101
|
Jiang W, Ma A, Wang T, Han K, Liu Y, Zhang Y, Dong A, Du Y, Huang X, Wang J, Lei X, Zheng X. Homing and differentiation of mesenchymal stem cells delivered intravenously to ischemic myocardium in vivo: a time-series study. Pflugers Arch 2006; 453:43-52. [PMID: 16915405 DOI: 10.1007/s00424-006-0117-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 05/29/2006] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
Abstract
Mesenchymal stem cells (MSCs) are potential sources of cells for tissue repair. However, little information is available about the time course of homing and differentiation of systemically delivered MSCs after acute myocardial ischemia (MI). In the present study, MSCs were isolated from male rat bone marrow and expanded in vitro. Female rats were divided randomly into three groups. Three hours after coronary ligation, the transplanted group received an infusion of MSCs through the tail vein; at the same time, a coronary-ligated control group was injected with culture medium, and a normal (unligated) group received MSCs. Homing of MSCs to the heart was assessed by expression of the Y chromosome sry gene using fluorescence in situ hybridization (FISH) at 3 days, 1, 4, and 8 weeks after transplantation. Immunofluorescent staining was used to examine markers for cardiomyocytes, endothelial cells, and smooth muscle cells. Hemodynamics in the hearts was also measured to assess cardiac function. At each time point, sry-positive cells were present in the cardiac tissue in transplanted group but not in the hearts of normal and control group animals. The number of sry-positive cells was significantly higher at 1 week compared to 3 days after transplantation. No significant difference was found in the number of sry-positive cells among those of 1, 4, and 8 weeks after transplantation. At 3 days and 1 week after transplantation, the sry-positive cells in the transplanted group lacked troponin, desmin, smooth muscle alpha-actin, and CD31. At the later time points, cardiomyocytes, smooth muscle cells, and endothelial cells bearing sry were identified in the transplanted group. The cardiac function in transplanted group showed higher improvement at 4 and 8 weeks compared to 1 week after transplantation. Our data suggest that intravenously delivered MSCs are capable of homing toward the ischemic myocardium, and the fastigium of homing appeared around 1 week after MI. The differentiation of MSCs to cardiomyocytes, smooth muscle cells, and endothelial cells shows to be time dependent and arises at 1 to 4 weeks after transplantation.
Collapse
Affiliation(s)
- Wenhui Jiang
- Medical College, Xi'an Jiaotong University, No. 1 Jiankang Road, Xi'an, Shaanxi 710061, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Farin A, Suzuki SO, Weiker M, Goldman JE, Bruce JN, Canoll P. Transplanted glioma cells migrate and proliferate on host brain vasculature: a dynamic analysis. Glia 2006; 53:799-808. [PMID: 16541395 DOI: 10.1002/glia.20334] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Glioma cells have a remarkable capacity to infiltrate the brain and migrate long distances from the tumor, making complete surgical resection impossible. Yet, little is known about how glioma cells interact with the complex microenvironment of the brain. To investigate the patterns and dynamics of glioma cell infiltration and migration, we stereotactically injected eGFP and DsRed-2 labeled rat C6 glioma cells into neonatal rat forebrains and used time-lapse microscopy to observe glioma cell migration and proliferation in slice cultures generated from these brains. In this model, glioma cells extensively infiltrated the brain by migrating along the abluminal surface of blood vessels. Glioma cells intercalated their processes between the endothelial cells and the perivascular astrocyte end feet, but did not invade into the blood vessel lumen. Dynamic analysis revealed notable similarities between the migratory behavior of glioma cells and that previously observed for glial progenitor cells. Glioma cells had a characteristic leading process and migrated in a saltatory fashion, with bursts of migration separated by periods of immobility, and maximum speeds of over 100 microm/h. Migrating glioma cells proliferated en route, pausing for as short as an hour to divide before the daughter cells resumed migrating. Remarkably, the majority of glioma cell divisions took place at or near vascular branch points, suggesting that mitosis is triggered by local environmental cues. This study provides the first dynamic analysis of glioma cell infiltration in living brain tissue and reveals that the migration and proliferation of transplanted glioma cells is directed by interactions with host brain vasculature.
Collapse
Affiliation(s)
- Azadeh Farin
- Department Neurological Surgery, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
103
|
Jurga M, Markiewicz I, Sarnowska A, Habich A, Kozlowska H, Lukomska B, Buzanska L, Domanska-Janik K. Neurogenic potential of human umbilical cord blood: neural-like stem cells depend on previous long-term culture conditions. J Neurosci Res 2006; 83:627-37. [PMID: 16435396 DOI: 10.1002/jnr.20766] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In vitro studies conducted by our research group documented that neural progenitor cells can be selected from human umbilical cord blood (HUCB-NPs). Due to further expansion of these cells we have established the first human umbilical cord blood-derived neural-like stem cell line (HUCB-NSC) growing in serum-free (SF) or low-serum (LS) medium for over 3 years. The purpose of the study was to evaluate the neurogenic potential of HUCB-NSCs cultured in SF and LS condition in different in vitro settings before transplantation. We have shown that the number of cells attaining neuronal features was significantly higher for cultures expanded in LS than in SF condition. Moreover, the presence of neuromorphogens, cultured rat astrocytes or hippocampal slices promoted further differentiation of HUCB-NSCs into neural lineage much more effectively when the cells had derived from LS cultures. The highest response was observed in the case of co-cultures with rat primary astrocytes as well as hippocampal organotypic slices. However, the LS cells co-cultured with hippocampal slices expressed exclusively a set of early and late neuronal markers whereas no detection of cells with glial-specific markers was possible. In conclusion, certain level of stem/progenitor cell commitment is important for optimal response of HUCB-NSC on the neurogenic signals provided by surrounding environment in vitro.
Collapse
Affiliation(s)
- M Jurga
- Department of NeuroRepair, Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Abstract
In the adult mouse brain, the subventricular zone (SVZ) is a neurogenic stem cell niche only 4-5 cell diameters thick. Within this narrow zone, a unique microenvironment supports stem cell self-renewal, gliogenesis or neurogenesis lineage decisions and tangential migration of newly generated neurons out of the SVZ and into the olfactory bulb. However, with aging, SVZ neurogenesis declines. Here, we examine the dynamic interplay between SVZ cytoarchitecture and neurogenesis through aging. Assembly of high-resolution electron microscopy images of corresponding coronal sections from 2-, 10- and 22-month-old mice into photomontages reveal a thinning of the SVZ with age. Following a 2-h BrdU pulse, we detect a significant decrease in cell proliferation from 2 to 22 months. Neuroblast numbers decrease with age, as do transitory amplifying progenitor cells, while both SVZ astrocytes and adjacent ependymal cells remain relatively constant. At 22 months, only residual pockets of neurogenesis remain and neuroblasts become restricted to the anterior dorsolateral horn of the SVZ. Within this dorsolateral zone many key components of the younger neurogenic niche are maintained; however, in the aged SVZ, increased numbers of SVZ astrocytes are found interposed within the ependyma. These astrocytes co-label with markers to ependymal cells and astrocytes, form intercellular adherens junctions with neighboring ependymal cells, and some possess multiple basal bodies of cilia within their cytoplasm. Together, these data reveal an age-related, progressive restriction of SVZ neurogenesis to the dorsolateral aspect of the lateral ventricle with increased numbers of SVZ astrocytes interpolated within the ependyma.
Collapse
Affiliation(s)
- Jie Luo
- Center for Regenerative Biology, Department of Physiology and Neurobiology, University of Connecticut, Storrs, 06250-4243, USA
| | | | | | | | | |
Collapse
|
105
|
Abstract
Mouse embryonic stem cells (mESCs) can differentiate into different types of cells, and serve as a good model system to study human embryonic stem cells (hESCs). We showed that mESCs differentiated into two types of neurons with different time courses. To determine the global protein expression changes after neural differentiation, we employed a proteomic strategy to analyze the differences between the proteomes of ES cells (E14) and neurons. Using 2-DE plus LC/MS/MS, we have generated proteome reference maps of E14 cells and derived dopaminergic neurons. Around 23 proteins with an increase or decrease in expression or phosphorylation after differentiation have been identified. We confirmed the downregulation of translationally controlled tumor protein (TCTP) and upregulation of alpha-tubulin by Western blotting. We also showed that TCTP was further downregulated in derived motor neurons than in dopaminergic neurons, and its expression level was independent of extracellular Ca(2+) concentration during neural differentiation. Potential roles of TCTP in modulating neural differentiation through binding to Ca(2+), tubulin and Na,K-ATPase, as well as the functional significance of regulation of other proteins such as actin-related protein 3 (Arp3) and Ran GTPase are discussed. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Daojing Wang
- Life Sciences Division, Lawrence Berkeley National Laboratory, CA 94720, USA.
| | | |
Collapse
|
106
|
Abstract
Research into human central nervous system (CNS) disorders has traditionally focused on interconnecting neurons, thought to be the most important functional elements in the CNS. Consequently, animal models have developed as the central paradigm in CNS drug development. However, evidence is accumulating that suggests glial cells play a much more important role in health and disease in the CNS than has been previously acknowledged. Brain development, neurotransmission, inflammatory and neuroprotective pathways and blood-brain barrier functions rely on glial cells. It is also the case that human glial cell cultures adequately mimic in vivo glial cell behaviour, providing a novel and valuable tool for CNS drug discovery and development.
Collapse
Affiliation(s)
- Johannes M van Noort
- Business Unit Biomedical Research, TNO Quality of Life, P.O. Box 2215, 2301 CE Leiden, The Netherlands.
| |
Collapse
|
107
|
Theise ND. Gastrointestinal stem cells. III. Emergent themes of liver stem cell biology: niche, quiescence, self-renewal, and plasticity. Am J Physiol Gastrointest Liver Physiol 2006; 290:G189-93. [PMID: 16407587 DOI: 10.1152/ajpgi.00041.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This essay will address areas of liver stem/progenitor cell studies in which consensus has emerged and in which controversy still prevails over consensus, but it will also highlight important themes that inevitably should be a focus of liver stem/progenitor cell investigations in coming years. Thus concepts regarding cell plasticity, the existence of a physiological/anatomic stem cell niche, and whether intrahepatic liver stem/progenitor cells comprise true stem cells or progenitor cells (or both) will be approached in some detail.
Collapse
Affiliation(s)
- Neil D Theise
- Division of Digestive Diseases, 16th St. at 1st Ave., New York, NY 10003. )
| |
Collapse
|
108
|
Zachary I. Neuroprotective role of vascular endothelial growth factor: signalling mechanisms, biological function, and therapeutic potential. Neurosignals 2006; 14:207-21. [PMID: 16301836 DOI: 10.1159/000088637] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 05/05/2005] [Indexed: 01/08/2023] Open
Abstract
Vascular endothelial growth factor (VEGF or VEGF-A) and its receptors play essential roles in the formation of blood vessels during embryogenesis and in disease. Most biological effects of VEGF are mediated via two receptor tyrosine kinases, VEGFR1 and VEGFR2, but specific VEGF isoforms also bind neuropilins (NP) 1 and 2, non-tyrosine kinase receptors originally identified as receptors for semaphorins, polypeptides with essential roles in neuronal patterning. There is abundant evidence that VEGF-A has neurotrophic and neuroprotective effects on neuronal and glial cells in culture and in vivo, and can stimulate the proliferation and survival of neural stem cells. VEGFR2 and NP1 are the major VEGF receptors expressed on neuronal cells and, while the mechanisms mediating neuroprotective effects of VEGF are not fully understood, VEGF stimulates several signalling events in neuronal cell types, including activation of phospholipase C-gamma, Akt and ERK. Findings in diverse models of nerve damage and disease suggest that VEGF has therapeutic potential as a neuroprotective factor. VEGF is a key mediator of the angiogenic response to cerebral and peripheral ischaemia, and promotes nerve repair following traumatic spinal injury. Recent work has revealed a role for reduced VEGF expression in the pathogenesis of amyotrophic lateral sclerosis, a rare neurodegenerative disease caused by selective loss of motor neurons. In many instances, the neuroprotective effects of VEGF appear to result from a combination of the indirect consequences of increased angiogenesis, and the direct stimulation of neuronal function. However, more work is required to determine the specific functional role of direct neuronal effects of VEGF.
Collapse
Affiliation(s)
- Ian Zachary
- Centre for Cardiovascular Biology and Medicine, BHF Laboratories, Department of Medicine, The Rayne Institute, University College London, London, UK.
| |
Collapse
|
109
|
Abstract
The recent identification of endogenous neural stem cells and persistent neuronal production in the adult brain suggests a previously unrecognized capacity for self-repair after brain injury. Neurogenesis not only continues in discrete regions of the adult mammalian brain, but new evidence also suggests that neural progenitors form new neurons that integrate into existing circuitry after certain forms of brain injury in the adult. Experimental stroke in adult rodents and primates increases neurogenesis in the persistent forebrain subventricular and hippocampal dentate gyrus germinative zones. Of greater relevance for regenerative potential, ischemic insults stimulate endogenous neural progenitors to migrate to areas of damage and form neurons in otherwise dormant forebrain regions, such as the neostriatum and hippocampal pyramidal cell layer, of the mature brain. This review summarizes the current understanding of adult neurogenesis and its regulation in vivo, and describes evidence for stroke-induced neurogenesis and neuronal replacement in the adult. Current strategies used to modify endogenous neurogenesis after ischemic brain injury also will be discussed, as well as future research directions with potential for achieving regeneration after stroke and other brain insults.
Collapse
Affiliation(s)
- Robin J Lichtenwalner
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0585, USA
| | | |
Collapse
|
110
|
Li Q, Ford MC, Lavik EB, Madri JA. Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: An in vitro study. J Neurosci Res 2006; 84:1656-68. [PMID: 17061253 DOI: 10.1002/jnr.21087] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neural stem cells (NSCs) exist in vascularized niches. Although there has been ample evidence supporting a role for endothelial cell-derived soluble factors as modulators of neural stem cell self-renewal and neuronal differentiation there is a paucity of data reported on neural stem cell modulation of endothelial cell behavior. We show that co-culture of NSCs with brain-derived endothelial cells (BECs) either in direct contact or separated by a porous membrane elicited robust vascular tube formation and maintenance, mediated by induction of vascular vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) and activation of vascular VEGFR2 and TrkB by NSC NO. Nitric oxide (NO) scavengers and sequestration of VEGF and BDNF blunted this induction of tube formation, whereas addition of exogenous NO donor, rBDNF and rVEGF rescued the induction of tube formation. Further, rBDNF enhanced NSC eNOS activation and NO generation, suggesting an inducible positive feed-back signaling loop between NSCs and BECs, providing for homeostasis and responsiveness of the resident NSCs and BECs comprising the neurovascular niche. These findings show the importance of reciprocal modulation of NSCs and BECs in induction and maintenance of the neurovascular niche and underscores their dynamic interactions.
Collapse
Affiliation(s)
- Qi Li
- Department of Pathology, Yale University, School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
111
|
Maurange C, Gould AP. Brainy but not too brainy: starting and stopping neuroblast divisions in Drosophila. Trends Neurosci 2005; 28:30-6. [PMID: 15626494 DOI: 10.1016/j.tins.2004.10.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Drosophila neuroblasts are similar to mammalian neural stem cells in that they self-renew and have the potential to generate many different types of neurons and glia. They have already proved useful for uncovering asymmetric division components and now look set to provide insights into how stem cell divisions are initiated and terminated during neural development. In particular, some of the humoral factors and short-range 'niche' signals that modulate neuroblast activity during postembryonic development have been identified. In addition, recent studies have begun to reveal how the total number of cells generated by a single neuroblast is regulated by spatial and temporal cues from Hox proteins and a transcription-factor series linked to cell cycle progression.
Collapse
Affiliation(s)
- Cédric Maurange
- Medical Research Council, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | |
Collapse
|