101
|
Raschmanová H, Weninger A, Glieder A, Kovar K, Vogl T. Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects. Biotechnol Adv 2018; 36:641-665. [PMID: 29331410 DOI: 10.1016/j.biotechadv.2018.01.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/02/2018] [Accepted: 01/09/2018] [Indexed: 12/26/2022]
Abstract
Within five years, the CRISPR-Cas system has emerged as the dominating tool for genome engineering, while also changing the speed and efficiency of metabolic engineering in conventional (Saccharomyces cerevisiae and Schizosaccharomyces pombe) and non-conventional (Yarrowia lipolytica, Pichia pastoris syn. Komagataella phaffii, Kluyveromyces lactis, Candida albicans and C. glabrata) yeasts. Especially in S. cerevisiae, an extensive toolbox of advanced CRISPR-related applications has been established, including crisprTFs and gene drives. The comparison of innovative CRISPR-Cas expression strategies in yeasts presented here may also serve as guideline to implement and refine CRISPR-Cas systems for highly efficient genome editing in other eukaryotic organisms.
Collapse
Affiliation(s)
- Hana Raschmanová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 16628 Prague, Czech Republic
| | - Astrid Weninger
- Institute for Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Anton Glieder
- Institute for Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Karin Kovar
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820 Wädenswil, Switzerland
| | - Thomas Vogl
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
102
|
Buchman A, Marshall JM, Ostrovski D, Yang T, Akbari OS. Synthetically engineered Medea gene drive system in the worldwide crop pest Drosophila suzukii. Proc Natl Acad Sci U S A 2018. [PMID: 29666236 DOI: 10.1101/162255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Synthetic gene drive systems possess enormous potential to replace, alter, or suppress wild populations of significant disease vectors and crop pests; however, their utility in diverse populations remains to be demonstrated. Here, we report the creation of a synthetic Medea gene drive system in a major worldwide crop pest, Drosophila suzukii We demonstrate that this drive system, based on an engineered maternal "toxin" coupled with a linked embryonic "antidote," is capable of biasing Mendelian inheritance rates with up to 100% efficiency. However, we find that drive resistance, resulting from naturally occurring genetic variation and associated fitness costs, can be selected for and hinder the spread of such a drive. Despite this, our results suggest that this gene drive could maintain itself at high frequencies in a wild population and spread to fixation if either its fitness costs or toxin resistance were reduced, providing a clear path forward for developing future such systems in this pest.
Collapse
Affiliation(s)
- Anna Buchman
- Department of Entomology, University of California, Riverside, CA 92521
- Center for Infectious Disease and Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - John M Marshall
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA 94720
| | - Dennis Ostrovski
- Department of Entomology, University of California, Riverside, CA 92521
- Center for Infectious Disease and Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Ting Yang
- Department of Entomology, University of California, Riverside, CA 92521
- Center for Infectious Disease and Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Omar S Akbari
- Department of Entomology, University of California, Riverside, CA 92521;
- Center for Infectious Disease and Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
103
|
A Kinesin-14 Motor Activates Neocentromeres to Promote Meiotic Drive in Maize. Cell 2018; 173:839-850.e18. [DOI: 10.1016/j.cell.2018.03.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 11/13/2017] [Accepted: 03/02/2018] [Indexed: 01/08/2023]
|
104
|
Synthetically engineered Medea gene drive system in the worldwide crop pest Drosophila suzukii. Proc Natl Acad Sci U S A 2018; 115:4725-4730. [PMID: 29666236 PMCID: PMC5939061 DOI: 10.1073/pnas.1713139115] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here we describe a fully functional gene drive system constructed in a major worldwide crop pest, Drosophila suzukii. This system is composed of a synthetic Medea drive with a maternal miRNA “toxin” and a zygotic “antidote,” and we demonstrate that it can bias inheritance with 100% efficiency and can persist in a population given high release frequencies. We discuss how such a system may be used to suppress D. suzukii populations or render them harmless to target crops. Synthetic gene drive systems possess enormous potential to replace, alter, or suppress wild populations of significant disease vectors and crop pests; however, their utility in diverse populations remains to be demonstrated. Here, we report the creation of a synthetic Medea gene drive system in a major worldwide crop pest, Drosophila suzukii. We demonstrate that this drive system, based on an engineered maternal “toxin” coupled with a linked embryonic “antidote,” is capable of biasing Mendelian inheritance rates with up to 100% efficiency. However, we find that drive resistance, resulting from naturally occurring genetic variation and associated fitness costs, can be selected for and hinder the spread of such a drive. Despite this, our results suggest that this gene drive could maintain itself at high frequencies in a wild population and spread to fixation if either its fitness costs or toxin resistance were reduced, providing a clear path forward for developing future such systems in this pest.
Collapse
|
105
|
Abstract
Technologies for controlling mosquito vectors based on genetic manipulation and the release of genetically modified mosquitoes (GMMs) are gaining ground. However, concrete epidemiological evidence of their effectiveness, sustainability, and impact on the environment and nontarget species is lacking; no reliable ecological evidence on the potential interactions among GMMs, target populations, and other mosquito species populations exists; and no GMM technology has yet been approved by the WHO Vector Control Advisory Group. Our opinion is that, although GMMs may be considered a promising control tool, more studies are needed to assess their true effectiveness, risks, and benefits. Overall, several lines of evidence must be provided before GMM-based control strategies can be used under the integrated vector management framework.
Collapse
Affiliation(s)
- André B B Wilke
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - John C Beier
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.
| |
Collapse
|
106
|
Marshall JM, Akbari OS. Can CRISPR-Based Gene Drive Be Confined in the Wild? A Question for Molecular and Population Biology. ACS Chem Biol 2018; 13:424-430. [PMID: 29370514 DOI: 10.1021/acschembio.7b00923] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The recent discovery of CRISPR and its application as a gene editing tool has enabled a range of gene drive systems to be engineered with greater ease. In order for the benefits of this technology to be realized, in some circumstances drive systems should be developed that are capable of both spreading into populations to achieve their desired impact and being recalled in the event of unwanted consequences or public disfavor. We review the performance of three broad categories of drive systems at achieving these goals: threshold-dependent drives, homing-based drive and remediation systems, and temporally self-limiting systems such as daisy-chain drives.
Collapse
Affiliation(s)
- John M Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California , Berkeley, California 94720, United States
| | - Omar S Akbari
- Section of Cell and Developmental Biology, University of California, San Diego , La Jolla, California 92093, United States of America
| |
Collapse
|
107
|
Abstract
Drive is a process of accelerated inheritance from one generation to the next that allows some genes to spread rapidly through populations even if they do not contribute to-or indeed even if they detract from-organismal survival and reproduction. Genetic elements that can spread by drive include gametic and zygotic killers, meiotic drivers, homing endonuclease genes, B chromosomes, and transposable elements. The fact that gene drive can lead to the spread of fitness-reducing traits (including lethality and sterility) makes it an attractive process to consider exploiting to control disease vectors and other pests. There are a number of efforts to develop synthetic gene drive systems, particularly focused on the mosquito-borne diseases that continue to plague us.
Collapse
Affiliation(s)
- Austin Burt
- Life Sciences, Imperial College, Silwood Park, Ascot, SL5
7PY, United Kingdom
| | - Andrea Crisanti
- Life Sciences, Imperial College, South Kensington, London, SW7 2AZ, United Kingdom
| |
Collapse
|
108
|
Abstract
The rapid spread of mosquito resistance to currently available insecticides, and the current lack of an efficacious malaria vaccine are among many challenges that affect large-scale efforts for malaria control. As goals of malaria elimination and eradication are put forth, new vector-control paradigms and tools and/or further optimization of current vector-control products are required to meet public health demands. Vector control remains the most effective measure to prevent malaria transmission and present gains against malaria mortality and morbidity may be maintained as long as vector-intervention strategies are sustained and adapted to underlying vector-related transmission dynamics. The following provides a brief overview of vector-control strategies and tools either in use or under development and evaluation that are intended to exploit key entomological parameters toward driving down transmission.
Collapse
Affiliation(s)
- Neil F Lobo
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Nicole L Achee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - John Greico
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Frank H Collins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
109
|
Adelman ZN, Pledger D, Myles KM. Developing standard operating procedures for gene drive research in disease vector mosquitoes. Pathog Glob Health 2017; 111:436-447. [PMID: 29350584 PMCID: PMC6066849 DOI: 10.1080/20477724.2018.1424514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Numerous arthropod species represent potential targets for gene-drive-based population suppression or replacement, including those that transmit diseases, damage crops, or act as deleterious invasive species. Containment measures for gene drive research in arthropods have been discussed in the literature, but the importance of developing safe and effective standard operating procedures (SOPs) for these types of experiments has not been adequately addressed. Concisely written SOPs link safe work practices, containment measures, institutional training, and research-specific protocols. Here we discuss information to be considered by principal investigators, biosafety officers, and institutional biosafety committees as they work together to develop SOPs for experiments involving gene drive in arthropods, and describe various courses of action that can be used to maintain the effectiveness of SOPs through evaluation and revision. The information provided herein will be especially useful to investigators and regulatory personnel who may lack extensive experience working with arthropods under containment conditions.
Collapse
Affiliation(s)
- Zach N. Adelman
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - David Pledger
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Kevin M. Myles
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
110
|
Abstract
Self-propagating gene drive technologies have a number of desirable characteristics that warrant their development for the control of insect pest and vector populations, such as the malaria-transmitting mosquitoes. Theoretically easy to deploy and self-sustaining, these tools may be used to generate cost-effective interventions that benefit society without obvious bias related to wealth, age or education. Their species-specific design offers the potential to reduce environmental risks and aim to be compatible and complementary with other control strategies, potentially expediting the elimination and eradication of malaria. A number of strategies have been proposed for gene-drive based control of the malaria mosquito and recent demonstrations have shown proof-of-principle in the laboratory. Though several technical, ethical and regulatory challenges remain, none appear insurmountable if research continues in a step-wise and open manner.
Collapse
Affiliation(s)
| | - Roberto Galizi
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
111
|
Li J, Green AA, Yan H, Fan C. Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat Chem 2017; 9:1056-1067. [PMID: 29064489 PMCID: PMC11421837 DOI: 10.1038/nchem.2852] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022]
Abstract
Nucleic acids have attracted widespread attention due to the simplicity with which they can be designed to form discrete structures and programmed to perform specific functions at the nanoscale. The advantages of DNA/RNA nanotechnology offer numerous opportunities for in-cell and in-vivo applications, and the technology holds great promise to advance the growing field of synthetic biology. Many elegant examples have revealed the potential in integrating nucleic acid nanostructures in cells and in vivo where they can perform important physiological functions. In this Review, we summarize the current abilities of DNA/RNA nanotechnology to realize applications in live cells and then discuss the key problems that must be solved to fully exploit the useful properties of nanostructures. Finally, we provide viewpoints on how to integrate the tools provided by DNA/RNA nanotechnology and related new technologies to construct nucleic acid nanostructure-based molecular circuitry for synthetic biology.
Collapse
Affiliation(s)
- Jiang Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Alexander A Green
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics at the Biodesign Institute & School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
112
|
Macias VM, Ohm JR, Rasgon JL. Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1006. [PMID: 28869513 PMCID: PMC5615543 DOI: 10.3390/ijerph14091006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 02/08/2023]
Abstract
Mosquito-borne pathogens place an enormous burden on human health. The existing toolkit is insufficient to support ongoing vector-control efforts towards meeting disease elimination and eradication goals. The perspective that genetic approaches can potentially add a significant set of tools toward mosquito control is not new, but the recent improvements in site-specific gene editing with CRISPR/Cas9 systems have enhanced our ability to both study mosquito biology using reverse genetics and produce genetics-based tools. Cas9-mediated gene-editing is an efficient and adaptable platform for gene drive strategies, which have advantages over innundative release strategies for introgressing desirable suppression and pathogen-blocking genotypes into wild mosquito populations; until recently, an effective gene drive has been largely out of reach. Many considerations will inform the effective use of new genetic tools, including gene drives. Here we review the lengthy history of genetic advances in mosquito biology and discuss both the impact of efficient site-specific gene editing on vector biology and the resulting potential to deploy new genetic tools for the abatement of mosquito-borne disease.
Collapse
Affiliation(s)
- Vanessa M Macias
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Johanna R Ohm
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA.
| | - Jason L Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA.
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
113
|
Kandul N, Guo M, Hay BA. A positive readout single transcript reporter for site-specific mRNA cleavage. PeerJ 2017; 5:e3602. [PMID: 28740759 PMCID: PMC5522606 DOI: 10.7717/peerj.3602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/30/2017] [Indexed: 01/07/2023] Open
Abstract
Cleavage of mRNA molecules causes their rapid degradation, thereby playing an important role in regulation of gene expression and host genome defense from viruses and transposons in bacterial and eukaryotic cells. Current negative-readout, and repressor-based positive-readout reporters of mRNA degradation have limitations. Here we report the development of a single transcript that acts as a positive reporter of mRNA cleavage. We show that placement of bacterial CopT and CopA hairpins into the 5' UTR and 3' UTR of an mRNA results in inhibition of translation of the intervening coding sequence in Drosophila. An internal poly(A) tract inserted downstream of the coding sequence stabilizes transcripts cut within the 3' UTR. When these components are combined in a transcript in which targets sites for RNA cleavage are placed between the poly(A) tract and CopA, cleavage results in translational activation, providing a single transcript-based method of sensing mRNA cleavage with a positive readout.
Collapse
Affiliation(s)
- Nikolay Kandul
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Ming Guo
- Departments of Neurology and Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, University of California, Los Angeles, CA, United States of America
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| |
Collapse
|
114
|
Champer J, Reeves R, Oh SY, Liu C, Liu J, Clark AG, Messer PW. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLoS Genet 2017; 13:e1006796. [PMID: 28727785 PMCID: PMC5518997 DOI: 10.1371/journal.pgen.1006796] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
A functioning gene drive system could fundamentally change our strategies for the control of vector-borne diseases by facilitating rapid dissemination of transgenes that prevent pathogen transmission or reduce vector capacity. CRISPR/Cas9 gene drive promises such a mechanism, which works by converting cells that are heterozygous for the drive construct into homozygotes, thereby enabling super-Mendelian inheritance. Although CRISPR gene drive activity has already been demonstrated, a key obstacle for current systems is their propensity to generate resistance alleles, which cannot be converted to drive alleles. In this study, we developed two CRISPR gene drive constructs based on the nanos and vasa promoters that allowed us to illuminate the different mechanisms by which resistance alleles are formed in the model organism Drosophila melanogaster. We observed resistance allele formation at high rates both prior to fertilization in the germline and post-fertilization in the embryo due to maternally deposited Cas9. Assessment of drive activity in genetically diverse backgrounds further revealed substantial differences in conversion efficiency and resistance rates. Our results demonstrate that the evolution of resistance will likely impose a severe limitation to the effectiveness of current CRISPR gene drive approaches, especially when applied to diverse natural populations.
Collapse
Affiliation(s)
- Jackson Champer
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
- * E-mail: (JC); (PWM)
| | - Riona Reeves
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Suh Yeon Oh
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Chen Liu
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Jingxian Liu
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Andrew G. Clark
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Philipp W. Messer
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, United States of America
- * E-mail: (JC); (PWM)
| |
Collapse
|
115
|
Ben-David E, Burga A, Kruglyak L. A maternal-effect selfish genetic element in Caenorhabditis elegans. Science 2017; 356:1051-1055. [PMID: 28495877 DOI: 10.1126/science.aan0621] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/27/2017] [Indexed: 12/25/2022]
Abstract
Selfish genetic elements spread in natural populations and have an important role in genome evolution. We discovered a selfish element causing embryonic lethality in crosses between wild strains of the nematode Caenorhabditis elegans The element is made up of sup-35, a maternal-effect toxin that kills developing embryos, and pha-1, its zygotically expressed antidote. pha-1 has long been considered essential for pharynx development on the basis of its mutant phenotype, but this phenotype arises from a loss of suppression of sup-35 toxicity. Inactive copies of the sup-35/pha-1 element show high sequence divergence from active copies, and phylogenetic reconstruction suggests that they represent ancestral stages in the evolution of the element. Our results suggest that other essential genes identified by genetic screens may turn out to be components of selfish elements.
Collapse
Affiliation(s)
- Eyal Ben-David
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, USA.
| | - Alejandro Burga
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, USA.
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
116
|
Noble C, Olejarz J, Esvelt KM, Church GM, Nowak MA. Evolutionary dynamics of CRISPR gene drives. SCIENCE ADVANCES 2017; 3:e1601964. [PMID: 28435878 PMCID: PMC5381957 DOI: 10.1126/sciadv.1601964] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/10/2017] [Indexed: 05/28/2023]
Abstract
The alteration of wild populations has been discussed as a solution to a number of humanity's most pressing ecological and public health concerns. Enabled by the recent revolution in genome editing, clustered regularly interspaced short palindromic repeats (CRISPR) gene drives-selfish genetic elements that can spread through populations even if they confer no advantage to their host organism-are rapidly emerging as the most promising approach. However, before real-world applications are considered, it is imperative to develop a clear understanding of the outcomes of drive release in nature. Toward this aim, we mathematically study the evolutionary dynamics of CRISPR gene drives. We demonstrate that the emergence of drive-resistant alleles presents a major challenge to previously reported constructs, and we show that an alternative design that selects against resistant alleles could greatly improve evolutionary stability. We discuss all results in the context of CRISPR technology and provide insights that inform the engineering of practical gene drive systems.
Collapse
Affiliation(s)
- Charleston Noble
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
- Department of Genetics, Harvard Medical School, Cambridge, MA 02138, USA
| | - Jason Olejarz
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA
| | - Kevin M. Esvelt
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - George M. Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
- Department of Genetics, Harvard Medical School, Cambridge, MA 02138, USA
| | - Martin A. Nowak
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, USA
- Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
117
|
Unckless RL, Clark AG, Messer PW. Evolution of Resistance Against CRISPR/Cas9 Gene Drive. Genetics 2017; 205:827-841. [PMID: 27941126 PMCID: PMC5289854 DOI: 10.1534/genetics.116.197285] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/01/2016] [Indexed: 11/18/2022] Open
Abstract
CRISPR/Cas9 gene drive (CGD) promises to be a highly adaptable approach for spreading genetically engineered alleles throughout a species, even if those alleles impair reproductive success. CGD has been shown to be effective in laboratory crosses of insects, yet it remains unclear to what extent potential resistance mechanisms will affect the dynamics of this process in large natural populations. Here we develop a comprehensive population genetic framework for modeling CGD dynamics, which incorporates potential resistance mechanisms as well as random genetic drift. Using this framework, we calculate the probability that resistance against CGD evolves from standing genetic variation, de novo mutation of wild-type alleles, or cleavage repair by nonhomologous end joining (NHEJ)-a likely by-product of CGD itself. We show that resistance to standard CGD approaches should evolve almost inevitably in most natural populations, unless repair of CGD-induced cleavage via NHEJ can be effectively suppressed, or resistance costs are on par with those of the driver. The key factor determining the probability that resistance evolves is the overall rate at which resistance alleles arise at the population level by mutation or NHEJ. By contrast, the conversion efficiency of the driver, its fitness cost, and its introduction frequency have only minor impact. Our results shed light on strategies that could facilitate the engineering of drivers with lower resistance potential, and motivate the possibility to embrace resistance as a possible mechanism for controlling a CGD approach. This study highlights the need for careful modeling of the population dynamics of CGD prior to the actual release of a driver construct into the wild.
Collapse
Affiliation(s)
- Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853
| | - Philipp W Messer
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
118
|
Sutton ER, Yu Y, Shimeld SM, White-Cooper H, Alphey AL. Identification of genes for engineering the male germline of Aedes aegypti and Ceratitis capitata. BMC Genomics 2016; 17:948. [PMID: 27871244 PMCID: PMC5117610 DOI: 10.1186/s12864-016-3280-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/09/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Synthetic biology approaches are promising new strategies for control of pest insects that transmit disease and cause agricultural damage. These strategies require characterised modular components that can direct appropriate expression of effector sequences, with components conserved across species being particularly useful. The goal of this study was to identify genes from which new potential components could be derived for manipulation of the male germline in two major pest species, the mosquito Aedes aegypti and the tephritid fruit fly Ceratitis capitata. RESULTS Using RNA-seq data from staged testis samples, we identified several candidate genes with testis-specific expression and suitable expression timing for use of their regulatory regions in synthetic control constructs. We also developed a novel computational pipeline to identify candidate genes with testis-specific splicing from this data; use of alternative splicing is another method for restricting expression in synthetic systems. Some of the genes identified display testis-specific expression or splicing that is conserved across species; these are particularly promising candidates for construct development. CONCLUSIONS In this study we have identified a set of genes with testis-specific expression or splicing. In addition to their interest from a basic biology perspective, these findings provide a basis from which to develop synthetic systems to control important pest insects via manipulation of the male germline.
Collapse
Affiliation(s)
- Elizabeth R Sutton
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.,Oxitec Ltd, Milton Park, Abingdon, OX14 4RX, UK.,Present address: Sistemic, West of Scotland Science Park, Glasgow, G20 0SP, UK
| | - Yachuan Yu
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.,Present address: The Beatson Institute for Cancer Research, CRUK, Glasgow, G61 1BD, UK
| | | | | | - And Luke Alphey
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK. .,Oxitec Ltd, Milton Park, Abingdon, OX14 4RX, UK. .,The Pirbright Institute, Pirbright, GU24 0NF, UK.
| |
Collapse
|
119
|
McLysaght A, Hurst LD. Open questions in the study of de novo genes: what, how and why. Nat Rev Genet 2016; 17:567-78. [PMID: 27452112 DOI: 10.1038/nrg.2016.78] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The study of de novo protein-coding genes is maturing from the ad hoc reporting of individual cases to the systematic analysis of extensive genomic data from several species. We identify three key challenges for this emerging field: understanding how best to identify de novo genes, how they arise and why they spread. We highlight the intellectual challenges of understanding how a de novo gene becomes integrated into pre-existing functions and becomes essential. We suggest that, as with protein sequence evolution, antagonistic co-evolution may be key to de novo gene evolution, particularly for new essential genes and new cancer-associated genes.
Collapse
Affiliation(s)
- Aoife McLysaght
- The Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Laurence D Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, Somerset BA2 7AY, UK
| |
Collapse
|
120
|
Shen HC, Wei JY, Chu SY, Chung PC, Hsu TC, Yu HH. Morphogenetic Studies of the Drosophila DA1 Ventral Olfactory Projection Neuron. PLoS One 2016; 11:e0155384. [PMID: 27163287 PMCID: PMC4862648 DOI: 10.1371/journal.pone.0155384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/27/2016] [Indexed: 01/04/2023] Open
Abstract
In the Drosophila olfactory system, odorant information is sensed by olfactory sensory neurons and relayed from the primary olfactory center, the antennal lobe (AL), to higher olfactory centers via olfactory projection neurons (PNs). A major portion of the AL is constituted with dendrites of four groups of PNs, anterodorsal PNs (adPNs), lateral PNs (lPNs), lateroventral PNs (lvPNs) and ventral PNs (vPNs). Previous studies have been focused on the development and function of adPNs and lPNs, while the investigation on those of lvPNs and vPNs received less attention. Here, we study the molecular and cellular mechanisms underlying the morphogenesis of a putative male-pheromone responding vPN, the DA1 vPN. Using an intersection strategy to remove background neurons labeled within a DA1 vPN-containing GAL4 line, we depicted morphological changes of the DA1 vPN that occurs at the pupal stage. We then conducted a pilot screen using RNA interference knock-down approach to identify cell surface molecules, including Down syndrome cell adhesion molecule 1 and Semaphorin-1a, that might play essential roles for the DA1 vPN morphogenesis. Taken together, by revealing molecular and cellular basis of the DA1 vPN morphogenesis, we should provide insights into future comprehension of how vPNs are assembled into the olfactory neural circuitry.
Collapse
Affiliation(s)
- Hung-Chang Shen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Jia-Yi Wei
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Sao-Yu Chu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Pei-Chi Chung
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tsai-Chi Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Hsiang Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
121
|
More than one rabbit out of the hat: Radiation, transgenic and symbiont-based approaches for sustainable management of mosquito and tsetse fly populations. Acta Trop 2016; 157:115-30. [PMID: 26774684 DOI: 10.1016/j.actatropica.2016.01.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/19/2022]
Abstract
Mosquitoes (Diptera: Culicidae) and tsetse flies (Diptera: Glossinidae) are bloodsucking vectors of human and animal pathogens. Mosquito-borne diseases (malaria, filariasis, dengue, zika, and chikungunya) cause severe mortality and morbidity annually, and tsetse fly-borne diseases (African trypanosomes causing sleeping sickness in humans and nagana in livestock) cost Sub-Saharan Africa an estimated US$ 4750 million annually. Current reliance on insecticides for vector control is unsustainable: due to increasing insecticide resistance and growing concerns about health and environmental impacts of chemical control there is a growing need for novel, effective and safe biologically-based methods that are more sustainable. The integration of the sterile insect technique has proven successful to manage crop pests and disease vectors, particularly tsetse flies, and is likely to prove effective against mosquito vectors, particularly once sex-separation methods are improved. Transgenic and symbiont-based approaches are in development, and more advanced in (particularly Aedes) mosquitoes than in tsetse flies; however, issues around stability, sustainability and biosecurity have to be addressed, especially when considering population replacement approaches. Regulatory issues and those relating to intellectual property and economic cost of application must also be overcome. Standardised methods to assess insect quality are required to compare and predict efficacy of the different approaches. Different combinations of these three approaches could be integrated to maximise their benefits, and all have the potential to be used in tsetse and mosquito area-wide integrated pest management programmes.
Collapse
|
122
|
Lindholm AK, Dyer KA, Firman RC, Fishman L, Forstmeier W, Holman L, Johannesson H, Knief U, Kokko H, Larracuente AM, Manser A, Montchamp-Moreau C, Petrosyan VG, Pomiankowski A, Presgraves DC, Safronova LD, Sutter A, Unckless RL, Verspoor RL, Wedell N, Wilkinson GS, Price TA. The Ecology and Evolutionary Dynamics of Meiotic Drive. Trends Ecol Evol 2016; 31:315-326. [DOI: 10.1016/j.tree.2016.02.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/24/2022]
|
123
|
Champer J, Buchman A, Akbari OS. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat Rev Genet 2016; 17:146-59. [PMID: 26875679 DOI: 10.1038/nrg.2015.34] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Engineered gene drives - the process of stimulating the biased inheritance of specific genes - have the potential to enable the spread of desirable genes throughout wild populations or to suppress harmful species, and may be particularly useful for the control of vector-borne diseases such as malaria. Although several types of selfish genetic elements exist in nature, few have been successfully engineered in the laboratory thus far. With the discovery of RNA-guided CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated 9) nucleases, which can be utilized to create, streamline and improve synthetic gene drives, this is rapidly changing. Here, we discuss the different types of engineered gene drives and their potential applications, as well as current policies regarding the safety and regulation of gene drives for the manipulation of wild populations.
Collapse
Affiliation(s)
- Jackson Champer
- Department of Entomology, University of California, Riverside, Center for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Anna Buchman
- Department of Entomology, University of California, Riverside, Center for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Omar S Akbari
- Department of Entomology, University of California, Riverside, Center for Disease Vector Research, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
124
|
Adelman ZN, Tu Z. Control of Mosquito-Borne Infectious Diseases: Sex and Gene Drive. Trends Parasitol 2016; 32:219-229. [PMID: 26897660 DOI: 10.1016/j.pt.2015.12.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 01/23/2023]
Abstract
Sterile male releases have successfully reduced local populations of the dengue vector, Aedes aegypti, but challenges remain in scale and in separating sexes before release. The recent discovery of the first mosquito male determining factor (M factor) will facilitate our understanding of the genetic programs that initiate sexual development in mosquitoes. Manipulation of the M factor and possible intermediary factors may result in female-to-male conversion or female killing, enabling efficient sex separation and effective reduction of target mosquito populations. Given recent breakthroughs in the development of CRISPR-Cas9 reagents as a source of gene drive, more advanced technologies at driving maleness, the ultimate disease refractory phenotype, become possible and may represent efficient and self-limiting methods to control mosquito populations.
Collapse
Affiliation(s)
- Zach N Adelman
- Department of Entomology, Virginia Tech, Blacksburg, VA, USA; Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.
| | - Zhijian Tu
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA; Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
125
|
Abstract
The development of sexually dimorphic morphology and the potential for sexually dimorphic behavior in Drosophila are regulated by the Fruitless (Fru) and Doublesex (Dsx) transcription factors. Several direct targets of Dsx have been identified, but direct Fru targets have not been definitively identified. We show that Drosophila leucine-rich repeat G protein-coupled receptor 3 (Lgr3) is regulated by Fru and Dsx in separate populations of neurons. Lgr3 is a member of the relaxin-receptor family and a receptor for Dilp8, necessary for control of organ growth. Lgr3 expression in the anterior central brain of males is inhibited by the B isoform of Fru, whose DNA binding domain interacts with a short region of an Lgr3 intron. Fru A and C isoform mutants had no observed effect on Lgr3 expression. The female form of Dsx (Dsx(F)) separately up- and down-regulates Lgr3 expression in distinct neurons in the abdominal ganglion through female- and male-specific Lgr3 enhancers. Excitation of neural activity in the Dsx(F)-up-regulated abdominal ganglion neurons inhibits female receptivity, indicating the importance of these neurons for sexual behavior. Coordinated regulation of Lgr3 by Fru and Dsx marks a point of convergence of the two branches of the sex-determination hierarchy.
Collapse
|
126
|
Bharadwaj R, Cunningham KM, Zhang K, Lloyd TE. FIG4 regulates lysosome membrane homeostasis independent of phosphatase function. Hum Mol Genet 2015; 25:681-92. [PMID: 26662798 DOI: 10.1093/hmg/ddv505] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 12/07/2015] [Indexed: 12/31/2022] Open
Abstract
FIG4 is a phosphoinositide phosphatase that is mutated in several diseases including Charcot-Marie-Tooth Disease 4J (CMT4J) and Yunis-Varon syndrome (YVS). To investigate the mechanism of disease pathogenesis, we generated Drosophila models of FIG4-related diseases. Fig4 null mutant animals are viable but exhibit marked enlargement of the lysosomal compartment in muscle cells and neurons, accompanied by an age-related decline in flight ability. Transgenic animals expressing Drosophila Fig4 missense mutations corresponding to human pathogenic mutations can partially rescue lysosomal expansion phenotypes, consistent with these mutations causing decreased FIG4 function. Interestingly, Fig4 mutations predicted to inactivate FIG4 phosphatase activity rescue lysosome expansion phenotypes, and mutations in the phosphoinositide (3) phosphate kinase Fab1 that performs the reverse enzymatic reaction also causes a lysosome expansion phenotype. Since FIG4 and FAB1 are present together in the same biochemical complex, these data are consistent with a model in which FIG4 serves a phosphatase-independent biosynthetic function that is essential for lysosomal membrane homeostasis. Lysosomal phenotypes are suppressed by genetic inhibition of Rab7 or the HOPS complex, demonstrating that FIG4 functions after endosome-to-lysosome fusion. Furthermore, disruption of the retromer complex, implicated in recycling from the lysosome to Golgi, does not lead to similar phenotypes as Fig4, suggesting that the lysosomal defects are not due to compromised retromer-mediated recycling of endolysosomal membranes. These data show that FIG4 plays a critical noncatalytic function in maintaining lysosomal membrane homeostasis, and that this function is disrupted by mutations that cause CMT4J and YVS.
Collapse
Affiliation(s)
| | | | | | - Thomas E Lloyd
- Department of Neurology, and The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
127
|
Abstract
On December 18, 2014, a yellow female fly quietly emerged from her pupal case. What made her unique was that she had only one parent carrying a mutant allele of this classic recessive locus. Then, one generation later, after mating with a wild-type male, all her offspring displayed the same recessive yellow phenotype. Further analysis of other such yellow females revealed that the construct causing the mutation was converting the opposing chromosome with 95% efficiency. These simple results, seen also in mosquitoes and yeast, open the door to a new era of genetics wherein the laws of traditional Mendelian inheritance can be bypassed for a broad variety of purposes. Here, we consider the implications of this fundamentally new form of "active genetics," its applications for gene drives, reversal and amplification strategies, its potential for contributing to cell and gene therapy strategies, and ethical/biosafety considerations associated with such active genetic elements. Also watch the Video Abstract.
Collapse
Affiliation(s)
- Valentino M Gantz
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
128
|
A STRIPAK component Strip regulates neuronal morphogenesis by affecting microtubule stability. Sci Rep 2015; 5:17769. [PMID: 26644129 PMCID: PMC4672346 DOI: 10.1038/srep17769] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 11/05/2015] [Indexed: 11/08/2022] Open
Abstract
During neural development, regulation of microtubule stability is essential for proper morphogenesis of neurons. Recently, the striatin-interacting phosphatase and kinase (STRIPAK) complex was revealed to be involved in diverse cellular processes. However, there is little evidence that STRIPAK components regulate microtubule dynamics, especially in vivo. Here, we show that one of the core STRIPAK components, Strip, is required for microtubule organization during neuronal morphogenesis. Knockdown of Strip causes a decrease in the level of acetylated α-tubulin in Drosophila S2 cells, suggesting that Strip influences the stability of microtubules. We also found that Strip physically and genetically interacts with tubulin folding cofactor D (TBCD), an essential regulator of α- and β-tubulin heterodimers. Furthermore, we demonstrate the genetic interaction between strip and Down syndrome cell adhesion molecule (Dscam), a cell surface molecule that is known to work with TBCD. Thus, we propose that Strip regulates neuronal morphogenesis by affecting microtubule stability.
Collapse
|
129
|
Akbari OS, Bellen HJ, Bier E, Bullock SL, Burt A, Church GM, Cook KR, Duchek P, Edwards OR, Esvelt KM, Gantz VM, Golic KG, Gratz SJ, Harrison MM, Hayes KR, James AA, Kaufman TC, Knoblich J, Malik HS, Matthews KA, O'Connor-Giles KM, Parks AL, Perrimon N, Port F, Russell S, Ueda R, Wildonger J. BIOSAFETY. Safeguarding gene drive experiments in the laboratory. Science 2015; 349:927-9. [PMID: 26229113 PMCID: PMC4692367 DOI: 10.1126/science.aac7932] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Multiple stringent confinement strategies should be used whenever possible
Collapse
Affiliation(s)
- Omar S Akbari
- Department of Entomology, Univ. of California, Riverside, CA 92507, USA. Center for Disease Vector Research, Institute for Integrative Genome Biology, Univ. of California, Riverside, CA 92507, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA. Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ethan Bier
- Section of Cell and Developmental Biology, Univ. of California, San Diego, La Jolla, CA 92095, USA.
| | - Simon L Bullock
- Division of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, Berks SL5 7PY, UK
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA 02115, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin R Cook
- Bloomington Drosophila Stock Center, Department of Biology, Indiana Univ., Bloomington, IN 47405, USA
| | - Peter Duchek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Owain R Edwards
- CSIRO Centre for Environment and Life Sciences, Underwood Avenue, Floreat, WA 6014, Australia
| | - Kevin M Esvelt
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA 02115, USA.
| | - Valentino M Gantz
- Section of Cell and Developmental Biology, Univ. of California, San Diego, La Jolla, CA 92095, USA
| | - Kent G Golic
- Department of Biology, Univ. of Utah, Salt Lake City, UT 84112, USA
| | - Scott J Gratz
- Laboratory of Genetics, Univ. of Wisconsin-Madison, Madison, WI 53706, USA
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, Univ. of Wisconsin-Madison, Madison, WI 53706, USA
| | - Keith R Hayes
- CSIRO Biosecurity Flagship, General Post Of ce Box 1538, Hobart, Tasmania, 7001, Australia
| | - Anthony A James
- Departments of Microbiology & Molecular Genetics and Molecular Biology & Biochemistry, Univ. of California at Irvine, Irvine, CA 92697, USA
| | - Thomas C Kaufman
- Bloomington Drosophila Stock Center, Department of Biology, Indiana Univ., Bloomington, IN 47405, USA
| | - Juergen Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kathy A Matthews
- Bloomington Drosophila Stock Center, Department of Biology, Indiana Univ., Bloomington, IN 47405, USA
| | - Kate M O'Connor-Giles
- Laboratory of Genetics, Univ. of Wisconsin-Madison, Madison, WI 53706, USA. Laboratory of Cell and Molecular Biology, Univ. of Wisconsin-Madison, Madison, WI 53706, USA
| | - Annette L Parks
- Bloomington Drosophila Stock Center, Department of Biology, Indiana Univ., Bloomington, IN 47405, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Fillip Port
- Division of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Steven Russell
- Department of Genetics, Univ. of Cambridge, Cambridge, Cambridgeshire CB2 3EH, UK
| | - Ryu Ueda
- Department of Genetics, Graduate Univ. for Advanced Studies, Mishima, Shizuoka 411-8540, Japan. NIG-Fly Stock Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Jill Wildonger
- Department of Biochemistry, Univ. of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
130
|
Olson KE, Franz AWE. Advances in genetically modified Aedes aegypti to control transmission of dengue viruses. Future Virol 2015. [DOI: 10.2217/fvl.15.38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Dengue viruses (DENV) are mosquito-borne viruses that infect millions of humans each year. DENVs are endemic in tropical regions of the world and maintained in a transmission cycle between mosquito vectors (Aedes aegypti) and humans. DEN disease control relies on vector control approaches that have had limited success and are difficult to sustain. Genetically modified mosquitoes (GMM) may be an alternative control strategy to limit DENV transmission. GMM-based control strategies include: conditional expression of a dominant lethal gene (RIDL) to reduce vector populations; and introgression of antipathogen (AP) genes into wild-type vectors for population replacement. In this review, we describe novel GMM-based strategies to limit DENV transmission and discuss potential hurdles to their successful implementation in the field.
Collapse
Affiliation(s)
- Ken E Olson
- Arthropod-borne & Infectious Diseases Laboratory, Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Alexander WE Franz
- Department of Veterinary Pathobiology, 303 Connaway Hall, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
131
|
Linking cell surface receptors to microtubules: tubulin folding cofactor D mediates Dscam functions during neuronal morphogenesis. J Neurosci 2015; 35:1979-90. [PMID: 25653356 DOI: 10.1523/jneurosci.0973-14.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Formation of functional neural networks requires the coordination of cell surface receptors and downstream signaling cascades, which eventually leads to dynamic remodeling of the cytoskeleton. Although a number of guidance receptors affecting actin cytoskeleton remodeling have been identified, it is relatively unknown how microtubule dynamics are regulated by guidance receptors. We used Drosophila olfactory projection neurons to study the molecular mechanisms of neuronal morphogenesis. Dendrites of each projection neuron target a single glomerulus of ∼50 glomeruli in the antennal lobe, and the axons show stereotypical pattern of terminal arborization. In the course of genetic analysis of the dachsous mutant allele (ds(UAO71)), we identified a mutation in the tubulin folding cofactor D gene (TBCD) as a background mutation. TBCD is one of five tubulin-folding cofactors required for the formation of α- and β-tubulin heterodimers. Single-cell clones of projection neurons homozygous for the TBCD mutation displayed disruption of microtubules, resulting in ectopic arborization of dendrites, and axon degeneration. Interestingly, overexpression of TBCD also resulted in microtubule disruption and ectopic dendrite arborization, suggesting that an optimum level of TBCD is crucial for in vivo neuronal morphogenesis. We further found that TBCD physically interacts with the intracellular domain of Down syndrome cell adhesion molecule (Dscam), which is important for neural development and has been implicated in Down syndrome. Genetic analyses revealed that TBCD cooperates with Dscam in vivo. Our study may offer new insights into the molecular mechanism underlying the altered neural networks in cognitive disabilities of Down syndrome.
Collapse
|
132
|
Franz AWE, Balaraman V, Fraser MJ. Disruption of dengue virus transmission by mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2015; 8:88-96. [PMID: 26120563 PMCID: PMC4480767 DOI: 10.1016/j.cois.2014.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Current control efforts for mosquito-borne arboviruses focus on mosquito control involving insecticide applications, which are becoming increasingly ineffective and unsustainable in urban areas. Mosquito population replacement is an alternative arbovirus control concept aiming at replacing virus-competent vector populations with laboratory-engineered incompetent vectors. A prerequisite for this strategy is the design of robust anti-pathogen effectors that can ultimately be genetically driven through a wild-type population. Several anti-pathogen effector concepts have been developed that target the RNA genomes of arboviruses such as dengue virus in a highly sequence-specific manner. Design principles are based on long inverted-repeat RNA triggered RNA interference, catalytic hammerhead ribozymes, and trans-splicing Group I Introns that are able to induce apoptosis in virus-infected cells following splicing with target viral RNA.
Collapse
Affiliation(s)
- Alexander W E Franz
- Department of Veterinary Pathobiology, 303 Connaway Hall, College of Veterinary Medicine, University of Missouri, Columbia MO, 65211, United States of America
| | - Velmurugan Balaraman
- Department of Veterinary Pathobiology, 303 Connaway Hall, College of Veterinary Medicine, University of Missouri, Columbia MO, 65211, United States of America
| | - Malcolm J Fraser
- Department of Biological Sciences, 218 Galvin Life Science Bldg., University of Notre Dame, South Bend IN, 46617, United States of America
| |
Collapse
|
133
|
The role of RNA interference (RNAi) in arbovirus-vector interactions. Viruses 2015; 7:820-43. [PMID: 25690800 PMCID: PMC4353918 DOI: 10.3390/v7020820] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/10/2014] [Accepted: 02/04/2015] [Indexed: 12/22/2022] Open
Abstract
RNA interference (RNAi) was shown over 18 years ago to be a mechanism by which arbovirus replication and transmission could be controlled in arthropod vectors. During the intervening period, research on RNAi has defined many of the components and mechanisms of this antiviral pathway in arthropods, yet a number of unexplored questions remain. RNAi refers to RNA-mediated regulation of gene expression. Originally, the term described silencing of endogenous genes by introduction of exogenous double-stranded (ds)RNA with the same sequence as the gene to be silenced. Further research has shown that RNAi comprises three gene regulation pathways that are mediated by small RNAs: the small interfering (si)RNA, micro (mi)RNA, and Piwi-interacting (pi)RNA pathways. The exogenous (exo-)siRNA pathway is now recognized as a major antiviral innate immune response of arthropods. More recent studies suggest that the piRNA and miRNA pathways might also have important roles in arbovirus-vector interactions. This review will focus on current knowledge of the role of the exo-siRNA pathway as an arthropod vector antiviral response and on emerging research into vector piRNA and miRNA pathway modulation of arbovirus-vector interactions. Although it is assumed that arboviruses must evade the vector’s antiviral RNAi response in order to maintain their natural transmission cycles, the strategies by which this is accomplished are not well defined. RNAi is also an important tool for arthropod gene knock-down in functional genomics studies and in development of arbovirus-resistant mosquito populations. Possible arbovirus strategies for evasion of RNAi and applications of RNAi in functional genomics analysis and arbovirus transmission control will also be reviewed.
Collapse
|
134
|
Abstract
Ends-out gene targeting allows seamless replacement of endogenous genes with engineered DNA fragments by homologous recombination, thus creating designer "genes" in the endogenous locus. Conventional gene targeting in Drosophila involves targeting with the preintegrated donor DNA in the larval primordial germ cells. Here we report G: ene targeting during O: ogenesis with L: ethality I: nhibitor and C: RISPR/Cas (Golic+), which improves on all major steps in such transgene-based gene targeting systems. First, donor DNA is integrated into precharacterized attP sites for efficient flip-out. Second, FLP, I-SceI, and Cas9 are specifically expressed in cystoblasts, which arise continuously from female germline stem cells, thereby providing a continual source of independent targeting events in each offspring. Third, a repressor-based lethality selection is implemented to facilitate screening for correct targeting events. Altogether, Golic+ realizes high-efficiency ends-out gene targeting in ovarian cystoblasts, which can be readily scaled up to achieve high-throughput genome editing.
Collapse
|
135
|
Synthetic biology of multicellular systems: new platforms and applications for animal cells and organisms. ACS Synth Biol 2014; 3:875-6. [PMID: 25524091 PMCID: PMC4476972 DOI: 10.1021/sb500358y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
136
|
Akbari OS, Chen CH, Marshall JM, Huang H, Antoshechkin I, Hay BA. Novel synthetic Medea selfish genetic elements drive population replacement in Drosophila; a theoretical exploration of Medea-dependent population suppression. ACS Synth Biol 2014; 3:915-28. [PMID: 23654248 DOI: 10.1021/sb300079h] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insects act as vectors for diseases of plants, animals, and humans. Replacement of wild insect populations with genetically modified individuals unable to transmit disease provides a potentially self-perpetuating method of disease prevention. Population replacement requires a gene drive mechanism in order to spread linked genes mediating disease refractoriness through wild populations. We previously reported the creation of synthetic Medea selfish genetic elements able to drive population replacement in Drosophila. These elements use microRNA-mediated silencing of myd88, a maternally expressed gene required for embryonic dorso-ventral pattern formation, coupled with early zygotic expression of a rescuing transgene, to bring about gene drive. Medea elements that work through additional mechanisms are needed in order to be able to carry out cycles of population replacement and/or remove existing transgenes from the population, using second-generation elements that spread while driving first-generation elements out of the population. Here we report the synthesis and population genetic behavior of two new synthetic Medea elements that drive population replacement through manipulation of signaling pathways involved in cellular blastoderm formation or Notch signaling, demonstrating that in Drosophila Medea elements can be generated through manipulation of diverse signaling pathways. We also describe the mRNA and small RNA changes in ovaries and early embryos associated from Medea-bearing females. Finally, we use modeling to illustrate how Medea elements carrying genes that result in diapause-dependent female lethality could be used to bring about population suppression.
Collapse
Affiliation(s)
- Omar S. Akbari
- Division of
Biology, MC 156-29, California Institute of Technology, Pasadena, California
91125, United States
| | - Chun-Hong Chen
- Institute of Molecular and Genomic
Medicine, National Heath Research Institutes, 35 Kayen Road Zhunan Mioali, Taiwan
| | - John M. Marshall
- MRC Center for Outbreak Analysis & Modeling, Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, U.K
| | - Haixia Huang
- Division of
Biology, MC 156-29, California Institute of Technology, Pasadena, California
91125, United States
| | - Igor Antoshechkin
- Division of
Biology, MC 156-29, California Institute of Technology, Pasadena, California
91125, United States
| | - Bruce A. Hay
- Division of
Biology, MC 156-29, California Institute of Technology, Pasadena, California
91125, United States
| |
Collapse
|
137
|
Maternal germline-specific genes in the Asian malaria mosquito Anopheles stephensi: characterization and application for disease control. G3-GENES GENOMES GENETICS 2014; 5:157-66. [PMID: 25480960 PMCID: PMC4321024 DOI: 10.1534/g3.114.015578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Anopheles stephensi is a principal vector of urban malaria on the Indian subcontinent and an emerging model for molecular and genetic studies of mosquito biology. To enhance our understanding of female mosquito reproduction, and to develop new tools for basic research and for genetic strategies to control mosquito-borne infectious diseases, we identified 79 genes that displayed previtellogenic germline-specific expression based on RNA-Seq data generated from 11 life stage-specific and sex-specific samples. Analysis of this gene set provided insights into the biology and evolution of female reproduction. Promoters from two of these candidates, vitellogenin receptor and nanos, were used in independent transgenic cassettes for the expression of artificial microRNAs against suspected mosquito maternal-effect genes, discontinuous actin hexagon and myd88. We show these promoters have early germline-specific expression and demonstrate 73% and 42% knockdown of myd88 and discontinuous actin hexagon mRNA in ovaries 48 hr after blood meal, respectively. Additionally, we demonstrate maternal-specific delivery of mRNA and protein to progeny embryos. We discuss the application of this system of maternal delivery of mRNA/miRNA/protein in research on mosquito reproduction and embryonic development, and for the development of a gene drive system based on maternal-effect dominant embryonic arrest.
Collapse
|
138
|
Coffey LL, Failloux AB, Weaver SC. Chikungunya virus-vector interactions. Viruses 2014; 6:4628-63. [PMID: 25421891 PMCID: PMC4246241 DOI: 10.3390/v6114628] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 12/25/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya fever, a severe, debilitating disease that often produces chronic arthralgia. Since 2004, CHIKV has emerged in Africa, Indian Ocean islands, Asia, Europe, and the Americas, causing millions of human infections. Central to understanding CHIKV emergence is knowledge of the natural ecology of transmission and vector infection dynamics. This review presents current understanding of CHIKV infection dynamics in mosquito vectors and its relationship to human disease emergence. The following topics are reviewed: CHIKV infection and vector life history traits including transmission cycles, genetic origins, distribution, emergence and spread, dispersal, vector competence, vector immunity and microbial interactions, and co-infection by CHIKV and other arboviruses. The genetics of vector susceptibility and host range changes, population heterogeneity and selection for the fittest viral genomes, dual host cycling and its impact on CHIKV adaptation, viral bottlenecks and intrahost diversity, and adaptive constraints on CHIKV evolution are also discussed. The potential for CHIKV re-emergence and expansion into new areas and prospects for prevention via vector control are also briefly reviewed.
Collapse
Affiliation(s)
- Lark L Coffey
- Center for Vectorborne Diseases, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, 25-28 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Scott C Weaver
- Institute for Human Infections and Immunity, Center for Tropical Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
139
|
Abstract
Recent advances in genetic engineering are bringing new promise for controlling mosquito populations that transmit deadly pathogens. Here we discuss past and current efforts to engineer mosquito strains that are refractory to disease transmission or are suitable for suppressing wild disease-transmitting populations.
Collapse
Affiliation(s)
| | - Andrea Smidler
- />Department of Immunology and Infectious Diseases, Harvard School of Public Health, Avenue Louis Pasteur, Boston, MA 021155 USA
- />Department of Genetics, Harvard Medical School, Avenue Louis Pasteur, Boston, MA 02115 USA
| | - Flaminia Catteruccia
- />Department of Immunology and Infectious Diseases, Harvard School of Public Health, Avenue Louis Pasteur, Boston, MA 021155 USA
- />Department of Microbiology, Perugia University, Perugia, 06100 Italy
| |
Collapse
|
140
|
Lin S, Owald D, Chandra V, Talbot C, Huetteroth W, Waddell S. Neural correlates of water reward in thirsty Drosophila. Nat Neurosci 2014; 17:1536-42. [PMID: 25262493 PMCID: PMC4213141 DOI: 10.1038/nn.3827] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/01/2014] [Indexed: 11/09/2022]
Abstract
Drinking water is innately rewarding to thirsty animals. In addition, the consumed value can be assigned to behavioral actions and predictive sensory cues by associative learning. Here we show that thirst converts water avoidance into water-seeking in naive Drosophila melanogaster. Thirst also permitted flies to learn olfactory cues paired with water reward. Water learning required water taste and <40 water-responsive dopaminergic neurons that innervate a restricted zone of the mushroom body γ lobe. These water learning neurons are different from those that are critical for conveying the reinforcing effects of sugar. Naive water-seeking behavior in thirsty flies did not require water taste but relied on another subset of water-responsive dopaminergic neurons that target the mushroom body β' lobe. Furthermore, these naive water-approach neurons were not required for learned water-seeking. Our results therefore demonstrate that naive water-seeking, learned water-seeking and water learning use separable neural circuitry in the brain of thirsty flies.
Collapse
Affiliation(s)
- Suewei Lin
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - David Owald
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Vikram Chandra
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
- Balliol College, The University of Oxford, Broad Street, Oxford, OX1 3BJ, UK
| | - Clifford Talbot
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Wolf Huetteroth
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| |
Collapse
|
141
|
Chang YH, Sun YH. Carrier of Wingless (Cow), a secreted heparan sulfate proteoglycan, promotes extracellular transport of Wingless. PLoS One 2014; 9:e111573. [PMID: 25360738 PMCID: PMC4216105 DOI: 10.1371/journal.pone.0111573] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 09/10/2014] [Indexed: 12/04/2022] Open
Abstract
Morphogens are signaling molecules that regulate growth and patterning during development by forming a gradient and activating different target genes at different concentrations. The extracellular distribution of morphogens is tightly regulated, with the Drosophila morphogen Wingless (Wg) relying on Dally-like (Dlp) and transcytosis for its distribution. However, in the absence of Dlp or endocytic activity, Wg can still move across cells along the apical (Ap) surface. We identified a novel secreted heparan sulfate proteoglycan (HSPG) that binds to Wg and promotes its extracellular distribution by increasing Wg mobility, which was thus named Carrier of Wg (Cow). Cow promotes the Ap transport of Wg, independent of Dlp and endocytosis, and this function addresses a previous gap in the understanding of Wg movement. This is the first example of a diffusible HSPG acting as a carrier to promote the extracellular movement of a morphogen.
Collapse
Affiliation(s)
- Yung-Heng Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yi Henry Sun
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
142
|
Sakuma C, Kawauchi T, Haraguchi S, Shikanai M, Yamaguchi Y, Gelfand VI, Luo L, Miura M, Chihara T. Drosophila Strip serves as a platform for early endosome organization during axon elongation. Nat Commun 2014; 5:5180. [PMID: 25312435 PMCID: PMC4197811 DOI: 10.1038/ncomms6180] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/05/2014] [Indexed: 12/19/2022] Open
Abstract
Early endosomes are essential for regulating cell signalling and controlling the amount of cell surface molecules during neuronal morphogenesis. Early endosomes undergo retrograde transport (clustering) before their homotypic fusion. Small GTPase Rab5 is known to promote early endosomal fusion, but the mechanism linking the transport/clustering with Rab5 activity is unclear. Here we show that Drosophila Strip is a key regulator for neuronal morphogenesis. strip knockdown disturbs the early endosome clustering and Rab5-positive early endosomes become smaller and scattered. Strip genetically and biochemically interacts with both Glued (the regulator of dynein-dependent transport) and Sprint (the guanine nucleotide exchange factor for Rab5), suggesting that Strip is a molecular linker between retrograde transport and Rab5 activation. Overexpression of an active form of Rab5 in strip mutant neurons suppresses the axon elongation defects. Thus, Strip acts as a molecular platform for the early endosome organization that plays important roles in neuronal morphogenesis.
Collapse
Affiliation(s)
- Chisako Sakuma
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeshi Kawauchi
- 1] Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan [2] PRESTO, Japan Science and Technology Agency (JST), 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Shuka Haraguchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mima Shikanai
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yoshifumi Yamaguchi
- 1] Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2] PRESTO, Japan Science and Technology Agency (JST), 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| | - Masayuki Miura
- 1] Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2] CREST, Japan Science and Technology Agency (JST), 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Takahiro Chihara
- 1] Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [2] PRESTO, Japan Science and Technology Agency (JST), 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan [3] CREST, Japan Science and Technology Agency (JST), 7, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
143
|
Robert MA, Okamoto KW, Gould F, Lloyd AL. Antipathogen genes and the replacement of disease-vectoring mosquito populations: a model-based evaluation. Evol Appl 2014; 7:1238-51. [PMID: 25558284 PMCID: PMC4275095 DOI: 10.1111/eva.12219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/27/2014] [Indexed: 12/25/2022] Open
Abstract
Recently, genetic strategies aimed at controlling populations of disease-vectoring mosquitoes have received considerable attention as alternatives to traditional measures. Theoretical studies have shown that female-killing (FK), antipathogen (AP), and reduce and replace (R&R) strategies can each decrease the number competent vectors. In this study, we utilize a mathematical model to evaluate impacts on competent Aedes aegypti populations of FK, AP, and R&R releases as well as hybrid strategies that result from combinations of these three approaches. We show that while the ordering of efficacy of these strategies depends upon population life history parameters, sex ratio of releases, and switch time in combination strategies, AP-only and R&R/AP releases typically lead to the greatest long-term reduction in competent vectors. R&R-only releases are often less effective at long-term reduction of competent vectors than AP-only releases or R&R/AP releases. Furthermore, the reduction in competent vectors caused by AP-only releases is easier to maintain than that caused by FK-only or R&R-only releases even when the AP gene confers a fitness cost. We discuss the roles that density dependence and inclusion of females play in the order of efficacy of the strategies. We anticipate that our results will provide added impetus to continue developing AP strategies.
Collapse
Affiliation(s)
- Michael A Robert
- Department of Mathematics and Biomathematics Graduate Program, North Carolina State University Raleigh, NC, USA ; Department of Biology and Department of Mathematics and Statistics, University of New Mexico Albuquerque, NM, USA
| | - Kenichi W Okamoto
- Department of Entomology, North Carolina State University Raleigh, NC, USA
| | - Fred Gould
- Department of Entomology, North Carolina State University Raleigh, NC, USA ; Fogarty International Center, National Institutes of Health Bethesda, MD, USA
| | - Alun L Lloyd
- Department of Mathematics and Biomathematics Graduate Program, North Carolina State University Raleigh, NC, USA ; Fogarty International Center, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
144
|
Liang CJ, Chang YC, Chang HC, Wang CK, Hung YC, Lin YE, Chan CC, Chen CH, Chang HY, Sang TK. Derlin-1 regulates mutant VCP-linked pathogenesis and endoplasmic reticulum stress-induced apoptosis. PLoS Genet 2014; 10:e1004675. [PMID: 25255315 PMCID: PMC4177747 DOI: 10.1371/journal.pgen.1004675] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 08/14/2014] [Indexed: 12/13/2022] Open
Abstract
Mutations in VCP (Valosin-containing protein), an AAA ATPase critical for ER-associated degradation, are linked to IBMPFD (Inclusion body myopathy with Paget disease and frontotemporal dementia). Using a Drosophila IBMPFD model, we have identified the ER protein Derlin-1 as a modifier of pathogenic TER94 (the fly VCP homolog) mutants. Derlin-1 binds to TER94 directly, and this interaction is essential for Derlin-1 overexpression to suppress the pathogenic TER94-induced neurodegeneration. Derlin-1 overexpression reduces the elevated ATPase activity of pathogenic TER94, implying that IBMPFD is caused by ATPase hyper-activation. Under physiological condition, Derlin-1 expression is increased upon ER stress to recruit TER94 to the ER. However, in response to severe ER stress, Derlin-1 is required for activating apoptosis to eliminate damaged cells. This pro-apoptotic response is mimicked by Derlin-1 overexpression, which elicits acute ER stress and triggers apoptosis via a novel C-terminal motif (α). As this Derlin-1-dependent cell death is negated by TER94 overexpression, we propose that while Derlin-1 and VCP work cooperatively in ER stress response, their imbalance has a role in removing cells suffering prolonged ER stress. We have previously developed a fly model for IBMPFD (inclusion body myopathy with Paget disease and frontotemporal dementia) and demonstrated that specific mutations in VCP gene, a highly conserved ATPase, cause muscle and neuron degeneration by depleting cellular ATP level. Using this model, we show that expression of Derlin-1, an ER membrane protein capable of directly interacting with VCP, restores the normal cellular ATP level and suppresses IBMPFD-like neurodegeneration. As Derlin-1 expression can be induced by tunicamycin (an antibiotic) in experimental systems, our findings may yield new therapeutic strategies for VCP-linked diseases. In addition, we have obtained important insights regarding Derlin-1 function under physiological conditions. ER stress, caused by accumulation of improperly folded proteins, results in increased Derlin-1 expression, which is important for ER stress-induced cell death. We propose that Derlin-1 promotes ER homeostasis through multiple mechanisms. In addition to cooperating with VCP to extract improperly folded proteins from the ER, elevated Derlin-1 expression removes cells suffering from irreparable ER stress, thus preventing these damaged cells from further harming the organisms.
Collapse
Affiliation(s)
- Cyong-Jhih Liang
- Institute of Biotechnology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ya-Chu Chang
- Institute of Biotechnology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Henry C. Chang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Chung-Kang Wang
- Institute of Biotechnology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chien Hung
- Institute of Biotechnology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ying-Er Lin
- Institute of Biotechnology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Ching Chan
- Institute of Biotechnology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Hong Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Hui-Yun Chang
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Kang Sang
- Institute of Biotechnology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
145
|
Blair CD, Olson KE. Mosquito immune responses to arbovirus infections. CURRENT OPINION IN INSECT SCIENCE 2014; 3:22-29. [PMID: 25401084 PMCID: PMC4228475 DOI: 10.1016/j.cois.2014.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The principal mosquito innate immune response to virus infections, RNA interference (RNAi), differs substantially from the immune response to bacterial and fungal infections. The exo-siRNA pathway constitutes the major anti-arboviral RNAi response and its essential genetic components have been identified. Recent research has also implicated the Piwi-interacting RNA pathway in mosquito anti-arboviral immunity, but Piwi gene-family components involved are not well-defined. Arboviruses must evade or suppress RNAi without causing pathogenesis in the vector to maintain their transmission cycle, but little is known about mechanisms of arbovirus modulation of RNAi. Genetic manipulation of mosquitoes to enhance their RNAi response can limit arbovirus infection and replication and could be used in novel strategies for interruption of arbovirus transmission and greatly reduce disease.
Collapse
Affiliation(s)
- Carol D. Blair
- Corresponding author, Address: Arthropod-borne and Infectious Diseases Laboratory, 1692 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1692, USA, telephone 970-491-8243,
| | | |
Collapse
|
146
|
Esvelt KM, Smidler AL, Catteruccia F, Church GM. Concerning RNA-guided gene drives for the alteration of wild populations. eLife 2014; 3:e03401. [PMID: 25035423 PMCID: PMC4117217 DOI: 10.7554/elife.03401] [Citation(s) in RCA: 462] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 07/09/2014] [Indexed: 12/13/2022] Open
Abstract
Gene drives may be capable of addressing ecological problems by altering entire populations of wild organisms, but their use has remained largely theoretical due to technical constraints. Here we consider the potential for RNA-guided gene drives based on the CRISPR nuclease Cas9 to serve as a general method for spreading altered traits through wild populations over many generations. We detail likely capabilities, discuss limitations, and provide novel precautionary strategies to control the spread of gene drives and reverse genomic changes. The ability to edit populations of sexual species would offer substantial benefits to humanity and the environment. For example, RNA-guided gene drives could potentially prevent the spread of disease, support agriculture by reversing pesticide and herbicide resistance in insects and weeds, and control damaging invasive species. However, the possibility of unwanted ecological effects and near-certainty of spread across political borders demand careful assessment of each potential application. We call for thoughtful, inclusive, and well-informed public discussions to explore the responsible use of this currently theoretical technology.
Collapse
Affiliation(s)
- Kevin M Esvelt
- Synthetic Biology
Platform, Wyss Institute for Biologically Inspired
Engineering, Harvard Medical School, Boston, United
States
| | - Andrea L Smidler
- Synthetic Biology
Platform, Wyss Institute for Biologically Inspired
Engineering, Harvard Medical School, Boston, United
States; Department of Immunology and
Infectious Diseases, Harvard School of Public
Health, Boston, United States
| | - Flaminia Catteruccia
- Department of Immunology and Infectious
Diseases, Harvard School of Public
Health, Boston, United States;
Dipartimento di Medicina Sperimentale e Scienze
Biochimiche, Università degli Studi di
Perugia, Terni, Italy
| | - George M Church
- Synthetic Biology
Platform, Wyss Institute for Biologically Inspired
Engineering, Harvard Medical School, Boston, United
States
| |
Collapse
|
147
|
Reeves RG, Bryk J, Altrock PM, Denton JA, Reed FA. First steps towards underdominant genetic transformation of insect populations. PLoS One 2014; 9:e97557. [PMID: 24844466 PMCID: PMC4028297 DOI: 10.1371/journal.pone.0097557] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/08/2014] [Indexed: 11/18/2022] Open
Abstract
The idea of introducing genetic modifications into wild populations of insects to stop them from spreading diseases is more than 40 years old. Synthetic disease refractory genes have been successfully generated for mosquito vectors of dengue fever and human malaria. Equally important is the development of population transformation systems to drive and maintain disease refractory genes at high frequency in populations. We demonstrate an underdominant population transformation system in Drosophila melanogaster that has the property of being both spatially self-limiting and reversible to the original genetic state. Both population transformation and its reversal can be largely achieved within as few as 5 generations. The described genetic construct {Ud} is composed of two genes; (1) a UAS-RpL14.dsRNA targeting RNAi to a haploinsufficient gene RpL14 and (2) an RNAi insensitive RpL14 rescue. In this proof-of-principle system the UAS-RpL14.dsRNA knock-down gene is placed under the control of an Actin5c-GAL4 driver located on a different chromosome to the {Ud} insert. This configuration would not be effective in wild populations without incorporating the Actin5c-GAL4 driver as part of the {Ud} construct (or replacing the UAS promoter with an appropriate direct promoter). It is however anticipated that the approach that underlies this underdominant system could potentially be applied to a number of species.
Collapse
Affiliation(s)
- R. Guy Reeves
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- * E-mail:
| | - Jarosław Bryk
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Philipp M. Altrock
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jai A. Denton
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Floyd A. Reed
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
148
|
Abstract
Mosquito-borne diseases are causing a substantial burden of mortality, morbidity and economic loss in many parts of the world, despite current control efforts, and new complementary approaches to controlling these diseases are needed. One promising class of new interventions under development involves the heritable modification of the mosquito by insertion of novel genes into the nucleus or of Wolbachia endosymbionts into the cytoplasm. Once released into a target population, these modifications can act to reduce one or more components of the mosquito population's vectorial capacity (e.g. the number of female mosquitoes, their longevity or their ability to support development and transmission of the pathogen). Some of the modifications under development are designed to be self-limiting, in that they will tend to disappear over time in the absence of recurrent releases (and hence are similar to the sterile insect technique, SIT), whereas other modifications are designed to be self-sustaining, spreading through populations even after releases stop (and hence are similar to traditional biological control). Several successful field trials have now been performed with Aedes mosquitoes, and such trials are helping to define the appropriate developmental pathway for this new class of intervention.
Collapse
Affiliation(s)
- Austin Burt
- Department of Life Sciences, Imperial College London, , Silwood Park, Ascot, Berks SL5 7PY, UK
| |
Collapse
|
149
|
Franz AWE, Sanchez-Vargas I, Raban RR, Black WC, James AA, Olson KE. Fitness impact and stability of a transgene conferring resistance to dengue-2 virus following introgression into a genetically diverse Aedes aegypti strain. PLoS Negl Trop Dis 2014; 8:e2833. [PMID: 24810399 PMCID: PMC4014415 DOI: 10.1371/journal.pntd.0002833] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/17/2014] [Indexed: 01/11/2023] Open
Abstract
In 2006, we reported a mariner (Mos1)-transformed Aedes aegypti line, Carb77, which was highly resistant to dengue-2 virus (DENV2). Carb77 mosquitoes expressed a DENV2-specific inverted-repeat (IR) RNA in midgut epithelial cells after ingesting an infectious bloodmeal. The IR-RNA formed double-stranded DENV2-derived RNA, initiating an intracellular antiviral RNA interference (RNAi) response. However, Carb77 mosquitoes stopped expressing the IR-RNA after 17 generations in culture and lost their DENV2-refractory phenotype. In the current study, we generated new transgenic lines having the identical transgene as Carb77. One of these lines, Carb109M, has been genetically stable and refractory to DENV2 for >33 generations. Southern blot analysis identified two transgene integration sites in Carb109M. Northern blot analysis detected abundant, transient expression of the IR-RNA 24 h after a bloodmeal. Carb109M mosquitoes were refractory to different DENV2 genotypes but not to other DENV serotypes. To further test fitness and stability, we introgressed the Carb109M transgene into a genetically diverse laboratory strain (GDLS) by backcrossing for five generations and selecting individuals expressing the transgene's EGFP marker in each generation. Comparison of transgene stability in replicate backcross 5 (BC5) lines versus BC1 control lines demonstrated that backcrossing dramatically increased transgene stability. We subjected six BC5 lines to five generations of selection based on EGFP marker expression to increase the frequency of the transgene prior to final family selection. Comparison of the observed transgene frequencies in the six replicate lines relative to expectations from Fisher's selection model demonstrated lingering fitness costs associated with either the transgene or linked deleterious genes. Although minimal fitness loss (relative to GDLS) was manifest in the final family selection stage, we were able to select homozygotes for the transgene in one family, Carb109M/GDLS.BC5.HZ. This family has been genetically stable and DENV2 refractory for multiple generations. Carb109M/GDLS.BC5.HZ represents an important line for testing proof-of-principle vector population replacement. Expression of a DENV2 sequence-derived IR RNA in the mosquito midgut initiates an antiviral intracellular RNAi response that efficiently blocks DENV2 infection and profoundly impairs vector competence for that virus in Aedes aegypti. DENV2-specific IR RNA expression in the Carb109M strain has maintained the RNAi-based, refractory phenotype for 33 generations in laboratory culture. The two transgene integration sites were stable after multiple generations and following introgression into a genetically-diverse (GDLS) Ae. aegypti population. Introgression of the transgene into the GDLS genetic background changed GDLS from a DENV2 susceptible phenotype to a DENV2 refractory phenotype. The DENV2 refractory homozygous line, Carb109M/GDLS.BC5.HZ, exhibits (relative to GDLS) minimal fitness loss associated with the transgene. This line could be a potential candidate for proof-of-principle field studies.
Collapse
Affiliation(s)
- Alexander W. E. Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Irma Sanchez-Vargas
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Robyn R. Raban
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - William C. Black
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Anthony A. James
- Departments of Microbiology and Molecular Genetics and Molecular Biology and Biochemistry, University of California, Irvine, California, United States of America
| | - Ken E. Olson
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
150
|
Gokhale CS, Reeves RG, Reed FA. Dynamics of a combined Medea-underdominant population transformation system. BMC Evol Biol 2014; 14:98. [PMID: 24884575 PMCID: PMC4068157 DOI: 10.1186/1471-2148-14-98] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 04/28/2014] [Indexed: 01/16/2023] Open
Abstract
Background Transgenic constructs intended to be stably established at high frequencies in
wild populations have been demonstrated to “drive” from low
frequencies in experimental insect populations. Linking such population
transformation constructs to genes which render them unable to transmit pathogens
could eventually be used to stop the spread of vector-borne diseases like malaria
and dengue. Results Generally, population transformation constructs with only a single transgenic
drive mechanism have been envisioned. Using a theoretical modelling approach we
describe the predicted properties of a construct combining autosomal Medea and
underdominant population transformation systems. We show that when combined they
can exhibit synergistic properties which in broad circumstances surpass those of
the single systems. Conclusion With combined systems, intentional population transformation and its reversal can
be achieved readily. Combined constructs also enhance the capacity to
geographically restrict transgenic constructs to targeted populations. It is
anticipated that these properties are likely to be of particular value in
attracting regulatory approval and public acceptance of this novel technology.
Collapse
Affiliation(s)
- Chaitanya S Gokhale
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August Thienemann Str-2, 24306 Plön, Germany.
| | | | | |
Collapse
|