101
|
Gα i3 signaling is associated with sexual dimorphic expression of the clock-controlled output gene Dbp in murine liver. Oncotarget 2018; 9:30213-30224. [PMID: 30100984 PMCID: PMC6084400 DOI: 10.18632/oncotarget.25727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/14/2018] [Indexed: 11/25/2022] Open
Abstract
The albumin D-box binding protein (DBP) is a member of the PAR bZip (proline and acidic amino acid-rich basic leucine zipper) transcription factor family and functions as important regulator of circadian core and output gene expression. Gene expression of DBP itself is under the control of E-box-dependent binding by the Bmal1-Clock heterodimer and CRE-dependent binding by the cAMP responsive element binding protein (CREB). However, the signaling mechanism mediating CREB-dependent regulation of DBP expression in the peripheral clock remains elusive. In this study, we examined the role of the GPCR (G-protein-coupled receptor)/Gαi3 (Galphai3) controlled cAMP-CREB signaling pathway in the regulation of hepatic expression of core clock and clock-regulated genes, including Dbp. Analysis of circadian gene expression revealed that rhythmicity of hepatic transcript levels of the majority of core clock (including Per1) and clock-regulated genes were not affected by Gαi3 deficiency. Consistently, the period length of primary Gαi3 deficient tail fibroblasts expressing a Bmal1-Luciferase reporter was not affected. Interestingly, however, Gαi3 deficient female but not male mice showed a tendentiously increased activation of CREB (nuclear pSer133-CREB) accompanied by an advanced peak in Dbp gene expression and elevated mRNA levels of the cytochrome P450 family member Cyp3a11, a target gene of DBP. Accordingly, selective inhibition of CREB led to a strongly decreased expression of DBP and CYP3A4 (human Cyp3a11 homologue) in HepG2 liver cells. In summary, our data suggest that the Gαi3-pCREB signalling pathway functions as a regulator of sexual-dimorphic expression of DBP and its xenobiotic target enzymes Cyp3a11/CYP3A4.
Collapse
|
102
|
Blanchini F, Cuba Samaniego C, Franco E, Giordano G. Homogeneous Time Constants Promote Oscillations in Negative Feedback Loops. ACS Synth Biol 2018; 7:1481-1487. [PMID: 29676894 PMCID: PMC6008730 DOI: 10.1021/acssynbio.7b00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Biological oscillators are present
in nearly all self-regulating
systems, from individual cells to entire organisms. In any oscillator
structure, a negative feedback loop is necessary, but not sufficient
to guarantee the emergence of periodic behaviors. The likelihood of
oscillations can be improved by careful tuning of the system time
constants and by increasing the loop gain, yet it is unclear whether
there is any general relationship between optimal time constants and
loop gain. This issue is particularly relevant in genetic oscillators
resulting from a chain of different subsequent biochemical events,
each with distinct (and uncertain) kinetics. Using two families of
genetic oscillators as model examples, we show that the loop gain
required for oscillations is minimum when all elements in the loop
have the same time constant. On the contrary, we show that homeostasis
is ensured if a single element is considerably slower than the others.
Collapse
Affiliation(s)
- Franco Blanchini
- Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università degli Studi di Udine, 33100 Udine, Italy
| | - Christian Cuba Samaniego
- Department of Mechanical Engineering, University of California at Riverside, Riverside, California 92521, United States
| | - Elisa Franco
- Department of Mechanical Engineering, University of California at Riverside, Riverside, California 92521, United States
| | - Giulia Giordano
- Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
| |
Collapse
|
103
|
Calcium and cAMP directly modulate the speed of the Drosophila circadian clock. PLoS Genet 2018; 14:e1007433. [PMID: 29879123 PMCID: PMC6007936 DOI: 10.1371/journal.pgen.1007433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/19/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
Circadian clocks impose daily periodicities to animal behavior and physiology. At their core, circadian rhythms are produced by intracellular transcriptional/translational feedback loops (TTFL). TTFLs may be altered by extracellular signals whose actions are mediated intracellularly by calcium and cAMP. In mammals these messengers act directly on TTFLs via the calcium/cAMP-dependent transcription factor, CREB. In the fruit fly, Drosophila melanogaster, calcium and cAMP also regulate the periodicity of circadian locomotor activity rhythmicity, but whether this is due to direct actions on the TTFLs themselves or are a consequence of changes induced to the complex interrelationship between different classes of central pacemaker neurons is unclear. Here we investigated this question focusing on the peripheral clock housed in the non-neuronal prothoracic gland (PG), which, together with the central pacemaker in the brain, controls the timing of adult emergence. We show that genetic manipulations that increased and decreased the levels of calcium and cAMP in the PG caused, respectively, a shortening and a lengthening of the periodicity of emergence. Importantly, knockdown of CREB in the PG caused an arrhythmic pattern of eclosion. Interestingly, the same manipulations directed at central pacemaker neurons caused arrhythmicity of eclosion and of adult locomotor activity, suggesting a common mechanism. Our results reveal that the calcium and cAMP pathways can alter the functioning of the clock itself. In the PG, these messengers, acting as outputs of the clock or as second messengers for stimuli external to the PG, could also contribute to the circadian gating of adult emergence. Circadian clocks impose daily periodicities to animal behavior and physiology. At their core, circadian rhythms are produced by intracellular transcriptional/translational feedback loops (TTFL). TTFLs may be altered by extracellular signals whose actions are mediated intracellularly by calcium and cAMP. In Drosophila, calcium and cAMP levels affect the periodicity of Drosophila circadian rhythms, but whether this is due to direct actions on the TTFLs themselves or is a consequence of changes induced to the complex interrelationship between different classes of central pacemaker neurons is unclear. Here we used the non-neuronal circadian clock located in the prothoracic gland (PG) to show that these messengers affect the speed of the circadian clock that controls the timing of adult emergence and suggest that these actions are mediated by CREB. Importantly, since calcium and cAMP are also output signals of the clock, they may contribute to the mechanism that imposes a circadian gating to the timing of adult emergence.
Collapse
|
104
|
Bothwell MY, Gillette MU. Circadian redox rhythms in the regulation of neuronal excitability. Free Radic Biol Med 2018; 119:45-55. [PMID: 29398284 PMCID: PMC5910288 DOI: 10.1016/j.freeradbiomed.2018.01.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
Oxidation-reduction reactions are essential to life as the core mechanisms of energy transfer. A large body of evidence in recent years presents an extensive and complex network of interactions between the circadian and cellular redox systems. Recent advances show that cellular redox state undergoes a ~24-h (circadian) oscillation in most tissues and is conserved across the domains of life. In nucleated cells, the metabolic oscillation is dependent upon the circadian transcription-translation machinery and, vice versa, redox-active proteins and cofactors feed back into the molecular oscillator. In the suprachiasmatic nucleus (SCN), a hypothalamic region of the brain specialized for circadian timekeeping, redox oscillation was found to modulate neuronal membrane excitability. The SCN redox environment is relatively reduced in daytime when neuronal activity is highest and relatively oxidized in nighttime when activity is at its lowest. There is evidence that the redox environment directly modulates SCN K+ channels, tightly coupling metabolic rhythms to neuronal activity. Application of reducing or oxidizing agents produces rapid changes in membrane excitability in a time-of-day-dependent manner. We propose that this reciprocal interaction may not be unique to the SCN. In this review, we consider the evidence for circadian redox oscillation and its interdependencies with established circadian timekeeping mechanisms. Furthermore, we will investigate the effects of redox on ion-channel gating dynamics and membrane excitability. The susceptibility of many different ion channels to modulation by changes in the redox environment suggests that circadian redox rhythms may play a role in the regulation of all excitable cells.
Collapse
Affiliation(s)
- Mia Y Bothwell
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martha U Gillette
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
105
|
Aten S, Hansen KF, Snider K, Wheaton K, Kalidindi A, Garcia A, Alzate-Correa D, Hoyt KR, Obrietan K. miR-132 couples the circadian clock to daily rhythms of neuronal plasticity and cognition. ACTA ACUST UNITED AC 2018; 25:214-229. [PMID: 29661834 PMCID: PMC5903403 DOI: 10.1101/lm.047191.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/05/2018] [Indexed: 12/16/2022]
Abstract
The microRNA miR-132 serves as a key regulator of a wide range of plasticity-associated processes in the central nervous system. Interestingly, miR-132 expression has also been shown to be under the control of the circadian timing system. This finding, coupled with work showing that miR-132 is expressed in the hippocampus, where it influences neuronal morphology and memory, led us to test the idea that daily rhythms in miR-132 within the forebrain modulate cognition as a function of circadian time. Here, we show that hippocampal miR-132 expression is gated by the time-of-day, with peak levels occurring during the circadian night. Further, in miR-132 knockout mice and in transgenic mice, where miR-132 is constitutively expressed under the control of the tetracycline regulator system, we found that time-of-day dependent memory recall (as assessed via novel object location and contextual fear conditioning paradigms) was suppressed. Given that miRNAs exert their functional effects via the suppression of target gene expression, we examined the effects that transgenic miR-132 manipulations have on MeCP2 and Sirt1-two miR-132 targets that are associated with neuronal plasticity and cognition. In mice where miR-132 was either knocked out, or transgenically expressed, rhythmic expression of MeCP2 and Sirt1 was suppressed. Taken together, these results raise the prospect that miR-132 serves as a key route through which the circadian timing system imparts a daily rhythm on cognitive capacity.
Collapse
Affiliation(s)
- Sydney Aten
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, USA
| | - Katelin F Hansen
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, USA
| | - Kaitlin Snider
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, USA
| | - Kelin Wheaton
- Division of Pharmacology, Ohio State University, Columbus, Ohio 43210, USA
| | - Anisha Kalidindi
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, USA
| | - Ashley Garcia
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, USA
| | | | - Kari R Hoyt
- Division of Pharmacology, Ohio State University, Columbus, Ohio 43210, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
106
|
Clocking In Time to Gate Memory Processes: The Circadian Clock Is Part of the Ins and Outs of Memory. Neural Plast 2018; 2018:6238989. [PMID: 29849561 PMCID: PMC5925033 DOI: 10.1155/2018/6238989] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/22/2018] [Accepted: 02/05/2018] [Indexed: 01/11/2023] Open
Abstract
Learning, memory consolidation, and retrieval are processes known to be modulated by the circadian (circa: about; dies: day) system. The circadian regulation of memory performance is evolutionarily conserved, independent of the type and complexity of the learning paradigm tested, and not specific to crepuscular, nocturnal, or diurnal organisms. In mammals, long-term memory (LTM) formation is tightly coupled to de novo gene expression of plasticity-related proteins and posttranslational modifications and relies on intact cAMP/protein kinase A (PKA)/protein kinase C (PKC)/mitogen-activated protein kinase (MAPK)/cyclic adenosine monophosphate response element-binding protein (CREB) signaling. These memory-essential signaling components cycle rhythmically in the hippocampus across the day and night and are clearly molded by an intricate interplay between the circadian system and memory. Important components of the circadian timing mechanism and its plasticity are members of the Period clock gene family (Per1, Per2). Interestingly, Per1 is rhythmically expressed in mouse hippocampus. Observations suggest important and largely unexplored roles of the clock gene protein PER1 in synaptic plasticity and in the daytime-dependent modulation of learning and memory. Here, we review the latest findings on the role of the clock gene Period 1 (Per1) as a candidate molecular and mechanistic blueprint for gating the daytime dependency of memory processing.
Collapse
|
107
|
Schmitt K, Grimm A, Dallmann R, Oettinghaus B, Restelli LM, Witzig M, Ishihara N, Mihara K, Ripperger JA, Albrecht U, Frank S, Brown SA, Eckert A. Circadian Control of DRP1 Activity Regulates Mitochondrial Dynamics and Bioenergetics. Cell Metab 2018; 27:657-666.e5. [PMID: 29478834 DOI: 10.1016/j.cmet.2018.01.011] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/06/2017] [Accepted: 01/19/2018] [Indexed: 01/20/2023]
Abstract
Mitochondrial fission-fusion dynamics and mitochondrial bioenergetics, including oxidative phosphorylation and generation of ATP, are strongly clock controlled. Here we show that these circadian oscillations depend on circadian modification of dynamin-related protein 1 (DRP1), a key mediator of mitochondrial fission. We used a combination of in vitro and in vivo models, including human skin fibroblasts and DRP1-deficient or clock-deficient mice, to show that these dynamics are clock controlled via circadian regulation of DRP1. Genetic or pharmacological abrogation of DRP1 activity abolished circadian network dynamics and mitochondrial respiratory activity and eliminated circadian ATP production. Pharmacological silencing of pathways regulating circadian metabolism and mitochondrial function (e.g., sirtuins, AMPK) also altered DRP1 phosphorylation, and abrogation of DRP1 activity impaired circadian function. Our findings provide new insight into the crosstalk between the mitochondrial network and circadian cycles.
Collapse
Affiliation(s)
- Karen Schmitt
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular & Cognitive Neuroscience, University of Basel, Basel, Switzerland; Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Amandine Grimm
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular & Cognitive Neuroscience, University of Basel, Basel, Switzerland; Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Robert Dallmann
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Bjoern Oettinghaus
- Division of Neuropathology, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Lisa Michelle Restelli
- Division of Neuropathology, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Melissa Witzig
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular & Cognitive Neuroscience, University of Basel, Basel, Switzerland; Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Naotada Ishihara
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Kurume 839-0864, Japan
| | - Katsuyoshi Mihara
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Jürgen A Ripperger
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology, Unit of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Steven A Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| | - Anne Eckert
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular & Cognitive Neuroscience, University of Basel, Basel, Switzerland; Psychiatric University Clinics, University of Basel, Basel, Switzerland.
| |
Collapse
|
108
|
Wheaton K, Aten S, Queiroz LS, Sullivan K, Oberdick J, Hoyt KR, Obrietan K. Circadian expression and functional characterization of PEA-15 within the mouse suprachiasmatic nucleus. Eur J Neurosci 2018; 47:845-857. [PMID: 29383758 DOI: 10.1111/ejn.13850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/15/2017] [Accepted: 01/15/2018] [Indexed: 12/14/2022]
Abstract
The circadian timing system influences the functional properties of most, if not all, physiological processes. Central to the mammalian timing system is the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN functions as a 'master clock' that sets the phasing of ancillary circadian oscillator populations found throughout the body. Further, via an entraining input from the retina, the SCN ensures that the clock oscillators are synchronized to the daily light/dark cycle. A critical component of the SCN timing and entrainment systems is the p44/42 mitogen-activated protein kinase (ERK/MAPK) pathway. Here, we examined the expression and function of phosphoprotein-enriched in astrocytes (PEA-15), an ERK scaffold protein that serves as a key regulator of MAPK signaling. A combination of immunolabeling and Western blotting approaches revealed high levels of PEA-15 within the SCN. PEA-15 expression was enriched in distinct subpopulations of SCN neurons, including arginine vasopressin (AVP)-positive neurons of the SCN shell region. Further, expression profiling detected a significant circadian oscillation in PEA-15 expression within the SCN. Brief photic stimulation during the early subjective night led to a significant increase in PEA-15 phosphorylation, an event that can trigger ERK/PEA-15 dissociation. Consistent with this, co-immunoprecipitation assays revealed that PEA-15 is directly bound to ERK in the SCN and that photic stimulation leads to their dissociation. Finally, we show that PEA-15 regulates ERK/MAPK-dependent activation of the core clock gene period1. Together, these data raise the prospect that PEA-15 functions as a key regulator of the SCN timing system.
Collapse
Affiliation(s)
- Kelin Wheaton
- Division of Pharmacology, Ohio State University, Columbus, OH, 43210, USA
| | - Sydney Aten
- Department of Neuroscience, Ohio State University, Columbus, OH, 43210, USA
| | | | - Kyle Sullivan
- Department of Neuroscience, Ohio State University, Columbus, OH, 43210, USA
| | - John Oberdick
- Department of Neuroscience, Ohio State University, Columbus, OH, 43210, USA
| | - Kari R Hoyt
- Division of Pharmacology, Ohio State University, Columbus, OH, 43210, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
109
|
Belle MDC, Diekman CO. Neuronal oscillations on an ultra-slow timescale: daily rhythms in electrical activity and gene expression in the mammalian master circadian clockwork. Eur J Neurosci 2018; 48:2696-2717. [PMID: 29396876 DOI: 10.1111/ejn.13856] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/16/2018] [Accepted: 01/28/2018] [Indexed: 12/17/2022]
Abstract
Neuronal oscillations of the brain, such as those observed in the cortices and hippocampi of behaving animals and humans, span across wide frequency bands, from slow delta waves (0.1 Hz) to ultra-fast ripples (600 Hz). Here, we focus on ultra-slow neuronal oscillators in the hypothalamic suprachiasmatic nuclei (SCN), the master daily clock that operates on interlocking transcription-translation feedback loops to produce circadian rhythms in clock gene expression with a period of near 24 h (< 0.001 Hz). This intracellular molecular clock interacts with the cell's membrane through poorly understood mechanisms to drive the daily pattern in the electrical excitability of SCN neurons, exhibiting an up-state during the day and a down-state at night. In turn, the membrane activity feeds back to regulate the oscillatory activity of clock gene programs. In this review, we emphasise the circadian processes that drive daily electrical oscillations in SCN neurons, and highlight how mathematical modelling contributes to our increasing understanding of circadian rhythm generation, synchronisation and communication within this hypothalamic region and across other brain circuits.
Collapse
Affiliation(s)
- Mino D C Belle
- Institute of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, EX4 4PS, UK
| | - Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, USA.,Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
110
|
Russart KLG, Huk D, Nelson RJ, Kirschner LS. Elevated aggressive behavior in male mice with thyroid-specific Prkar1a and global Epac1 gene deletion. Horm Behav 2018; 98:121-129. [PMID: 29289659 PMCID: PMC5828986 DOI: 10.1016/j.yhbeh.2017.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/19/2017] [Accepted: 12/23/2017] [Indexed: 11/25/2022]
Abstract
Alterations in circulating thyroid hormone concentrations are associated with several psychological and behavioral disorders. In humans, behavioral disorders such as anxiety, depression, and attention-deficit hyperactivity disorder can be associated with thyroid disease. The Tpo-Cre;Prkar1aflox/flox;Epac1-/- (R1A-Epac1KO) mice, originally bred to investigate the role of exchange protein directly activated by cAMP (Epac1) in follicular thyroid cancer, displayed self-mutilating and aggressive behaviors during casual observation. To assess these atypical responses, behavioral testing was conducted with the R1A-Epac1KO mice, as well as their single knockout counterparts, the thyroid-specific Prkar1a-/- and global Epac1-/- mice. Mice of all three genotypes demonstrated increased aggressive behavior against an intruder mouse. In addition, Epac1-/- mice increased response to an auditory stimulus, and the Prkar1a-/- and R1A-Epac1KO mice increased swimming behavior in the Porsolt forced swim test. Both Prkar1a-/- mice and R1A-Epac1KO mice have increased circulating thyroxine and corticosterone concentrations. Although hyperthyroidism has not been previously associated with aggression, increased thyroid hormone signaling might contribute to the increased aggressive response to the intruder mouse, as well as the increased swimming response. Mice with a genetic background of Tpo-Cre;Prkar1aflox/flox;Epac1-/- are aggressive, and both the thyroid-specific knockout of Prkar1a and global knockout of Epac1 likely contribute to this aggressive behavior. This study supports the hypothesis that altered thyroid signaling and aggressive behavior are linked.
Collapse
Affiliation(s)
- Kathryn L G Russart
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Danielle Huk
- Department of Cancer Biology and Genetics, Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Randy J Nelson
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Lawrence S Kirschner
- Department of Cancer Biology and Genetics, Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
111
|
CLOCKΔ19 mutation modifies the manner of synchrony among oscillation neurons in the suprachiasmatic nucleus. Sci Rep 2018; 8:854. [PMID: 29339832 PMCID: PMC5770461 DOI: 10.1038/s41598-018-19224-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/28/2017] [Indexed: 01/05/2023] Open
Abstract
In mammals, the principal circadian oscillator exists in the hypothalamic suprachiasmatic nucleus (SCN). In the SCN, CLOCK works as an essential component of molecular circadian oscillation, and ClockΔ19 mutant mice show unique characteristics of circadian rhythms such as extended free running periods, amplitude attenuation, and high-magnitude phase-resetting responses. Here we investigated what modifications occur in the spatiotemporal organization of clock gene expression in the SCN of ClockΔ19 mutants. The cultured SCN, sampled from neonatal homozygous ClockΔ19 mice on an ICR strain comprising PERIOD2::LUCIFERASE, demonstrated that the Clock gene mutation not only extends the circadian period, but also affects the spatial phase and period distribution of circadian oscillations in the SCN. In addition, disruption of the synchronization among neurons markedly attenuated the amplitude of the circadian rhythm of individual oscillating neurons in the mutant SCN. Further, with numerical simulations based on the present studies, the findings suggested that, in the SCN of the ClockΔ19 mutant mice, stable oscillation was preserved by the interaction among oscillating neurons, and that the orderly phase and period distribution that makes a phase wave are dependent on the functionality of CLOCK.
Collapse
|
112
|
Abraham U, Schlichting JK, Kramer A, Herzel H. Quantitative analysis of circadian single cell oscillations in response to temperature. PLoS One 2018; 13:e0190004. [PMID: 29293562 PMCID: PMC5749732 DOI: 10.1371/journal.pone.0190004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/06/2017] [Indexed: 11/18/2022] Open
Abstract
Body temperature rhythms synchronize circadian oscillations in different tissues, depending on the degree of cellular coupling: the responsiveness to temperature is higher when single circadian oscillators are uncoupled. So far, the role of coupling in temperature responsiveness has only been studied in organotypic tissue slices of the central circadian pacemaker, because it has been assumed that peripheral target organs behave like uncoupled multicellular oscillators. Since recent studies indicate that some peripheral tissues may exhibit cellular coupling as well, we asked whether peripheral network dynamics also influence temperature responsiveness. Using a novel technique for long-term, high-resolution bioluminescence imaging of primary cultured cells, exposed to repeated temperature cycles, we were able to quantitatively measure period, phase, and amplitude of central (suprachiasmatic nuclei neuron dispersals) and peripheral (mouse ear fibroblasts) single cell oscillations in response to temperature. Employing temperature cycles of different lengths, and different cell densities, we found that some circadian characteristics appear cell-autonomous, e.g. period responses, while others seem to depend on the quality/degree of cellular communication, e.g. phase relationships, robustness of the oscillation, and amplitude. Overall, our findings indicate a strong dependence on the cell's ability for intercellular communication, which is not only true for neuronal pacemakers, but, importantly, also for cells in peripheral tissues. Hence, they stress the importance of comparative studies that evaluate the degree of coupling in a given tissue, before it may be used effectively as a target for meaningful circadian manipulation.
Collapse
Affiliation(s)
- Ute Abraham
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Achim Kramer
- Laboratory of Chronobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt-University, Berlin, Germany
| |
Collapse
|
113
|
Yang SY, Baek JH, Cho Y, Cho EY, Choi Y, Kim Y, Park T, Hong KS. Effects of genetic variants of ST8SIA2 and NCAM1 genes on seasonal mood changes and circadian preference in the general population. Chronobiol Int 2017; 35:405-415. [PMID: 29215920 DOI: 10.1080/07420528.2017.1410827] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
ST8SIA2 and NCAM1 are functionally related genes forming polysialic acid (PSA) - neural cell adhesion molecule (NCAM) complex in suprachiasmatic nucleus (SCN), the regulating site of circadian biological rhythm. In this study, the relationship of ST8SIA2 and NCAM1 with circadian and seasonal rhythms of human behavior was explored. Subjects were 261 healthy Korean adults who were free of any history of clinically significant psychiatric symptoms. The phenotypes were circadian preference and seasonal change of mood and behavior (seasonality) measured by the Composite Scale of Morningness and the Seasonal Pattern Assessment Questionnaire, respectively. Thirty-four single nucleotide polymorphisms (SNPs) across the ST8SIA2 region and 15 SNPs of NCAM1 were analyzed. A nominally significant association with seasonality and circadian preference was observed in 21 variants of both genes. After corrections for multiple testing, associations of 8 SNPs of ST8SIA2 and 2 SNPs of NCAM1 with seasonality remained significant. Some of these SNPs were also associated with psychiatric disorders in previous studies. This study demonstrated a meaningful and/or suggestive evidence of association between behavioral phenotypes reflecting human biological rhythm and two interplaying genes involved in the plasticity of SCN's neuronal network.
Collapse
Affiliation(s)
- So Yung Yang
- a Department of Psychiatry , Sungkyunkwan University School of Medicine, Samsung Medical Center , Seoul , Korea
| | - Ji Hyun Baek
- a Department of Psychiatry , Sungkyunkwan University School of Medicine, Samsung Medical Center , Seoul , Korea
| | - Youngah Cho
- b Department of Psychiatry , Seoul National University Bundang Hospital , Kyunggi-Do , Korea
| | - Eun-Young Cho
- c Center for Clinical Research , Samsung Biomedical Research Institute , Seoul , Korea
| | - Yujin Choi
- c Center for Clinical Research , Samsung Biomedical Research Institute , Seoul , Korea
| | - Yongkang Kim
- d Department of Statistics , Seoul National University , Seoul , Korea
| | - Taesung Park
- d Department of Statistics , Seoul National University , Seoul , Korea
| | - Kyung Sue Hong
- a Department of Psychiatry , Sungkyunkwan University School of Medicine, Samsung Medical Center , Seoul , Korea.,c Center for Clinical Research , Samsung Biomedical Research Institute , Seoul , Korea
| |
Collapse
|
114
|
Russart KLG, Nelson RJ. Light at night as an environmental endocrine disruptor. Physiol Behav 2017; 190:82-89. [PMID: 28870443 DOI: 10.1016/j.physbeh.2017.08.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022]
Abstract
Environmental endocrine disruptors (EEDs) are often consequences of human activity; however, the effects of EEDs are not limited to humans. A primary focus over the past ∼30years has been on chemical EEDs, but the repercussions of non-chemical EEDs, such as artificial light at night (LAN), are of increasing interest. The sensitivity of the circadian system to light and the influence of circadian organization on overall physiology and behavior make the system a target for disruption with widespread effects. Indeed, there is increasing evidence for a role of LAN in human health, including disruption of circadian regulation and melatonin signaling, metabolic dysregulation, cancer risk, and disruption of other hormonally-driven systems. These effects are not limited to humans; domesticated animals as well as wildlife are also exposed to LAN, and at risk for disrupted circadian rhythms. Here, we review data that support the role of LAN as an endocrine disruptor in humans to be considered in treatments and lifestyle suggestions. We also present the effects of LAN in other animals, and discuss the potential for ecosystem-wide effects of artificial LAN. This can inform decisions in agricultural practices and urban lighting decisions to avoid unintended outcomes.
Collapse
Affiliation(s)
- Kathryn L G Russart
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Randy J Nelson
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
115
|
Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation. eNeuro 2017; 4:eN-NWR-0160-17. [PMID: 28828400 PMCID: PMC5562299 DOI: 10.1523/eneuro.0160-17.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
Circadian rhythms of mammalian physiology and behavior are coordinated by the suprachiasmatic nucleus (SCN) in the hypothalamus. Within SCN neurons, various aspects of cell physiology exhibit circadian oscillations, including circadian clock gene expression, levels of intracellular Ca2+ ([Ca2+]i), and neuronal firing rate. [Ca2+]i oscillates in SCN neurons even in the absence of neuronal firing. To determine the causal relationship between circadian clock gene expression and [Ca2+]i rhythms in the SCN, as well as the SCN neuronal network dependence of [Ca2+]i rhythms, we introduced GCaMP3, a genetically encoded fluorescent Ca2+ indicator, into SCN neurons from PER2::LUC knock-in reporter mice. Then, PER2 and [Ca2+]i were imaged in SCN dispersed and organotypic slice cultures. In dispersed cells, PER2 and [Ca2+]i both exhibited cell autonomous circadian rhythms, but [Ca2+]i rhythms were typically weaker than PER2 rhythms. This result matches the predictions of a detailed mathematical model in which clock gene rhythms drive [Ca2+]i rhythms. As predicted by the model, PER2 and [Ca2+]i rhythms were both stronger in SCN slices than in dispersed cells and were weakened by blocking neuronal firing in slices but not in dispersed cells. The phase relationship between [Ca2+]i and PER2 rhythms was more variable in cells within slices than in dispersed cells. Both PER2 and [Ca2+]i rhythms were abolished in SCN cells deficient in the essential clock gene Bmal1. These results suggest that the circadian rhythm of [Ca2+]i in SCN neurons is cell autonomous and dependent on clock gene rhythms, but reinforced and modulated by a synchronized SCN neuronal network.
Collapse
|
116
|
Goto K, Doi M, Wang T, Kunisue S, Murai I, Okamura H. G-protein-coupled receptor signaling through Gpr176, Gz, and RGS16 tunes time in the center of the circadian clock [Review]. Endocr J 2017; 64:571-579. [PMID: 28502923 DOI: 10.1507/endocrj.ej17-0130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) constitute an immensely important class of drug targets with diverse clinical applications. There are still more than 120 orphan GPCRs whose cognate ligands and physiological functions are not known. A set of circadian pacemaker neurons that governs daily rhythms in behavior and physiology resides in the suprachiasmatic nucleus (SCN) in the brain. Malfunction of the circadian clock has been linked to a multitude of diseases, such as sleeping disorders, obesity, diabetes, cardiovascular diseases, and cancer, which makes the clock an attractive target for drug development. Here, we review a recently identified role of Gpr176 in the SCN. Gpr176 is an SCN-enriched orphan GPCR that sets the pace of the circadian clock in the SCN. Even without known ligand, this orphan receptor has an agonist-independent basal activity to reduce cAMP signaling. A unique cAMP-repressing G-protein subclass Gz is required for the activity of Gpr176. We also provide an overview on the circadian regulation of G-protein signaling, with an emphasis on a role for the regulator of G-protein signaling 16 (RGS16). RGS16 is indispensable for the circadian regulation of cAMP in the SCN. Developing drugs that target the SCN remains an unfulfilled opportunity for the circadian pharmacology. This review argues for the potential impact of focusing on GPCRs in the SCN for the purpose of tuning the body clock.
Collapse
Affiliation(s)
- Kaoru Goto
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Tianyu Wang
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Sumihiro Kunisue
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Iori Murai
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
117
|
Bailes HJ, Milosavljevic N, Zhuang LY, Gerrard EJ, Nishiguchi T, Ozawa T, Lucas RJ. Optogenetic interrogation reveals separable G-protein-dependent and -independent signalling linking G-protein-coupled receptors to the circadian oscillator. BMC Biol 2017; 15:40. [PMID: 28506231 PMCID: PMC5430609 DOI: 10.1186/s12915-017-0380-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/26/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endogenous circadian oscillators distributed across the mammalian body are synchronised among themselves and with external time via a variety of signalling molecules, some of which interact with G-protein-coupled receptors (GPCRs). GPCRs can regulate cell physiology via pathways originating with heterotrimeric G-proteins or β-arrestins. We applied an optogenetic approach to determine the contribution of these two signalling modes on circadian phase. RESULTS We employed a photopigment (JellyOp) that activates Gαs signalling with better selectivity and higher sensitivity than available alternatives, and a point mutant of this pigment (F112A) biased towards β-arrestin signalling. When expressed in fibroblasts, both native JellyOp and the F112A arrestin-biased mutant drove light-dependent phase resetting in the circadian clock. Shifts induced by the two opsins differed in their circadian phase dependence and the degree to which they were associated with clock gene induction. CONCLUSIONS Our data imply separable G-protein and arrestin inputs to the mammalian circadian clock and establish a pair of optogenetic tools suitable for manipulating Gαs- and β-arrestin-biased signalling in live cells.
Collapse
Affiliation(s)
- Helena J Bailes
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Nina Milosavljevic
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - Ling-Yu Zhuang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Elliot J Gerrard
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | | | - Takeaki Ozawa
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Robert J Lucas
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
118
|
Allen CN, Nitabach MN, Colwell CS. Membrane Currents, Gene Expression, and Circadian Clocks. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027714. [PMID: 28246182 DOI: 10.1101/cshperspect.a027714] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neuronal circadian oscillators in the mammalian and Drosophila brain express a circadian clock comprised of interlocking gene transcription feedback loops. The genetic clock regulates the membrane electrical activity by poorly understood signaling pathways to generate a circadian pattern of action potential firing. During the day, Na+ channels contribute an excitatory drive for the spontaneous activity of circadian clock neurons. Multiple types of K+ channels regulate the action potential firing pattern and the nightly reduction in neuronal activity. The membrane electrical activity possibly signaling by changes in intracellular Ca2+ and cyclic adenosine monophosphate (cAMP) regulates the activity of the gene clock. A decline in the signaling pathways that link the gene clock and neural activity during aging and disease may weaken the circadian output and generate significant impacts on human health.
Collapse
Affiliation(s)
- Charles N Allen
- Oregon Institute of Occupational Health Sciences and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Michael N Nitabach
- Department of Cellular and Molecular Physiology and Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520
| | - Christopher S Colwell
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California 90024
| |
Collapse
|
119
|
Inhibition of expression of the circadian clock gene Period causes metabolic abnormalities including repression of glycometabolism in Bombyx mori cells. Sci Rep 2017; 7:46258. [PMID: 28393918 PMCID: PMC5385517 DOI: 10.1038/srep46258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/13/2017] [Indexed: 02/07/2023] Open
Abstract
Abnormalities in the circadian clock system are known to affect the body’s metabolic functions, though the molecular mechanisms responsible remain uncertain. In this study, we achieved continuous knockdown of B. mori Period (BmPer) gene expression in the B. mori ovary cell line (BmN), and generated a Per-KD B. mori model with developmental disorders including small individual cells and slow growth. We conducted cell metabolomics assays by gas chromatography/liquid chromatography-mass spectrometry and showed that knockdown of BmPer gene expression resulted in significant inhibition of glycometabolism. Amino acids that used glucose metabolites as a source were also down-regulated, while lipid metabolism and nucleotide metabolism were significantly up-regulated. Metabolite correlation analysis showed that pyruvate and lactate were closely related to glycometabolism, as well as to metabolites such as aspartate, alanine, and xanthine in other pathways. Further validation experiments showed that the activities of the key enzymes of glucose metabolism, hexokinase, phosphofructokinase, and citrate synthase, were significantly decreased and transcription of their encoding genes, as well as that of pyruvate kinase, were also significantly down-regulated. We concluded that inhibition of the circadian clock gene BmPer repressed glycometabolism, and may be associated with changes in cellular amino acid metabolism, and in cell growth and development.
Collapse
|
120
|
Bodvard K, Peeters K, Roger F, Romanov N, Igbaria A, Welkenhuysen N, Palais G, Reiter W, Toledano MB, Käll M, Molin M. Light-sensing via hydrogen peroxide and a peroxiredoxin. Nat Commun 2017; 8:14791. [PMID: 28337980 PMCID: PMC5376668 DOI: 10.1038/ncomms14791] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 01/27/2017] [Indexed: 02/08/2023] Open
Abstract
Yeast lacks dedicated photoreceptors; however, blue light still causes pronounced oscillations of the transcription factor Msn2 into and out of the nucleus. Here we show that this poorly understood phenomenon is initiated by a peroxisomal oxidase, which converts light into a hydrogen peroxide (H2O2) signal that is sensed by the peroxiredoxin Tsa1 and transduced to thioredoxin, to counteract PKA-dependent Msn2 phosphorylation. Upon H2O2, the nuclear retention of PKA catalytic subunits, which contributes to delayed Msn2 nuclear concentration, is antagonized in a Tsa1-dependent manner. Conversely, peroxiredoxin hyperoxidation interrupts the H2O2 signal and drives Msn2 oscillations by superimposing on PKA feedback regulation. Our data identify a mechanism by which light could be sensed in all cells lacking dedicated photoreceptors. In particular, the use of H2O2 as a second messenger in signalling is common to Msn2 oscillations and to light-induced entrainment of circadian rhythms and suggests conserved roles for peroxiredoxins in endogenous rhythms. While yeasts lack dedicated photoreceptors, they nonetheless possess metabolic rhythms responsive to light. Here the authors find that light signalling in budding yeast involves the production of H2O2, which in turn regulates protein kinase A through a peroxiredoxin-thioredoxin redox relay.
Collapse
Affiliation(s)
- Kristofer Bodvard
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-413 90 Göteborg, Sweden.,Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Ken Peeters
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-413 90 Göteborg, Sweden
| | - Friederike Roger
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-413 90 Göteborg, Sweden
| | - Natalie Romanov
- Mass Spectrometry Facility, Max F. Perutz Laboratories, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Aeid Igbaria
- Oxidative Stress and Cancer, SBIGEM, iBiTec-S, FRE3377 CEA-CNRS-Université Paris-Sud, CEA-Saclay, bat 142 F-91191 Gif Sur Yvette, France
| | - Niek Welkenhuysen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-413 90 Göteborg, Sweden.,Hohmann Lab, Department of Biology and Biological Engineering, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Gaël Palais
- Oxidative Stress and Cancer, SBIGEM, iBiTec-S, FRE3377 CEA-CNRS-Université Paris-Sud, CEA-Saclay, bat 142 F-91191 Gif Sur Yvette, France
| | - Wolfgang Reiter
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Michel B Toledano
- Oxidative Stress and Cancer, SBIGEM, iBiTec-S, FRE3377 CEA-CNRS-Université Paris-Sud, CEA-Saclay, bat 142 F-91191 Gif Sur Yvette, France
| | - Mikael Käll
- Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Mikael Molin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-413 90 Göteborg, Sweden
| |
Collapse
|
121
|
Rosenberg Y, Doniger T, Harii S, Sinniger F, Levy O. Canonical and cellular pathways timing gamete release in Acropora digitifera, Okinawa, Japan. Mol Ecol 2017; 26:2698-2710. [PMID: 28214372 DOI: 10.1111/mec.14062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 11/28/2022]
Abstract
Natural light cycles are important for synchronizing behavioural and physiological rhythms over varying time periods in both plants and animals. An endogenous clock, regulated by positive and negative elements, interacting in feedback loops controls these rhythms. Many corals exhibit diel cycles of polyp expansion and contraction entrained by solar light patterns and monthly cycles of spawning or planulation that correspond to nocturnal lunar light cycles. However, despite considerable interest in studies of coral reproduction, there is currently not enough molecular information about the cellular pathways involved with synchronizing spawning/planulation in broadcast spawners and brooders. To determine whether the endogenous clock is implicated in the regulation of reproductive behaviour in corals, we characterized the transcriptome of Acropora digitifera colonies at twelve time points over a 2-month period of full and new moons, starting with the day of spawning in June 2014. We identified 608 transcripts with differential expression only on the spawning night during the coral setting phase and gamete release. Our data revealed an upregulation of light-sensing molecules and rhodopsin-like receptors that initiate signalling cascades, including the glutamate, SMAD signalling and WNT signalling pathways, neuroactive ligand-receptor interactions and calcium signalling. These are all involved in cell cycling, cell movement, tissue polarity, focal adhesion and cytoskeleton reorganization and together lead to gamete release. These findings can improve the understanding of many time-based cycles and extend our knowledge of the interplay between exogenous signals and the endogenous clock in cnidarians.
Collapse
Affiliation(s)
- Y Rosenberg
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - T Doniger
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - S Harii
- Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227, Japan
| | - F Sinniger
- Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227, Japan
| | - O Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| |
Collapse
|
122
|
Kiehn JT, Tsang AH, Heyde I, Leinweber B, Kolbe I, Leliavski A, Oster H. Circadian Rhythms in Adipose Tissue Physiology. Compr Physiol 2017; 7:383-427. [PMID: 28333377 DOI: 10.1002/cphy.c160017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The different types of adipose tissues fulfill a wide range of biological functions-from energy storage to hormone secretion and thermogenesis-many of which show pronounced variations over the course of the day. Such 24-h rhythms in physiology and behavior are coordinated by endogenous circadian clocks found in all tissues and cells, including adipocytes. At the molecular level, these clocks are based on interlocked transcriptional-translational feedback loops comprised of a set of clock genes/proteins. Tissue-specific clock-controlled transcriptional programs translate time-of-day information into physiologically relevant signals. In adipose tissues, clock gene control has been documented for adipocyte proliferation and differentiation, lipid metabolism as well as endocrine function and other adipose oscillations are under control of systemic signals tied to endocrine, neuronal, or behavioral rhythms. Circadian rhythm disruption, for example, by night shift work or through genetic alterations, is associated with changes in adipocyte metabolism and hormone secretion. At the same time, adipose metabolic state feeds back to central and peripheral clocks, adjusting behavioral and physiological rhythms. In this overview article, we summarize our current knowledge about the crosstalk between circadian clocks and energy metabolism with a focus on adipose physiology. © 2017 American Physiological Society. Compr Physiol 7:383-427, 2017.
Collapse
Affiliation(s)
- Jana-Thabea Kiehn
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Anthony H Tsang
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isabel Heyde
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Brinja Leinweber
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isa Kolbe
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Alexei Leliavski
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
123
|
Abstract
Daily activity rhythms that are dominated by internal clocks are called circadian rhythms. A central clock is located in the suprachiasmatic nucleus of the hypothalamus, and peripheral clocks are located in most mammalian peripheral cells. The central clock is entrained by light/dark cycles, whereas peripheral clocks are entrained by feeding cycles. The effects of nutrients on the central and peripheral clocks have been investigated during the past decade and much interaction between them has come to light. For example, a high-fat diet prolongs the period of circadian behavior, a ketogenic diet advances the onset of locomotor activity rhythms, and a high-salt diet advances the phase of peripheral molecular clocks. Moreover, some food factors such as caffeine, nobiletin, and resveratrol, alter molecular and/or behavioral circadian rhythms. Here, we review nutrients and food factors that modulate mammalian circadian clocks from the cellular to the behavioral level.
Collapse
Affiliation(s)
- Hideaki Oike
- a Food Research Institute, National Agriculture and Food Research Organization , Tsukuba , Japan
| |
Collapse
|
124
|
The cyclic AMP phosphodiesterase 4D5 (PDE4D5)/receptor for activated C-kinase 1 (RACK1) signalling complex as a sensor of the extracellular nano-environment. Cell Signal 2017; 35:282-289. [PMID: 28069443 DOI: 10.1016/j.cellsig.2017.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/04/2017] [Indexed: 01/15/2023]
Abstract
The cyclic AMP and protein kinase C (PKC) signalling pathways regulate a wide range of cellular processes that require tight control, including cell proliferation and differentiation, metabolism and inflammation. The identification of a protein complex formed by receptor for activated C kinase 1 (RACK1), a scaffold protein for protein kinase C (PKC), and the cyclic AMP-specific phosphodiesterase, PDE4D5, demonstrates a potential mechanism for crosstalk between these two signalling routes. Indeed, RACK1-bound PDE4D5 is activated by PKCα, providing a route through which the PKC pathway can control cellular cyclic AMP levels. Although RACK1 does not appear to affect the intracellular localisation of PDE4D5, it does afford structural stability, providing protection against denaturation, and increases the susceptibility of PDE4D5 to inhibition by cyclic AMP-elevating pharmaceuticals, such as rolipram. In addition, RACK1 can recruit PDE4D5 and PKC to intracellular protein complexes that control diverse cellular functions, including activated G protein-coupled receptors (GPCRs) and integrins clustered at focal adhesions. Through its ability to regulate local cyclic AMP levels in the vicinity of these multimeric receptor complexes, the RACK1/PDE4D5 signalling unit therefore has the potential to modify the quality of incoming signals from diverse extracellular cues, ranging from neurotransmitters and hormones to nanometric topology. Indeed, PDE4D5 and RACK1 have been found to form a tertiary complex with integrin-activated focal adhesion kinase (FAK), which localises to cellular focal adhesion sites. This supports PDE4D5 and RACK1 as potential regulators of cell adhesion, spreading and migration through the non-classical exchange protein activated by cyclic AMP (EPAC1)/Rap1 signalling route.
Collapse
|
125
|
Abstract
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in feeding behavior and increased weight gain. Thus, shift work is associated with increased risk for obesity, diabetes and cardio-vascular diseases as a result of unusual eating time and disruption of circadian rhythm.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- , Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
126
|
Xue Z, Li D, Yu W, Zhang Q, Hou X, He Y, Kou X. Mechanisms and therapeutic prospects of polyphenols as modulators of the aryl hydrocarbon receptor. Food Funct 2017; 8:1414-1437. [DOI: 10.1039/c6fo01810f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyphenolic AhR modulators displayed concentration-, XRE-, gene-, species- and cell-specific agonistic/antagonistic activity.
Collapse
Affiliation(s)
- Zhaohui Xue
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Dan Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Wancong Yu
- Medical Plant Laboratory
- Tianjin Research Center of Agricultural Biotechnology
- Tianjin 3000381
- China
| | - Qian Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaonan Hou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yulong He
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
127
|
Kovanen L, Donner K, Kaunisto M, Partonen T. PRKCDBP (CAVIN3) and CRY2 associate with major depressive disorder. J Affect Disord 2017; 207:136-140. [PMID: 27721187 DOI: 10.1016/j.jad.2016.09.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/12/2016] [Accepted: 09/25/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Dysfunctions in the intrinsic clocks are suggested in patients with depressive disorders. The cryptochrome circadian clocks 1 and 2 (CRY1 and CRY2) proteins modulate circadian rhythms in a cell and influence emotional reactions and mood in an individual. The protein kinase C delta binding protein (PRKCDBP, or CAVIN3), similar to the serum deprivation response protein (SDPR, or CAVIN2), reduces metabolic stability of the PER2-CRY2 transcription factor complex that plays a role in the circadian rhythm synchronization. Our aim was to study SDPR, PRKCDBP, CRY1 and CRY2 genetic variants in depressive disorders. METHODS The sample included 5910 Finnish individuals assessed with the Munich-Composite International Diagnostic Interview (M-CIDI) in year 2000. In year 2011, 3424 individuals were assessed again. After genotype quality control, there were 383 subjects with major depressive disorder, 166 with dysthymia, and 479 with depressive disorders (major depressive disorder, dysthymia or both), and 4154 healthy controls. A total of 48 single-nucleotide polymorphisms from SDPR, PRKCDBP, CRY1 and CRY2 genes were analyzed using logistic regression models controlling for age and gender. RESULTS The earlier reported association of CRY2 variants with dysthymia was confirmed and extended to major depressive disorder (q<0.05). In addition, novel associations of PRKCDBP rs1488864 with depressive disorders (q=0.02) and with major depressive disorder in specific (q=0.007) were found. LIMITATIONS The number of cases was moderate and coverage of PRKCDB was limited. CONCLUSIONS CRY2 and PRKCDBP variants may be risk factors of major depressive disorder and provide information for diagnosis.
Collapse
Affiliation(s)
- Leena Kovanen
- Department of Health, National Institute for Health and Welfare (THL), Helsinki, Finland.
| | - Kati Donner
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Mari Kaunisto
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Timo Partonen
- Department of Health, National Institute for Health and Welfare (THL), Helsinki, Finland
| |
Collapse
|
128
|
Hagihara H, Horikawa T, Nakamura HK, Umemori J, Shoji H, Kamitani Y, Miyakawa T. Circadian Gene Circuitry Predicts Hyperactive Behavior in a Mood Disorder Mouse Model. Cell Rep 2016; 14:2784-96. [PMID: 27028761 DOI: 10.1016/j.celrep.2016.02.067] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/07/2016] [Accepted: 02/22/2016] [Indexed: 11/26/2022] Open
Abstract
Bipolar disorder, also known as manic-depressive illness, causes swings in mood and activity levels at irregular intervals. Such changes are difficult to predict, and their molecular basis remains unknown. Here, we use infradian (longer than a day) cyclic activity levels in αCaMKII (Camk2a) mutant mice as a proxy for such mood-associated changes. We report that gene-expression patterns in the hippocampal dentate gyrus could retrospectively predict whether the mice were in a state of high or low locomotor activity (LA). Expression of a subset of circadian genes, as well as levels of cAMP and pCREB, possible upstream regulators of circadian genes, were correlated with LA states, suggesting that the intrinsic molecular circuitry changes concomitant with infradian oscillatory LA. Taken together, these findings shed light onto the molecular basis of how irregular biological rhythms and behavior are controlled by the brain.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Tomoyasu Horikawa
- ATR Computational Neuroscience Laboratories, Soraku-gun, Kyoto 619-0288, Japan
| | - Hironori K Nakamura
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Juzoh Umemori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Yukiyasu Kamitani
- ATR Computational Neuroscience Laboratories, Soraku-gun, Kyoto 619-0288, Japan; Graduate School of Informatics, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan; Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
129
|
Na H, Lee H, Lee MH, Lim HJ, Kim HJ, Jeon Y, Kang HL, Lee MO. Deletion of exons 3 and 4 in the mouse Nr1d1 gene worsens high-fat diet-induced hepatic steatosis. Life Sci 2016; 166:13-19. [PMID: 27720799 DOI: 10.1016/j.lfs.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 12/21/2022]
Abstract
AIMS To elucidate the role of nuclear receptor subfamily 1, group D, member 1 (Nr1d1) in hepatic lipid metabolism and pathogenesis of nonalcoholic fatty liver diseases, Nr1d1 gene mutant mice, in which the DNA-binding domain (exons 3 and 4) was deleted (Nr1d1 Δex3/4), were challenged with a high-fat diet (HFD), and the gene expression patterns that responded to this alteration were profiled. MAIN METHODS The Nr1d1 Δex3/4 mice were fed an HFD for 12weeks. Liver tissues were examined by histology, and lipid droplets were detected by Oil-Red O staining. Serum biochemical analyses were performed to assess markers of liver injury. Microarray analysis was used to profile hepatic gene expression patterns. Functional annotation, upstream prediction, and gene coexpression prediction analyses were performed. KEY FINDINGS The Nr1d1 Δex3/4 mice showed enhanced hepatic steatosis after being challenged with an HFD, but not with a low-fat diet, indicating an interaction between diet and genotype for this phenotypic change. Gene expression profiling revealed that this interaction might involve neutrophil recruitment and the cyclic adenosine monophosphate metabolic pathway. A study of transcription factor binding site enrichment suggested that CCAAT/enhancer-binding protein alpha and hepatocyte nuclear factor 4 alpha were associated with this phenotypic change. SIGNIFICANCE Loss of DNA binding of Nr1d1 was associated with a deterioration in hepatic steatosis. The interaction between the Nr1d1 Δex3/4 genotype with an HFD might mediate these phenotypic changes, probably through a nonclassical transcriptional function of Nr1d1.
Collapse
Affiliation(s)
- Hyelin Na
- College of Pharmacy and Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Lee
- Research Institute, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do 10408, Republic of Korea
| | - Min-Ho Lee
- College of Pharmacy and Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Republic of Korea
| | - Han Jeong Lim
- Research Institute, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do 10408, Republic of Korea
| | - Hyeon-Ji Kim
- College of Pharmacy and Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon Jeon
- Research Institute, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do 10408, Republic of Korea
| | - Hae-Lim Kang
- College of Pharmacy and Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Republic of Korea
| | - Mi-Ock Lee
- College of Pharmacy and Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
130
|
Mohamadian S, Golalipour M, Yazdani Y, Farazmandfar T, Tabarraei A, Shahbazi M. Oscillation in expression of Adenylyl Cyclase isoforms: new insight to regulation of molecular clock. BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2016.1234756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
131
|
Zhou L, Ma SL, Yeung PKK, Wong YH, Tsim KWK, So KF, Lam LCW, Chung SK. Anxiety and depression with neurogenesis defects in exchange protein directly activated by cAMP 2-deficient mice are ameliorated by a selective serotonin reuptake inhibitor, Prozac. Transl Psychiatry 2016; 6:e881. [PMID: 27598965 PMCID: PMC5048194 DOI: 10.1038/tp.2016.129] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 01/29/2023] Open
Abstract
Intracellular cAMP and serotonin are important modulators of anxiety and depression. Fluoxetine, a selective serotonin reuptake inhibitor (SSRI) also known as Prozac, is widely used against depression, potentially by activating cAMP response element-binding protein (CREB) and increasing brain-derived neurotrophic factor (BDNF) through protein kinase A (PKA). However, the role of Epac1 and Epac2 (Rap guanine nucleotide exchange factors, RAPGEF3 and RAPGEF4, respectively) as potential downstream targets of SSRI/cAMP in mood regulations is not yet clear. Here, we investigated the phenotypes of Epac1 (Epac1(-/-)) or Epac2 (Epac2(-/-)) knockout mice by comparing them with their wild-type counterparts. Surprisingly, Epac2(-/-) mice exhibited a wide range of mood disorders, including anxiety and depression with learning and memory deficits in contextual and cued fear-conditioning tests without affecting Epac1 expression or PKA activity. Interestingly, rs17746510, one of the three single-nucleotide polymorphisms (SNPs) in RAPGEF4 associated with cognitive decline in Chinese Alzheimer's disease (AD) patients, was significantly correlated with apathy and mood disturbance, whereas no significant association was observed between RAPGEF3 SNPs and the risk of AD or neuropsychiatric inventory scores. To further determine the detailed role of Epac2 in SSRI/serotonin/cAMP-involved mood disorders, we treated Epac2(-/-) mice with a SSRI, Prozac. The alteration in open field behavior and impaired hippocampal cell proliferation in Epac2(-/-) mice were alleviated by Prozac. Taken together, Epac2 gene polymorphism is a putative risk factor for mood disorders in AD patients in part by affecting the hippocampal neurogenesis.
Collapse
Affiliation(s)
- L Zhou
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - S L Ma
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - P K K Yeung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Y H Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China,State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - K W K Tsim
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China,Division of Life Science and Center for Chinese Medicine, Hong Kong University of Science and Technology, Clear Water Bay, Clear Water Bay, Hong Kong SAR, China
| | - K F So
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,State Key Laboratory of Brain and Cognitive Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Department of Ophthalmology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - L C W Lam
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - S K Chung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Pokfulam, Hong Kong SAR, China,School of Biomedical Sciences, The University of Hong Kong, 1/F, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China. E-mail:
| |
Collapse
|
132
|
Ono D, Honma S, Honma KI. Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN. SCIENCE ADVANCES 2016; 2:e1600960. [PMID: 27626074 PMCID: PMC5017821 DOI: 10.1126/sciadv.1600960] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/09/2016] [Indexed: 06/01/2023]
Abstract
The suprachiasmatic nucleus (SCN) is the site of the master circadian clock in mammals. The SCN neural network plays a critical role in expressing the tissue-level circadian rhythm. Previously, we demonstrated postnatal changes in the SCN network in mice, in which the clock gene products CRYPTOCHROMES (CRYs) are involved. Here, we show that vasoactive intestinal polypeptide (VIP) signaling is essential for the tissue-level circadian PER2::LUC rhythm in the neonatal SCN of CRY double-deficient mice (Cry1,2 (-/-) ). VIP and arginine vasopressin (AVP) signaling showed redundancy in expressing the tissue-level circadian rhythm in the SCN. AVP synthesis was significantly attenuated in the Cry1,2 (-/-) SCN, which contributes to aperiodicity in the adult mice together with an attenuation of VIP signaling as a natural process of ontogeny. The SCN network consists of multiple clusters of cellular circadian rhythms that are differentially integrated by AVP and VIP signaling, depending on the postnatal period.
Collapse
Affiliation(s)
- Daisuke Ono
- Photonic Bioimaging Section, Research Center for Cooperative Projects, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Sato Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Ken-ichi Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
133
|
Kim M, Lee H, Hur JH, Choe J, Lim C. CRTC Potentiates Light-independent timeless Transcription to Sustain Circadian Rhythms in Drosophila. Sci Rep 2016; 6:32113. [PMID: 27577611 PMCID: PMC5005998 DOI: 10.1038/srep32113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/02/2016] [Indexed: 12/18/2022] Open
Abstract
Light is one of the strongest environmental time cues for entraining endogenous circadian rhythms. Emerging evidence indicates that CREB-regulated transcription co-activator 1 (CRTC1) is a key player in this pathway, stimulating light-induced Period1 (Per1) transcription in mammalian clocks. Here, we demonstrate a light-independent role of Drosophila CRTC in sustaining circadian behaviors. Genomic deletion of the crtc locus causes long but poor locomotor rhythms in constant darkness. Overexpression or RNA interference-mediated depletion of CRTC in circadian pacemaker neurons similarly impairs the free-running behavioral rhythms, implying that Drosophila clocks are sensitive to the dosage of CRTC. The crtc null mutation delays the overall phase of circadian gene expression yet it remarkably dampens light-independent oscillations of TIMELESS (TIM) proteins in the clock neurons. In fact, CRTC overexpression enhances CLOCK/CYCLE (CLK/CYC)-activated transcription from tim but not per promoter in clock-less S2 cells whereas CRTC depletion suppresses it. Consistently, TIM overexpression partially but significantly rescues the behavioral rhythms in crtc mutants. Taken together, our data suggest that CRTC is a novel co-activator for the CLK/CYC-activated tim transcription to coordinate molecular rhythms with circadian behaviors over a 24-hour time-scale. We thus propose that CRTC-dependent clock mechanisms have co-evolved with selective clock genes among different species.
Collapse
Affiliation(s)
- Minkyung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hoyeon Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jin-Hoe Hur
- UNIST-Olympus Biomed Imaging Center (UOBC), UNIST, Ulsan 44919, Republic of Korea
| | - Joonho Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
134
|
Rawashdeh O, Jilg A, Maronde E, Fahrenkrug J, Stehle JH. Period1gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK. J Neurochem 2016; 138:731-45. [DOI: 10.1111/jnc.13689] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Oliver Rawashdeh
- Institute of Cellular and Molecular Anatomy; Dr. Senckenbergische Anatomie; Goethe-University; Frankfurt Germany
- School of Biomedical Sciences; University of Queensland; St Lucia Qld Australia
| | - Antje Jilg
- Institute of Cellular and Molecular Anatomy; Dr. Senckenbergische Anatomie; Goethe-University; Frankfurt Germany
| | - Erik Maronde
- Institute of Cellular and Molecular Anatomy; Dr. Senckenbergische Anatomie; Goethe-University; Frankfurt Germany
| | - Jan Fahrenkrug
- Department of Clinical Chemistry; Bispebjerg Hospital, Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Jörg H. Stehle
- Institute of Cellular and Molecular Anatomy; Dr. Senckenbergische Anatomie; Goethe-University; Frankfurt Germany
| |
Collapse
|
135
|
Beesley S, Noguchi T, Welsh DK. Cardiomyocyte Circadian Oscillations Are Cell-Autonomous, Amplified by β-Adrenergic Signaling, and Synchronized in Cardiac Ventricle Tissue. PLoS One 2016; 11:e0159618. [PMID: 27459195 PMCID: PMC4961434 DOI: 10.1371/journal.pone.0159618] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/06/2016] [Indexed: 11/18/2022] Open
Abstract
Circadian clocks impact vital cardiac parameters such as blood pressure and heart rate, and adverse cardiac events such as myocardial infarction and sudden cardiac death. In mammals, the central circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, synchronizes cellular circadian clocks in the heart and many other tissues throughout the body. Cardiac ventricle explants maintain autonomous contractions and robust circadian oscillations of clock gene expression in culture. In the present study, we examined the relationship between intrinsic myocardial function and circadian rhythms in cultures from mouse heart. We cultured ventricular explants or dispersed cardiomyocytes from neonatal mice expressing a PER2::LUC bioluminescent reporter of circadian clock gene expression. We found that isoproterenol, a β-adrenoceptor agonist known to increase heart rate and contractility, also amplifies PER2 circadian rhythms in ventricular explants. We found robust, cell-autonomous PER2 circadian rhythms in dispersed cardiomyocytes. Single-cell rhythms were initially synchronized in ventricular explants but desynchronized in dispersed cells. In addition, we developed a method for long-term, simultaneous monitoring of clock gene expression, contraction rate, and basal intracellular Ca2+ level in cardiomyocytes using PER2::LUC in combination with GCaMP3, a genetically encoded fluorescent Ca2+ reporter. In contrast to robust PER2 circadian rhythms in cardiomyocytes, we detected no rhythms in contraction rate and only weak rhythms in basal Ca2+ level. In summary, we found that PER2 circadian rhythms of cardiomyocytes are cell-autonomous, amplified by adrenergic signaling, and synchronized by intercellular communication in ventricle explants, but we detected no robust circadian rhythms in contraction rate or basal Ca2+.
Collapse
Affiliation(s)
- Stephen Beesley
- Center for Circadian Biology, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Takako Noguchi
- Center for Circadian Biology, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - David K. Welsh
- Center for Circadian Biology, University of California San Diego, La Jolla, California, United States of America
- Department of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
| |
Collapse
|
136
|
Modulation of Circadian Gene Expression and Metabolic Compensation by the RCO-1 Corepressor of Neurospora crassa. Genetics 2016; 204:163-76. [PMID: 27449058 DOI: 10.1534/genetics.116.191064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/14/2016] [Indexed: 11/18/2022] Open
Abstract
Neurospora crassa is a model organism for the study of circadian clocks, molecular machineries that confer ∼24-hr rhythms to different processes at the cellular and organismal levels. The FREQUENCY (FRQ) protein is a central component of the Neurospora core clock, a transcription/translation negative feedback loop that controls genome-wide rhythmic gene expression. A genetic screen aimed at determining new components involved in the latter process identified regulation of conidiation 1 (rco-1), the ortholog of the Saccharomyces cerevisiae Tup1 corepressor, as affecting period length. By employing bioluminescent transcriptional and translational fusion reporters, we evaluated frq and FRQ expression levels in the rco-1 mutant background observing that, in contrast to prior reports, frq and FRQ expression are robustly rhythmic in the absence of RCO-1, although both amplitude and period length of the core clock are affected. Moreover, we detected a defect in metabolic compensation, such that high-glucose concentrations in the medium result in a significant decrease in period when RCO-1 is absent. Proteins physically interacting with RCO-1 were identified through co-immunoprecipitation and mass spectrometry; these include several components involved in chromatin remodeling and transcription, some of which, when absent, lead to a slight change in period. In the aggregate, these results indicate a dual role for RCO-1: although it is not essential for core-clock function, it regulates proper period and amplitude of core-clock dynamics and is also required for the rhythmic regulation of several clock-controlled genes.
Collapse
|
137
|
Akhmedov D, Rajendran K, Mendoza-Rodriguez MG, Berdeaux R. Knock-in Luciferase Reporter Mice for In Vivo Monitoring of CREB Activity. PLoS One 2016; 11:e0158274. [PMID: 27336479 PMCID: PMC4940169 DOI: 10.1371/journal.pone.0158274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/13/2016] [Indexed: 11/18/2022] Open
Abstract
The cAMP response element binding protein (CREB) is induced during fasting in the liver, where it stimulates transcription of rate-limiting gluconeogenic genes to maintain metabolic homeostasis. Adenoviral and transgenic CREB reporters have been used to monitor hepatic CREB activity non-invasively using bioluminescence reporter imaging. However, adenoviral vectors and randomly inserted transgenes have several limitations. To overcome disadvantages of the currently used strategies, we created a ROSA26 knock-in CREB reporter mouse line (ROSA26-CRE-luc). cAMP-inducing ligands stimulate the reporter in primary hepatocytes and myocytes from ROSA26-CRE-luc animals. In vivo, these animals exhibit little hepatic CREB activity in the ad libitum fed state but robust induction after fasting. Strikingly, CREB was markedly stimulated in liver, but not in skeletal muscle, after overnight voluntary wheel-running exercise, uncovering differential regulation of CREB in these tissues under catabolic states. The ROSA26-CRE-luc mouse line is a useful resource to study dynamics of CREB activity longitudinally in vivo and can be used as a source of primary cells for analysis of CREB regulatory pathways ex vivo.
Collapse
Affiliation(s)
- Dmitry Akhmedov
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Kavitha Rajendran
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Maria G. Mendoza-Rodriguez
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Cell and Regulatory Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
138
|
Abstract
Large conductance Ca(2+)- and voltage-activated K(+) (BK) channels are widely distributed in the postnatal central nervous system (CNS). BK channels play a pleiotropic role in regulating the activity of brain and spinal cord neural circuits by providing a negative feedback mechanism for local increases in intracellular Ca(2+) concentrations. In neurons, they regulate the timing and duration of K(+) influx such that they can either increase or decrease firing depending on the cellular context, and they can suppress neurotransmitter release from presynaptic terminals. In addition, BK channels located in astrocytes and arterial myocytes modulate cerebral blood flow. Not surprisingly, both loss and gain of BK channel function have been associated with CNS disorders such as epilepsy, ataxia, mental retardation, and chronic pain. On the other hand, the neuroprotective role played by BK channels in a number of pathological situations could potentially be leveraged to correct neurological dysfunction.
Collapse
|
139
|
Feeney KA, Hansen LL, Putker M, Olivares-Yañez C, Day J, Eades LJ, Larrondo LF, Hoyle NP, O'Neill JS, van Ooijen G. Daily magnesium fluxes regulate cellular timekeeping and energy balance. Nature 2016; 532:375-9. [PMID: 27074515 PMCID: PMC4886825 DOI: 10.1038/nature17407] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/08/2016] [Indexed: 12/15/2022]
Abstract
Circadian clocks are fundamental to the biology of most eukaryotes, coordinating behaviour and physiology to resonate with the environmental cycle of day and night through complex networks of clock-controlled genes. A fundamental knowledge gap exists, however, between circadian gene expression cycles and the biochemical mechanisms that ultimately facilitate circadian regulation of cell biology. Here we report circadian rhythms in the intracellular concentration of magnesium ions, [Mg(2+)]i, which act as a cell-autonomous timekeeping component to determine key clock properties both in a human cell line and in a unicellular alga that diverged from each other more than 1 billion years ago. Given the essential role of Mg(2+) as a cofactor for ATP, a functional consequence of [Mg(2+)]i oscillations is dynamic regulation of cellular energy expenditure over the daily cycle. Mechanistically, we find that these rhythms provide bilateral feedback linking rhythmic metabolism to clock-controlled gene expression. The global regulation of nucleotide triphosphate turnover by intracellular Mg(2+) availability has potential to impact upon many of the cell's more than 600 MgATP-dependent enzymes and every cellular system where MgNTP hydrolysis becomes rate limiting. Indeed, we find that circadian control of translation by mTOR is regulated through [Mg(2+)]i oscillations. It will now be important to identify which additional biological processes are subject to this form of regulation in tissues of multicellular organisms such as plants and humans, in the context of health and disease.
Collapse
Affiliation(s)
- Kevin A. Feeney
- MRC Laboratory for Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Louise L. Hansen
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Marrit Putker
- MRC Laboratory for Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Consuelo Olivares-Yañez
- Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Jason Day
- Department of Earth Sciences, University of Cambridge, Downing St, Cambridge CB2 3EQ, UK
| | - Lorna J. Eades
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Luis F. Larrondo
- Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Nathaniel P. Hoyle
- MRC Laboratory for Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - John S. O'Neill
- MRC Laboratory for Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
140
|
Pinealectomy abolishes circadian behavior and interferes with circadian clock gene oscillations in brain and liver but not retina in a migratory songbird. Physiol Behav 2016; 156:156-63. [DOI: 10.1016/j.physbeh.2016.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 11/20/2022]
|
141
|
Gpr176 is a Gz-linked orphan G-protein-coupled receptor that sets the pace of circadian behaviour. Nat Commun 2016; 7:10583. [PMID: 26882873 PMCID: PMC4757782 DOI: 10.1038/ncomms10583] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/30/2015] [Indexed: 01/26/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) participate in a broad range of physiological functions. A priority for fundamental and clinical research, therefore, is to decipher the function of over 140 remaining orphan GPCRs. The suprachiasmatic nucleus (SCN), the brain's circadian pacemaker, governs daily rhythms in behaviour and physiology. Here we launch the SCN orphan GPCR project to (i) search for murine orphan GPCRs with enriched expression in the SCN, (ii) generate mutant animals deficient in candidate GPCRs, and (iii) analyse the impact on circadian rhythms. We thereby identify Gpr176 as an SCN-enriched orphan GPCR that sets the pace of circadian behaviour. Gpr176 is expressed in a circadian manner by SCN neurons, and molecular characterization reveals that it represses cAMP signalling in an agonist-independent manner. Gpr176 acts independently of, and in parallel to, the Vipr2 GPCR, not through the canonical Gi, but via the unique G-protein subclass Gz. The suprachiasmatic nucleus (SCN) is the central regulator of circadian rhythms. Here the authors identify mouse Gpr176 as a pace modulator of this circadian clock and characterize its mode of action as coupling to Gz rather than Gi subunits.
Collapse
|
142
|
Ray S, Reddy AB. Cross-talk between circadian clocks, sleep-wake cycles, and metabolic networks: Dispelling the darkness. Bioessays 2016; 38:394-405. [PMID: 26866932 PMCID: PMC4817226 DOI: 10.1002/bies.201500056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Integration of knowledge concerning circadian rhythms, metabolic networks, and sleep‐wake cycles is imperative for unraveling the mysteries of biological cycles and their underlying mechanisms. During the last decade, enormous progress in circadian biology research has provided a plethora of new insights into the molecular architecture of circadian clocks. However, the recent identification of autonomous redox oscillations in cells has expanded our view of the clockwork beyond conventional transcription/translation feedback loop models, which have been dominant since the first circadian period mutants were identified in fruit fly. Consequently, non‐transcriptional timekeeping mechanisms have been proposed, and the antioxidant peroxiredoxin proteins have been identified as conserved markers for 24‐hour rhythms. Here, we review recent advances in our understanding of interdependencies amongst circadian rhythms, sleep homeostasis, redox cycles, and other cellular metabolic networks. We speculate that systems‐level investigations implementing integrated multi‐omics approaches could provide novel mechanistic insights into the connectivity between daily cycles and metabolic systems.
Collapse
Affiliation(s)
- Sandipan Ray
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institutes of Health Biomedical Research Centre, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Akhilesh B Reddy
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institutes of Health Biomedical Research Centre, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
143
|
Affiliation(s)
- Tracy A. Bedrosian
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Laura K. Fonken
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309
| | - Randy J. Nelson
- Department of Neuroscience and Behavioral Neuroendocrinology Group, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
144
|
Qin X, Mori T, Zhang Y, Johnson CH. PER2 Differentially Regulates Clock Phosphorylation versus Transcription by Reciprocal Switching of CK1ε Activity. J Biol Rhythms 2016; 30:206-16. [PMID: 25994100 DOI: 10.1177/0748730415582127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Casein kinase 1ε (CK1ε) performs key phosphorylation reactions in the circadian clock mechanism that determine period. We show that the central clock protein PERIOD2 (PER2) not only acts as a transcriptional repressor but also inhibits the autoinactivation of CK1ε, thereby promoting CK1ε activity. Moreover, PER2 reciprocally regulates CK1ε's ability to phosphorylate other substrates. On output pathway substrates (e.g., P53), PER2 inhibits the activity of CK1ε. However, in the case of central clock proteins (e.g., CRYPTOCHROME2), PER2 stimulates the CK1ε-mediated phosphorylation of CRY2. CK1ε activity is temperature compensated on the core clock substrate CRY2 but not on output substrates, for example, the physiological output protein substrate P53 and its nonphysiological correlate, bovine serum albumin (BSA). These results indicate heretofore unrecognized pivotal roles of PER2; it not only regulates the central transcription/translation feedback loop but also differentially controls kinase activity CK1ε in its phosphorylation of central clock (e.g., CRY2) versus output (e.g., P53) substrates.
Collapse
Affiliation(s)
- Ximing Qin
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Tetsuya Mori
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Yunfei Zhang
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | | |
Collapse
|
145
|
Zarrinpar A, Chaix A, Panda S. Daily Eating Patterns and Their Impact on Health and Disease. Trends Endocrinol Metab 2016; 27:69-83. [PMID: 26706567 PMCID: PMC5081399 DOI: 10.1016/j.tem.2015.11.007] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/10/2015] [Accepted: 11/13/2015] [Indexed: 12/26/2022]
Abstract
Cyclical expression of cell-autonomous circadian clock components and key metabolic regulators coordinate often discordant and distant cellular processes for efficient metabolism. Perturbation of these cycles, either by genetic manipulation, disruption of light/dark cycles, or, most relevant to the human population, via eating patterns, contributes to obesity and dysmetabolism. Time-restricted feeding (TRF), during which time of access to food is restricted to a few hours, without caloric restriction, supports robust metabolic cycles and protects against nutritional challenges that predispose to obesity and dysmetabolism. The mechanism by which TRF imparts its benefits is not fully understood but likely involves entrainment of metabolically active organs through gut signaling. Understanding the relationship of feeding pattern and metabolism could yield novel therapies for the obesity pandemic.
Collapse
Affiliation(s)
- Amir Zarrinpar
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Amandine Chaix
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
146
|
Zhou Z, Tanaka KF, Matsunaga S, Iseki M, Watanabe M, Matsuki N, Ikegaya Y, Koyama R. Photoactivated adenylyl cyclase (PAC) reveals novel mechanisms underlying cAMP-dependent axonal morphogenesis. Sci Rep 2016; 5:19679. [PMID: 26795422 PMCID: PMC4726437 DOI: 10.1038/srep19679] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/16/2015] [Indexed: 01/17/2023] Open
Abstract
Spatiotemporal regulation of axonal branching and elongation is essential in the development of refined neural circuits. cAMP is a key regulator of axonal growth; however, whether and how intracellular cAMP regulates axonal branching and elongation remain unclear, mainly because tools to spatiotemporally manipulate intracellular cAMP levels have been lacking. To overcome this issue, we utilized photoactivated adenylyl cyclase (PAC), which produces cAMP in response to blue-light exposure. In primary cultures of dentate granule cells transfected with PAC, short-term elevation of intracellular cAMP levels induced axonal branching but not elongation, whereas long-term cAMP elevation induced both axonal branching and elongation. The temporal dynamics of intracellular cAMP levels regulated axonal branching and elongation through the activation of protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac), respectively. Thus, using PAC, our study for the first time reveals that temporal cAMP dynamics could regulate axonal branching and elongation via different signaling pathways.
Collapse
Affiliation(s)
- Zhiwen Zhou
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku, Tokyo, Japan
| | - Shigeru Matsunaga
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi Hamakita-ku, Hamamatsu, Shizuoka, Japan
| | - Mineo Iseki
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba, Japan
| | - Masakatsu Watanabe
- The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishiku, Hamamatsu, Shizuoka, Japan
| | - Norio Matsuki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
147
|
Lee J, Lee S, Chung S, Park N, Son GH, An H, Jang J, Chang DJ, Suh YG, Kim K. Identification of a novel circadian clock modulator controlling BMAL1 expression through a ROR/REV-ERB-response element-dependent mechanism. Biochem Biophys Res Commun 2016; 469:580-6. [PMID: 26692477 DOI: 10.1016/j.bbrc.2015.12.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 12/08/2015] [Indexed: 11/20/2022]
Abstract
Circadian rhythms, biological oscillations with a period of about 24 h, are maintained by an innate genetically determined time-keeping system called the molecular circadian clockwork. Despite the physiological and clinical importance of the circadian clock, development of small molecule modulators targeting the core clock machinery has only recently been initiated. BMAL1, a core clock gene, is controlled by a ROR/REV-ERB-response element (RORE)-dependent mechanism, which plays an important role in stabilizing the period of the molecular circadian clock. Therefore, we aimed to identify a novel small molecule modulator that regulates Bmal1 gene expression in RORE-dependency, thereby influencing the molecular feedback loop of the circadian clock. For this purpose, we carried out a cell-based screen of more than 1000 drug-like compounds, using a luciferase reporter driven by the proximal region of the mouse Bmal1 promoter. One compound, designated KK-S6, repressed the RORE-dependent transcriptional activity of the mBmal1 promoter and reduced endogenous BMAL1 protein expression. More importantly, KK-S6 significantly altered the amplitude of circadian oscillations of Bmal1 and Per2 promoter activities in a dose-dependent manner, but barely affected the period length. KK-S6 effectively decreased mRNA expression of metabolic genes acting downstream of REV-ERBα, Pai-1 and Citrate synthase, that contain RORE cis-element in their promoter. KK-S6 likely acts in a RORE-dependent manner by reinforcing the REV-ERBα activity, though not by the same mechanism as known REV-ERB agonists. In conclusion, the present study demonstrates that KK-S6 functions as a novel modulator of the amplitude of molecular circadian rhythms by influencing RORE-mediated BMAL1 expression.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea; Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Seungbeom Lee
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Sooyoung Chung
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea; Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Noheon Park
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Gi Hoon Son
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Hongchan An
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jaebong Jang
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Dong-Jo Chang
- College of Pharmacy, Sunchon National University, Suncheon, South Korea
| | - Young-Ger Suh
- College of Pharmacy, Seoul National University, Seoul, South Korea.
| | - Kyungjin Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea; Department of Brain & Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea; Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea.
| |
Collapse
|
148
|
Putker M, O’Neill JS. Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal. Mol Cells 2016; 39:6-19. [PMID: 26810072 PMCID: PMC4749875 DOI: 10.14348/molcells.2016.2323] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 12/16/2022] Open
Abstract
Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redox-sensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian time-keeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological time-keeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.
Collapse
Affiliation(s)
- Marrit Putker
- Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH,
UK
| | - John Stuart O’Neill
- Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH,
UK
| |
Collapse
|
149
|
Gile J, Eckle T. ADORA2b Signaling in Cardioprotection. JOURNAL OF NATURE AND SCIENCE 2016; 2:e222. [PMID: 27747290 PMCID: PMC5061046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cardiovascular disease is the number one cause of death worldwide. A powerful strategy for cardioprotection would be to identify specific molecules or targets that mimic ischemic preconditioning (IP), where short non-lethal episodes of ischemia and reperfusion prior to myocardial infarction result in dramatic reduction of infarct sizes. Since 1960 researchers believed that adenosine has a strong cardio-protective potential. In fact, with the discovery of cardiac IP in 1986 by Murry et al., adenosine was the first identified molecule that was used in studying the underlying mechanism of IP. Today we know, based on genetic studies, that adenosine is crucial for IP mediated cardio-protection and that the adenosine receptors ADORA1, ADORA2a and ADORA2b play an important role. However, the ADORA2b receptor is the only receptor so far which has been found to play a role in human and murine myocardial ischemia. With recent advances using tissue specific mice for the ADORA2b, we were able to uncover cardiomyocytes and endothelia as the responsible cell type for cardiac IP. Using a wide search for ADORA2b downstream targets, our group identified the circadian rhythm protein, Period 2 (PER2), as a novel target for IP mediated cardioprotection. Mechanistic studies on PER2 mediated cardioprotection revealed an important role for PER2 in optimizing cardiac metabolism through activation of oxygen saving pathways. Thus, cardiomyocyte or endothelial expressed ADORA2b or the downstream circadian rhythm protein PER2 are key targets for cardiac IP and could represent novel strategies to treat or prevent MI.
Collapse
Affiliation(s)
| | - Tobias Eckle
- Corresponding Author. Tobias Eckle, M.D., Ph.D., Professor of Anesthesiology, Cardiology and Cell Biology. Department of Anesthesiology, University of Colorado Denver, 12700 E 19th Avenue, Mailstop B112, RC 2, Room 7121, Aurora, CO 80045, USA. Office: +1-303-724 -2932 or – 2947; Fax: +1-303-724-2852.
| |
Collapse
|
150
|
Lewis AE, Aesoy R, Bakke M. Role of EPAC in cAMP-Mediated Actions in Adrenocortical Cells. Front Endocrinol (Lausanne) 2016; 7:63. [PMID: 27379015 PMCID: PMC4904129 DOI: 10.3389/fendo.2016.00063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/30/2016] [Indexed: 12/31/2022] Open
Abstract
Adrenocorticotropic hormone regulates adrenal steroidogenesis mainly via the intracellular signaling molecule cAMP. The effects of cAMP are principally relayed by activating protein kinase A (PKA) and the more recently discovered exchange proteins directly activated by cAMP 1 and 2 (EPAC1 and EPAC2). While the intracellular roles of PKA have been extensively studied in steroidogenic tissues, those of EPACs are only emerging. EPAC1 and EPAC2 are encoded by the genes RAPGEF3 and RAPGEF4, respectively. Whereas EPAC1 is ubiquitously expressed, the expression of EPAC2 is more restricted, and typically found in endocrine tissues. Alternative promoter usage of RAPGEF4 gives rise to three different isoforms of EPAC2 that vary in their N-termini (EPAC2A, EPAC2B, and EPAC2C) and that exhibit distinct expression patterns. EPAC2A is expressed in the brain and pancreas, EPAC2B in steroidogenic cells of the adrenal gland and testis, and EPAC2C has until now only been found in the liver. In this review, we discuss current knowledge on EPAC expression and function with focus on the known roles of EPAC in adrenal gland physiology.
Collapse
Affiliation(s)
- Aurélia E. Lewis
- Department of Molecular Biology, University of Bergen, Bergen, Norway
- *Correspondence: Aurélia E. Lewis,
| | - Reidun Aesoy
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Marit Bakke
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|