winter was greater than that of the reproductive season, with an overlap of 22.47% and 45.18%, respectively. The similarity analyses showed a value of zero between seasons. The climate conditions for the records during the migratory months corresponded with suboptimal and marginal conditions of the sparrow's winter niche. These results suggest that A. bairdii uses different climate conditions within ecological niches of each season during its migratory cycle.
Collapse
Affiliation(s)
- Alexander Peña-Peniche
- Red de Biología Evolutiva, Laboratorio de Bioclimatología, Instituto de Ecología, A.C., El Haya, Xalapa, Veracruz, México
| | - Irene Ruvalcaba-Ortega
- Universidad Autónoma de Nuevo León UANL, Facultad de Ciencias Biológicas, Laboratorio de Biología de la Conservación y Desarrollo Sustentable, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, México
| | - Octavio Rojas-Soto
- Red de Biología Evolutiva, Laboratorio de Bioclimatología, Instituto de Ecología, A.C., El Haya, Xalapa, Veracruz, México
| |
Collapse
|
149
|
Barnett KL, Johnson SN, Power SA. Drought negates growth stimulation due to root herbivory in pasture grasses. Oecologia 2018; 188:777-789. [PMID: 30099604 DOI: 10.1007/s00442-018-4244-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/04/2018] [Indexed: 10/28/2022]
Abstract
Predicted increases in extreme weather are likely to alter the interactions between organisms within ecosystems. Whilst many studies have investigated the impacts of climate change on aboveground plant-insect interactions, those belowground remain relatively unexplored. Root herbivores can be the dominant taxa in grasslands, potentially altering plant community dynamics. To better predict the impact of climate change on grasslands, we subjected four Australian pasture grasses (Cynodon dactylon, Paspalum dilatatum, Microlaena stipoides and Lolium perenne) to contrasting rainfall regimes [a press drought (i.e. sustained, moderate water stress), a pulse drought (water stress followed by periodic, infrequent deluge event) and a well-watered control], with and without root herbivores; a manual root cutting treatment was also included for comparison. Plant growth, rooting strategy, phenology and biochemistry were measured to evaluate above and belowground treatment responses. Watering treatments had a larger effect on plant productivity than root damage treatments: press drought and pulse drought treatments reduced biomass by 58% and 47%, respectively. Root herbivore damage effects were species dependent and were not always equivalent to root cutting. The combination of pulse drought and root herbivory resulted in increased root:shoot ratios for both P. dilatatum and L. perenne, as well as decreased biomass and delayed flowering time for P. dilatatum. Plant biomass responses to root damage were greatest under well-watered conditions; however, root damage also delayed or prevented investment in reproduction in at least one species. Our findings highlight the important role of soil-dwelling invertebrates for forecasting growth responses of grassland communities to future rainfall regime changes.
Collapse
Affiliation(s)
- Kirk L Barnett
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
150
|
Scheepens JF, Deng Y, Bossdorf O. Phenotypic plasticity in response to temperature fluctuations is genetically variable, and relates to climatic variability of origin, in Arabidopsis thaliana. AOB PLANTS 2018; 10:ply043. [PMID: 30109013 PMCID: PMC6084592 DOI: 10.1093/aobpla/ply043] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/25/2018] [Accepted: 07/13/2018] [Indexed: 05/22/2023]
Abstract
Under current climate change, increasing mean temperatures are not only causing hotter summers, but temperature variability is increasing as well. Phenotypic plasticity can help plants to overcome negative effects of temperature variability and allow them to rapidly adjust traits to adverse conditions. Moreover, genetic variation in such plasticity could provide potential for adaptive evolution in response to changing climate variability. Here, we conducted an experiment with 11 Arabidopsis thaliana genotypes to investigate intraspecific variation in plant responses to two aspects of variable temperature stress: timing and frequency. We found that the timing but not frequency of temperature stress affected the phenology, growth, reproduction and allocation strategy of plants, and that genotypes differed substantially in their responses. Moreover, trait plasticity was positively related to precipitation variability of origin, suggesting an adaptive role of plasticity. Our results indicate that the developmental stage of a plant during heat stress is a key determinant of its response, and that plasticity to temperature variability is an evolving and possibly adaptive trait in natural populations of A. thaliana. More generally, our study demonstrates the usefulness of studying plant responses to climatic variability per se, given that climatic variability is predicted to increase in the future.
Collapse
Affiliation(s)
- J F Scheepens
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle, Tübingen, Germany
| | - Ying Deng
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle, Tübingen, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle, Tübingen, Germany
| |
Collapse
|