101
|
Kim HC, Jolly ER. LncRNAs Are Differentially Expressed between Wildtype and Cell Line Strains of African Trypanosomes. Noncoding RNA 2022; 8:ncrna8010007. [PMID: 35076577 PMCID: PMC8788480 DOI: 10.3390/ncrna8010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/02/2022] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma brucei is a parasitic protist that causes African sleeping sickness. The establishment of T. brucei cell lines has provided a significant advantage for the majority of T. brucei research. However, these cell lines were isolated and maintained in culture for decades, occasionally accumulating changes in gene expression. Since trypanosome strains have been maintained in culture for decades, it is possible that difference may have accumulated in fast-evolving non-coding RNAs between trypanosomes from the wild and those maintained extensively in cultures. To address this, we compared the lncRNA expression profile of trypanosomes maintained as cultured cell lines (CL) to those extracted from human patients, wildtype (WT). We identified lncRNAs from CL and WT from available transcriptomic data and demonstrate that CL and WT have unique sets of lncRNAs expressed. We further demonstrate that the unique and shared lncRNAs are differentially expressed between CL and WT parasites, and that these lncRNAs are more evenly up-regulated and down-regulated than protein-coding genes. We validated the expression of these lncRNAs using qPCR. Taken together, this study demonstrates that lncRNAs are differentially expressed between cell lines and wildtype T. brucei and provides evidence for potential evolution of lncRNAs, specifically in T. brucei maintained in culture.
Collapse
Affiliation(s)
- Hyung Chul Kim
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Emmitt R. Jolly
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Center for Global Health and Disease, Case Western Reserve University, Cleveland, OH 44106, USA
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
102
|
Cordon-Obras C, Gomez-Liñan C, Torres-Rusillo S, Vidal-Cobo I, Lopez-Farfan D, Barroso-Del Jesus A, Rojas-Barros D, Carrington M, Navarro M. Identification of sequence-specific promoters driving polycistronic transcription initiation by RNA polymerase II in trypanosomes. Cell Rep 2022; 38:110221. [PMID: 35021094 DOI: 10.1016/j.celrep.2021.110221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
Protein-coding genes in trypanosomes occur in polycistronic transcription units (PTUs). How RNA polymerase II (Pol II) initiates transcription of PTUs has not been resolved; the current model favors chromatin modifications inducing transcription rather than sequence-specific promoters. Here, we uncover core promoters by functional characterization of Pol II peaks identified by chromatin immunoprecipitation sequencing (ChIP-seq). Two distinct promoters are located between divergent PTUs, each driving unidirectional transcription. Detailed analysis identifies a 75-bp promoter that is necessary and sufficient to drive full reporter expression and contains functional motifs. Analysis of further promoters suggests transcription initiation is regulated and promoters are either focused or dispersed. In contrast to the previous model of unregulated and promoter-independent transcription initiation, we find that sequence-specific promoters determine the initiation of Pol II transcription of protein-coding genes PTUs. These findings in Trypanosoma brucei suggest that in addition of chromatin modifications, promoter motifs-based regulation of gene expression is deeply conserved among eukaryotes.
Collapse
Affiliation(s)
- Carlos Cordon-Obras
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Claudia Gomez-Liñan
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Sara Torres-Rusillo
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Isabel Vidal-Cobo
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Diana Lopez-Farfan
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Alicia Barroso-Del Jesus
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Domingo Rojas-Barros
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Científicas, IPBLN-CSIC, 18016 Granada, Spain.
| |
Collapse
|
103
|
Williams DL, Sikora VM, Hammer MA, Amin S, Brinjikji T, Brumley EK, Burrows CJ, Carrillo PM, Cromer K, Edwards SJ, Emri O, Fergle D, Jenkins MJ, Kaushik K, Maydan DD, Woodard W, Clowney EJ. May the Odds Be Ever in Your Favor: Non-deterministic Mechanisms Diversifying Cell Surface Molecule Expression. Front Cell Dev Biol 2022; 9:720798. [PMID: 35087825 PMCID: PMC8787164 DOI: 10.3389/fcell.2021.720798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
How does the information in the genome program the functions of the wide variety of cells in the body? While the development of biological organisms appears to follow an explicit set of genomic instructions to generate the same outcome each time, many biological mechanisms harness molecular noise to produce variable outcomes. Non-deterministic variation is frequently observed in the diversification of cell surface molecules that give cells their functional properties, and is observed across eukaryotic clades, from single-celled protozoans to mammals. This is particularly evident in immune systems, where random recombination produces millions of antibodies from only a few genes; in nervous systems, where stochastic mechanisms vary the sensory receptors and synaptic matching molecules produced by different neurons; and in microbial antigenic variation. These systems employ overlapping molecular strategies including allelic exclusion, gene silencing by constitutive heterochromatin, targeted double-strand breaks, and competition for limiting enhancers. Here, we describe and compare five stochastic molecular mechanisms that produce variety in pathogen coat proteins and in the cell surface receptors of animal immune and neuronal cells, with an emphasis on the utility of non-deterministic variation.
Collapse
Affiliation(s)
- Donnell L. Williams
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| | - Veronica Maria Sikora
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Max A. Hammer
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Sayali Amin
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Taema Brinjikji
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Emily K. Brumley
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Connor J. Burrows
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Paola Michelle Carrillo
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Kirin Cromer
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Summer J. Edwards
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Olivia Emri
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Daniel Fergle
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - M. Jamal Jenkins
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| | - Krishangi Kaushik
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Daniella D. Maydan
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Wrenn Woodard
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - E. Josephine Clowney
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
104
|
Abstract
The parasitic trypanosomatids cause lethal and debilitating diseases, the leishmaniases, Chagas disease, and the African trypanosomiases, with major impacts on human and animal health. Sustained research has borne fruit by assisting efforts to reduce the burden of disease and by improving our understanding of fundamental molecular and cell biology. But where has the research primarily been conducted, and which research areas have received the most attention? These questions are addressed below using publication and citation data from the past few decades.
Collapse
Affiliation(s)
- David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
105
|
Gomez Barroso JA, Miranda MR, Pereira CA, Garratt RC, Aguilar CF. X-ray diffraction and in vivo studies reveal the quinary structure of Trypanosoma cruzi nucleoside diphosphate kinase 1: a novel helical oligomer structure. Acta Crystallogr D Struct Biol 2022; 78:30-42. [PMID: 34981759 DOI: 10.1107/s2059798321011219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
Trypanosoma cruzi is a flagellated protozoan parasite that causes Chagas disease, which represents a serious health problem in the Americas. Nucleoside diphosphate kinases (NDPKs) are key enzymes that are implicated in cellular energy management. TcNDPK1 is the canonical isoform in the T. cruzi parasite. TcNDPK1 has a cytosolic, perinuclear and nuclear distribution. It is also found in non-membrane-bound filaments adjacent to the nucleus. In the present work, X-ray diffraction and in vivo studies of TcNDPK1 are described. The structure reveals a novel, multi-hexameric, left-handed helical oligomer structure. The results of directed mutagenesis studies led to the conclusion that the microscopic TcNDPK1 granules observed in vivo in T. cruzi parasites are made up by the association of TcNDPK1 oligomers. In the absence of experimental data, analysis of the interactions in the X-ray structure of the TcNDPK1 oligomer suggests the probable assembly and disassembly steps: dimerization, assembly of the hexamer as a trimer of dimers, hexamer association to generate the left-handed helical oligomer structure and finally oligomer association in a parallel manner to form the microscopic TcNDPK1 filaments that are observed in vivo in T. cruzi parasites. Oligomer disassembly takes place on the binding of substrate in the active site of TcNDPK1, leading to dissociation of the hexamers. This study constitutes the first report of such a protein arrangement, which has never previously been seen for any protein or NDPK. Further studies are needed to determine its physiological role. However, it may suggest a paradigm for protein storage reflecting the complex mechanism of action of TcNDPK1.
Collapse
Affiliation(s)
- Juan Arturo Gomez Barroso
- Laboratorio de Biología Molecular Estructural, Universidad Nacional de San Luis, Ejército de los Andes 950, 5700 San Luis, Argentina
| | - Mariana Reneé Miranda
- Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Claudio Alejandro Pereira
- Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas (IDIM), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Richard Charles Garratt
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense No. 400, São Carlos, São Paulo 13566-590, Brazil
| | - Carlos Fernando Aguilar
- Laboratorio de Biología Molecular Estructural, Universidad Nacional de San Luis, Ejército de los Andes 950, 5700 San Luis, Argentina
| |
Collapse
|
106
|
Staneva DP, Bresson S, Auchynnikava T, Spanos C, Rappsilber J, Jeyaprakash AA, Tollervey D, Matthews KR, Allshire RC. The SPARC complex defines RNAPII promoters in Trypanosoma brucei. eLife 2022; 11:83135. [PMID: 36169304 PMCID: PMC9566855 DOI: 10.7554/elife.83135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/27/2022] [Indexed: 11/15/2022] Open
Abstract
Kinetoplastids are a highly divergent lineage of eukaryotes with unusual mechanisms for regulating gene expression. We previously surveyed 65 putative chromatin factors in the kinetoplastid Trypanosoma brucei. Our analyses revealed that the predicted histone methyltransferase SET27 and the Chromodomain protein CRD1 are tightly concentrated at RNAPII transcription start regions (TSRs). Here, we report that SET27 and CRD1, together with four previously uncharacterized constituents, form the SET27 promoter-associated regulatory complex (SPARC), which is specifically enriched at TSRs. SET27 loss leads to aberrant RNAPII recruitment to promoter sites, accumulation of polyadenylated transcripts upstream of normal transcription start sites, and conversion of some normally unidirectional promoters to bidirectional promoters. Transcriptome analysis in the absence of SET27 revealed upregulated mRNA expression in the vicinity of SPARC peaks within the main body of chromosomes in addition to derepression of genes encoding variant surface glycoproteins (VSGs) located in subtelomeric regions. These analyses uncover a novel chromatin-associated complex required to establish accurate promoter position and directionality.
Collapse
Affiliation(s)
- Desislava P Staneva
- Wellcome Centre for Cell Biology, University of EdinburghEdinburghUnited Kingdom,Institute of Immunology and Infection Biology, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Stefan Bresson
- Wellcome Centre for Cell Biology, University of EdinburghEdinburghUnited Kingdom
| | | | - Christos Spanos
- Wellcome Centre for Cell Biology, University of EdinburghEdinburghUnited Kingdom
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of EdinburghEdinburghUnited Kingdom,Institute of Biotechnology, Technische UniversitätBerlinGermany
| | | | - David Tollervey
- Wellcome Centre for Cell Biology, University of EdinburghEdinburghUnited Kingdom
| | - Keith R Matthews
- Institute of Immunology and Infection Biology, School of Biological Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Robin C Allshire
- Wellcome Centre for Cell Biology, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
107
|
Davis JA, Chakrabarti K. Telomerase ribonucleoprotein and genome integrity-An emerging connection in protozoan parasites. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 13:e1710. [PMID: 34973045 DOI: 10.1002/wrna.1710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
Telomerase has an established role in telomere maintenance in eukaryotes. However, recent studies have begun to implicate telomerase in cellular roles beyond telomere maintenance. Specifically, evidence is emerging of cross-talks between telomerase mediated telomere homeostasis and DNA repair pathways. Telomere shortening due to the end replication problem is a constant threat to genome integrity in eukaryotic cells. This poses a particular problem in unicellular parasitic protists because their major virulence genes are located at the subtelomeric loci. Although telomerase is the major regulator of telomere lengthening in eukaryotes, it is less studied in the ancient eukaryotes, including clinically important human pathogens. Recent research is highlighting interplay between telomerase and the DNA damage response in human parasites. The importance of this interplay in pathogen virulence is only beginning to be illuminated, including the potential to highlight novel developmental regulation of telomerase in parasites who transition between multiple developmental stages throughout their life cycle. In this review, we will discuss the telomerase ribonucleoprotein enzyme and DNA repair pathways with emerging views in human parasites to give a broader perspective of the possible connection of telomere, telomerase, and DNA repair pathways across eukaryotic lineages and highlight their potential role in pathogen virulence. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
| | - Kausik Chakrabarti
- University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
108
|
Singh P, Samanta K, Kebe NM, Michel G, Legrand B, Sitnikova VE, Kajava AV, Pagès M, Bastien P, Pomares C, Coux O, Hernandez JF. The C-terminal segment of Leishmania major HslU: Toward potential inhibitors of LmHslVU activity. Bioorg Chem 2021; 119:105539. [PMID: 34894575 DOI: 10.1016/j.bioorg.2021.105539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/08/2021] [Accepted: 12/01/2021] [Indexed: 01/23/2023]
Abstract
It is urgent to develop less toxic and more efficient treatments for leishmaniases and trypanosomiases. We explore the possibility to target the parasite mitochondrial HslVU protease, which is essential for growth and has no analogue in the human host. For this, we develop compounds potentially inhibiting the complex assembly by mimicking the C-terminal (C-ter) segment of the ATPase HslU. We previously showed that a dodecapeptide derived from Leishmania major HslU C-ter segment (LmC12-U2, Cpd 1) was able to bind to and activate the digestion of a fluorogenic substrate by LmHslV. Here, we present the study of its structure-activity relationships. By replacing each essential residue with related non-proteinogenic residues, we obtained more potent analogues. In particular, a cyclohexylglycine residue at position 11 (cpd 24) allowed a more than three-fold gain in potency while reducing the size of compound 24 from twelve to six residues (cpd 50) without significant loss of potency, opening the way toward short HslU C-ter peptidomimetics as potential inhibitors of HslV proteolytic function. Finally, conjugates constituted of LmC6-U2 analogues and a mitochondrial penetrating peptide were found to penetrate into the promastigote form of L. infantum and to inhibit the parasite growth without showing toxicity toward human THP-1 cells at the same concentration (i.e. 30 μM).
Collapse
Affiliation(s)
- Priyanka Singh
- IBMM, CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | | | - Ndeye Mathy Kebe
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), UMR5237, CNRS, Univ Montpellier, 1919, route de Mende, 34000 Montpellier, France
| | - Grégory Michel
- Centre Méditerranéen de Médecine Moléculaire (C3M), U1065, Université Côte d'Azur, Inserm, Archimed Building, 151 route Saint Antoine de Ginestière, 06000 Nice, France
| | | | - Vera E Sitnikova
- International Research Institute of Bioengineering, ITMO University, Kronverksky Pr. 49, 197101 Saint Petersburg, Russia
| | - Andrey V Kajava
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), UMR5237, CNRS, Univ Montpellier, 1919, route de Mende, 34000 Montpellier, France
| | - Michel Pagès
- MIVEGEC, Univ Montpellier, CNRS, IRD, CHU, 191 avenue du Doyen Giraud, 34000 Montpellier, France
| | - Patrick Bastien
- MIVEGEC, Univ Montpellier, CNRS, IRD, CHU, 191 avenue du Doyen Giraud, 34000 Montpellier, France
| | - Christelle Pomares
- Centre Méditerranéen de Médecine Moléculaire (C3M), U1065, Université Côte d'Azur, Inserm, Archimed Building, 151 route Saint Antoine de Ginestière, 06000 Nice, France
| | - Olivier Coux
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), UMR5237, CNRS, Univ Montpellier, 1919, route de Mende, 34000 Montpellier, France.
| | | |
Collapse
|
109
|
In Leishmania major, the Homolog of the Oncogene PES1 May Play a Critical Role in Parasite Infectivity. Int J Mol Sci 2021; 22:ijms222212592. [PMID: 34830469 PMCID: PMC8618447 DOI: 10.3390/ijms222212592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by Leishmania spp. The improvement of existing treatments and the discovery of new drugs remain ones of the major goals in control and eradication of this disease. From the parasite genome, we have identified the homologue of the human oncogene PES1 in Leishmania major (LmjPES). It has been demonstrated that PES1 is involved in several processes such as ribosome biogenesis, cell proliferation and genetic transcription. Our phylogenetic studies showed that LmjPES encodes a highly conserved protein containing three main domains: PES N-terminus (shared with proteins involved in ribosomal biogenesis), BRCT (found in proteins related to DNA repair processes) and MAEBL-type domain (C-terminus, related to erythrocyte invasion in apicomplexan). This gene showed its highest expression level in metacyclic promastigotes, the infective forms; by fluorescence microscopy assay, we demonstrated the nuclear localization of LmjPES protein. After generating mutant parasites overexpressing LmjPES, we observed that these clones displayed a dramatic increase in the ratio of cell infection within macrophages. Furthermore, BALB/c mice infected with these transgenic parasites exhibited higher footpad inflammation compared to those inoculated with non-overexpressing parasites.
Collapse
|
110
|
Thivolle A, Mehnert AK, Tihon E, McLaughlin E, Dujeancourt-Henry A, Glover L. DNA double strand break position leads to distinct gene expression changes and regulates VSG switching pathway choice. PLoS Pathog 2021; 17:e1010038. [PMID: 34767618 PMCID: PMC8612549 DOI: 10.1371/journal.ppat.1010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
Antigenic variation is an immune evasion strategy used by Trypanosoma brucei that results in the periodic exchange of the surface protein coat. This process is facilitated by the movement of variant surface glycoprotein genes in or out of a specialized locus known as bloodstream form expression site by homologous recombination, facilitated by blocks of repetitive sequence known as the 70-bp repeats, that provide homology for gene conversion events. DNA double strand breaks are potent drivers of antigenic variation, however where these breaks must fall to elicit a switch is not well understood. To understand how the position of a break influences antigenic variation we established a series of cell lines to study the effect of an I-SceI meganuclease break in the active expression site. We found that a DNA break within repetitive regions is not productive for VSG switching, and show that the break position leads to a distinct gene expression profile and DNA repair response which dictates how antigenic variation proceeds in African trypanosomes. Crucial to triggering antigenic variation is the formation of DNA double strand breaks (DSB). These lesions have been shown to be potent drivers of variant surface glycoprotein (VSG) switching, albeit highly toxic. Trypanosomes immune evasion strategy relies on their ability to rapidly exchange the singly expressed VSG for one that is antigenically distinct. It has been previously shown that the subtelomeric ends, here the locus from which the VSG is expressed, accumulate DSBs. Using the I-SceI meganuclease system we established a series of cell lines to assess how the position of a DSB influences antigenic variation and the cellular response to a break. We show that a DSB in highly repetitive regions are poor triggers for antigenic variation. Contrastingly, a DSB that does lead to VSG switching via recombination results in the upregulation of DNA damage linked genes. Our results provide new insights into how the position of a DSB influences repair pathway choice and the subsequent gene expression changes. We propose that where repair is not dominated by recombination, but rather by an error prone mechanism, silent BES promoters are partially activated to facilitate rapid transcriptional switching should repair be deleterious to the cell.
Collapse
Affiliation(s)
- Alix Thivolle
- Institut Pasteur, Université de Paris, Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Paris, France
| | - Ann-Kathrin Mehnert
- Institut Pasteur, Université de Paris, Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Paris, France
| | - Eliane Tihon
- Institut Pasteur, Université de Paris, Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Paris, France
| | - Emilia McLaughlin
- Institut Pasteur, Université de Paris, Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Annick Dujeancourt-Henry
- Institut Pasteur, Université de Paris, Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Paris, France
| | - Lucy Glover
- Institut Pasteur, Université de Paris, Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Paris, France
- * E-mail:
| |
Collapse
|
111
|
Broster Reix CE, Florimond C, Cayrel A, Mailhé A, Agnero-Rigot C, Landrein N, Dacheux D, Havlicek K, Bonhivers M, Morriswood B, Robinson DR. Bhalin, an Essential Cytoskeleton-Associated Protein of Trypanosoma brucei Linking TbBILBO1 of the Flagellar Pocket Collar with the Hook Complex. Microorganisms 2021; 9:microorganisms9112334. [PMID: 34835460 PMCID: PMC8623173 DOI: 10.3390/microorganisms9112334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 12/31/2022] Open
Abstract
Background: In most trypanosomes, endo and exocytosis only occur at a unique organelle called the flagellar pocket (FP) and the flagellum exits the cell via the FP. Investigations of essential cytoskeleton-associated structures located at this site have revealed a number of essential proteins. The protein TbBILBO1 is located at the neck of the FP in a structure called the flagellar pocket collar (FPC) and is essential for biogenesis of the FPC and parasite survival. TbMORN1 is a protein that is present on a closely linked structure called the hook complex (HC) and is located anterior to and overlapping the collar. TbMORN1 is essential in the bloodstream form of T. brucei. We now describe the location and function of BHALIN, an essential, new FPC-HC protein. Methodology/Principal Findings: Here, we show that a newly characterised protein, BHALIN (BILBO1 Hook Associated LINker protein), is localised to both the FPC and HC and has a TbBILBO1 binding domain, which was confirmed in vitro. Knockdown of BHALIN by RNAi in the bloodstream form parasites led to cell death, indicating an essential role in cell viability. Conclusions/Significance: Our results demonstrate the essential role of a newly characterised hook complex protein, BHALIN, that influences flagellar pocket organisation and function in bloodstream form T. brucei parasites.
Collapse
Affiliation(s)
- Christine E. Broster Reix
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
| | - Célia Florimond
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
- Laboratory of Parasitology, National Reference Center for Malaria, WHO Collaborative Center for Surveillance of Antimalarial Drug Resistance, Pasteur Institute of French Guiana, 97306 Cayenne, French Guiana
| | - Anne Cayrel
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
| | - Amélie Mailhé
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
- Société Fromagère de Saint Affrique, Camaras, 12400 Saint-Affrique, France
| | - Corentin Agnero-Rigot
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
| | - Nicolas Landrein
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
| | - Denis Dacheux
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
- Enstbb, École Nationale Supérieure de Technologie des Biomolécules de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Katharina Havlicek
- Max Perutz Labs, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria;
| | - Mélanie Bonhivers
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
| | - Brooke Morriswood
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany;
| | - Derrick R. Robinson
- Protist Parasite Cytoskeleton (ProParaCyto) Group, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (C.E.B.R.); (C.F.); (A.C.); (A.M.); (C.A.-R.); (N.L.); (D.D.); (M.B.)
- Correspondence:
| |
Collapse
|
112
|
Structural Basis for the Functional Diversity of Centrins: A Focus on Calcium Sensing Properties and Target Recognition. Int J Mol Sci 2021; 22:ijms222212173. [PMID: 34830049 PMCID: PMC8622359 DOI: 10.3390/ijms222212173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/23/2022] Open
Abstract
Centrins are a family of small, EF hand-containing proteins that are found in all eukaryotes and are often complexed with centrosome-related structures. Since their discovery, centrins have attracted increasing interest due to their multiple, diverse cellular functions. Centrins are similar to calmodulin (CaM) in size, structure and domain organization, although in contrast to CaM, the majority of centrins possess at least one calcium (Ca2+) binding site that is non-functional, thus displaying large variance in Ca2+ sensing abilities that could support their functional versatility. In this review, we summarize current knowledge on centrins from both biophysical and structural perspectives with an emphasis on centrin-target interactions. In-depth analysis of the Ca2+ sensing properties of centrins and structures of centrins complexed with target proteins can provide useful insight into the mechanisms of the different functions of centrins and how these proteins contribute to the complexity of the Ca2+ signaling cascade. Moreover, it can help to better understand the functional redundancy of centrin isoforms and centrin-binding proteins.
Collapse
|
113
|
A DOT1B/Ribonuclease H2 Protein Complex Is Involved in R-Loop Processing, Genomic Integrity, and Antigenic Variation in Trypanosoma brucei. mBio 2021; 12:e0135221. [PMID: 34749530 PMCID: PMC8576533 DOI: 10.1128/mbio.01352-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The parasite Trypanosoma brucei periodically changes the expression of protective variant surface glycoproteins (VSGs) to evade its host’s immune system in a process known as antigenic variation. One route to change VSG expression is the transcriptional activation of a previously silent VSG expression site (ES), a subtelomeric region containing the VSG genes. Homologous recombination of a different VSG from a large reservoir into the active ES represents another route. The conserved histone methyltransferase DOT1B is involved in transcriptional silencing of inactive ES and influences ES switching kinetics. The molecular machinery that enables DOT1B to execute these regulatory functions remains elusive, however. To better understand DOT1B-mediated regulatory processes, we purified DOT1B-associated proteins using complementary biochemical approaches. We identified several novel DOT1B interactors. One of these was the RNase H2 complex, previously shown to resolve RNA-DNA hybrids, maintain genome integrity, and play a role in antigenic variation. Our study revealed that DOT1B depletion results in an increase in RNA-DNA hybrids, accumulation of DNA damage, and ES switching events. Surprisingly, a similar pattern of VSG deregulation was observed in RNase H2 mutants. We propose that both proteins act together in resolving R-loops to ensure genome integrity and contribute to the tightly regulated process of antigenic variation.
Collapse
|
114
|
Abstract
Abstract
In Trypanosoma brucei and related Kinetoplastids, regulation of gene expression occurs mostly post-transcriptionally, and RNA-binding proteins play a critical role in the regulation of mRNA and protein abundance. Trypanosoma brucei ZC3H28 is a 114 KDa cytoplasmic mRNA-binding protein with a single C(x)7C(x)5C(x)sH zinc finger at the C-terminus and numerous proline-, histidine- or glutamine-rich regions. ZC3H28 is essential for normal bloodstream-form trypanosome growth, and when tethered to a reporter mRNA, ZC3H28 increased reporter mRNA and protein levels. Purification of N-terminally tagged ZC3H28 followed by mass spectrometry showed enrichment of ribosomal proteins, various RNA-binding proteins including both poly(A) binding proteins, the translation initiation complex EIF4E4/EIF4G3, and the activator MKT1. Tagged ZC3H28 was preferentially associated with long RNAs that have low complexity sequences in their 3′-untranslated regions; their coding regions also have low ribosome densities. In agreement with the tethering results, after ZC3H28 depletion, the levels of a significant proportion of its bound mRNAs decreased. We suggest that ZC3H28 is implicated in the stabilization of long mRNAs that are poorly translated.
Collapse
|
115
|
Parreira de Aquino G, Mendes Gomes MA, Köpke Salinas R, Laranjeira-Silva MF. Lipid and fatty acid metabolism in trypanosomatids. MICROBIAL CELL 2021; 8:262-275. [PMID: 34782859 PMCID: PMC8561143 DOI: 10.15698/mic2021.11.764] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022]
Abstract
Trypanosomiases and leishmaniases are neglected tropical diseases that have been spreading to previously non-affected areas in recent years. Identification of new chemotherapeutics is needed as there are no vaccines and the currently available treatment options are highly toxic and often ineffective. The causative agents for these diseases are the protozoan parasites of the Trypanosomatidae family, and they alternate between invertebrate and vertebrate hosts during their life cycles. Hence, these parasites must be able to adapt to different environments and compete with their hosts for several essential compounds, such as amino acids, vitamins, ions, carbohydrates, and lipids. Among these nutrients, lipids and fatty acids (FAs) are essential for parasite survival. Trypanosomatids require massive amounts of FAs, and they can either synthesize FAs de novo or scavenge them from the host. Moreover, FAs are the major energy source during specific life cycle stages of T. brucei, T. cruzi, and Leishmania. Therefore, considering the distinctive features of FAs metabolism in trypanosomatids, these pathways could be exploited for the development of novel antiparasitic drugs. In this review, we highlight specific aspects of lipid and FA metabolism in the protozoan parasites T. brucei, T. cruzi, and Leishmania spp., as well as the pathways that have been explored for the development of new chemotherapies.
Collapse
Affiliation(s)
| | | | - Roberto Köpke Salinas
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
116
|
Staneva DP, Carloni R, Auchynnikava T, Tong P, Rappsilber J, Jeyaprakash AA, Matthews KR, Allshire RC. A systematic analysis of Trypanosoma brucei chromatin factors identifies novel protein interaction networks associated with sites of transcription initiation and termination. Genome Res 2021; 31:2138-2154. [PMID: 34407985 PMCID: PMC8559703 DOI: 10.1101/gr.275368.121] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Nucleosomes composed of histones are the fundamental units around which DNA is wrapped to form chromatin. Transcriptionally active euchromatin or repressive heterochromatin is regulated in part by the addition or removal of histone post-translational modifications (PTMs) by "writer" and "eraser" enzymes, respectively. Nucleosomal PTMs are recognized by a variety of "reader" proteins that alter gene expression accordingly. The histone tails of the evolutionarily divergent eukaryotic parasite Trypanosoma brucei have atypical sequences and PTMs distinct from those often considered universally conserved. Here we identify 65 predicted readers, writers, and erasers of histone acetylation and methylation encoded in the T. brucei genome and, by epitope tagging, systemically localize 60 of them in the parasite's bloodstream form. ChIP-seq shows that 15 candidate proteins associate with regions of RNAPII transcription initiation. Eight other proteins show a distinct distribution with specific peaks at a subset of RNAPII transcription termination regions marked by RNAPIII-transcribed tRNA and snRNA genes. Proteomic analyses identify distinct protein interaction networks comprising known chromatin regulators and novel trypanosome-specific components. Notably, several SET- and Bromo-domain protein networks suggest parallels to RNAPII promoter-associated complexes in conventional eukaryotes. Further, we identify likely components of TbSWR1 and TbNuA4 complexes whose enrichment coincides with the SWR1-C exchange substrate H2A.Z at RNAPII transcription start regions. The systematic approach used provides details of the composition and organization of the chromatin regulatory machinery in T. brucei and establishes a route to explore divergence from eukaryotic norms in an evolutionarily ancient but experimentally accessible eukaryote.
Collapse
Affiliation(s)
- Desislava P Staneva
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Institute of Immunology and Infection Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Roberta Carloni
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Institute of Immunology and Infection Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Tatsiana Auchynnikava
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | | | - Juri Rappsilber
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
- Institute of Biotechnology, Technische Universität, 13355 Berlin, Germany
| | - A Arockia Jeyaprakash
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Keith R Matthews
- Institute of Immunology and Infection Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Robin C Allshire
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
117
|
Gómez I, López MC, Rastrojo A, Lorenzo-Díaz F, Requena JM, Aguado B, Valladares B, Thomas MC. Variability of the Pr77 sequence of L1Tc retrotransposon among six T. cruzi strains belonging to different discrete typing units (DTUs). Acta Trop 2021; 222:106053. [PMID: 34273311 DOI: 10.1016/j.actatropica.2021.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/15/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022]
Abstract
All trypanosomatid genomes are colonized by non-LTR retrotransposons which exhibit a highly conserved 77-nt sequence at their 5' ends, known as the Pr77-hallmark (Pr77). The wide distribution of Pr77 is expected to be related to the gene regulation processes in these organisms as it has promoter and HDV-like ribozyme activities at the DNA and RNA levels, respectively. The identification of Pr77 hallmark-bearing retrotransposons and the study of the associations of mobile elements with relevant genes have been analyzed in the genomes of six strains of Trypanosoma cruzi belonging to different discrete typing units (DTUs) and with different geographical origins and host/vectors. The genomes have been sequenced, assembled and annotated. BUSCO analyses indicated a good quality for the assemblies that were used in comparative analyses. The results show differences among the six genomes in the copy number of genes related to virulence processes, the abundance of retrotransposons bearing the Pr77 sequence and the presence of the Pr77 hallmarks not associated with retroelements. The analyses also show frequent associations of Pr77-bearing retrotransposons and single Pr77 hallmarks with genes coding for trans-sialidases, RHS, MASP or hypothetical proteins, showing variable proportion depending on the type of retroelement, gene class and parasite strain. These differences in the genomic distribution of active retroelements and other Pr77-containing elements have shaped the genome architecture of these six strains and might be contributing to the phenotypic variability existing among them.
Collapse
Affiliation(s)
- Inmaculada Gómez
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas; PTS-Granada, Spain
| | - Manuel Carlos López
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas; PTS-Granada, Spain
| | - Alberto Rastrojo
- Centro de Biología Molecular Severo-Ochoa (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fabián Lorenzo-Díaz
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias. Universidad de La Laguna. La Laguna, Spain
| | - José María Requena
- Centro de Biología Molecular Severo-Ochoa (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Begoña Aguado
- Centro de Biología Molecular Severo-Ochoa (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Basilio Valladares
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias. Universidad de La Laguna. La Laguna, Spain
| | - M Carmen Thomas
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas; PTS-Granada, Spain.
| |
Collapse
|
118
|
Geerts M, Schnaufer A, Van den Broeck F. rKOMICS: an R package for processing mitochondrial minicircle assemblies in population-scale genome projects. BMC Bioinformatics 2021; 22:468. [PMID: 34583651 PMCID: PMC8479924 DOI: 10.1186/s12859-021-04384-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
Background The advent of population-scale genome projects has revolutionized our biological understanding of parasitic protozoa. However, while hundreds to thousands of nuclear genomes of parasitic protozoa have been generated and analyzed, information about the diversity, structure and evolution of their mitochondrial genomes remains fragmentary, mainly because of their extraordinary complexity. Indeed, unicellular flagellates of the order Kinetoplastida contain structurally the most complex mitochondrial genome of all eukaryotes, organized as a giant network of homogeneous maxicircles and heterogeneous minicircles. We recently developed KOMICS, an analysis toolkit that automates the assembly and circularization of the mitochondrial genomes of Kinetoplastid parasites. While this tool overcomes the limitation of extracting mitochondrial assemblies from Next-Generation Sequencing datasets, interpreting and visualizing the genetic (dis)similarity within and between samples remains a time-consuming process. Results Here, we present a new analysis toolkit—rKOMICS—to streamline the analyses of minicircle sequence diversity in population-scale genome projects. rKOMICS is a user-friendly R package that has simple installation requirements and that is applicable to all 27 trypanosomatid genera. Once minicircle sequence alignments are generated, rKOMICS allows to examine, summarize and visualize minicircle sequence diversity within and between samples through the analyses of minicircle sequence clusters. We showcase the functionalities of the (r)KOMICS tool suite using a whole-genome sequencing dataset from a recently published study on the history of diversification of the Leishmania braziliensis species complex in Peru. Analyses of population diversity and structure highlighted differences in minicircle sequence richness and composition between Leishmania subspecies, and between subpopulations within subspecies. Conclusion The rKOMICS package establishes a critical framework to manipulate, explore and extract biologically relevant information from mitochondrial minicircle assemblies in tens to hundreds of samples simultaneously and efficiently. This should facilitate research that aims to develop new molecular markers for identifying species-specific minicircles, or to study the ancestry of parasites for complementary insights into their evolutionary history.
Collapse
Affiliation(s)
- Manon Geerts
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Frederik Van den Broeck
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium. .,Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
119
|
Cosentino RO, Brink BG, Siegel TN. Allele-specific assembly of a eukaryotic genome corrects apparent frameshifts and reveals a lack of nonsense-mediated mRNA decay. NAR Genom Bioinform 2021; 3:lqab082. [PMID: 34541528 PMCID: PMC8445201 DOI: 10.1093/nargab/lqab082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 11/14/2022] Open
Abstract
To date, most reference genomes represent a mosaic consensus sequence in which the homologous chromosomes are collapsed into one sequence. This approach produces sequence artefacts and impedes analyses of allele-specific mechanisms. Here, we report an allele-specific genome assembly of the diploid parasite Trypanosoma brucei and reveal allelic variants affecting gene expression. Using long-read sequencing and chromosome conformation capture data, we could assign 99.5% of all heterozygote variants to a specific homologous chromosome and build a 66 Mb long allele-specific genome assembly. The phasing of haplotypes allowed us to resolve hundreds of artefacts present in the previous mosaic consensus assembly. In addition, it revealed allelic recombination events, visible as regions of low allelic heterozygosity, enabling the lineage tracing of T. brucei isolates. Interestingly, analyses of transcriptome and translatome data of genes with allele-specific premature termination codons point to the absence of a nonsense-mediated decay mechanism in trypanosomes. Taken together, this study delivers a reference quality allele-specific genome assembly of T. brucei and demonstrates the importance of such assemblies for the study of gene expression control. We expect the new genome assembly will increase the awareness of allele-specific phenomena and provide a platform to investigate them.
Collapse
Affiliation(s)
- Raúl O Cosentino
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität in Munich, Lena-Christ-Str. 48, Planegg-Martinsried 82152, Germany
| | - Benedikt G Brink
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität in Munich, Lena-Christ-Str. 48, Planegg-Martinsried 82152, Germany
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität in Munich, Lena-Christ-Str. 48, Planegg-Martinsried 82152, Germany
| |
Collapse
|
120
|
Hutchinson S, Foulon S, Crouzols A, Menafra R, Rotureau B, Griffiths AD, Bastin P. The establishment of variant surface glycoprotein monoallelic expression revealed by single-cell RNA-seq of Trypanosoma brucei in the tsetse fly salivary glands. PLoS Pathog 2021; 17:e1009904. [PMID: 34543350 PMCID: PMC8509897 DOI: 10.1371/journal.ppat.1009904] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/12/2021] [Accepted: 08/17/2021] [Indexed: 12/27/2022] Open
Abstract
The long and complex Trypanosoma brucei development in the tsetse fly vector culminates when parasites gain mammalian infectivity in the salivary glands. A key step in this process is the establishment of monoallelic variant surface glycoprotein (VSG) expression and the formation of the VSG coat. The establishment of VSG monoallelic expression is complex and poorly understood, due to the multiple parasite stages present in the salivary glands. Therefore, we sought to further our understanding of this phenomenon by performing single-cell RNA-sequencing (scRNA-seq) on these trypanosome populations. We were able to capture the developmental program of trypanosomes in the salivary glands, identifying populations of epimastigote, gamete, pre-metacyclic and metacyclic cells. Our results show that parasite metabolism is dramatically remodeled during development in the salivary glands, with a shift in transcript abundance from tricarboxylic acid metabolism to glycolytic metabolism. Analysis of VSG gene expression in pre-metacyclic and metacyclic cells revealed a dynamic VSG gene activation program. Strikingly, we found that pre-metacyclic cells contain transcripts from multiple VSG genes, which resolves to singular VSG gene expression in mature metacyclic cells. Single molecule RNA fluorescence in situ hybridisation (smRNA-FISH) of VSG gene expression following in vitro metacyclogenesis confirmed this finding. Our data demonstrate that multiple VSG genes are transcribed before a single gene is chosen. We propose a transcriptional race model governs the initiation of monoallelic expression. African trypanosomes are parasitic protists which cause endemic disease in sub-Saharan Africa. To evade mammalian immune responses the parasite has developed a system of antigenic variation, where the surface of the cell is covered in a tightly packed coat of variant surface glycoproteins (VSGs). Each cell expresses only one variant surface glycoprotein at a time, and this is periodically switched to evade new antibodies. The process of singular gene expression is termed monoallelic expression and this has two components, establishment and maintenance, i.e. how a single gene is selected for expression and how its singular expression is maintained throughout successive generations. The establishment of monoallelic VSG gene expression occurs in the salivary gland of the tsetse fly vector, although this process is not well understood. We used single cell gene expression profiling applied to thousands of single cells in the salivary gland of the fly. We show that in order to select a single gene, trypanosomes initially transcribe multiple VSGs before a single gene is selected for high-level expression. We propose a model where this process is driven by a race to accumulate transcription factors at a single VSG gene.
Collapse
Affiliation(s)
- Sebastian Hutchinson
- Trypanosome Cell Biology Unit and INSERM U1201, Institut Pasteur, Paris, France
- * E-mail:
| | - Sophie Foulon
- Laboratoire de Biochimie, CBI, ESPCI Paris, Université PSL, CNRS UMR 8231, Paris, France
| | - Aline Crouzols
- Trypanosome Cell Biology Unit and INSERM U1201, Institut Pasteur, Paris, France
| | - Roberta Menafra
- Laboratoire de Biochimie, CBI, ESPCI Paris, Université PSL, CNRS UMR 8231, Paris, France
| | - Brice Rotureau
- Trypanosome Cell Biology Unit and INSERM U1201, Institut Pasteur, Paris, France
| | - Andrew D. Griffiths
- Laboratoire de Biochimie, CBI, ESPCI Paris, Université PSL, CNRS UMR 8231, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit and INSERM U1201, Institut Pasteur, Paris, France
| |
Collapse
|
121
|
The nucleolar DExD/H protein Hel66 is involved in ribosome biogenesis in Trypanosoma brucei. Sci Rep 2021; 11:18325. [PMID: 34526538 PMCID: PMC8443567 DOI: 10.1038/s41598-021-97020-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 01/23/2023] Open
Abstract
The biosynthesis of ribosomes is a complex cellular process involving ribosomal RNA, ribosomal proteins and several further trans-acting factors. DExD/H box proteins constitute the largest family of trans-acting protein factors involved in this process. Several members of this protein family have been directly implicated in ribosome biogenesis in yeast. In trypanosomes, ribosome biogenesis differs in several features from the process described in yeast. Here, we have identified the DExD/H box helicase Hel66 as being involved in ribosome biogenesis. The protein is unique to Kinetoplastida, localises to the nucleolus and its depletion via RNAi caused a severe growth defect. Loss of the protein resulted in a decrease of global translation and accumulation of rRNA processing intermediates for both the small and large ribosomal subunits. Only a few factors involved in trypanosome rRNA biogenesis have been described so far and our findings contribute to gaining a more comprehensive picture of this essential process.
Collapse
|
122
|
Single-cell transcriptomic analysis of bloodstream Trypanosoma brucei reconstructs cell cycle progression and developmental quorum sensing. Nat Commun 2021; 12:5268. [PMID: 34489460 PMCID: PMC8421343 DOI: 10.1038/s41467-021-25607-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Developmental steps in the trypanosome life-cycle involve transition between replicative and non-replicative forms specialised for survival in, and transmission between, mammalian and tsetse fly hosts. Here, using oligopeptide-induced differentiation in vitro, we model the progressive development of replicative 'slender' to transmissible 'stumpy' bloodstream form Trypanosoma brucei and capture the transcriptomes of 8,599 parasites using single cell transcriptomics (scRNA-seq). Using this framework, we detail the relative order of biological events during asynchronous development, profile dynamic gene expression patterns and identify putative regulators. We additionally map the cell cycle of proliferating parasites and position stumpy cell-cycle exit at early G1 before progression to a distinct G0 state. A null mutant for one transiently elevated developmental regulator, ZC3H20 is further analysed by scRNA-seq, identifying its point of failure in the developmental atlas. This approach provides a paradigm for the dissection of differentiation events in parasites, relevant to diverse transitions in pathogen biology.
Collapse
|
123
|
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done? Pathogens 2021; 10:pathogens10091124. [PMID: 34578156 PMCID: PMC8472099 DOI: 10.3390/pathogens10091124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Trypanosomatids are easy to cultivate and they are (in many cases) amenable to genetic manipulation. Genome sequencing has become a standard tool routinely used in the study of these flagellates. In this review, we summarize the current state of the field and our vision of what needs to be done in order to achieve a more comprehensive picture of trypanosomatid evolution. This will also help to illuminate the lineage-specific proteins and pathways, which can be used as potential targets in treating diseases caused by these parasites.
Collapse
|
124
|
Faria JRC. A nuclear enterprise: zooming in on nuclear organization and gene expression control in the African trypanosome. Parasitology 2021; 148:1237-1253. [PMID: 33407981 PMCID: PMC8311968 DOI: 10.1017/s0031182020002437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022]
Abstract
African trypanosomes are early divergent protozoan parasites responsible for high mortality and morbidity as well as a great economic burden among the world's poorest populations. Trypanosomes undergo antigenic variation in their mammalian hosts, a highly sophisticated immune evasion mechanism. Their nuclear organization and mechanisms for gene expression control present several conventional features but also a number of striking differences to the mammalian counterparts. Some of these unorthodox characteristics, such as lack of controlled transcription initiation or enhancer sequences, render their monogenic antigen transcription, which is critical for successful antigenic variation, even more enigmatic. Recent technological developments have advanced our understanding of nuclear organization and gene expression control in trypanosomes, opening novel research avenues. This review is focused on Trypanosoma brucei nuclear organization and how it impacts gene expression, with an emphasis on antigen expression. It highlights several dedicated sub-nuclear bodies that compartmentalize specific functions, whilst outlining similarities and differences to more complex eukaryotes. Notably, understanding the mechanisms underpinning antigen as well as general gene expression control is of great importance, as it might help designing effective control strategies against these organisms.
Collapse
Affiliation(s)
- Joana R. C. Faria
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, DundeeDD1 5EH, UK
| |
Collapse
|
125
|
Briggs EM, Warren FSL, Matthews KR, McCulloch R, Otto TD. Application of single-cell transcriptomics to kinetoplastid research. Parasitology 2021; 148:1223-1236. [PMID: 33678213 PMCID: PMC8311972 DOI: 10.1017/s003118202100041x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022]
Abstract
Kinetoplastid parasites are responsible for both human and animal diseases across the globe where they have a great impact on health and economic well-being. Many species and life cycle stages are difficult to study due to limitations in isolation and culture, as well as to their existence as heterogeneous populations in hosts and vectors. Single-cell transcriptomics (scRNA-seq) has the capacity to overcome many of these difficulties, and can be leveraged to disentangle heterogeneous populations, highlight genes crucial for propagation through the life cycle, and enable detailed analysis of host–parasite interactions. Here, we provide a review of studies that have applied scRNA-seq to protozoan parasites so far. In addition, we provide an overview of sample preparation and technology choice considerations when planning scRNA-seq experiments, as well as challenges faced when analysing the large amounts of data generated. Finally, we highlight areas of kinetoplastid research that could benefit from scRNA-seq technologies.
Collapse
Affiliation(s)
- Emma M. Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Felix S. L. Warren
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Keith R. Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Richard McCulloch
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Thomas D. Otto
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
126
|
Pipaliya SV, Santos R, Salas-Leiva D, Balmer EA, Wirdnam CD, Roger AJ, Hehl AB, Faso C, Dacks JB. Unexpected organellar locations of ESCRT machinery in Giardia intestinalis and complex evolutionary dynamics spanning the transition to parasitism in the lineage Fornicata. BMC Biol 2021; 19:167. [PMID: 34446013 PMCID: PMC8394649 DOI: 10.1186/s12915-021-01077-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Comparing a parasitic lineage to its free-living relatives is a powerful way to understand how that evolutionary transition to parasitism occurred. Giardia intestinalis (Fornicata) is a leading cause of gastrointestinal disease world-wide and is famous for its unusual complement of cellular compartments, such as having peripheral vacuoles instead of typical endosomal compartments. Endocytosis plays an important role in Giardia's pathogenesis. Endosomal sorting complexes required for transport (ESCRT) are membrane-deforming proteins associated with the late endosome/multivesicular body (MVB). MVBs are ill-defined in G. intestinalis, and roles for identified ESCRT-related proteins are not fully understood in the context of its unique endocytic system. Furthermore, components thought to be required for full ESCRT functionality have not yet been documented in this species. RESULTS We used genomic and transcriptomic data from several Fornicata species to clarify the evolutionary genome streamlining observed in Giardia, as well as to detect any divergent orthologs of the Fornicata ESCRT subunits. We observed differences in the ESCRT machinery complement between Giardia strains. Microscopy-based investigations of key components of ESCRT machinery such as GiVPS36 and GiVPS25 link them to peripheral vacuoles, highlighting these organelles as simplified MVB equivalents. Unexpectedly, we show ESCRT components associated with the endoplasmic reticulum and, for the first time, mitosomes. Finally, we identified the rare ESCRT component CHMP7 in several fornicate representatives, including Giardia and show that contrary to current understanding, CHMP7 evolved from a gene fusion of VPS25 and SNF7 domains, prior to the last eukaryotic common ancestor, over 1.5 billion years ago. CONCLUSIONS Our findings show that ESCRT machinery in G. intestinalis is far more varied and complete than previously thought, associates to multiple cellular locations, and presents changes in ESCRT complement which pre-date adoption of a parasitic lifestyle.
Collapse
Affiliation(s)
- Shweta V Pipaliya
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Rui Santos
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Dayana Salas-Leiva
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Erina A Balmer
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Corina D Wirdnam
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Adrian B Hehl
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Carmen Faso
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
- Institute of Parasitology, Biology Centre, CAS, v.v.i. Branisovska 31, 370 05, Ceske Budejovice, Czech Republic.
- Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College of London, London, UK.
| |
Collapse
|
127
|
Rahnama M, Wang B, Dostart J, Novikova O, Yackzan D, Yackzan A, Bruss H, Baker M, Jacob H, Zhang X, Lamb A, Stewart A, Heist M, Hoover J, Calie P, Chen L, Liu J, Farman ML. Telomere Roles in Fungal Genome Evolution and Adaptation. Front Genet 2021; 12:676751. [PMID: 34434216 PMCID: PMC8381367 DOI: 10.3389/fgene.2021.676751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022] Open
Abstract
Telomeres form the ends of linear chromosomes and usually comprise protein complexes that bind to simple repeated sequence motifs that are added to the 3′ ends of DNA by the telomerase reverse transcriptase (TERT). One of the primary functions attributed to telomeres is to solve the “end-replication problem” which, if left unaddressed, would cause gradual, inexorable attrition of sequences from the chromosome ends and, eventually, loss of viability. Telomere-binding proteins also protect the chromosome from 5′ to 3′ exonuclease action, and disguise the chromosome ends from the double-strand break repair machinery whose illegitimate action potentially generates catastrophic chromosome aberrations. Telomeres are of special interest in the blast fungus, Pyricularia, because the adjacent regions are enriched in genes controlling interactions with host plants, and the chromosome ends show enhanced polymorphism and genetic instability. Previously, we showed that telomere instability in some P. oryzae strains is caused by novel retrotransposons (MoTeRs) that insert in telomere repeats, generating interstitial telomere sequences that drive frequent, break-induced rearrangements. Here, we sought to gain further insight on telomeric involvement in shaping Pyricularia genome architecture by characterizing sequence polymorphisms at chromosome ends, and surrounding internalized MoTeR loci (relics) and interstitial telomere repeats. This provided evidence that telomere dynamics have played historical, and likely ongoing, roles in shaping the Pyricularia genome. We further demonstrate that even telomeres lacking MoTeR insertions are poorly preserved, such that the telomere-adjacent sequences exhibit frequent presence/absence polymorphism, as well as exchanges with the genome interior. Using TERT knockout experiments, we characterized chromosomal responses to failed telomere maintenance which suggested that much of the MoTeR relic-/interstitial telomere-associated polymorphism could be driven by compromised telomere function. Finally, we describe three possible examples of a phenomenon known as “Adaptive Telomere Failure,” where spontaneous losses of telomere maintenance drive rapid accumulation of sequence polymorphism with possible adaptive advantages. Together, our data suggest that telomere maintenance is frequently compromised in Pyricularia but the chromosome alterations resulting from telomere failure are not as catastrophic as prior research would predict, and may, in fact, be potent drivers of adaptive polymorphism.
Collapse
Affiliation(s)
- Mostafa Rahnama
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States
| | - Baohua Wang
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States.,State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jane Dostart
- Department of Biological Sciences, Eastern Kentucky University, Richmond, KY, United States
| | - Olga Novikova
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States
| | - Daniel Yackzan
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States
| | - Andrew Yackzan
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States
| | - Haley Bruss
- Department of Biological Sciences, Eastern Kentucky University, Richmond, KY, United States
| | - Maray Baker
- Department of Biological Sciences, Eastern Kentucky University, Richmond, KY, United States
| | - Haven Jacob
- Department of Biological Sciences, Eastern Kentucky University, Richmond, KY, United States
| | - Xiaofei Zhang
- Department of Computer Sciences, University of Kentucky, Lexington, KY, United States
| | - April Lamb
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States
| | - Alex Stewart
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States
| | - Melanie Heist
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States
| | - Joey Hoover
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States
| | - Patrick Calie
- Department of Biological Sciences, Eastern Kentucky University, Richmond, KY, United States
| | - Li Chen
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States
| | - Jinze Liu
- Department of Computer Sciences, University of Kentucky, Lexington, KY, United States
| | - Mark L Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
128
|
Oldrieve G, Verney M, Jaron KS, Hébert L, Matthews KR. Monomorphic Trypanozoon: towards reconciling phylogeny and pathologies. Microb Genom 2021; 7. [PMID: 34397347 PMCID: PMC8549356 DOI: 10.1099/mgen.0.000632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Trypanosoma brucei evansi and T. brucei equiperdum are animal infective trypanosomes conventionally classified by their clinical disease presentation, mode of transmission, host range, kinetoplast DNA (kDNA) composition and geographical distribution. Unlike other members of the subgenus Trypanozoon, they are non-tsetse transmitted and predominantly morphologically uniform (monomorphic) in their mammalian host. Their classification as independent species or subspecies has been long debated and genomic studies have found that isolates within T. brucei evansi and T. brucei equiperdum have polyphyletic origins. Since current taxonomy does not fully acknowledge these polyphyletic relationships, we re-analysed publicly available genomic data to carefully define each clade of monomorphic trypanosome. This allowed us to identify, and account for, lineage-specific variation. We included a recently published isolate, IVM-t1, which was originally isolated from the genital mucosa of a horse with dourine and typed as T. equiperdum. Our analyses corroborate previous studies in identifying at least four distinct monomorphic T. brucei clades. We also found clear lineage-specific variation in the selection efficacy and heterozygosity of the monomorphic lineages, supporting their distinct evolutionary histories. The inferred evolutionary position of IVM-t1 suggests its reassignment to the T. brucei evansi type B clade, challenging the relationship between the Trypanozoon species, the infected host, mode of transmission and the associated pathological phenotype. The analysis of IVM-t1 also provides, to our knowledge, the first evidence of the expansion of T. brucei evansi type B, or a fifth monomorphic lineage represented by IVM-t1, outside of Africa, with important possible implications for disease diagnosis.
Collapse
Affiliation(s)
- Guy Oldrieve
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Mylène Verney
- Unité PhEED, Laboratoire de Santé Animale, Site de Normandie, ANSES, RD675, 1443012 Goustranville, France
| | - Kamil S Jaron
- Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Laurent Hébert
- Unité PhEED, Laboratoire de Santé Animale, Site de Normandie, ANSES, RD675, 1443012 Goustranville, France
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
129
|
Abstract
African trypanosomes are responsible for important diseases of humans and animals in sub-Saharan Africa. The best-studied species is Trypanosoma brucei, which is characterized by development in the mammalian host between morphologically slender and stumpy forms. The latter are adapted for transmission by the parasite's vector, the tsetse fly. The development of stumpy forms is driven by density-dependent quorum-sensing (QS), the molecular basis for which is now coming to light. In this review, I discuss the historical context and biological features of trypanosome QS and how it contributes to the parasite's infection dynamics within its mammalian host. Also, I discuss how QS can be lost in different trypanosome species, such as T. brucei evansi and T. brucei equiperdum, or modulated when parasites find themselves competing with others of different genotypes or of different trypanosome species in the same host. Finally, I consider the potential to exploit trypanosome QS therapeutically. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Keith R Matthews
- Institute for Immunology and Infection Research, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom;
| |
Collapse
|
130
|
Galloni C, Carra D, Abella JV, Kjær S, Singaravelu P, Barry DJ, Kogata N, Guérin C, Blanchoin L, Way M. MICAL2 enhances branched actin network disassembly by oxidizing Arp3B-containing Arp2/3 complexes. J Cell Biol 2021; 220:e202102043. [PMID: 34106209 PMCID: PMC8193582 DOI: 10.1083/jcb.202102043] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/27/2021] [Accepted: 05/20/2021] [Indexed: 01/24/2023] Open
Abstract
The mechanisms regulating the disassembly of branched actin networks formed by the Arp2/3 complex still remain to be fully elucidated. In addition, the impact of Arp3 isoforms on the properties of Arp2/3 are also unexplored. We now demonstrate that Arp3 and Arp3B isocomplexes promote actin assembly equally efficiently but generate branched actin networks with different disassembly rates. Arp3B dissociates significantly faster than Arp3 from the network, and its depletion increases actin stability. This difference is due to the oxidation of Arp3B, but not Arp3, by the methionine monooxygenase MICAL2, which is recruited to the actin network by coronin 1C. Substitution of Arp3B Met293 by threonine, the corresponding residue in Arp3, increases actin network stability. Conversely, replacing Arp3 Thr293 with glutamine to mimic Met oxidation promotes disassembly. The ability of MICAL2 to enhance network disassembly also depends on cortactin. Our observations demonstrate that coronin 1C, cortactin, and MICAL2 act together to promote disassembly of branched actin networks by oxidizing Arp3B-containing Arp2/3 complexes.
Collapse
Affiliation(s)
- Chiara Galloni
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
| | - Davide Carra
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
| | - Jasmine V.G. Abella
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Pavithra Singaravelu
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, University of Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Grenoble, France
- CytoMorpho Lab, Institut de Recherche Saint Louis, University of Paris, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Paris, France
| | - David J. Barry
- Advanced Light Microscopy Facility, The Francis Crick Institute, London, UK
| | - Naoko Kogata
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
| | - Christophe Guérin
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, University of Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Grenoble, France
- CytoMorpho Lab, Institut de Recherche Saint Louis, University of Paris, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Paris, France
| | - Laurent Blanchoin
- CytoMorpho Lab, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, University of Grenoble-Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Grenoble, France
- CytoMorpho Lab, Institut de Recherche Saint Louis, University of Paris, Institut National de la Santé et de la Recherche Médicale, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Paris, France
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
- Department of Infectious Disease, Imperial College, London, UK
| |
Collapse
|
131
|
Cytotoxicity of Essential Oil Cordia verbenaceae against Leishmania brasiliensis and Trypanosoma cruzi. Molecules 2021; 26:molecules26154485. [PMID: 34361638 PMCID: PMC8348457 DOI: 10.3390/molecules26154485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
The species Cordia verbenacea DC (Boraginaceae), known as the whaling herb and camaradinha, is a perennial shrub species native to the Atlantic Forest. Its leaves are used in folk medicine as an anti-inflammatory, analgesic, antiulcerogenic and curative agent, in the form of teas or infusions for internal or topical use. The present study aimed to verify the cytotoxicity of the essential oil and the leishmanicidal and trypanocidal potential of C. verbenacea. The essential oil was characterized by GC-MS. The in vitro biological activity was determined by anti-Leishmania and anti-Trypanosoma assays. The cytotoxixity was determined using mammalian fibroblasts. The C. verbenacea species presented α-pinene (45.71%), β-caryophyllene (18.77%), tricyclo[2,2,1-(2.6)]heptane (12.56%) as their main compounds. The essential oil exhibited strong cytotoxicity at concentrations below 250 μg/mL (LC50 138.1 μg/mL) in mammalian fibroblasts. The potent anti-trypanosome and anti-promastigote activities occurred from the concentration of 62.5 μg/mL and was considered clinically relevant. The results also demonstrate that at low concentrations (<62.5 μg/mL), the essential oil of C. verbenacea managed to be lethal for these activities. This can be considered an indication of the power used in daily human consumption. Therefore, it can be concluded that the essential oil of C. verbenacea contains a compound with remarkable antiparasitic activities and requires further research.
Collapse
|
132
|
Campbell PC, de Graffenried CL. Alternate histories of cytokinesis: lessons from the trypanosomatids. Mol Biol Cell 2021; 31:2631-2639. [PMID: 33180676 PMCID: PMC7927182 DOI: 10.1091/mbc.e19-12-0696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Popular culture has recently produced several “alternate histories” that describe worlds where key historical events had different outcomes. Beyond entertainment, asking “could this have happened a different way?” and “what would the consequences be?” are valuable approaches for exploring molecular mechanisms in many areas of research, including cell biology. Analogous to alternate histories, studying how the evolutionary trajectories of related organisms have been selected to provide a range of outcomes can tell us about the plasticity and potential contained within the genome of the ancestral cell. Among eukaryotes, a group of model organisms has been employed with great success to identify a core, conserved framework of proteins that segregate the duplicated cellular organelles into two daughter cells during cell division, a process known as cytokinesis. However, these organisms provide relatively sparse sampling across the broad evolutionary distances that exist, which has limited our understanding of the true potential of the ancestral eukaryotic toolkit. Recent work on the trypanosomatids, a group of eukaryotic parasites, exemplifies alternate historical routes for cytokinesis that illustrate the range of eukaryotic diversity, especially among unicellular organisms.
Collapse
Affiliation(s)
- Paul C Campbell
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912
| | | |
Collapse
|
133
|
Luzak V, López-Escobar L, Siegel TN, Figueiredo LM. Cell-to-Cell Heterogeneity in Trypanosomes. Annu Rev Microbiol 2021; 75:107-128. [PMID: 34228491 DOI: 10.1146/annurev-micro-040821-012953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent developments in single-cell and single-molecule techniques have revealed surprising levels of heterogeneity among isogenic cells. These advances have transformed the study of cell-to-cell heterogeneity into a major area of biomedical research, revealing that it can confer essential advantages, such as priming populations of unicellular organisms for future environmental stresses. Protozoan parasites, such as trypanosomes, face multiple and often hostile environments, and to survive, they undergo multiple changes, including changes in morphology, gene expression, and metabolism. But why does only a subset of proliferative cells differentiate to the next life cycle stage? Why do only some bloodstream parasites undergo antigenic switching while others stably express one variant surface glycoprotein? And why do some parasites invade an organ while others remain in the bloodstream? Building on extensive research performed in bacteria, here we suggest that biological noise can contribute to the fitness of eukaryotic pathogens and discuss the importance of cell-to-cell heterogeneity in trypanosome infections. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Vanessa Luzak
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich 82152, Germany.,Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich 82152, Germany
| | - Lara López-Escobar
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich 82152, Germany.,Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich 82152, Germany
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| |
Collapse
|
134
|
Tassone G, Landi G, Linciano P, Francesconi V, Tonelli M, Tagliazucchi L, Costi MP, Mangani S, Pozzi C. Evidence of Pyrimethamine and Cycloguanil Analogues as Dual Inhibitors of Trypanosoma brucei Pteridine Reductase and Dihydrofolate Reductase. Pharmaceuticals (Basel) 2021; 14:636. [PMID: 34209148 PMCID: PMC8308740 DOI: 10.3390/ph14070636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma and Leishmania parasites are the etiological agents of various threatening neglected tropical diseases (NTDs), including human African trypanosomiasis (HAT), Chagas disease, and various types of leishmaniasis. Recently, meaningful progresses in the treatment of HAT, due to Trypanosoma brucei (Tb), have been achieved by the introduction of fexinidazole and the combination therapy eflornithine-nifurtimox. Nevertheless, due to drug resistance issues and the exitance of animal reservoirs, the development of new NTD treatments is still required. For this purpose, we explored the combined targeting of two key folate enzymes, dihydrofolate reductase (DHFR) and pteridine reductase 1 (PTR1). We formerly showed that the TbDHFR inhibitor cycloguanil (CYC) also targets TbPTR1, although with reduced affinity. Here, we explored a small library of CYC analogues to understand how their substitution pattern affects the inhibition of both TbPTR1 and TbDHFR. Some novel structural features responsible for an improved, but preferential, ability of CYC analogues to target TbPTR1 were disclosed. Furthermore, we showed that the known drug pyrimethamine (PYR) effectively targets both enzymes, also unveiling its binding mode to TbPTR1. The structural comparison between PYR and CYC binding modes to TbPTR1 and TbDHFR provided key insights for the future design of dual inhibitors for HAT therapy.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (G.L.); (S.M.)
| | - Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (G.L.); (S.M.)
| | - Pasquale Linciano
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; (P.L.); (L.T.); (M.P.C.)
| | - Valeria Francesconi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV n.3, 16132 Genoa, Italy; (V.F.); (M.T.)
| | - Michele Tonelli
- Department of Pharmacy, University of Genoa, Viale Benedetto XV n.3, 16132 Genoa, Italy; (V.F.); (M.T.)
| | - Lorenzo Tagliazucchi
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; (P.L.); (L.T.); (M.P.C.)
| | - Maria Paola Costi
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy; (P.L.); (L.T.); (M.P.C.)
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (G.L.); (S.M.)
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy; (G.T.); (G.L.); (S.M.)
| |
Collapse
|
135
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
136
|
Marcianò G, Ishii M, Nerusheva OO, Akiyoshi B. Kinetoplastid kinetochore proteins KKT2 and KKT3 have unique centromere localization domains. J Cell Biol 2021; 220:212224. [PMID: 34081090 PMCID: PMC8178753 DOI: 10.1083/jcb.202101022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022] Open
Abstract
The kinetochore is the macromolecular protein complex that assembles onto centromeric DNA and binds spindle microtubules. Evolutionarily divergent kinetoplastids have an unconventional set of kinetochore proteins. It remains unknown how kinetochores assemble at centromeres in these organisms. Here, we characterize KKT2 and KKT3 in the kinetoplastid parasite Trypanosoma brucei. In addition to the N-terminal kinase domain and C-terminal divergent polo boxes, these proteins have a central domain of unknown function. We show that KKT2 and KKT3 are important for the localization of several kinetochore proteins and that their central domains are sufficient for centromere localization. Crystal structures of the KKT2 central domain from two divergent kinetoplastids reveal a unique zinc-binding domain (termed the CL domain for centromere localization), which promotes its kinetochore localization in T. brucei. Mutations in the equivalent domain in KKT3 abolish its kinetochore localization and function. Our work shows that the unique central domains play a critical role in mediating the centromere localization of KKT2 and KKT3.
Collapse
Affiliation(s)
| | - Midori Ishii
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
137
|
Davies C, Ooi CP, Sioutas G, Hall BS, Sidhu H, Butter F, Alsford S, Wickstead B, Rudenko G. TbSAP is a novel chromatin protein repressing metacyclic variant surface glycoprotein expression sites in bloodstream form Trypanosoma brucei. Nucleic Acids Res 2021; 49:3242-3262. [PMID: 33660774 PMCID: PMC8034637 DOI: 10.1093/nar/gkab109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
The African trypanosome Trypanosoma brucei is a unicellular eukaryote, which relies on a protective variant surface glycoprotein (VSG) coat for survival in the mammalian host. A single trypanosome has >2000 VSG genes and pseudogenes of which only one is expressed from one of ∼15 telomeric bloodstream form expression sites (BESs). Infectious metacyclic trypanosomes present within the tsetse fly vector also express VSG from a separate set of telomeric metacyclic ESs (MESs). All MESs are silenced in bloodstream form T. brucei. As very little is known about how this is mediated, we performed a whole genome RNAi library screen to identify MES repressors. This allowed us to identify a novel SAP domain containing DNA binding protein which we called TbSAP. TbSAP is enriched at the nuclear periphery and binds both MESs and BESs. Knockdown of TbSAP in bloodstream form trypanosomes did not result in cells becoming more ‘metacyclic-like'. Instead, there was extensive global upregulation of transcripts including MES VSGs, VSGs within the silent VSG arrays as well as genes immediately downstream of BES promoters. TbSAP therefore appears to be a novel chromatin protein playing an important role in silencing the extensive VSG repertoire of bloodstream form T. brucei.
Collapse
Affiliation(s)
- Carys Davies
- Sir Alexander Fleming Building, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Cher-Pheng Ooi
- Sir Alexander Fleming Building, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Georgios Sioutas
- Sir Alexander Fleming Building, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Belinda S Hall
- Sir Alexander Fleming Building, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Haneesh Sidhu
- Sir Alexander Fleming Building, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Falk Butter
- Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany
| | - Sam Alsford
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Bill Wickstead
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Gloria Rudenko
- Sir Alexander Fleming Building, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
138
|
Tromer EC, Wemyss TA, Ludzia P, Waller RF, Akiyoshi B. Repurposing of synaptonemal complex proteins for kinetochores in Kinetoplastida. Open Biol 2021; 11:210049. [PMID: 34006126 PMCID: PMC8131943 DOI: 10.1098/rsob.210049] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
Chromosome segregation in eukaryotes is driven by the kinetochore, a macromolecular complex that connects centromeric DNA to microtubules of the spindle apparatus. Kinetochores in well-studied model eukaryotes consist of a core set of proteins that are broadly conserved among distant eukaryotic phyla. By contrast, unicellular flagellates of the class Kinetoplastida have a unique set of 36 kinetochore components. The evolutionary origin and history of these kinetochores remain unknown. Here, we report evidence of homology between axial element components of the synaptonemal complex and three kinetoplastid kinetochore proteins KKT16-18. The synaptonemal complex is a zipper-like structure that assembles between homologous chromosomes during meiosis to promote recombination. By using sensitive homology detection protocols, we identify divergent orthologues of KKT16-18 in most eukaryotic supergroups, including experimentally established chromosomal axis components, such as Red1 and Rec10 in budding and fission yeast, ASY3-4 in plants and SYCP2-3 in vertebrates. Furthermore, we found 12 recurrent duplications within this ancient eukaryotic SYCP2-3 gene family, providing opportunities for new functional complexes to arise, including KKT16-18 in the kinetoplastid parasite Trypanosoma brucei. We propose the kinetoplastid kinetochore system evolved by repurposing meiotic components of the chromosome synapsis and homologous recombination machinery that were already present in early eukaryotes.
Collapse
Affiliation(s)
- Eelco C. Tromer
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Cell Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands
| | - Thomas A. Wemyss
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Patryk Ludzia
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Ross F. Waller
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
139
|
Ludzia P, Lowe ED, Marcianò G, Mohammed S, Redfield C, Akiyoshi B. Structural characterization of KKT4, an unconventional microtubule-binding kinetochore protein. Structure 2021; 29:1014-1028.e8. [PMID: 33915106 PMCID: PMC8443799 DOI: 10.1016/j.str.2021.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/17/2021] [Accepted: 04/08/2021] [Indexed: 01/01/2023]
Abstract
The kinetochore is the macromolecular machinery that drives chromosome segregation by interacting with spindle microtubules. Kinetoplastids (such as Trypanosoma brucei), a group of evolutionarily divergent eukaryotes, have a unique set of kinetochore proteins that lack any significant homology to canonical kinetochore components. To date, KKT4 is the only kinetoplastid kinetochore protein that is known to bind microtubules. Here we use X-ray crystallography, NMR spectroscopy, and crosslinking mass spectrometry to characterize the structure and dynamics of KKT4. We show that its microtubule-binding domain consists of a coiled-coil structure followed by a positively charged disordered tail. The structure of the C-terminal BRCT domain of KKT4 reveals that it is likely a phosphorylation-dependent protein-protein interaction domain. The BRCT domain interacts with the N-terminal region of the KKT4 microtubule-binding domain and with a phosphopeptide derived from KKT8. Taken together, these results provide structural insights into the unconventional kinetoplastid kinetochore protein KKT4. Structures of microtubule-binding and BRCT domains in KKT4 are reported The microtubule-binding domain consists of a coiled coil and a disordered tail KKT4 interacts with microtubules via a basic surface at the coiled-coil N terminus KKT4 has a phosphopeptide-binding BRCT domain
Collapse
Affiliation(s)
- Patryk Ludzia
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Edward D Lowe
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Gabriele Marcianò
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
140
|
Casein kinase TbCK1.2 regulates division of kinetoplast DNA, and movement of basal bodies in the African trypanosome. PLoS One 2021; 16:e0249908. [PMID: 33861760 PMCID: PMC8051774 DOI: 10.1371/journal.pone.0249908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/26/2021] [Indexed: 01/15/2023] Open
Abstract
The single mitochondrial nucleoid (kinetoplast) of Trypanosoma brucei is found proximal to a basal body (mature (mBB)/probasal body (pBB) pair). Kinetoplast inheritance requires synthesis of, and scission of kinetoplast DNA (kDNA) generating two kinetoplasts that segregate with basal bodies into daughter cells. Molecular details of kinetoplast scission and the extent to which basal body separation influences the process are unavailable. To address this topic, we followed basal body movements in bloodstream trypanosomes following depletion of protein kinase TbCK1.2 which promotes kinetoplast division. In control cells we found that pBBs are positioned 0.4 um from mBBs in G1, and they mature after separating from mBBs by at least 0.8 um: mBB separation reaches ~2.2 um. These data indicate that current models of basal body biogenesis in which pBBs mature in close proximity to mBBs may need to be revisited. Knockdown of TbCK1.2 produced trypanosomes containing one kinetoplast and two nuclei (1K2N), increased the percentage of cells with uncleaved kDNA 400%, decreased mBB spacing by 15%, and inhibited cytokinesis 300%. We conclude that (a) separation of mBBs beyond a threshold of 1.8 um correlates with division of kDNA, and (b) TbCK1.2 regulates kDNA scission. We propose a Kinetoplast Division Factor hypothesis that integrates these data into a pathway for biogenesis of two daughter mitochondrial nucleoids.
Collapse
|
141
|
da Silva MS. DNA Double-Strand Breaks: A Double-Edged Sword for Trypanosomatids. Front Cell Dev Biol 2021; 9:669041. [PMID: 33937271 PMCID: PMC8085331 DOI: 10.3389/fcell.2021.669041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 01/09/2023] Open
Abstract
For nearly all eukaryotic cells, stochastic DNA double-strand breaks (DSBs) are one of the most deleterious types of DNA lesions. DSB processing and repair can cause sequence deletions, loss of heterozygosity, and chromosome rearrangements resulting in cell death or carcinogenesis. However, trypanosomatids (single-celled eukaryotes parasites) do not seem to follow this premise strictly. Several studies have shown that trypanosomatids depend on DSBs to perform several events of paramount importance during their life cycle. For Trypanosoma brucei, DSBs formation is associated with host immune evasion via antigenic variation. In Trypanosoma cruzi, DSBs play a crucial role in the genetic exchange, a mechanism that is still little explored but appear to be of fundamental importance for generating variability. In Leishmania spp., DSBs are necessary to generate genomic changes by gene copy number variation (CNVs), events that are essential for these organisms to overcome inhospitable conditions. As DSB repair in trypanosomatids is primarily conducted via homologous recombination (HR), most of the events associated with DSBs are HR-dependent. This review will discuss the latest findings on how trypanosomatids balance the benefits and inexorable challenges caused by DSBs.
Collapse
Affiliation(s)
- Marcelo Santos da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
142
|
Mabille D, Cardoso Santos C, Hendrickx R, Claes M, Takac P, Clayton C, Hendrickx S, Hulpia F, Maes L, Van Calenbergh S, Caljon G. 4E Interacting Protein as a Potential Novel Drug Target for Nucleoside Analogues in Trypanosoma brucei. Microorganisms 2021; 9:microorganisms9040826. [PMID: 33924674 PMCID: PMC8069773 DOI: 10.3390/microorganisms9040826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Human African trypanosomiasis is a neglected parasitic disease for which the current treatment options are quite limited. Trypanosomes are not able to synthesize purines de novo and thus solely depend on purine salvage from the host environment. This characteristic makes players of the purine salvage pathway putative drug targets. The activity of known nucleoside analogues such as tubercidin and cordycepin led to the development of a series of C7-substituted nucleoside analogues. Here, we use RNA interference (RNAi) libraries to gain insight into the mode-of-action of these novel nucleoside analogues. Whole-genome RNAi screening revealed the involvement of adenosine kinase and 4E interacting protein into the mode-of-action of certain antitrypanosomal nucleoside analogues. Using RNAi lines and gene-deficient parasites, 4E interacting protein was found to be essential for parasite growth and infectivity in the vertebrate host. The essential nature of this gene product and involvement in the activity of certain nucleoside analogues indicates that it represents a potential novel drug target.
Collapse
Affiliation(s)
- Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (D.M.); (C.C.S.); (R.H.); (M.C.); (S.H.); (L.M.)
| | - Camila Cardoso Santos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (D.M.); (C.C.S.); (R.H.); (M.C.); (S.H.); (L.M.)
- Laboratório de Biologia Celular (LBC), Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro 21040-900, Brazil
| | - Rik Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (D.M.); (C.C.S.); (R.H.); (M.C.); (S.H.); (L.M.)
| | - Mathieu Claes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (D.M.); (C.C.S.); (R.H.); (M.C.); (S.H.); (L.M.)
| | - Peter Takac
- Institute of Zoology, Slovak Academy of Sciences, 84506 Bratislava, Slovakia;
- Scientica, Ltd., 83106 Bratislava, Slovakia
| | - Christine Clayton
- DKFZ-ZMBH Alliance, Zentrum für Molekulare Biologie der Universität Heidelberg, 69120 Heidelberg, Germany;
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (D.M.); (C.C.S.); (R.H.); (M.C.); (S.H.); (L.M.)
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry, Campus Heymans, Ghent University, 9000 Gent, Belgium; (F.H.); (S.V.C.)
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (D.M.); (C.C.S.); (R.H.); (M.C.); (S.H.); (L.M.)
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Campus Heymans, Ghent University, 9000 Gent, Belgium; (F.H.); (S.V.C.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (D.M.); (C.C.S.); (R.H.); (M.C.); (S.H.); (L.M.)
- Correspondence:
| |
Collapse
|
143
|
Melo do Nascimento L, Egler F, Arnold K, Papavasiliou N, Clayton C, Erben E. Functional insights from a surface antigen mRNA-bound proteome. eLife 2021; 10:e68136. [PMID: 33783358 PMCID: PMC8051951 DOI: 10.7554/elife.68136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/18/2021] [Indexed: 01/13/2023] Open
Abstract
Trypanosoma brucei is the causative agent of human sleeping sickness. The parasites' variant surface glycoprotein (VSG) enables them to evade adaptive immunity via antigenic variation. VSG comprises 10% of total cell protein and the high stability of VSG mRNA is essential for trypanosome survival. To determine how VSG mRNA stability is maintained, we used mRNA affinity purification to identify all its associated proteins. CFB2 (cyclin F-box protein 2), an unconventional RNA-binding protein with an F-box domain, was specifically enriched with VSG mRNA. We demonstrate that CFB2 is essential for VSG mRNA stability, describe cis acting elements within the VSG 3'-untranslated region that regulate the interaction, identify trans-acting factors that are present in the VSG messenger ribonucleoprotein particle, and mechanistically explain how CFB2 stabilizes the mRNA of this key pathogenicity factor. Beyond T. brucei, the mRNP purification approach has the potential to supply detailed biological insight into metabolism of relatively abundant mRNAs in any eukaryote.
Collapse
Affiliation(s)
| | - Franziska Egler
- Centre for Molecular Biology of Heidelberg University (ZMBH)HeidelbergGermany
| | - Katharina Arnold
- Centre for Molecular Biology of Heidelberg University (ZMBH)HeidelbergGermany
| | - Nina Papavasiliou
- Division of Immune Diversity, Deutsche Krebsforschungszentrum (DKFZ)HeidelbergGermany
| | - Christine Clayton
- Centre for Molecular Biology of Heidelberg University (ZMBH)HeidelbergGermany
| | - Esteban Erben
- Centre for Molecular Biology of Heidelberg University (ZMBH)HeidelbergGermany
- Division of Immune Diversity, Deutsche Krebsforschungszentrum (DKFZ)HeidelbergGermany
| |
Collapse
|
144
|
Bartholomeu DC, Teixeira SMR, Cruz AK. Genomics and functional genomics in Leishmania and Trypanosoma cruzi: statuses, challenges and perspectives. Mem Inst Oswaldo Cruz 2021; 116:e200634. [PMID: 33787768 PMCID: PMC8011669 DOI: 10.1590/0074-02760200634] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
The availability of Trypanosomatid genomic data in public databases has opened myriad experimental possibilities that have contributed to a more comprehensive understanding of the biology of these parasites and their interactions with hosts. In this review, after brief remarks on the history of the Trypanosoma cruzi and Leishmania genome initiatives, we present an overview of the relevant contributions of genomics, transcriptomics and functional genomics, discussing the primary obstacles, challenges, relevant achievements and future perspectives of these technologies.
Collapse
Affiliation(s)
- Daniella C Bartholomeu
- Universidade Federal de Minas Gerais, Departamento de Parasitologia, Belo Horizonte, MG, Brasil
| | | | - Angela Kaysel Cruz
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular, Ribeirão Preto, SP, Brasil
| |
Collapse
|
145
|
Wang J. Genomics of the Parasitic Nematode Ascaris and Its Relatives. Genes (Basel) 2021; 12:493. [PMID: 33800545 PMCID: PMC8065839 DOI: 10.3390/genes12040493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Nematodes of the genus Ascaris are important parasites of humans and swine, and the phylogenetically related genera (Parascaris, Toxocara, and Baylisascaris) infect mammals of veterinary interest. Over the last decade, considerable genomic resources have been established for Ascaris, including complete germline and somatic genomes, comprehensive mRNA and small RNA transcriptomes, as well as genome-wide histone and chromatin data. These datasets provide a major resource for studies on the basic biology of these parasites and the host-parasite relationship. Ascaris and its relatives undergo programmed DNA elimination, a highly regulated process where chromosomes are fragmented and portions of the genome are lost in embryonic cells destined to adopt a somatic fate, whereas the genome remains intact in germ cells. Unlike many model organisms, Ascaris transcription drives early development beginning prior to pronuclear fusion. Studies on Ascaris demonstrated a complex small RNA network even in the absence of a piRNA pathway. Comparative genomics of these ascarids has provided perspectives on nematode sex chromosome evolution, programmed DNA elimination, and host-parasite coevolution. The genomic resources enable comparison of proteins across diverse species, revealing many new potential drug targets that could be used to control these parasitic nematodes.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA;
- UT-Oak Ridge National Laboratory Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
146
|
Brusini L, D'Archivio S, McDonald J, Wickstead B. Trypanosome KKIP1 Dynamically Links the Inner Kinetochore to a Kinetoplastid Outer Kinetochore Complex. Front Cell Infect Microbiol 2021; 11:641174. [PMID: 33834005 PMCID: PMC8023272 DOI: 10.3389/fcimb.2021.641174] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/16/2021] [Indexed: 02/02/2023] Open
Abstract
Kinetochores perform an essential role in eukaryotes, coupling chromosomes to the mitotic spindle. In model organisms they are composed of a centromere-proximal inner kinetochore and an outer kinetochore network that binds to microtubules. In spite of universal function, the composition of kinetochores in extant eukaryotes differs greatly. In trypanosomes and other Kinetoplastida, kinetochores are extremely divergent, with most components showing no detectable similarity to proteins in other systems. They may also be very different functionally, potentially binding to the spindle directly via an inner-kinetochore protein. However, we do not know the extent of the trypanosome kinetochore, and proteins interacting with a highly divergent Ndc80/Nuf2-like protein (KKIP1) suggest the existence of more centromere-distal complexes. Here we use quantitative proteomics from multiple start-points to define a stable 9-protein kinetoplastid outer kinetochore (KOK) complex. This complex incorporates proteins recruited from other nuclear processes, exemplifying the role of moonlighting proteins in kinetochore evolution. The outer kinetochore complex is physically distinct from inner-kinetochore proteins, but nanometer-scale label separation shows that KKIP1 bridges the two plates in the same orientation as Ndc80. Moreover, KKIP1 exhibits substantial elongation at metaphase, altering kinetochore structure in a manner consistent with pulling at the outer plate. Together, these data suggest that the KKIP1/KOK likely constitute the extent of the trypanosome outer kinetochore and that this assembly binds to the spindle with sufficient strength to stretch the kinetochore, showing design parallels may exist in organisms with very different kinetochore composition.
Collapse
Affiliation(s)
- Lorenzo Brusini
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Simon D'Archivio
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Sygnature Discovery, Nottingham, United Kingdom
| | - Jennifer McDonald
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
147
|
Rosa LB, Aires RL, Oliveira LS, Fontes JV, Miguel DC, Abbehausen C. A "Golden Age" for the discovery of new antileishmanial agents: Current status of leishmanicidal gold complexes and prospective targets beyond the trypanothione system. ChemMedChem 2021; 16:1681-1695. [PMID: 33615725 DOI: 10.1002/cmdc.202100022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is one of the most neglected diseases worldwide and is considered a serious public health issue. The current therapeutic options have several disadvantages that make the search for new therapeutics urgent. Gold compounds are emerging as promising candidates based on encouraging in vitro and limited in vivo results for several AuI and AuIII complexes. The antiparasitic mechanisms of these molecules remain only partially understood. However, a few studies have proposed the trypanothione redox system as a target, similar to the mammalian thioredoxin system, pointed out as the main target for several gold compounds with significant antitumor activity. In this review, we present the current status of the investigation and design of gold compounds directed at treating leishmaniasis. In addition, we explore potential targets in Leishmania parasites beyond the trypanothione system, taking into account previous studies and structure modulation performed for gold-based compounds.
Collapse
Affiliation(s)
- Leticia B Rosa
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Rochanna L Aires
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Laiane S Oliveira
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Josielle V Fontes
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Danilo C Miguel
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| |
Collapse
|
148
|
Comparative phosphoproteomic analysis unravels MAPK1 regulated phosphoproteins in Leishmania donovani. J Proteomics 2021; 240:104189. [PMID: 33757882 DOI: 10.1016/j.jprot.2021.104189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/05/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Mitogen Activated Protein Kinase1 (MAPK1) of Leishmania donovani functions as key regulators of various cellular activities, which seem to be imperative for parasite survival, infectivity, drug resistance and post-translational modification of chaperones/co-chaperones. However, very less is known about LdMAPK1 target proteins. With recent advancements in proteomics, we aimed to identify phosphoproteins which were differentially expressed in LdMAPK1 overexpressing (Dd8++/++) and single replacement mutants (Dd8+/) as compared to wild type (Dd8+/+) parasites, utilizing LC-MS/MS approach. An in-depth label-free phospoproteomic analysis revealed that modulation of LdMAPK1 expression significantly modulates expression levels of miscellaneous phosphoproteins which may act as its targets/substrates. Out of 1974 quantified phosphoproteins in parasite, 140 were significantly differentially expressed in MAPK1 overexpressing and single replacement mutants. These differentially expressed phosphoproteins are majorly associated with metabolism, signal transduction, replication, transcription, translation, transporters and cytoskeleton/motor proteins, hence suggested that MAPK1 may act in concert to modulate global biological processes. The study further implicated possible role of LdMAPK1 in regulation and management of stress machinery in parasite through post translational modifications. Precisely, comparative phosphoproteomics study has elucidated significant role of LdMAPK1 in regulating various pathways contributing in parasite biology with relevance to future drug development. SIGNIFICANCE: MAPKinase1, the downstream kinase of MAPK signal transduction pathway, has drawn much attention as potential therapeutic drug target due to their indispensable role in survival and infectivity of Leishmania donovani. However, limited information is available about its downstream effector proteins/signaling networks. Utilizing label free LC-MS/MS analysis, phosphoproteome of LdMAPK1 over-expressing (Dd8++/++) and LdMAPK1 single replacement mutants (Dd8+/-) with wild type (Dd8+/+) parasites was compared and identified 140 LdMAPK1 modulated phosphoproteins, mainly involved in pathways like signal transduction, metabolism, transcriptional, translational, post-translational modification and regulation of heat shock proteins. Interestingly, LdMAPK1 interacts directly with only six phosphoproteins i.e. casein kinase, casein kinase II, HSP83/HSP90, LACK, protein kinase and serine/threonine protein kinase. Thus, the study elucidates significant role of LdMAPK1 in Leishmania biology which may drive drug-discovery efforts against visceral leishmaniasis.
Collapse
|
149
|
Black JA, Crouch K, Lemgruber L, Lapsley C, Dickens N, Tosi LRO, Mottram JC, McCulloch R. Trypanosoma brucei ATR Links DNA Damage Signaling during Antigenic Variation with Regulation of RNA Polymerase I-Transcribed Surface Antigens. Cell Rep 2021; 30:836-851.e5. [PMID: 31968257 PMCID: PMC6988115 DOI: 10.1016/j.celrep.2019.12.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 08/19/2019] [Accepted: 12/13/2019] [Indexed: 11/29/2022] Open
Abstract
Trypanosoma brucei evades mammalian immunity by using recombination to switch its surface-expressed variant surface glycoprotein (VSG), while ensuring that only one of many subtelomeric multigene VSG expression sites are transcribed at a time. DNA repair activities have been implicated in the catalysis of VSG switching by recombination, not transcriptional control. How VSG switching is signaled to guide the appropriate reaction or to integrate switching into parasite growth is unknown. Here, we show that the loss of ATR, a DNA damage-signaling protein kinase, is lethal, causing nuclear genome instability and increased VSG switching through VSG-localized damage. Furthermore, ATR loss leads to the increased transcription of silent VSG expression sites and expression of mixed VSGs on the cell surface, effects that are associated with the altered localization of RNA polymerase I and VEX1. This work shows that ATR acts in antigenic variation both through DNA damage signaling and surface antigen expression control. Loss of the repair protein kinase ATR in Trypanosoma brucei is lethal Loss of T. brucei ATR alters VSG coat expression needed for immune evasion Monoallelic RNA polymerase I VSG expression is undermined by ATR loss ATR loss leads to expression of subtelomeric VSGs, indicative of recombination
Collapse
Affiliation(s)
- Jennifer Ann Black
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK; Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900 SP, Brazil
| | - Kathryn Crouch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Leandro Lemgruber
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Craig Lapsley
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Nicholas Dickens
- Marine Science Lab, FAU Harbor Branch Oceanographic Institute, 5600 US 1 North, Fort Pierce, FL 34946, USA
| | - Luiz R O Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900 SP, Brazil
| | - Jeremy C Mottram
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
150
|
D'Andréa ÉD, Retel JS, Diehl A, Schmieder P, Oschkinat H, Pires JR. NMR structure and dynamics of Q4DY78, a conserved kinetoplasid-specific protein from Trypanosoma cruzi. J Struct Biol 2021; 213:107715. [PMID: 33705979 DOI: 10.1016/j.jsb.2021.107715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The 106-residue protein Q4DY78 (UniProt accession number) from Trypanosoma cruzi is highly conserved in the related kinetoplastid pathogens Trypanosoma brucei and Leishmania major. Given the essentiality of its orthologue in T. brucei, the high sequence conservation with other trypanosomatid proteins, and the low sequence similarity with mammalian proteins, Q4DY78 is an attractive protein for structural characterization. Here, we solved the structure of Q4DY78 by solution NMR and evaluated its backbone dynamics. Q4DY78 is composed of five α -helices and a small, two-stranded antiparallel β-sheet. The backbone RMSD is 0.22 ± 0.05 Å for the representative ensemble of the 20 lowest-energy structures. Q4DY78 is overall rigid, except for N-terminal residues (V8 to I10), residues at loop 4 (K57 to G65) and residues at the C-terminus (F89 to F112). Q4DY78 has a short motif FPCAP that could potentially mediate interactions with the host cytoskeleton via interaction with EVH1 (Drosophila Enabled (Ena)/Vasodilator-stimulated phosphoprotein (VASP) homology 1) domains. Albeit Q4DY78 lacks calcium-binding motifs, its fold resembles that of eukaryotic calcium-binding proteins such as calcitracin, calmodulin, and polcacin Bet V4. We characterized this novel protein with a calcium binding fold without the capacity to bind calcium.
Collapse
Affiliation(s)
- Éverton Dias D'Andréa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - Bloco E, sala 32, Rio de Janeiro, RJ 21941-902, Brazil
| | - Joren Sebastian Retel
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany
| | - Anne Diehl
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie, FMP, Robert-Rössle-Straβe 10, Berlin 13125, Germany; Freie Universität Berlin, Institut für Chemie und Biochemie, Takustrasse 3, Berlin 14195, Germany
| | - José Ricardo Pires
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - Bloco E, sala 32, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|