101
|
|
102
|
Comprehensive profiling of disease-relevant copy number aberrations for advanced clinical diagnostics of pediatric acute lymphoblastic leukemia. Mod Pathol 2020; 33:812-824. [PMID: 31857684 DOI: 10.1038/s41379-019-0423-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/30/2022]
Abstract
Acute lymphoblastic leukemia is the most common pediatric cancer characterized by a heterogeneous genomic landscape with copy number aberrations occurring at various stages of pathogenesis, disease progression, and treatment resistance. In this study, disease-relevant copy number aberrations were profiled in bone marrow samples of 91 children with B- or T-cell precursor acute lymphoblastic leukemia using digital multiplex ligation-dependent probe amplification (digitalMLPATM). Whole chromosome gains and losses, subchromosomal copy number aberrations, as well as unbalanced alterations conferring intrachromosomal gene fusions were simultaneously identified with results available within 36 hours. Aberrations were observed in 96% of diagnostic patient samples, and increased numbers of copy number aberrations were detected at the time of relapse as compared with diagnosis. Comparative scrutiny of 24 matching diagnostic and relapse samples from 11 patients revealed three different patterns of clonal relationships with (i) one patient displaying identical copy number aberration profiles at diagnosis and relapse, (ii) six patients showing clonal evolution with all lesions detected at diagnosis being present at relapse, and (iii) four patients displaying conserved as well as lost or gained copy number aberrations at the time of relapse, suggestive of the presence of a common ancestral cell compartment giving rise to clinically manifest leukemia at different time points during the disease course. A newly introduced risk classifier combining cytogenetic data with digitalMLPATM-based copy number aberration profiles allowed for the determination of four genetic subgroups of B-cell precursor acute lymphoblastic leukemia with distinct event-free survival rates. DigitalMLPATM provides fast, robust, and highly optimized copy number aberration profiling for the genomic characterization of acute lymphoblastic leukemia samples, facilitates the decipherment of the clonal origin of relapse and provides highly relevant information for clinical prognosis assessment.
Collapse
|
103
|
Streich L, Sukhanova M, Lu X, Chen YH, Venkataraman G, Mathews S, Zhang S, Kelemen K, Segal J, Gao J, Gordon L, Chen Q, Behdad A. Aggressive morphologic variants of mantle cell lymphoma characterized with high genomic instability showing frequent chromothripsis, CDKN2A/B loss, and TP53 mutations: A multi-institutional study. Genes Chromosomes Cancer 2020; 59:484-494. [PMID: 32277542 DOI: 10.1002/gcc.22849] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 11/09/2022] Open
Abstract
Aggressive morphologic variants of mantle cell lymphoma (MCL), including blastoid and pleomorphic (B/P-MCL), are rare and associated with poor clinical outcomes. The genomic landscape of these variants remains incompletely explored. In this multi-institutional study, we describe recurrent mutations and novel genomic copy number alterations (CNAs) in B/P-MCL, using next generation sequencing and SNP-array. Chromothripsis, a recently described phenomenon of massive chromosomal rearrangements, was identified in eight of 13 (62%) B/P MCL cases, and a high degree of genomic complexity with frequent copy number gains and losses was also seen. In contrast, a comparative cohort of nine cases of conventional MCL (C-MCL) showed no chromothripsis and less complexity. Twelve of 13 (92%) B/P-MCL cases showed loss of CDKN2A/B (6 biallelic and 6 monoallelic losses); while only one C-MCL showed monoallelic CDKN2A/B loss. In B/P-MCL, TP53 was the most commonly mutated gene, with mutations present in eight cases (62%), six of which showed concurrent loss of chromosome 17p. Of the eight cases with chromothripsis, six (85%) harbored TP53 mutations. Other recurrent mutations in B/P-MCL included ATM (7, 53%), CCND1 (5, 38%), NOTCH1 (2, 18%), NOTCH2, and BIRC3 (each in 3, 23%). Here, we describe high genomic instability associated with chromothripsis and a high frequency of CDKN2A/B and TP53 alterations in the aggressive variants of MCL. The nonrandom chromothripsis events observed in B/P-MCL may be an indicator of clinically aggressive MCL. In addition, frequent CDKN2A deletion and high genomic instability may provide potential targets for alternative treatment.
Collapse
Affiliation(s)
- Lukas Streich
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Madina Sukhanova
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xinyan Lu
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yi-Hua Chen
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Girish Venkataraman
- Department of Pathology, University of Chicago Hospitals, Chicago, Illinois, USA
| | - Stephanie Mathews
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Shanxiang Zhang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Bloomington, Indiana, USA
| | | | - Jeremy Segal
- Department of Pathology, University of Chicago Hospitals, Chicago, Illinois, USA
| | - Juehua Gao
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Leo Gordon
- Division of Hematology-Oncology, Department of Medicine, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Qing Chen
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Amir Behdad
- Department of Pathology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Division of Hematology-Oncology, Department of Medicine, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
104
|
Abstract
Acute lymphoblastic leukaemia develops in both children and adults, with a peak incidence between 1 year and 4 years. Most acute lymphoblastic leukaemia arises in healthy individuals, and predisposing factors such as inherited genetic susceptibility or environmental exposure have been identified in only a few patients. It is characterised by chromosomal abnormalities and genetic alterations involved in differentiation and proliferation of lymphoid precursor cells. Along with response to treatment, these abnormalities are important prognostic factors. Disease-risk stratification and the development of intensified chemotherapy protocols substantially improves the outcome of patients with acute lymphoblastic leukaemia, particularly in children (1-14 years), but also in adolescents and young adults (15-39 years). However, the outcome of older adults (≥40 years) and patients with relapsed or refractory acute lymphoblastic leukaemia remains poor. New immunotherapeutic strategies, such as monoclonal antibodies and chimeric antigen receptor (CAR) T cells, are being developed and over the next few years could change the options for acute lymphoblastic leukaemia treatment.
Collapse
Affiliation(s)
- Florent Malard
- Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, AP-HP, Sorbonne University, Paris, France; Sorbonne University, INSERM, Saint-Antoine Research Centre, Paris, France
| | - Mohamad Mohty
- Department of Clinical Hematology and Cellular Therapy, Saint-Antoine Hospital, AP-HP, Sorbonne University, Paris, France; Sorbonne University, INSERM, Saint-Antoine Research Centre, Paris, France.
| |
Collapse
|
105
|
Biancolella M, Testa B, Baghernajad Salehi L, D'Apice MR, Novelli G. Genetics and Genomics of Breast Cancer: update and translational perspectives. Semin Cancer Biol 2020; 72:27-35. [PMID: 32259642 DOI: 10.1016/j.semcancer.2020.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
In the recent years the rapid scientific innovation in the evaluation of the individual's genome have allowed the identification of variants associated with the onset, treatment and prognosis of various pathologies including cancer, and with a potential impact in the assessment of therapy responses. Despite the analysis and interpretation of genomic information is considered incomplete, in many cases the identification of specific genomic profile has allowed the stratification of subgroups of patients characterized by a better response to drug therapies. Individual genome analysis has changed profoundly the diagnostic and therapeutic approach of breast cancer in the last 15 years by identifying selective molecular lesions that drive the development of neoplasms, showing that each tumor has its own genomic signature, with some specific features and some features common to several sub-types. Several personalized therapies have been (and still are being) developed showing a remarkable efficacy in the treatment of breast cancer.
Collapse
Affiliation(s)
| | - Barbara Testa
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | | | | | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy; Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
106
|
Dobson SM, García-Prat L, Vanner RJ, Wintersinger J, Waanders E, Gu Z, McLeod J, Gan OI, Grandal I, Payne-Turner D, Edmonson MN, Ma X, Fan Y, Voisin V, Chan-Seng-Yue M, Xie SZ, Hosseini M, Abelson S, Gupta P, Rusch M, Shao Y, Olsen SR, Neale G, Chan SM, Bader G, Easton J, Guidos CJ, Danska JS, Zhang J, Minden MD, Morris Q, Mullighan CG, Dick JE. Relapse-Fated Latent Diagnosis Subclones in Acute B Lineage Leukemia Are Drug Tolerant and Possess Distinct Metabolic Programs. Cancer Discov 2020; 10:568-587. [PMID: 32086311 PMCID: PMC7122013 DOI: 10.1158/2159-8290.cd-19-1059] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/21/2019] [Accepted: 02/18/2020] [Indexed: 12/26/2022]
Abstract
Disease recurrence causes significant mortality in B-progenitor acute lymphoblastic leukemia (B-ALL). Genomic analysis of matched diagnosis and relapse samples shows relapse often arising from minor diagnosis subclones. However, why therapy eradicates some subclones while others survive and progress to relapse remains obscure. Elucidation of mechanisms underlying these differing fates requires functional analysis of isolated subclones. Here, large-scale limiting dilution xenografting of diagnosis and relapse samples, combined with targeted sequencing, identified and isolated minor diagnosis subclones that initiate an evolutionary trajectory toward relapse [termed diagnosis Relapse Initiating clones (dRI)]. Compared with other diagnosis subclones, dRIs were drug-tolerant with distinct engraftment and metabolic properties. Transcriptionally, dRIs displayed enrichment for chromatin remodeling, mitochondrial metabolism, proteostasis programs, and an increase in stemness pathways. The isolation and characterization of dRI subclones reveals new avenues for eradicating dRI cells by targeting their distinct metabolic and transcriptional pathways before further evolution renders them fully therapy-resistant. SIGNIFICANCE: Isolation and characterization of subclones from diagnosis samples of patients with B-ALL who relapsed showed that relapse-fated subclones had increased drug tolerance and distinct metabolic and survival transcriptional programs compared with other diagnosis subclones. This study provides strategies to identify and target clinically relevant subclones before further evolution toward relapse.
Collapse
Affiliation(s)
- Stephanie M Dobson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Laura García-Prat
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Robert J Vanner
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Esmé Waanders
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zhaohui Gu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jessica McLeod
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Olga I Gan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ildiko Grandal
- Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Debbie Payne-Turner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael N Edmonson
- Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiaotu Ma
- Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yiping Fan
- Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Veronique Voisin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Michelle Chan-Seng-Yue
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Stephanie Z Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mohsen Hosseini
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sagi Abelson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Pankaj Gupta
- Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael Rusch
- Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ying Shao
- Pediatric Cancer Genome Project Laboratory, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott R Olsen
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Steven M Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Gary Bader
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - John Easton
- Pediatric Cancer Genome Project Laboratory, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Cynthia J Guidos
- Developmental & Stem Cell Biology Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jayne S Danska
- Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Developmental & Stem Cell Biology Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jinghui Zhang
- Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Quaid Morris
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto. Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
- Vector Institute, Toronto, Canada
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - John E Dick
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
107
|
Evidence-based review of genomic aberrations in B-lymphoblastic leukemia/lymphoma: Report from the cancer genomics consortium working group for lymphoblastic leukemia. Cancer Genet 2020; 243:52-72. [PMID: 32302940 DOI: 10.1016/j.cancergen.2020.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
Clinical management and risk stratification of B-lymphoblastic leukemia/ lymphoma (B-ALL/LBL) depend largely on identification of chromosomal abnormalities obtained using conventional cytogenetics and Fluorescence In Situ Hybridization (FISH) testing. In the last few decades, testing algorithms have been implemented to support an optimal risk-oriented therapy, leading to a large improvement in overall survival. In addition, large scale genomic studies have identified multiple aberrations of prognostic significance that are not routinely tested by existing modalities. However, as chromosomal microarray analysis (CMA) and next-generation sequencing (NGS) technologies are increasingly used in clinical management of hematologic malignancies, these abnormalities may be more readily detected. In this article, we have compiled a comprehensive, evidence-based review of the current B-ALL literature, focusing on known and published subtypes described to date. More specifically, we describe the role of various testing modalities in the diagnosis, prognosis, and therapeutic relevance. In addition, we propose a testing algorithm aimed at assisting laboratories in the most effective detection of the underlying genomic abnormalities.
Collapse
|
108
|
Brown MA, Edwards MA, Alshiraihi I, Geng H, Dekker JD, Tucker HO. The lysine methyltransferase SMYD2 is required for normal lymphocyte development and survival of hematopoietic leukemias. Genes Immun 2020; 21:119-130. [PMID: 32115575 PMCID: PMC7183909 DOI: 10.1038/s41435-020-0094-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
Abstract
The 5 membered SET and MYND Domain-containing lysine methyltransferase (SMYD) family plays pivotal roles in development and proliferation. Initially characterized within the cardiovascular system, one such member, SMYD2, has been implicated as an oncogene in leukemias deriving from flawed hematopoietic stem cell (HSC) differentiation. We show here that conditional SMYD2 loss disrupts hematopoiesis at and downstream of the HSC via both apoptotic loss and transcriptional deregulation of HSC proliferation and disruption of Wnt-β-Catenin signaling. Yet previously documented SMYD2 cell cycle targets were unscathed. Turning our analysis to human leukemias, we observed that SMYD2 is highly expressed in CML, MLLr-B-ALL, AML, T-ALL and B-ALL leukemias and its levels in B-ALL correlate with poor survival. SMYD2 knockdown results in apoptotic death and loss of anchorage-independent transformation of each of these hematopoietic leukemias. These data provide an underlying mechanism by which SMYD2 acts during normal hematopoiesis and as a proto-oncogene in leukemia.
Collapse
Affiliation(s)
- Mark A Brown
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Melissa A Edwards
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, 80523, USA.,Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| | - Ilham Alshiraihi
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Joseph D Dekker
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA
| | - Haley O Tucker
- Department of Molecular Biosciences, The University of Texas at Austin, 1 University Station A5000, Austin, TX, 78712, USA.
| |
Collapse
|
109
|
Zhang HH, Wang HS, Qian XW, Zhu XH, Miao H, Yu Y, Meng JH, Le J, Jiang JY, Cao P, Jiang WJ, Wang P, Fu Y, Li J, Qian MX, Zhai XW. Ras pathway mutation feature in the same individuals at diagnosis and relapse of childhood acute lymphoblastic leukemia. Transl Pediatr 2020; 9:4-12. [PMID: 32154130 PMCID: PMC7036641 DOI: 10.21037/tp.2020.01.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is the most common malignancy in children, while relapse and refractory ALL remains a leading cause of death in children. However, paired ALL samples of initial diagnosis and relapse subjected to next-generation sequencing (NGS) could construct clonal lineage changes, and help to explore the key issues in the evolutionary process of tumor clones. Therefore, we aim to analyze gene alterations during the initial diagnosis and relapse of ALL patients and to explore the underlying mechanism. METHODS Targeted exome sequencing technology was used to detect molecular characteristic of initial diagnosis and relapse of ALL in 12 pediatric patients. Clinical features, treatment response, prognostic factors and genetic features were analyzed. RESULTS In our 12 paired samples, 75% of pre-B-cell acute lymphoblastic leukemia (B-ALL) patients had alterations in the Ras pathway (NRAS, KRAS, NF1, and EPOR), and Ras mutation are very common in patients with ALL relapse. TP53 mutations mainly existed in the primary clones and occurred at the initial diagnosis and relapse of ALL. Relapse-associated genes such as NT5C2 and CREBBP were observed in patients with ALL relapse; however, all patients included in this study had gene abnormalities in the Ras pathway, and NT5C2 and CREBBP genes may collaboratively promote ALL relapse. CONCLUSIONS Among the 12 ALL patients, Ras pathway mutations are common in ALL relapse and may be associated with other recurrence-related genes alterations. The study with paired samples could improve the understanding of ALL relapse.
Collapse
Affiliation(s)
- Hong-Hong Zhang
- Department of Hematology, Children's hospital of Fudan University, Shanghai 201102, China
| | - Hong-Sheng Wang
- Department of Hematology, Children's hospital of Fudan University, Shanghai 201102, China
| | - Xiao-Wen Qian
- Department of Hematology, Children's hospital of Fudan University, Shanghai 201102, China
| | - Xiao-Hua Zhu
- Department of Hematology, Children's hospital of Fudan University, Shanghai 201102, China
| | - Hui Miao
- Department of Hematology, Children's hospital of Fudan University, Shanghai 201102, China
| | - Yi Yu
- Department of Hematology, Children's hospital of Fudan University, Shanghai 201102, China
| | - Jian-Hua Meng
- Department of Hematology, Children's hospital of Fudan University, Shanghai 201102, China
| | - Jun Le
- Department of Hematology, Children's hospital of Fudan University, Shanghai 201102, China
| | - Jun-Ye Jiang
- Department of Hematology, Children's hospital of Fudan University, Shanghai 201102, China
| | - Ping Cao
- Department of Hematology, Children's hospital of Fudan University, Shanghai 201102, China
| | - Wen-Jing Jiang
- Department of Hematology, Children's hospital of Fudan University, Shanghai 201102, China
| | - Ping Wang
- Department of Hematology, Children's hospital of Fudan University, Shanghai 201102, China
| | - Yang Fu
- Department of Hematology, Children's hospital of Fudan University, Shanghai 201102, China
| | - Jun Li
- Department of Hematology, Children's hospital of Fudan University, Shanghai 201102, China
| | - Mao-Xiang Qian
- Institute of Pediatrics, Children's hospital of Fudan University, Shanghai 201102, China
| | - Xiao-Wen Zhai
- Department of Hematology, Children's hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
110
|
Teng Z, Xu S, Lei Q. Tanshinone IIA enhances the inhibitory effect of imatinib on proliferation and motility of acute leukemia cell line TIB‑152 in vivo and in vitro by inhibiting the PI3K/AKT/mTOR signaling pathway. Oncol Rep 2020; 43:503-515. [PMID: 31894340 PMCID: PMC6967082 DOI: 10.3892/or.2019.7453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a malignant hematological disease. Tanshinone IIA (Tan IIA) has antitumor activity in vitro and in vivo. The aim of the present study was to investigate the effects of Tan IIA in combination with imatinib (IM) on the proliferation, apoptosis, migration and invasion of acute T lymphocytic leukemia TIB‑152 cells in vivo and in vitro, and analyze the potential underlying mechanism. Tan IIA and IM, alone and in combination, significantly inhibited proliferation, migration and invasion of TIB‑152 cells, and promoted apoptosis; the effect of co‑treatment with Tan IIA plus IM was enhanced. IGF‑1 promoted the proliferation, migration and invasion of TIB‑152 cells and inhibited apoptosis, while Tan IIA treatment significantly reversed these effects. In vivo experiments demonstrated that treatment with Tan IIA and IM, alone or in combination, significantly inhibited tumor growth in TIB‑152 xenograft mice; the growth inhibition of Tan IIA plus IM was the strongest observed. Western blot analysis revealed that the combination of Tan IIA and IM resulted in significantly lower levels of p‑PI3K, p‑AKT and p‑mTOR in cells and tissues compared with the IM and Tan alone treatment groups. In addition, the combination of Tan IIA and IM significantly decreased the levels of Ki67, cleaved caspase‑3, VEGF and MMP‑9 in cells and tissues, and the level of caspase‑3 was significantly increased. Taken together, the results revealed that Tan IIA enhanced the inhibitory effect of imatinib on TIB‑152 cell proliferation, migration and invasion, and induced apoptosis, which may be associated with inhibition of the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Zhi Teng
- Department of Hematology, 215 Hospital of Shanxi Nuclear Industry, Xianyang, Shanxi 712000, P.R. China
| | - Shijuan Xu
- Department of Hematology, 215 Hospital of Shanxi Nuclear Industry, Xianyang, Shanxi 712000, P.R. China
| | - Qin Lei
- Department of Hematology, 215 Hospital of Shanxi Nuclear Industry, Xianyang, Shanxi 712000, P.R. China
| |
Collapse
|
111
|
Upfront Treatment Influences the Composition of Genetic Alterations in Relapsed Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. Hemasphere 2020; 4:e318. [PMID: 32072138 PMCID: PMC7000475 DOI: 10.1097/hs9.0000000000000318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/29/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022] Open
Abstract
Supplemental Digital Content is available in the text Genomic alterations in relapsed B-cell precursor acute lymphoblastic leukemia (BCP-ALL) may provide insight into the role of specific genomic events in relapse development. Along this line, comparisons between the spectrum of alterations in relapses that arise in different upfront treatment protocols may provide valuable information on the association between the tumor genome, protocol components and outcome. Here, we performed a comprehensive characterization of relapsed BCP-ALL cases that developed in the context of 3 completed Dutch upfront studies, ALL8, ALL9, and ALL10. In total, 123 pediatric BCP-ALL relapses and 77 paired samples from primary diagnosis were analyzed for alterations in 22 recurrently affected genes. We found pronounced differences in relapse alterations between the 3 studies. Specifically, CREBBP mutations were observed predominantly in relapses after treatment with ALL8 and ALL10 which, in the latter group, were all detected in medium risk-treated patients. IKZF1 alterations were enriched 2.2-fold (p = 0.01) and 2.9-fold (p < 0.001) in ALL8 and ALL9 relapses compared to diagnosis, respectively, whereas no significant enrichment was found for relapses that were observed after treatment with ALL10. Furthermore, IKZF1 deletions were more frequently preserved from a major clone at diagnosis in relapses after ALL9 compared to relapses after ALL8 and ALL10 (p = 0.03). These data are in line with previous studies showing that the prognostic value of IKZF1 deletions differs between upfront protocols and is particularly strong in the ALL9 regimen. In conclusion, our data reveal a correlation between upfront treatment and the genetic composition of relapsed BCP-ALL.
Collapse
|
112
|
Single-cell analysis based dissection of clonality in myelofibrosis. Nat Commun 2020; 11:73. [PMID: 31911629 PMCID: PMC6946829 DOI: 10.1038/s41467-019-13892-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/28/2019] [Indexed: 12/29/2022] Open
Abstract
Cancer development is an evolutionary genomic process with parallels to Darwinian selection. It requires acquisition of multiple somatic mutations that collectively cause a malignant phenotype and continuous clonal evolution is often linked to tumor progression. Here, we show the clonal evolution structure in 15 myelofibrosis (MF) patients while receiving treatment with JAK inhibitors (mean follow-up 3.9 years). Whole-exome sequencing at multiple time points reveal acquisition of somatic mutations and copy number aberrations over time. While JAK inhibition therapy does not seem to create a clear evolutionary bottleneck, we observe a more complex clonal architecture over time, and appearance of unrelated clones. Disease progression associates with increased genetic heterogeneity and gain of RAS/RTK pathway mutations. Clonal diversity results in clone-specific expansion within different myeloid cell lineages. Single-cell genotyping of circulating CD34 + progenitor cells allows the reconstruction of MF phylogeny demonstrating loss of heterozygosity and parallel evolution as recurrent events. Myelofibrosis is a myeloproliferative neoplasm. Here, the authors show the clonal evolution of myelofibrosis during JAK inhibitor therapy, revealing how the treatment results in an increase in clonal complexity and a gain of RAS pathway mutations.
Collapse
|
113
|
Bloom M, Maciaszek JL, Clark ME, Pui CH, Nichols KE. Recent advances in genetic predisposition to pediatric acute lymphoblastic leukemia. Expert Rev Hematol 2020; 13:55-70. [PMID: 31657974 PMCID: PMC10576863 DOI: 10.1080/17474086.2020.1685866] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
Abstract
Introduction: Historically, the majority of childhood cancers, including acute lymphoblastic leukemia (ALL), were not thought to have a hereditary basis. However, recent germline genomic studies have revealed that at least 5 - 10% of children with cancer (and approximately 3 - 4% of children with ALL) develop the disease due to an underlying genetic predisposition.Areas covered: This review discusses several recently identified ALL predisposing conditions and provides updates on other more well-established syndromes. It also covers topics related to the evaluation and management of children and family members at increased ALL risk.Expert opinion: Germline predisposition is gaining recognition as an important risk factor underlying the development of pediatric ALL. The challenge now lies in how best to capitalize on germline genetic information to improve ALL diagnosis, treatment, and perhaps even prevention.
Collapse
Affiliation(s)
- Mackenzie Bloom
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jamie L. Maciaszek
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mary Egan Clark
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
114
|
The effect of co-occurring lesions on leukaemogenesis and drug response in T-ALL and ETP-ALL. Br J Cancer 2019; 122:455-464. [PMID: 31792348 PMCID: PMC7028932 DOI: 10.1038/s41416-019-0647-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/14/2019] [Accepted: 10/30/2019] [Indexed: 01/27/2023] Open
Abstract
Despite advances in the management of acute lymphoblastic leukaemia (ALL), current regimens fail to significantly transform outcomes for patients with high-risk subtypes. Advances in genomic analyses have identified novel lesions including mutations in genes that encode chromatin modifiers and those that influence cytokine and kinase signalling, rendering many of these alterations potentially targetable by tyrosine kinase and epigenetic inhibitors currently in clinical use. Although specific genomic lesions, gene expression patterns, and immunophenotypic profiles have been associated with specific clinical outcomes in some cancers, the application of precision medicine approaches based on these data has been slow. This approach is complicated by the reality that patients often harbour multiple mutations, and in many cases, the precise functional significance and interaction of these mutations in driving leukaemia and drug responsiveness/resistance remains unknown. Given that signalling pathways driving leukaemic pathogenesis could plausibly result from the co-existence of specific lesions and the resultant perturbation of protein interactions, the use of combined therapeutics that target multiple aberrant pathways, according to an individual’s mutational profile, might improve outcomes and lower a patient’s risk of relapse. Here we outline the genomic alterations that occur in T cell ALL (T-ALL) and early T cell precursor (ETP)-ALL and review studies highlighting the possible effects of co-occurring lesions on leukaemogenesis and drug response.
Collapse
|
115
|
Liu Q, Cai J, Zheng Y, Tan Y, Wang Y, Zhang Z, Zheng C, Zhao Y, Liu C, An Y, Jiang C, Shi L, Kang C, Liu Y. NanoRNP Overcomes Tumor Heterogeneity in Cancer Treatment. NANO LETTERS 2019; 19:7662-7672. [PMID: 31593471 DOI: 10.1021/acs.nanolett.9b02501] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tumor heterogeneity has been one of the most important factors leading to the failure of conventional cancer therapies due to the accumulation of genetically distinct tumor-cell subpopulations during the tumor development process. Due to the diversity of genetic mutations during tumor growth, combining the use of multiple drugs has only achieved limited success in combating heterogeneous tumors. Herein, we report a novel antitumor strategy that effectively addresses tumor heterogeneity by using a CRISPR/Cas9-based nanoRNP carrying a combination of sgRNAs. Such nanoRNP is synthesized from Cas9 ribonucleoprotein, any combinations of required sgRNAs, and a rationally designed responsive polymer that endows nanoRNP with high circulating stability, enhanced tumor accumulation, and the efficient gene editing in targeted tumor cells eventually. By carrying a combination of sgRNAs that targets STAT3 and RUNX1, the nanoRNP exhibited efficient gene expression disruptions on a heterogeneous tumor model with two subsets of cells whose proliferations were sensitive to the reduced expression of STAT3 and RUNX1, respectively, leading to the effective growth inhibition of the heterogeneous tumor. Considering the close relationship between tumor heterogeneity and cancer progression, resistance to therapy, and recurrences, nanoRNP provides a feasible strategy to overcome tumor heterogeneity in the development of more advanced cancer therapy against malignant tumors.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Jinquan Cai
- Department of Neurosurgery , The Second Affiliated Hospital of Harbin Medical University, Neuroscience Institute, Heilongjiang Academy of Medical Sciences , Harbin 150086 , China
| | - Yadan Zheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Yanli Tan
- Department of Pathology , Affiliated Hospital of Hebei University , Baoding 071000 , China
| | - Yunfei Wang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery , Tianjin Medical University General Hospital , Key Laboratory of Neurotrauma, Variation, and Regeneration Ministry of Education and Tianjin Municipal Government, Tianjin 300052 , China
| | - Zhanzhan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Chunxiong Zheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Yu Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Chaoyong Liu
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery , Tianjin Medical University General Hospital , Key Laboratory of Neurotrauma, Variation, and Regeneration Ministry of Education and Tianjin Municipal Government, Tianjin 300052 , China
| | - Yingli An
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Chuanlu Jiang
- Department of Neurosurgery , The Second Affiliated Hospital of Harbin Medical University, Neuroscience Institute, Heilongjiang Academy of Medical Sciences , Harbin 150086 , China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Chunsheng Kang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery , Tianjin Medical University General Hospital , Key Laboratory of Neurotrauma, Variation, and Regeneration Ministry of Education and Tianjin Municipal Government, Tianjin 300052 , China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry , Nankai University , Tianjin 300071 , China
| |
Collapse
|
116
|
Meier S, Korkuć P, Arends D, Brockmann GA. DNA Sequence Variants and Protein Haplotypes of Casein Genes in German Black Pied Cattle (DSN). Front Genet 2019; 10:1129. [PMID: 31781175 PMCID: PMC6857469 DOI: 10.3389/fgene.2019.01129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/17/2019] [Indexed: 11/13/2022] Open
Abstract
Casein proteins were repeatedly examined for protein polymorphisms and frequencies in diverse cattle breeds. The occurrence of casein variants in Holstein Friesian, the leading dairy breed worldwide, is well known. The frequencies of different casein variants in Holstein are likely affected by selection for high milk yield. Compared to Holstein, only little is known about casein variants and their frequencies in German Black Pied cattle (“Deutsches Schwarzbuntes Niederungsrind,” DSN). The DSN population was a main genetic contributor to the current high-yielding Holstein population. The goal of this study was to investigate casein (protein) variants and casein haplotypes in DSN based on the DNA sequence level and to compare these with data from Holstein and other breeds. In the investigated DSN population, we found no variation in the alpha-casein genes CSN1S1 and CSN1S2 and detected only the CSN1S1*B and CSN1S2*A protein variants. For CSN2 and CSN3 genes, non-synonymous single nucleotide polymorphisms leading to three different β and κ protein variants were found, respectively. For β-casein protein variants A1, A2, and I were detected, with CSN2*A1 (82.7%) showing the highest frequency. For κ-casein protein variants A, B, and E were detected in DSN, with the highest frequency of CSN3*A (83.3%). Accordingly, the casein protein haplotype CSN1S1*B-CSN2*A1-CSN1S2*A-CSN3*A (order of genes on BTA6) is the most frequent haplotype in DSN cattle.
Collapse
Affiliation(s)
- Saskia Meier
- Faculty of Life Sciences, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Animal Breeding Biology and Molecular Genetics, Humboldt University of Berlin, Berlin, Germany
| | - Paula Korkuć
- Faculty of Life Sciences, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Animal Breeding Biology and Molecular Genetics, Humboldt University of Berlin, Berlin, Germany
| | - Danny Arends
- Faculty of Life Sciences, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Animal Breeding Biology and Molecular Genetics, Humboldt University of Berlin, Berlin, Germany
| | - Gudrun A Brockmann
- Faculty of Life Sciences, Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Animal Breeding Biology and Molecular Genetics, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
117
|
Pediatric ALL relapses after allo-SCT show high individuality, clonal dynamics, selective pressure, and druggable targets. Blood Adv 2019; 3:3143-3156. [PMID: 31648313 DOI: 10.1182/bloodadvances.2019000051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022] Open
Abstract
Survival of patients with pediatric acute lymphoblastic leukemia (ALL) after allogeneic hematopoietic stem cell transplantation (allo-SCT) is mainly compromised by leukemia relapse, carrying dismal prognosis. As novel individualized therapeutic approaches are urgently needed, we performed whole-exome sequencing of leukemic blasts of 10 children with post-allo-SCT relapses with the aim of thoroughly characterizing the mutational landscape and identifying druggable mutations. We found that post-allo-SCT ALL relapses display highly diverse and mostly patient-individual genetic lesions. Moreover, mutational cluster analysis showed substantial clonal dynamics during leukemia progression from initial diagnosis to relapse after allo-SCT. Only very few alterations stayed constant over time. This dynamic clonality was exemplified by the detection of thiopurine resistance-mediating mutations in the nucleotidase NT5C2 in 3 patients' first relapses, which disappeared in the post-allo-SCT relapses on relief of selective pressure of maintenance chemotherapy. Moreover, we identified TP53 mutations in 4 of 10 patients after allo-SCT, reflecting acquired chemoresistance associated with selective pressure of prior antineoplastic treatment. Finally, in 9 of 10 children's post-allo-SCT relapse, we found alterations in genes for which targeted therapies with novel agents are readily available. We could show efficient targeting of leukemic blasts by APR-246 in 2 patients carrying TP53 mutations. Our findings shed light on the genetic basis of post-allo-SCT relapse and may pave the way for unraveling novel therapeutic strategies in this challenging situation.
Collapse
|
118
|
Abstract
Despite high cure rates in children, acute lymphoblastic leukemia (ALL) remains a leading cause of cancer death in the young, and the likelihood of treatment failure increases with age. With the exception of tyrosine kinase inhibitors, there have been few advances in repurposing or developing new therapeutic approaches tailored to vulnerabilities of ALL subtypes or individual cases. Large-scale genome profiling studies conducted over the last decade promise to improve ALL outcomes by refining risk stratification and modulation of therapeutic intensity, and by identifying new targets and pathways for immunotherapy. Many of these approaches have been validated in preclinical models and now merit testing in clinical trials. This review discusses the advances in our understanding of the genomic taxonomy and ontogeny of B-progenitor ALL, with an emphasis on those discoveries of clinical importance.
Collapse
|
119
|
Saida S, Zhen T, Kim E, Yu K, Lopez G, McReynolds LJ, Liu PP. Gata2 deficiency delays leukemogenesis while contributing to aggressive leukemia phenotype in Cbfb-MYH11 knockin mice. Leukemia 2019; 34:759-770. [PMID: 31624376 PMCID: PMC7056539 DOI: 10.1038/s41375-019-0605-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 11/09/2022]
Abstract
Inversion of chromosome 16 (inv(16)) generates a fusion gene CBFB-MYH11, which is a driver mutation for acute myeloid leukemia (AML). Gene expression profiling suggests that Gata2, a hematopoietic transcription factor, is a top upregulated gene in preleukemic Cbfb-MYH11 knockin mice and is expressed in human inv(16) AML. On the other hand, we have also identified recurrent monoallelic deletions of GATA2 in relapsed human CBF-AML patients. To clarify the role of Gata2 in leukemogenesis by Cbfb-MYH11, we generated conditional Cbfb-MYH11 knockin mice with Gata2 heterozygous knockout. Gata2 heterozygous knockout reduced abnormal myeloid progenitors, which are capable of inducing leukemia in the Cbfb-MYH11 mice. Consequently, Cbfb-MYH11 mice with Gata2 heterozygous knockout developed leukemia with longer latencies than those with intact Gata2. Interestingly, leukemic cells with Gata2 heterozygous knockout gained higher number of mutations and showed more aggressive phenotype in both primary and transplanted mice. Moreover, leukemic cells with Gata2 heterozygous knockout showed higher repopulating capacity in competitive transplantation experiments. In summary, reduction of Gata2 activity affects mutational dynamics of leukemia with delayed leukemia onset in Cbfb-MYH11 knockin mice, but paradoxically results in a more aggressive leukemia phenotype, which may be correlated with leukemia relapse or poor prognosis in human patients.
Collapse
Affiliation(s)
- Satoshi Saida
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA.,Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tao Zhen
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Erika Kim
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Kai Yu
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Guadalupe Lopez
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Paul P Liu
- Oncogenesis and Development Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
120
|
Yenamandra AK, Kaviany S, Borinstein SC, Friedman DL, Kovach AE. BCR-ABL1-like B-Lymphoblastic Leukemia/Lymphoma with FOXP1-ABL1 Rearrangement: Comprehensive Laboratory Identification Allowing Tyrosine Kinase Inhibitor Use. Lab Med 2019; 50:401-405. [PMID: 30938769 DOI: 10.1093/labmed/lmz008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/07/2019] [Indexed: 11/14/2022] Open
Abstract
B-lymphoblastic leukemia/lymphoma (B-ALL) is the most common type of childhood cancer; it also occurs in teenagers and adults, in whom the prognosis is generally less favorable. Therapeutic and molecular advances have substantially improved the treatment for subtypes of B-ALL, such that subclassification by cytogenetic and molecular alterations is critical for risk stratification and management. Novel rearrangements involving ABL1, JAK2, EPO, and other kinases have been identified that may respond to inhibition akin to BCR-ABL1. This diverse group of leukemias has been recognized as a provisional entity in the 2016 revision of the World Health Organization (WHO) Classification of the Hematopoietic Neoplasms as B-lymphoblastic leukemia/lymphoma, BCR-ABL1-like (Ph-like B-ALL). Herein, we present cytogenetic and molecular analysis of a case of B-ALL in a 16-year-old Caucasian boy with t(3;9) FOXP1-ABL1 rearrangement and concurrent loss of IKZF1, CDKN2A, and RB1 gene loci, meeting WHO criteria for Ph-like ALL. This case highlights diagnostic, prognostic, and therapeutic considerations of this recently recognized entity.
Collapse
Affiliation(s)
- Ashwini K Yenamandra
- Department of Pathology, Microbiology & Immunology; Vanderbilt University Medical Center, Nashville, TN
| | - Saara Kaviany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics; Monroe Carell Jr. Children's Hospital at Vanderbilt; Vanderbilt University Medical Center, Nashville, TN
| | - Scott C Borinstein
- Division of Pediatric Hematology and Oncology, Department of Pediatrics; Monroe Carell Jr. Children's Hospital at Vanderbilt; Vanderbilt University Medical Center, Nashville, TN
| | - Debra L Friedman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics; Monroe Carell Jr. Children's Hospital at Vanderbilt; Vanderbilt University Medical Center, Nashville, TN
| | - Alexandra E Kovach
- Department of Pathology, Microbiology & Immunology; Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
121
|
Lo Nigro L, Pulvirenti G, Cannata E, Bonaccorso P, Andriano N, Russo G. "Feasible and effective administration of Bortezomib with Rituximab in children with relapsed/resistant B-cell precursor acute lymphoblastic leukemia (BCP-ALL): A step toward the first line". Pediatr Hematol Oncol 2019; 36:438-444. [PMID: 31524044 DOI: 10.1080/08880018.2019.1658834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Despite a high cure rate in childhood BCP-ALL, 20% of children still presents with relapse, mostly due to a persistent leukemic clone during the first-line treatment. In this context, obtaining a molecular remission is crucial for reaching a successful allogeneic hematopoietic stem cell transplantation. Bortezomib was effectively administered to children with resistant/relapsed (r/r) BCP-ALL. Moreover, high risk ALL is characterized by the increasing expression of CD20. For the first time we reported two children with r/r BCP-ALL who received a treatment schema including Bortezomib and Rituximab, achieving morphological and molecular remission. Children with high risk features, such as persistent minimal residual disease during induction, will benefit from this combination. Is it time to move toward the first line?
Collapse
Affiliation(s)
- Luca Lo Nigro
- Center of Pediatric Hematology Oncology, Azienda Policlinico OVE , Catania , Italy.,Center of Pediatric Hematology Oncology, Azienda Policlinico OVE, Cytogenetic, Cytofluorimetric, Molecular Biology Laboratory , Catania , Italy
| | - Giulio Pulvirenti
- Department of Clinical and Experimental Medicine, University of Catania, Catania , Italy
| | - Emanuela Cannata
- Center of Pediatric Hematology Oncology, Azienda Policlinico OVE , Catania , Italy
| | - Paola Bonaccorso
- Center of Pediatric Hematology Oncology, Azienda Policlinico OVE, Cytogenetic, Cytofluorimetric, Molecular Biology Laboratory , Catania , Italy
| | - Nellina Andriano
- Center of Pediatric Hematology Oncology, Azienda Policlinico OVE, Cytogenetic, Cytofluorimetric, Molecular Biology Laboratory , Catania , Italy
| | - Giovanna Russo
- Center of Pediatric Hematology Oncology, Azienda Policlinico OVE , Catania , Italy.,Department of Clinical and Experimental Medicine, University of Catania, Catania , Italy
| |
Collapse
|
122
|
Witkowski MT, Lasry A, Carroll WL, Aifantis I. Immune-Based Therapies in Acute Leukemia. Trends Cancer 2019; 5:604-618. [PMID: 31706508 PMCID: PMC6859901 DOI: 10.1016/j.trecan.2019.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022]
Abstract
Treatment resistance remains a leading cause of acute leukemia-related deaths. Thus, there is an unmet need to develop novel approaches to improve outcome. New immune-based therapies with chimeric antigen receptor (CAR) T cells, bi-specific T cell engagers (BiTEs), and immune checkpoint blockers (ICBs) have emerged as effective treatment options for chemoresistant B cell acute lymphoblastic leukemia (B-ALL) and acute myeloid leukemia (AML). However, many patients show resistance to these immune-based approaches. This review describes crucial lessons learned from immune-based approaches targeting high-risk B-ALL and AML, such as the leukemia-intrinsic (e.g., target antigen loss, tumor heterogeneity) and -extrinsic (e.g., immunosuppressive microenvironment) mechanisms that drive treatment resistance, and discusses alternative approaches to enhance the effectiveness of these immune-based treatment regimens.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Disease Susceptibility
- Humans
- Immunity
- Immunotherapy/methods
- Immunotherapy, Adoptive
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Molecular Targeted Therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Matthew T Witkowski
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| | - Audrey Lasry
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - William L Carroll
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Department of Pediatrics, New York University School of Medicine, New York, NY 10016, USA
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
123
|
Chen YL, Tang C, Zhang MY, Huang WL, Xu Y, Sun HY, Yang F, Song LL, Wang H, Mu LL, Li MH, Zheng WW, Miao Y, Ding LX, Li BS, Shen SH, Liu SL, Li H, Zhu ZQ, Chen HW, Tang ZH, Chen J, Hong DL, Chen HZ, Duan CW, Zhou BBS. Blocking ATM-dependent NF-κB pathway overcomes niche protection and improves chemotherapy response in acute lymphoblastic leukemia. Leukemia 2019; 33:2365-2378. [PMID: 30940905 DOI: 10.1038/s41375-019-0458-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022]
Abstract
Bone marrow (BM) niche responds to chemotherapy-induced cytokines secreted from acute lymphoblastic leukemia (ALL) cells and protects the residual cells from chemotherapeutics in vivo. However, the underlying molecular mechanisms for the induction of cytokines by chemotherapy remain unknown. Here, we found that chemotherapeutic drugs (e.g., Ara-C, DNR, 6-MP) induced the expression of niche-protecting cytokines (GDF15, CCL3 and CCL4) in both ALL cell lines and primary cells in vitro. The ATM and NF-κB pathways were activated after chemotherapy treatment, and the pharmacological or genetic inhibition of these pathways significantly reversed the cytokine upregulation. Besides, chemotherapy-induced NF-κB activation was dependent on ATM-TRAF6 signaling, and NF-κB transcription factor p65 directly regulated the cytokines expression. Furthermore, we found that both pharmacological and genetic perturbation of ATM and p65 significantly decreased the residual ALL cells after Ara-C treatment in ALL xenograft mouse models. Together, these results demonstrated that ATM-dependent NF-κB activation mediated the cytokines induction by chemotherapy and ALL resistance to chemotherapeutics. Inhibition of ATM-dependent NF-κB pathway can sensitize ALL to chemotherapeutics, providing a new strategy to eradicate residual chemo-resistant ALL cells.
Collapse
Affiliation(s)
- Ya-Li Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Chao Tang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Meng-Yi Zhang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Wen-Li Huang
- Department of Pathology, School of Basic Medical Sciences, Central South University, 410013, Changsha, China
| | - Yan Xu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Hui-Yin Sun
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Fan Yang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Li-Li Song
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - He Wang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Li-Li Mu
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, SJTU-SM, 200025, Shanghai, China
| | - Ming-Hao Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Wei-Wei Zheng
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Yan Miao
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Li-Xia Ding
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Ben-Shang Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Shu-Hong Shen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Sheng-Li Liu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Hui Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Zhong-Qun Zhu
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children's Medical Center, SJTU-SM, 200025, Shanghai, China
| | - Hui-Wen Chen
- Department of Cardiothoracic Surgery, Heart Center, Shanghai Children's Medical Center, SJTU-SM, 200025, Shanghai, China
| | - Zhong-Hua Tang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Jing Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China
| | - Deng-Li Hong
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, SJTU-SM, 200025, Shanghai, China
| | - Hong-Zhuan Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China.
| | - Cai-Wen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China.
| | - Bin-Bing S Zhou
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 200025, Shanghai, China.
| |
Collapse
|
124
|
Abstract
We describe a patient with Down syndrome whose precursor B-cell acute lymphoblastic leukemia cells expressed INPP5D-ABL1 fusion gene that resulted in a reciprocal chromosome translocation t(2;9)(q27;q34). The fusion gene was present as a small subclone in the primary disease but was first identified at relapse when the subclone had expanded into a major clone. At relapse, the patient responded poorly to conventional induction chemotherapy but a transient morphologic remission was achieved after administration of imatinib monotherapy. This case demonstrates a pathway to relapse in a Down syndrome patients with acute lymphoblastic leukemia through a rare fusion event. It highlights the significance of minor subclonal events in therapy resistance and the opportunity provided for targeted therapy.
Collapse
|
125
|
Kannan S, Aitken MJL, Herbrich SM, Golfman LS, Hall MG, Mak DH, Burks JK, Song G, Konopleva M, Mullighan CG, Chandra J, Zweidler-McKay PA. Antileukemia Effects of Notch-Mediated Inhibition of Oncogenic PLK1 in B-Cell Acute Lymphoblastic Leukemia. Mol Cancer Ther 2019; 18:1615-1627. [PMID: 31227645 PMCID: PMC6726528 DOI: 10.1158/1535-7163.mct-18-0706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/08/2018] [Accepted: 06/17/2019] [Indexed: 02/03/2023]
Abstract
In B-cell acute lymphoblastic leukemia (B-ALL), activation of Notch signaling leads to cell-cycle arrest and apoptosis. We aimed to harness knowledge acquired by understanding a mechanism of Notch-induced cell death to elucidate a therapeutically viable target in B-ALL. To this end, we identified that Notch activation suppresses Polo-like kinase 1 (PLK1) in a B-ALL-specific manner. We identified that PLK1 is expressed in all subsets of B-ALL and is highest in Philadelphia-like (Ph-like) ALL, a high-risk subtype of disease. We biochemically delineated a mechanism of Notch-induced PLK1 downregulation that elucidated stark regulation of p53 in this setting. Our findings identified a novel posttranslational cascade initiated by Notch in which CHFR was activated via PARP1-mediated PARylation, resulting in ubiquitination and degradation of PLK1. This led to hypophosphorylation of MDM2Ser260, culminating in p53 stabilization and upregulation of BAX. shRNA knockdown or pharmacologic inhibition of PLK1 using BI2536 or BI6727 (volasertib) in B-ALL cell lines and patient samples led to p53 stabilization and cell death. These effects were seen in primary human B-ALL samples in vitro and in patient-derived xenograft models in vivo These results highlight PLK1 as a viable therapeutic target in B-ALL. Efficacy of clinically relevant PLK1 inhibitors in B-ALL patient-derived xenograft mouse models suggests that use of these agents may be tailored as an additional therapeutic strategy in future clinical studies.
Collapse
Affiliation(s)
| | - Marisa J L Aitken
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Shelley M Herbrich
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Leonard S Golfman
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mandy G Hall
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Duncan H Mak
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guangchun Song
- Department of Pathology, St. Jude's Children's Research Hospital, Memphis, Tennessee
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Charles G Mullighan
- Department of Pathology, St. Jude's Children's Research Hospital, Memphis, Tennessee
| | - Joya Chandra
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
126
|
Rogan PK. Multigene signatures of responses to chemotherapy derived by biochemically-inspired machine learning. Mol Genet Metab 2019; 128:45-52. [PMID: 31451418 DOI: 10.1016/j.ymgme.2019.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 01/08/2023]
Abstract
Pharmacogenomic responses to chemotherapy drugs can be modeled by supervised machine learning of expression and copy number of relevant gene combinations. Such biochemical evidence can form the basis of derived gene signatures using cell line data, which can subsequently be examined in patients that have been treated with the same drugs. These gene signatures typically contain elements of multiple biochemical pathways which together comprise multiple origins of drug resistance or sensitivity. The signatures can capture variation in these responses to the same drug among different patients.
Collapse
Affiliation(s)
- Peter K Rogan
- Departments of Biochemistry, Oncology, and Computer Science, University of Western Ontario, London, ON N6A 2C1, UK.
| |
Collapse
|
127
|
Xiao H, Ding Y, Gao Y, Wang LM, Wang H, Ding L, Li X, Yu X, Huang H. Haploinsufficiency of NR3C1 drives glucocorticoid resistance in adult acute lymphoblastic leukemia cells by down-regulating the mitochondrial apoptosis axis, and is sensitive to Bcl-2 blockage. Cancer Cell Int 2019; 19:218. [PMID: 31462891 PMCID: PMC6708234 DOI: 10.1186/s12935-019-0940-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/18/2019] [Indexed: 01/05/2023] Open
Abstract
Background Relapse represents the leading cause of death in both child and adult patients with acute lymphoblastic leukemia (ALL). Development of chemo-resistance is ultimately responsible for treatment failure and relapse, therefore understanding the molecular basis underlying resistance is imperative for developing innovative treatment strategies. Glucocorticoids (GCs) such dexamethasone and prednisolone are the backbone of combination chemotherapy regimens for treating all lymphoid tumors. However, the biological mechanisms of primary GC resistance in ALL is not completely understood. We previously performed a longitudinal whole-exome sequencing analysis on diagnosis/relapse pairs from adult patients with ALL. Our data revealed that relapse-specific truncation mutations in the NR3C1 gene, encoding the GC receptor, are frequently detected. Methods In the current study, we used discovery-based strategies including RNA sequencing (RNA-seq) and CRISPR/Cas9, followed by confirmatory testing, in human ALL cell lines, bone marrow blast samples from ALL patients and xenograft models, to elucidate the mechanisms responsible for resistance. Results Our results revealed a positive correlation between endogenous expression of NR3C1 in ALL cells and sensitivity to GCs and clinical outcomes. We further confirmed that ectopic expression of NR3C1 in ALL cells could reverse GC resistance, while deletion of NR3C1 confers resistance to GCs in ALL cell lines and xenograft models. RNA-seq analysis revealed a remarkable abundance of gene signatures involved in pathways in cancer, DNA replication, mismatch repair, P53 signalling, cell cycle, and apoptosis regulated by NR3C1. Significantly increased expression of pro-apoptotic genes including BCL2L11/Bim, BMF, BAD, BAX and BOK, and decreased transcription of anti-apoptotic genes including BCL2, BCL2L1 and BAG2 were observed in GC-resistant ALL cells following ectopic expression of NR3C1. Finally, we explored that GC resistance in ALL cells with haploinsufficiency of NR3C1 can be treated with Bcl-2 blockage. Conclusions Our findings suggest that the status of NR3C1 gene mutations and basal expression levels of NR3C1 in ALL cells are associated with sensitivity to GCs and clinical treatment outcomes. Early intervention strategies by rational combination of Bcl-2 blockage may constitute a promising new treatment option to GC-resistant ALL and significantly improving the chances of treating poor prednisone responders.
Collapse
Affiliation(s)
- Haowen Xiao
- 1Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd., Hangzhou, 310016 Zhejiang People's Republic of China.,2Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang People's Republic of China
| | - Yingying Ding
- Department of Hematology, The People's Hospital of Zhongshan City, Zhongshan, Guangdong Province People's Republic of China
| | - Yang Gao
- 1Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Rd., Hangzhou, 310016 Zhejiang People's Republic of China
| | - Li-Mengmeng Wang
- 2Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang People's Republic of China.,4Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd., Hangzhou, 310003 Zhejiang People's Republic of China
| | - Huafang Wang
- 2Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang People's Republic of China.,4Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd., Hangzhou, 310003 Zhejiang People's Republic of China
| | - Lijuan Ding
- 2Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang People's Republic of China.,4Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd., Hangzhou, 310003 Zhejiang People's Republic of China
| | - Xiaoqing Li
- 2Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang People's Republic of China.,4Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd., Hangzhou, 310003 Zhejiang People's Republic of China
| | - Xiaohong Yu
- 2Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang People's Republic of China
| | - He Huang
- 2Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang People's Republic of China.,4Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Rd., Hangzhou, 310003 Zhejiang People's Republic of China
| |
Collapse
|
128
|
New anti-IL-7Rα monoclonal antibodies show efficacy against T cell acute lymphoblastic leukemia in pre-clinical models. Leukemia 2019; 34:35-49. [PMID: 31439943 DOI: 10.1038/s41375-019-0531-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/22/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022]
Abstract
Pediatric T cell acute lymphoblastic leukemia (T-ALL) cells frequently contain mutations in the interleukin-7 (IL-7) receptor pathway or respond to IL-7 itself. To target the IL-7 receptor on T-ALL cells, murine monoclonal antibodies (MAbs) were developed against the human IL-7Rα chain and chimerized with human IgG1 constant regions. Crystal structures demonstrate that the two MAbs bound different IL-7Rα epitopes. The MAbs mediated antibody-dependent cell-mediated cytotoxicity (ADCC) against patient-derived xenograft (PDX) T-ALL cells, which was improved by combining two MAbs. In vivo, the MAbs showed therapeutic efficacy via ADCC-dependent and independent mechanisms in minimal residual and established disease. PDX T-ALL cells that relapsed following a course of chemotherapy displayed elevated IL-7Rα, and MAb treatment is effective against relapsing disease, suggesting the use of anti-IL7Rα MAbs in relapsed T-ALL patients or patients that do not respond to chemotherapy.
Collapse
|
129
|
Ribera J, Zamora L, Morgades M, Vives S, Granada I, Montesinos P, Gómez‐Seguí I, Mercadal S, Guàrdia R, Nomdedeu J, Pratcorona M, Tormo M, Martínez‐Lopez J, Hernández‐Rivas J, Ciudad J, Orfao A, González‐Campos J, Barba P, Escoda L, Esteve J, Genescà E, Solé F, Feliu E, Ribera J. Molecular profiling refines minimal residual disease‐based prognostic assessment in adults with Philadelphia chromosome‐negative B‐cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer 2019; 58:815-819. [DOI: 10.1002/gcc.22788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jordi Ribera
- Institut de Recerca Contra la Leucemia Josep Carreras, Hospital Germans Trias i PujolUniversitat Autònoma de Barcelona, Institut Català d'Oncologia, Hospital Germans Trias i Pujol Barcelona Spain
| | - Lurdes Zamora
- Institut de Recerca Contra la Leucemia Josep Carreras, Hospital Germans Trias i PujolUniversitat Autònoma de Barcelona, Institut Català d'Oncologia, Hospital Germans Trias i Pujol Barcelona Spain
| | - Mireia Morgades
- Institut de Recerca Contra la Leucemia Josep Carreras, Hospital Germans Trias i PujolUniversitat Autònoma de Barcelona, Institut Català d'Oncologia, Hospital Germans Trias i Pujol Barcelona Spain
| | - Susana Vives
- Institut de Recerca Contra la Leucemia Josep Carreras, Hospital Germans Trias i PujolUniversitat Autònoma de Barcelona, Institut Català d'Oncologia, Hospital Germans Trias i Pujol Barcelona Spain
| | - Isabel Granada
- Institut de Recerca Contra la Leucemia Josep Carreras, Hospital Germans Trias i PujolUniversitat Autònoma de Barcelona, Institut Català d'Oncologia, Hospital Germans Trias i Pujol Barcelona Spain
| | | | | | | | - Ramon Guàrdia
- Institut Català d'OncologiaHospital Josep Trueta Girona Spain
| | - Josep Nomdedeu
- Institut de Recerca contra la Leucemia Josep CarrerasHospital Sant Pau Barcelona Spain
| | - Marta Pratcorona
- Institut de Recerca contra la Leucemia Josep CarrerasHospital Sant Pau Barcelona Spain
| | - Mar Tormo
- Hematology Department, Hospital Clínico Valencia Spain
| | | | - Jesús‐María Hernández‐Rivas
- Hospital Universitario de SalamancaUniversidad de Salamanca, IBMCC (CSIC/USAL), IBSAL and CIBERONC Salamanca Spain
| | - Juana Ciudad
- Hospital Universitario de SalamancaUniversidad de Salamanca, IBMCC (CSIC/USAL), IBSAL and CIBERONC Salamanca Spain
| | - Alberto Orfao
- Hospital Universitario de SalamancaUniversidad de Salamanca, IBMCC (CSIC/USAL), IBSAL and CIBERONC Salamanca Spain
| | | | - Pere Barba
- Hematology Department, Hospital Vall d'Hebron Barcelona Spain
| | - Lourdes Escoda
- Institut Català d'OncologiaHospital Joan XXIII Tarragona Spain
| | - Jordi Esteve
- Institut de Recerca contra la Leucemia Josep CarrerasHospital Clínic Barcelona Spain
| | - Eulàlia Genescà
- Institut de Recerca Contra la Leucemia Josep Carreras, Hospital Germans Trias i PujolUniversitat Autònoma de Barcelona, Institut Català d'Oncologia, Hospital Germans Trias i Pujol Barcelona Spain
| | - Francesc Solé
- Institut de Recerca Contra la Leucemia Josep Carreras, Hospital Germans Trias i PujolUniversitat Autònoma de Barcelona, Institut Català d'Oncologia, Hospital Germans Trias i Pujol Barcelona Spain
| | - Evarist Feliu
- Institut de Recerca Contra la Leucemia Josep Carreras, Hospital Germans Trias i PujolUniversitat Autònoma de Barcelona, Institut Català d'Oncologia, Hospital Germans Trias i Pujol Barcelona Spain
| | - Josep‐Maria Ribera
- Institut de Recerca Contra la Leucemia Josep Carreras, Hospital Germans Trias i PujolUniversitat Autònoma de Barcelona, Institut Català d'Oncologia, Hospital Germans Trias i Pujol Barcelona Spain
| | | | | |
Collapse
|
130
|
Milo I, Bedora-Faure M, Garcia Z, Thibaut R, Périé L, Shakhar G, Deriano L, Bousso P. The immune system profoundly restricts intratumor genetic heterogeneity. Sci Immunol 2019; 3:3/29/eaat1435. [PMID: 30470696 DOI: 10.1126/sciimmunol.aat1435] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/03/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022]
Abstract
Tumors develop under the selective pressure of the immune system. However, it remains critical to establish how the immune system affects the clonal heterogeneity of tumors that often display cell-to-cell variation in genetic alterations and antigenic expression. To address these questions, we introduced a multicolor barcoding strategy to study the growth of a MYC-driven B cell lymphoma harboring a large degree of intratumor genetic diversity. Using intravital imaging, we visualized that lymphoma subclones grow as patches of sessile cells in the bone marrow, creating a spatially compartmentalized architecture for tumor diversity. Using multicolor barcoding and whole-exome sequencing, we demonstrated that immune responses strongly restrict intratumor genomic diversity and favor clonal dominance, a process mediated by the selective elimination of more immunogenic cells and amplified by epitope spreading. Anti-PD-1 treatment also narrowed intratumor diversity. Our results provide direct evidence that immune pressure shapes the level of intratumor genetic heterogeneity and have important implications for the design of therapeutic strategies.
Collapse
Affiliation(s)
- Idan Milo
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 75015 Paris, France.,INSERM U1223, 75015 Paris, France
| | - Marie Bedora-Faure
- Genome Integrity, Immunity and Cancer Unit, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Zacarias Garcia
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 75015 Paris, France.,INSERM U1223, 75015 Paris, France
| | - Ronan Thibaut
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 75015 Paris, France.,INSERM U1223, 75015 Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, rue du Dr Roux, 75015 Paris, France
| | - Leïla Périé
- Institut Curie, PSL Research University, CNRS UMR168, 11 rue Pierre et Marie Curie, 75005 Paris, France.,Sorbonne Universités, UPMC University Paris 06, 4 place Jussieu, 75005 Paris, France
| | - Guy Shakhar
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ludovic Deriano
- Genome Integrity, Immunity and Cancer Unit, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Philippe Bousso
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, 75015 Paris, France. .,INSERM U1223, 75015 Paris, France
| |
Collapse
|
131
|
Moriyama T, Liu S, Li J, Meyer J, Zhao X, Yang W, Shao Y, Heath R, Hnízda A, Carroll WL, Yang JJ. Mechanisms of NT5C2-Mediated Thiopurine Resistance in Acute Lymphoblastic Leukemia. Mol Cancer Ther 2019; 18:1887-1895. [PMID: 31358663 DOI: 10.1158/1535-7163.mct-18-1112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/15/2019] [Accepted: 07/23/2019] [Indexed: 02/02/2023]
Abstract
Relapse remains a formidable challenge for acute lymphoblastic leukemia (ALL). Recently, recurrent mutations in NT5C2 were identified as a common genomic lesion unique in relapsed ALL and were linked to acquired thiopurine resistance. However, molecular mechanisms by which NT5C2 regulates thiopurine cytotoxicity were incompletely understood. To this end, we sought to comprehensively characterize the biochemical and cellular effects of NT5C2 mutations. Compared with wild-type NT5C2, mutant proteins showed elevated 5'-nucleotidase activity with a stark preference of thiopurine metabolites over endogenous purine nucleotides, suggesting neomorphic effects specific to thiopurine metabolism. Expression of mutant NT5C2 mutations also significantly reduced thiopurine uptake in vitro with concomitant increase in efflux of 6-mercaptopurine (MP) metabolites, plausibly via indirect effects on drug transporter pathways. Finally, intracellular metabolomic profiling revealed significant shifts in nucleotide homeostasis induced by mutant NT5C2 at baseline; MP treatment also resulted in global changes in metabolomic profiles with completely divergent effects in cells with mutant versus wild-type NT5C2. Collectively, our data indicated that NT5C2 mutations alter thiopurine metabolism and cellular disposition, but also influence endogenous nucleotide homeostasis and thiopurine-induced metabolomic response. These complex mechanisms contributed to NT5C2-mediated drug resistance in ALL and pointed to potential opportunities for therapeutic targeting in relapsed ALL.
Collapse
Affiliation(s)
- Takaya Moriyama
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Shuguang Liu
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jing Li
- Department of Oncology, Pharmacology Core, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Julia Meyer
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, California
| | - Xujie Zhao
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Wentao Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Youming Shao
- Protein Production Center, St. Jude Children's Hospital, Memphis, Tennessee
| | - Richard Heath
- Protein Production Center, St. Jude Children's Hospital, Memphis, Tennessee
| | - Aleš Hnízda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - William L Carroll
- New York University Cancer Institute, New York University Langone Medical Center, New York, New York.,Department of Pathology, New York University Langone Medical Center, New York, New York.,Department of Pediatrics, New York University Langone Medical Center, New York, New York
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee. .,Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
132
|
Erbilgin Y, Firtina S, Mercan S, Hatirnaz Ng O, Karaman S, Tasar O, Karakas Z, Celkan TT, Zengin E, Sarper N, Yildirmak ZY, Sisko S, Ozbek U, Sayitoglu M. Prognostic gene alterations and clonal changes in childhood B-ALL. Leuk Res 2019; 83:106159. [PMID: 31228652 DOI: 10.1016/j.leukres.2019.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022]
Abstract
Genomic profiles of leukemia patients lead to characterization of variations that provide the molecular classification of risk groups, prediction of clinical outcome and therapeutic decisions. In this study, we examined the diagnostic (n = 77) and relapsed (n = 31) pediatric B-cell acute lymphoblastic leukemia (B-ALL) samples for the most common leukemia-associated gene variations CRLF2, JAK2, PAX5 and IL7R using deep sequencing and copy number alterations (CNAs) (CDKN2A/2B, PAX5, RB1, BTG1, ETV6, CSF2RA, IL3RA and CRLF2) by multiplex ligation proximity assay (MLPA), and evaluated for the clonal changes through relapse. Single nucleotide variations SNVs were detected in 19% of diagnostic 15.3% of relapse samples. The CNAs were detected in 55% of diagnosed patients; most common affected genes were CDKN2A/2B, PAX5, and CRLF2. Relapse samples did not accumulate a greater number of CNAs or SNVs than the cohort of diagnostic samples, but the clonal dynamics showed the accumulation/disappearance of specific gene variations explained the course of relapse. The CDKN2A/2B were most frequently altered in relapse samples and 32% of relapse samples carried at least one CNA. Moreover, CDKN2A/2B alterations and/or JAK2 variations were associated with decreased relapse-free survival. On the other hand, CRLF2 copy number alterations predicted a better survival rate in B-ALL. These findings contribute to the knowledge of CDKN2A/2B and CRLF2 alterations and their prognostic value in B-ALL. The integration of genomic data in clinical practice will enable better stratification of ALL patients and allow deeper understanding of the nature of relapse.
Collapse
Affiliation(s)
- Yucel Erbilgin
- Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Sinem Firtina
- Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Istinye University, Faculty of Arts and Sciences, Istanbul, Turkey
| | - Sevcan Mercan
- Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Kafkas University, Faculty of Engineering, Kars, Turkey
| | - Ozden Hatirnaz Ng
- Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Acibadem Mehmet Ali Aydinlar University Medical Faculty, Istanbul, Turkey
| | - Serap Karaman
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey
| | - Orcun Tasar
- Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Zeynep Karakas
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey
| | | | - Emine Zengin
- Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - Nazan Sarper
- Kocaeli University Medical Faculty, Kocaeli, Turkey
| | | | - Sinem Sisko
- Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ugur Ozbek
- Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Acibadem Mehmet Ali Aydinlar University Medical Faculty, Istanbul, Turkey
| | - Muge Sayitoglu
- Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
133
|
Huang BJ, Wandler AM, Meyer LK, Dail M, Daemen A, Sampath D, Li Q, Wang X, Wong JC, Nakitandwe J, Downing JR, Zhang J, Taylor BS, Shannon K. Convergent genetic aberrations in murine and human T lineage acute lymphoblastic leukemias. PLoS Genet 2019; 15:e1008168. [PMID: 31199785 PMCID: PMC6594654 DOI: 10.1371/journal.pgen.1008168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/26/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
The lack of predictive preclinical models is a fundamental barrier to translating knowledge about the molecular pathogenesis of cancer into improved therapies. Insertional mutagenesis (IM) in mice is a robust strategy for generating malignancies that recapitulate the extensive inter- and intra-tumoral genetic heterogeneity found in advanced human cancers. While the central role of "driver" viral insertions in IM models that aberrantly increase the expression of proto-oncogenes or disrupt tumor suppressors has been appreciated for many years, the contributions of cooperating somatic mutations and large chromosomal alterations to tumorigenesis are largely unknown. Integrated genomic studies of T lineage acute lymphoblastic leukemias (T-ALLs) generated by IM in wild-type (WT) and Kras mutant mice reveal frequent point mutations and other recurrent non-insertional genetic alterations that also occur in human T-ALL. These somatic mutations are sensitive and specific markers for defining clonal dynamics and identifying candidate resistance mechanisms in leukemias that relapse after an initial therapeutic response. Primary cancers initiated by IM and resistant clones that emerge during in vivo treatment close key gaps in existing preclinical models, and are robust platforms for investigating the efficacy of new therapies and for elucidating how drug exposure shapes tumor evolution and patterns of resistance. A lack of predictive cancer models is a major bottleneck for prioritizing new anti-cancer drugs for clinical trials. We comprehensively profiled a panel of primary mouse T lineage leukemias initiated by insertional mutagenesis and found remarkable similarities with human T-ALL in regard to overall mutational burden, the occurrence of specific somatic mutations and large chromosomal alterations, and concordant gene expression signatures. We observed frequent duplication of the Kras oncogene with loss of the normal allele, which has potential therapeutic implications that merit further investigation in human leukemia and in other preclinical models. Mutations identified in mouse leukemias that relapsed after in vivo treatment with signal transduction inhibitors were also observed in relapsed human T-ALL, indicating that this model system can be utilized to investigate strategies for overcoming intrinsic and acquired drug resistance. Finally, preclinical models similar to the one described here that are characterized by a normal endogenous tumor microenvironment and intact immune system will become increasingly important for testing immunotherapy approaches for human cancer.
Collapse
Affiliation(s)
- Benjamin J. Huang
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
| | - Anica M. Wandler
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
| | - Lauren K. Meyer
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
| | - Monique Dail
- Department of Oncology Biomarker Development, Genentech, South San Francisco, CA, United States of America
| | - Anneleen Daemen
- Department of Bioinformatics & Computational Biology, Genentech, South San Francisco, CA, United States of America
| | - Deepak Sampath
- Department of Translational Oncology, Genentech, South San Francisco, CA, United States of America
| | - Qing Li
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Xinyue Wang
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
| | - Jasmine C. Wong
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
| | - Joy Nakitandwe
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - James R. Downing
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jinghui Zhang
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Barry S. Taylor
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Kevin Shannon
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
134
|
Shi X, Duose DY, Mehrotra M, Harmon MA, Hu P, Wistuba II, Kopetz S, Luthra R. Non-invasive genotyping of metastatic colorectal cancer using circulating cell free DNA. Cancer Genet 2019; 237:82-89. [PMID: 31447070 DOI: 10.1016/j.cancergen.2019.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/03/2019] [Accepted: 06/09/2019] [Indexed: 02/07/2023]
Abstract
Circulating cell-free DNA (ccfDNA) in plasma provides an easily accessible source of circulating tumor DNA (ctDNA) for detecting actionable genomic alterations that can be used to guide colorectal cancer (CRC) treatment and surveillance. The goal of this study was to test the feasibility of using a traditional amplicon-based next-generation sequencing (NGS) on Ion Torrent platform to detect low-frequency alleles in ctDNA and compare it with a digital NGS assay specifically designed to detect low-frequency variants (as low as 0.1%) to provide evidence for the standard care of CRC. The study cohort consisted of 48 CRC patients for whom matched samples of formalin-fixed, paraffin-embedded tumor tissue, plasma, and peripheral blood mononuclear cells were available. DNA samples from different sources were sequenced on different platforms using commercial protocols. Our results demonstrate that the ccfDNA sequencing with the traditional NGS can be reliably used in an integrated workflow to detect low-frequency somatic variants in CRC. We found a high degree of concordance between traditional NGS and digital NGS in profiling mutant alleles in ccfDNA. These findings suggest that the traditional NGS is a viable alternative to digital sequencing of ccfDNA at allele frequency above 1%. ccfDNA sequencing can not only provide real-time monitoring of CRC, but also lay the basis for its application as a clinical diagnostic test to guide personalized therapy.
Collapse
Affiliation(s)
- Xuemei Shi
- Diagnostic Genetics, School of Health Professions, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Dzifa Y Duose
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX 77030, United States
| | - Meenakshi Mehrotra
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Michael A Harmon
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Peter Hu
- Diagnostic Genetics, School of Health Professions, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX 77030, United States
| | - Scott Kopetz
- Department of GI Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Rajyalakshmi Luthra
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, The University of Texas M.D. Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX 77030, United States; Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
135
|
Ling T, Lang WH, Craig J, Potts MB, Budhraja A, Opferman J, Bollinger J, Maier J, Marsico TD, Rivas F. Studies of Jatrogossone A as a Reactive Oxygen Species Inducer in Cancer Cellular Models. JOURNAL OF NATURAL PRODUCTS 2019; 82:1301-1311. [PMID: 31084028 DOI: 10.1021/acs.jnatprod.8b01087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Natural products continue to provide a platform to study biological systems. A bioguided study of cancer cell models led us to a new member of the jatrophane natural products from Jatropha gossypiifolia, which was independently identified and characterized as jatrogossone A (1). Purification and structure elucidation was performed by column chromatography and high-performance liquid chromatography-mass spectrometry and NMR techniques, and the structure was confirmed via X-ray crystallography. The unique molecular scaffold of jatrogossone A prompted an evaluation of its mode of action. Cytotoxicity assays demonstrated that jatrogossone A displays selective antiproliferative activity against cancer cell models in the low micromolar range with a therapeutic window. Jatrogossone A (1) affects mitochondrial membrane potential (ΔΨm) in a time- and dose-dependent manner. This natural product induces radical oxygen species (ROS) selectively in cancer cellular models, with minimal ROS induction in noncancerous cells. Compound 1 induces ROS in the mitochondria, as determined by colocalization studies, and it induces mitophagy. It promotes also in vitro cell death by causing cell arrest at the G2/M stage, caspase (3/7) activation, and PARP-1 cleavage. The combined findings provide a potential mechanism by which 1 relies on upregulation of mitochondrial ROS to potentiate cytotoxic effects through intracellular signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Travis D Marsico
- Department of Biological Sciences , Arkansas State University , Jonesboro , Arkansas 72467 , United States
| | | |
Collapse
|
136
|
Lipid nanoparticle-mediated siRNA delivery for safe targeting of human CML in vivo. Ann Hematol 2019; 98:1905-1918. [PMID: 31104089 DOI: 10.1007/s00277-019-03713-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/05/2019] [Indexed: 01/04/2023]
Abstract
Efficient and safe delivery of siRNA in vivo is the biggest roadblock to clinical translation of RNA interference (RNAi)-based therapeutics. To date, lipid nanoparticles (LNPs) have shown efficient delivery of siRNA to the liver; however, delivery to other organs, especially hematopoietic tissues still remains a challenge. We developed DLin-MC3-DMA lipid-based LNP-siRNA formulations for systemic delivery against a driver oncogene to target human chronic myeloid leukemia (CML) cells in vivo. A microfluidic mixing technology was used to obtain reproducible ionizable cationic LNPs loaded with siRNA molecules targeting the BCR-ABL fusion oncogene found in CML. We show a highly efficient and non-toxic delivery of siRNA in vitro and in vivo with nearly 100% uptake of LNP-siRNA formulations in bone marrow of a leukemic model. By targeting the BCR-ABL fusion oncogene, we show a reduction of leukemic burden in our myeloid leukemia mouse model and demonstrate reduced disease burden in mice treated with LNP-BCR-ABL siRNA as compared with LNP-CTRL siRNA. Our study provides proof-of-principle that fusion oncogene specific RNAi therapeutics can be exploited against leukemic cells and promise novel treatment options for leukemia patients.
Collapse
|
137
|
Cocciardi S, Dolnik A, Kapp-Schwoerer S, Rücker FG, Lux S, Blätte TJ, Skambraks S, Krönke J, Heidel FH, Schnöder TM, Corbacioglu A, Gaidzik VI, Paschka P, Teleanu V, Göhring G, Thol F, Heuser M, Ganser A, Weber D, Sträng E, Kestler HA, Döhner H, Bullinger L, Döhner K. Clonal evolution patterns in acute myeloid leukemia with NPM1 mutation. Nat Commun 2019; 10:2031. [PMID: 31048683 PMCID: PMC6497712 DOI: 10.1038/s41467-019-09745-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Mutations in the nucleophosmin 1 (NPM1) gene are considered founder mutations in the pathogenesis of acute myeloid leukemia (AML). To characterize the genetic composition of NPM1 mutated (NPM1mut) AML, we assess mutation status of five recurrently mutated oncogenes in 129 paired NPM1mut samples obtained at diagnosis and relapse. We find a substantial shift in the genetic pattern from diagnosis to relapse including NPM1mut loss (n = 11). To better understand these NPM1mut loss cases, we perform whole exome sequencing (WES) and RNA-Seq. At the time of relapse, NPM1mut loss patients (pts) feature distinct mutational patterns that share almost no somatic mutation with the corresponding diagnosis sample and impact different signaling pathways. In contrast, profiles of pts with persistent NPM1mut are reflected by a high overlap of mutations between diagnosis and relapse. Our findings confirm that relapse often originates from persistent leukemic clones, though NPM1mut loss cases suggest a second "de novo" or treatment-associated AML (tAML) as alternative cause of relapse.
Collapse
Affiliation(s)
- Sibylle Cocciardi
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, 89081, Germany
| | - Anna Dolnik
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, 89081, Germany
| | - Silke Kapp-Schwoerer
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, 89081, Germany
| | - Frank G Rücker
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, 89081, Germany
| | - Susanne Lux
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, 89081, Germany
| | - Tamara J Blätte
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, 89081, Germany
| | - Sabrina Skambraks
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, 89081, Germany
| | - Jan Krönke
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, 89081, Germany
| | - Florian H Heidel
- Department of Internal Medicine II, Hematology and Oncology, Friedrich-Schiller-University Medical Center, Jena, 07743, Germany.,Leibniz-Institute on Aging, Fritz-Lipmann-Institute, Jena, 07745, Germany
| | - Tina M Schnöder
- Department of Internal Medicine II, Hematology and Oncology, Friedrich-Schiller-University Medical Center, Jena, 07743, Germany.,Leibniz-Institute on Aging, Fritz-Lipmann-Institute, Jena, 07745, Germany
| | - Andrea Corbacioglu
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, 89081, Germany
| | - Verena I Gaidzik
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, 89081, Germany
| | - Peter Paschka
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, 89081, Germany
| | - Veronica Teleanu
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, 89081, Germany
| | - Gudrun Göhring
- Institute of Cell & Molecular Pathology, Hannover Medical School, Hannover, 30625, Germany
| | - Felicitas Thol
- Department of Haematology, Haemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, 30625, Germany
| | - Michael Heuser
- Department of Haematology, Haemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, 30625, Germany
| | - Arnold Ganser
- Department of Haematology, Haemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, 30625, Germany
| | - Daniela Weber
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, 89081, Germany
| | - Eric Sträng
- Institute of Medical Systems Biology, Ulm University, Ulm, 30625, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, 30625, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, 89081, Germany
| | - Lars Bullinger
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, 89081, Germany. .,Department of Hematology, Oncology and Tumorimmunology, Charité University Medicine, Berlin, 13353, Germany.
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, 89081, Germany.
| |
Collapse
|
138
|
Mallampati S, Duose DY, Harmon MA, Mehrotra M, Kanagal-Shamanna R, Zalles S, Wistuba II, Sun X, Luthra R. Rational "Error Elimination" Approach to Evaluating Molecular Barcoded Next-Generation Sequencing Data Identifies Low-Frequency Mutations in Hematologic Malignancies. J Mol Diagn 2019; 21:471-482. [PMID: 30794984 PMCID: PMC6521894 DOI: 10.1016/j.jmoldx.2019.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/31/2018] [Accepted: 01/18/2019] [Indexed: 12/18/2022] Open
Abstract
The emergence of highly sensitive molecular diagnostic approaches, such as droplet digital PCR, has allowed the accurate identification of low-frequency variant alleles in clinical specimens; however, the multiplex capabilities of droplet digital PCR for variant detection are inadequate. The incorporation of molecular barcodes or unique IDs into next-generation sequencing libraries through PCR has enabled the detection of low-frequency variant alleles across multiple genomic regions. However, rational library preparation and sequencing data analytic strategies that integrate molecular barcodes have rarely been applied to clinical settings. In this study, we evaluated the parameters that are crucial in the use of molecular barcodes in next-generation sequencing for genotyping clinical specimens from patients with hematologic malignancies. The uniform incorporation of molecular barcodes into DNA templates through PCR was found to be crucial, and the extent of uniformity was governed by multiple interdependent variables. An error elimination strategy was developed for removing sequencing background errors by using molecular barcode sequence information as an alternative to the conventional error correction approach. This approach was successfully used to identify mutations with frequencies as low as 0.15%, and the clonal heterogeneity of hematologic malignancies was revealed. These findings have implications for elucidating heterogeneity and temporal and spatial clonal evolution, evaluating response to therapy, and monitoring relapse in patients with hematologic malignancies.
Collapse
Affiliation(s)
- Saradhi Mallampati
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dzifa Y Duose
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Meenakshi Mehrotra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephanie Zalles
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaoping Sun
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Rajyalakshmi Luthra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
139
|
Tracey LJ, Brooke-Bisschop T, Jansen PWTC, Campos EI, Vermeulen M, Justice MJ. The Pluripotency Regulator PRDM14 Requires Hematopoietic Regulator CBFA2T3 to Initiate Leukemia in Mice. Mol Cancer Res 2019; 17:1468-1479. [PMID: 31015254 DOI: 10.1158/1541-7786.mcr-18-1327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/07/2019] [Accepted: 04/19/2019] [Indexed: 12/20/2022]
Abstract
PR domain-containing 14 (Prdm14) is a pluripotency regulator central to embryonic stem cell identity and primordial germ cell specification. Genomic regions containing PRDM14 are often amplified leading to misexpression in human cancer. Prdm14 expression in mouse hematopoietic stem cells (HSC) leads to progenitor cell expansion prior to the development of T-cell acute lymphoblastic leukemia (T-ALL), consistent with PRDM14's role in cancer initiation. Here, we demonstrate mechanistic insight into PRDM14-driven leukemias in vivo. Mass spectrometry revealed novel PRDM14-protein interactions including histone H1, RNA-binding proteins, and the master hematopoietic regulator CBFA2T3. In mouse leukemic cells, CBFA2T3 and PRDM14 associate independently of the related ETO family member CBFA2T2, PRDM14's primary protein partner in pluripotent cells. CBFA2T3 plays crucial roles in HSC self-renewal and lineage commitment, and participates in oncogenic translocations in acute myeloid leukemia. These results suggest a model whereby PRDM14 recruits CBFA2T3 to DNA, leading to gene misregulation causing progenitor cell expansion and lineage perturbations preceding T-ALL development. Strikingly, Prdm14-induced T-ALL does not occur in mice deficient for Cbfa2t3, demonstrating that Cbfa2t3 is required for leukemogenesis. Moreover, T-ALL develops in Cbfa2t3 heterozygotes with a significantly longer latency, suggesting that PRDM14-associated T-ALL is sensitive to Cbfa2t3 levels. Our study highlights how an oncogenic protein uses a native protein in progenitor cells to initiate leukemia, providing insight into PRDM14-driven oncogenesis in other cell types. IMPLICATIONS: The pluripotency regulator PRDM14 requires the master hematopoietic regulator CBFA2T3 to initiate leukemia in progenitor cells, demonstrating an oncogenic role for CBFA2T3 and providing an avenue for targeting cancer-initiating cells.
Collapse
Affiliation(s)
- Lauren J Tracey
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Travis Brooke-Bisschop
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pascal W T C Jansen
- Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Eric I Campos
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michiel Vermeulen
- Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Monica J Justice
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. .,Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
140
|
Ji C, Lin S, Yao D, Li M, Chen W, Zheng S, Zhao Z. Identification of promising prognostic genes for relapsed acute lymphoblastic leukemia. Blood Cells Mol Dis 2019; 77:113-119. [PMID: 31030124 DOI: 10.1016/j.bcmd.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE The present study aimed to identify the molecular mechanism of acute lymphoblastic leukemia (ALL), and explore valuable prognostic biomarkers for relapsed ALL. METHODS Gene expression dataset including 59 samples from ALL survivals without recurrence (good group) and 114 samples from dead ALL patients died of recurrence (poor group) was downloaded from TCGA database. The differentially expressed genes (DEGs) were identified between good and poor groups, followed by pathway and functional enrichment analyses. Subsequently, logistic regression model and survival analysis were performed. RESULTS In total, 637 up- and 578 down-regulated DEGs were revealed between good and poor groups. These DEGs were mainly enriched in functions including transcription and pathways like focal adhesion. Genes including alpha-protein kinase 1 (ALPK1), zinc finger protein 695 (ZNF695), actinin alpha 4 (ACTN4), calreticulin (CALR), and F-Box and leucine rich repeat protein 5 (FBXL5) were outstanding in survival analysis. CONCLUSION Transcription and focal adhesion might play important roles in ALL progression. Furthermore, genes including ALPK1, ZNF695, ACTN4, CALR, and FBXL5 might be novel prognostic genes for relapsed ALL.
Collapse
Affiliation(s)
- Chai Ji
- Child Health Care Department, Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Shengliang Lin
- Child Health Care Department, Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Dan Yao
- Child Health Care Department, Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Mingyan Li
- Child Health Care Department, Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Weijun Chen
- Child Health Care Department, Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Shuangshuang Zheng
- Child Health Care Department, Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Zhengyan Zhao
- Child Health Care Department, Children's Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
141
|
Sun H, Zhang Z, Luo W, Liu J, Lou Y, Xia S. NET1 Enhances Proliferation and Chemoresistance in Acute Lymphoblastic Leukemia Cells. Oncol Res 2019; 27:935-944. [PMID: 31046876 PMCID: PMC7848433 DOI: 10.3727/096504019x15555388198071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most prevalent of pediatric cancers. Neuroepithelial cell-transforming 1 (NET1) has been associated with malignancy in a number of cancers, but the role of NET1 in ALL development is unclear. In the present study, we investigated the effect of NET1 gene in ALL cell proliferation and chemoresistance. We analyzed GEO microarray data comparing bone marrow expression profiles of pediatric B-cell ALL samples and those of age-matched controls. MTT and colony formation assays were performed to analyze cell proliferation. ELISA assays, Western blot analyses, and TUNEL staining were used to detect chemoresistance. We confirmed that NET1 was targeted by miR-206 using Western blot and luciferase reporter assays. We identified NET1 gene as one of the most significantly elevated genes in pediatric B-ALL. MTT and colony formation assays demonstrated that NET1 overexpression increases B-ALL cell proliferation in Nalm-6 cells. ELISA assays, Western blot analyses, and TUNEL staining showed that NET1 contributes to ALL cell doxorubicin resistance, whereas NET1 inhibition reduces resistance. Using the TargetScan database, we found that several microRNAs (miRNAs) were predicted to target NET1, including microRNA-206 (miR-206), which has been shown to regulate cancer development. To determine whether miR-206 targets NET1 in vitro, we transfected Nalm-6 cells with miR-206 or its inhibitor miR-206-in. Western blot assays showed that miR-206 inhibits NET1 expression and miR-206-in increases NET1 expression. Luciferase assays using wild-type or mutant 3′-untranslated region (3′-UTR) of NET1 confirmed these findings. We ultimately found that miR-206 inhibits B-ALL cell proliferation and chemoresistance induced by NET1. Taken together, our results provide the first evidence that NET1 enhances proliferation and chemoresistance in B-ALL cells and that miR-206 regulates these effects by targeting NET1. This study therefore not only contributes to a greater understanding of the molecular mechanisms underlying B-ALL progression but also opens the possibility for developing curative interventions.
Collapse
Affiliation(s)
- Hongbo Sun
- Department of Hematology, Shenzhen Longhua People's Hospital, Shenzhen, P.R. China
| | - Zhifu Zhang
- Department of Hematology, Shenzhen Longhua People's Hospital, Shenzhen, P.R. China
| | - Wei Luo
- Department of Hematology, Shenzhen Longhua People's Hospital, Shenzhen, P.R. China
| | - Junmin Liu
- Department of Hematology, Shenzhen Longhua People's Hospital, Shenzhen, P.R. China
| | - Ye Lou
- Department of Hematology, Daqing Oilfield General Hospital, Daqing, P.R. China
| | - Shengmei Xia
- Department of Neurology, Shenzhen Longhua People's Hospital, Shenzhen, P.R. China
| |
Collapse
|
142
|
Gaudichon J, Jakobczyk H, Debaize L, Cousin E, Galibert MD, Troadec MB, Gandemer V. Mechanisms of extramedullary relapse in acute lymphoblastic leukemia: Reconciling biological concepts and clinical issues. Blood Rev 2019; 36:40-56. [PMID: 31010660 DOI: 10.1016/j.blre.2019.04.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
Long-term survival rates in childhood acute lymphoblastic leukemia (ALL) are currently above 85% due to huge improvements in treatment. However, 15-20% of children still experience relapses. Relapses can either occur in the bone marrow or at extramedullary sites, such as gonads or the central nervous system (CNS), formerly referred to as ALL-blast sanctuaries. The reason why ALL cells migrate to and stay in these sites is still unclear. In this review, we have attempted to assemble the evidence concerning the microenvironmental factors that could explain why ALL cells reside in such sites. We present criteria that make extramedullary leukemia niches and solid tumor metastatic niches comparable. Indeed, considering extramedullary leukemias as metastases could be a useful approach for proposing more effective treatments. In this context, we conclude with several examples of potential niche-based therapies which could be successfully added to current treatments of ALL.
Collapse
Affiliation(s)
- Jérémie Gaudichon
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France; Pediatric Hematology and Oncology Department, University Hospital, Caen, France.
| | - Hélène Jakobczyk
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France
| | - Lydie Debaize
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France
| | - Elie Cousin
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France; Pediatric Hematology Department, University Hospital, Rennes, France
| | - Marie-Dominique Galibert
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France.
| | - Marie-Bérengère Troadec
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France
| | - Virginie Gandemer
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France; Pediatric Hematology Department, University Hospital, Rennes, France.
| |
Collapse
|
143
|
Tomar AK, Agarwal R, Kundu B. Most Variable Genes and Transcription Factors in Acute Lymphoblastic Leukemia Patients. Interdiscip Sci 2019; 11:668-678. [PMID: 30972690 DOI: 10.1007/s12539-019-00325-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/21/2019] [Accepted: 02/26/2019] [Indexed: 12/28/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a hematologic tumor caused by cell cycle aberrations due to accumulating genetic disturbances in the expression of transcription factors (TFs), signaling oncogenes and tumor suppressors. Though survival rate in childhood ALL patients is increased up to 80% with recent medical advances, treatment of adults and childhood relapse cases still remains challenging. Here, we have performed bioinformatics analysis of 207 ALL patients' mRNA expression data retrieved from the ICGC data portal with an objective to mark out the decisive genes and pathways responsible for ALL pathogenesis and aggression. For analysis, 3361 most variable genes, including 276 transcription factors (out of 16,807 genes) were sorted based on the coefficient of variance. Silhouette width analysis classified 207 ALL patients into 6 subtypes and heat map analysis suggests a need of large and multicenter dataset for non-overlapping subtype classification. Overall, 265 GO terms and 32 KEGG pathways were enriched. The lists were dominated by cancer-associated entries and highlight crucial genes and pathways that can be targeted for designing more specific ALL therapeutics. Differential gene expression analysis identified upregulation of two important genes, JCHAIN and CRLF2 in dead patients' cohort suggesting their possible involvement in different clinical outcomes in ALL patients undergoing the same treatment.
Collapse
Affiliation(s)
- Anil Kumar Tomar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Rahul Agarwal
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
144
|
Bauer J, Nelde A, Bilich T, Walz JS. Antigen Targets for the Development of Immunotherapies in Leukemia. Int J Mol Sci 2019; 20:ijms20061397. [PMID: 30897713 PMCID: PMC6471800 DOI: 10.3390/ijms20061397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
Immunotherapeutic approaches, including allogeneic stem cell transplantation and donor lymphocyte infusion, have significantly improved the prognosis of leukemia patients. Further efforts are now focusing on the development of immunotherapies that are able to target leukemic cells more specifically, comprising monoclonal antibodies, chimeric antigen receptor (CAR) T cells, and dendritic cell- or peptide-based vaccination strategies. One main prerequisite for such antigen-specific approaches is the selection of suitable target structures on leukemic cells. In general, the targets for anti-cancer immunotherapies can be divided into two groups: (1) T-cell epitopes relying on the presentation of peptides via human leukocyte antigen (HLA) molecules and (2) surface structures, which are HLA-independently expressed on cancer cells. This review discusses the most promising tumor antigens as well as the underlying discovery and selection strategies for the development of anti-leukemia immunotherapies.
Collapse
Affiliation(s)
- Jens Bauer
- Department of Hematology and Oncology, University Hospital Tübingen, 72076 Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany.
| | - Annika Nelde
- Department of Hematology and Oncology, University Hospital Tübingen, 72076 Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany.
| | - Tatjana Bilich
- Department of Hematology and Oncology, University Hospital Tübingen, 72076 Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany.
| | - Juliane S Walz
- Department of Hematology and Oncology, University Hospital Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
145
|
Mezzatesta C, Bornhauser BC. Exploiting Necroptosis for Therapy of Acute Lymphoblastic Leukemia. Front Cell Dev Biol 2019; 7:40. [PMID: 30941349 PMCID: PMC6433701 DOI: 10.3389/fcell.2019.00040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/05/2019] [Indexed: 01/23/2023] Open
Abstract
Escape from chemotherapy-induced apoptosis is a hallmark of drug resistance in cancer. The recent identification of alternative programmed cell death pathways opens up for possibilities to circumvent the apoptotic blockade in drug resistant cancer and eliminate malignant cells. Indeed, we have recently shown that programmed necrosis, termed necroptosis, could be triggered to induce cell death in a subgroup of primary acute lymphoblastic leukemia (ALL) including highly refractory relapsed cases. In this review we focus on molecular mechanisms that drive drug resistance in ALL of childhood and discuss the potential of necroptosis activation to eradicate resistant disease.
Collapse
Affiliation(s)
- Caterina Mezzatesta
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Beat C Bornhauser
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
146
|
Sweet-Cordero EA, Biegel JA. The genomic landscape of pediatric cancers: Implications for diagnosis and treatment. Science 2019; 363:1170-1175. [PMID: 30872516 PMCID: PMC7757338 DOI: 10.1126/science.aaw3535] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The past decade has witnessed a major increase in our understanding of the genetic underpinnings of childhood cancer. Genomic sequencing studies have highlighted key differences between pediatric and adult cancers. Whereas many adult cancers are characterized by a high number of somatic mutations, pediatric cancers typically have few somatic mutations but a higher prevalence of germline alterations in cancer predisposition genes. Also noteworthy is the remarkable heterogeneity in the types of genetic alterations that likely drive the growth of pediatric cancers, including copy number alterations, gene fusions, enhancer hijacking events, and chromoplexy. Because most studies have genetically profiled pediatric cancers only at diagnosis, the mechanisms underlying tumor progression, therapy resistance, and metastasis remain poorly understood. We discuss evidence that points to a need for more integrative approaches aimed at identifying driver events in pediatric cancers at both diagnosis and relapse. We also provide an overview of key aspects of germline predisposition for cancer in this age group.
Collapse
Affiliation(s)
- E Alejandro Sweet-Cordero
- Department of Pediatrics, Division of Hematology and Oncology, University of California, San Francisco, CA 94158, USA.
| | - Jaclyn A Biegel
- Department of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, and Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA.
| |
Collapse
|
147
|
Integrated analysis of relapsed B-cell precursor Acute Lymphoblastic Leukemia identifies subtype-specific cytokine and metabolic signatures. Sci Rep 2019; 9:4188. [PMID: 30862934 PMCID: PMC6414622 DOI: 10.1038/s41598-019-40786-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/22/2019] [Indexed: 12/20/2022] Open
Abstract
Recent efforts reclassified B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) into more refined subtypes. Nevertheless, outcomes of relapsed BCP-ALL remain unsatisfactory, particularly in adult patients where the molecular basis of relapse is still poorly understood. To elucidate the evolution of relapse in BCP-ALL, we established a comprehensive multi-omics dataset including DNA-sequencing, RNA-sequencing, DNA methylation array and proteome MASS-spec data from matched diagnosis and relapse samples of BCP-ALL patients (n = 50) including the subtypes DUX4, Ph-like and two aneuploid subtypes. Relapse-specific alterations were enriched for chromatin modifiers, nucleotide and steroid metabolism including the novel candidates FPGS, AGBL and ZNF483. The proteome expression analysis unraveled deregulation of metabolic pathways at relapse including the key proteins G6PD, TKT, GPI and PGD. Moreover, we identified a novel relapse-specific gene signature specific for DUX4 BCP-ALL patients highlighting chemotaxis and cytokine environment as a possible driver event at relapse. This study presents novel insights at distinct molecular levels of relapsed BCP-ALL based on a comprehensive multi-omics integrated data set including a valuable proteomics data set. The relapse specific aberrations reveal metabolic signatures on genomic and proteomic levels in BCP-ALL relapse. Furthermore, the chemokine expression signature in DUX4 relapse underscores the distinct status of DUX4-fusion BCP-ALL.
Collapse
|
148
|
Li X, Thirumalai D. Share, but unequally: a plausible mechanism for emergence and maintenance of intratumour heterogeneity. J R Soc Interface 2019; 16:20180820. [PMID: 30958159 PMCID: PMC6364648 DOI: 10.1098/rsif.2018.0820] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/30/2018] [Indexed: 12/16/2022] Open
Abstract
Intratumour heterogeneity (ITH), referring to the coexistence of different cell subpopulations in a single tumour, has been a major puzzle in cancer research for almost half a century. The lack of understanding of the underlying mechanism of ITH hinders progress in developing effective therapies for cancers. Based on the findings in a recent quantitative experiment on pancreatic cancer, we developed a general evolutionary model for one type of cancer, accounting for interactions between different cell populations through paracrine or juxtacrine factors. We show that the emergence of a stable heterogeneous state in a tumour requires an unequal allocation of paracrine growth factors (public goods) between cells that produce them and those that merely consume them. Our model provides a quantitative explanation of recent in vitro experimental studies in pancreatic cancer in which insulin-like growth factor II (IGF-II) plays the role of public goods. The calculated phase diagrams as a function of exogenous resources and fraction of growth factor producing cells show ITH persists only in a narrow range of concentration of exogenous IGF-II. Remarkably, maintenance of ITH requires cooperation among tumour cell subpopulations in harsh conditions, specified by lack of exogenous IGF-II, whereas surplus exogenous IGF-II elicits competition. Our theory also quantitatively accounts for measured in vivo tumour growth in glioblastoma multiforme (GBM). The predictions for GBM tumour growth as a function of the fraction of tumour cells are amenable to experimental tests. The mechanism for ITH also provides hints for devising efficacious therapies.
Collapse
Affiliation(s)
- Xin Li
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - D. Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
149
|
Mutational dynamics of early and late relapsed childhood ALL: rapid clonal expansion and long-term dormancy. Blood Adv 2019; 2:177-188. [PMID: 29365312 DOI: 10.1182/bloodadvances.2017011510] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/29/2017] [Indexed: 12/18/2022] Open
Abstract
Childhood acute lymphoblastic leukemia (cALL) is the most frequent pediatric cancer. Refractory/relapsed cALL presents a survival rate of ∼45% and is still one of the leading causes of death by disease among children. Mechanisms, such as clonal competition and evolutionary adaptation, govern treatment resistance. However, the underlying clonal dynamics leading to multiple relapses and differentiating early (<36 months postdiagnosis) from late relapse events remain elusive. Here, we use an integrative genome-based analysis combined with serial sampling of relapsed tumors (from primary tumor to ≤4 relapse events) from 19 pre-B-cell cALL patients (8 early and 11 late relapses) to assess the fitness of somatic mutations and infer their ancestral relationships. By quantifying both general clonal dynamics and newly acquired subclonal diversity, we show that 2 distinct evolutionary patterns govern early and late relapse: on one hand, a highly dynamic pattern, sustained by a putative defect of DNA repair processes, illustrating the quick emergence of fitter clones, and on the other hand, a quasi-inert evolution pattern, suggesting the escape from dormancy of leukemia stem cells likely spared from initial cytoreductive therapy. These results offer new insights into cALL relapse mechanisms and highlight the pressing need for adapted treatment strategies to circumvent resistance mechanisms.
Collapse
|
150
|
Yilmaz M, Wang F, Loghavi S, Bueso-Ramos C, Gumbs C, Little L, Song X, Zhang J, Kadia T, Borthakur G, Jabbour E, Pemmaraju N, Short N, Garcia-Manero G, Estrov Z, Kantarjian H, Futreal A, Takahashi K, Ravandi F. Late relapse in acute myeloid leukemia (AML): clonal evolution or therapy-related leukemia? Blood Cancer J 2019; 9:7. [PMID: 30651532 PMCID: PMC6335405 DOI: 10.1038/s41408-019-0170-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/27/2018] [Indexed: 11/30/2022] Open
Abstract
Late relapse, defined as relapse arising after at least 5 years of remission, is rare and occurs in 1–3% of patients with acute myeloid leukemia (AML). The underlying mechanisms of late relapse remain poorly understood. We identified patients with AML who achieved remission with standard induction chemotherapy and relapsed after at least five years of remission (n = 15). Whole exome sequencing was performed in available bone marrow samples obtained at diagnosis (n = 10), remission (n = 6), and first relapse (n = 10). A total of 41 driver mutations were identified, of which 11 were primary tumor-specific, 17 relapse-specific, and 13 shared (detected both in primary and relapsed tumor samples). We demonstrated that 12 of 13 shared mutations were in epigenetic modifier and spliceosome genes. Longitudinal genomic characterization revealed that in eight of 10 patients the founder leukemic clone persisted after chemotherapy and established the basis of relapse years later. Understanding the mechanisms of such quiescence in leukemic cells may help designing future strategies aimed at increasing remission duration in patients with AML.
Collapse
Affiliation(s)
- Musa Yilmaz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feng Wang
- Department of Genomics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Curtis Gumbs
- Department of Genomics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Latasha Little
- Department of Genomics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Department of Genomics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|