101
|
Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone. ISME JOURNAL 2015; 9:2682-96. [PMID: 25848875 DOI: 10.1038/ismej.2015.44] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/11/2015] [Accepted: 02/26/2015] [Indexed: 02/01/2023]
Abstract
The genetic composition of marine microbial communities varies at the microscale between particle-associated (PA; >1.6 μm) and free-living (FL; 0.2-1.6 μm) niches. It remains unclear, however, how metabolic activities differ between PA and FL fractions. We combined rate measurements with metatranscriptomics to quantify PA and FL microbial activity in the oxygen minimum zone (OMZ) of the Eastern Tropical North Pacific, focusing on dissimilatory processes of the nitrogen (N) cycle. Bacterial gene counts were 8- to 15-fold higher in the FL compared with the PA fraction. However, rates of all measured N cycle processes, excluding ammonia oxidation, declined significantly following particle (>1.6 μm) removal. Without particles, rates of nitrate reduction to nitrite (1.5-9.4nMNd(-1)) fell to zero and N2 production by denitrification (0.5-1.7nMNd(-1)) and anammox (0.3-1.9nMNd(-1)) declined by 53-85%. The proportional representation of major microbial taxa and N cycle gene transcripts in metatranscriptomes followed fraction-specific trends. Transcripts encoding nitrate reductase were uniform among PA and FL fractions, whereas anammox-associated transcripts were proportionately enriched up to 15-fold in the FL fraction. In contrast, transcripts encoding enzymes for N2O and N2 production by denitrification were enriched up to 28-fold in PA samples. These patterns suggest that the majority of N cycle activity, excluding N2O and N2 production by denitrification, is confined to a FL majority that is critically dependent on access to particles, likely as a source of organic carbon and inorganic N. Variable particle distributions may drive heterogeneity in N cycle activity and gene expression in OMZs.
Collapse
|
102
|
Zhang J, Wang LH, Yang JC, Liu H, Dai JL. Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 508:29-36. [PMID: 25437950 DOI: 10.1016/j.scitotenv.2014.11.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
The toxicities and effects of various metals and metalloids would be misunderstood by health risks based on their concentrations, when their effects on bacterial and ecological functions in soil are disregarded. This study investigated the concentrations and health risks of heavy metals, soil properties, and bacterial 16S rRNA gene in soil around the largest fresh water lake in North China. The health risks posed by Mn and As were higher than those of other heavy metals and metalloids. Mn, As, and C were significantly correlated with the bacterial species richness indices. According to canonical correspondence analysis, species richness was mainly affected by Mn, Pb, As, and organic matter, while species evenness was mainly affected by Mn, pH, N, C, Cd, and Pb. Covariable analysis confirmed that most effects of metals on bacterial diversity were attributed to the combined effects of metals and soil properties rather than single metals. Most bacteria detected in (almost) all soil were identified as Gammaproteobacteria. Specific bacteria belonging to Proteobacteria (Gamma, Alpha, Epsilon, and Beta), Firmicutes, Actinobacteria, Cyanobacterium, Nitrospirae, and Fusobacterium were only identified in soil with high concentrations of Mn, Pb, and As, indicating their remediation potency. Bacterial abilities and mechanisms in pollutant resistance and element cycling in the region were also discussed.
Collapse
Affiliation(s)
- Juan Zhang
- Environmental Research Institute, Shandong University, Jinan 250100, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Li-Hong Wang
- Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan 250014, China
| | - Jun-Cheng Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hui Liu
- Environmental Research Institute, Shandong University, Jinan 250100, China
| | - Jiu-Lan Dai
- Environmental Research Institute, Shandong University, Jinan 250100, China.
| |
Collapse
|
103
|
Spatially resolved sampling reveals dynamic microbial communities in rising hydrothermal plumes across a back-arc basin. ISME JOURNAL 2014; 9:1434-45. [PMID: 25489728 DOI: 10.1038/ismej.2014.228] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 11/09/2022]
Abstract
Within hydrothermal plumes, chemosynthetic processes and microbe-mineral interactions drive primary productivity in deep-ocean food webs and may influence transport of elements such as iron. However, the source of microorganisms in plumes and the factors governing how these communities assemble are poorly understood, in part due to lack of data from early stages of plume formation. In this study, we examined microbial community composition of rising hydrothermal plumes from five vent fields along the Eastern Lau Spreading Center. Seafloor and plume microbial communities were significantly dissimilar and shared few phylotypes. Plume communities were highly similar to each other with significant differences in community membership only between Kilo Moana and Mariner, two vents that are separated by extremes in depth, latitude and geochemistry. Systematic sampling of waters surrounding the vents revealed that species richness and phylogenetic diversity was typically highest near the vent orifice, implying mixing of microbial communities from the surrounding habitats. Above-plume background communities were primarily dominated by SAR11, SAR324 and MG-I Archaea, while SUP05, Sulfurovum, Sulfurimonas, SAR324 and Alteromonas were abundant in plume and near-bottom background communities. These results show that the ubiquitous water-column microorganisms populate plume communities, and that the composition of background seawater exerts primary influence on plume community composition, with secondary influence from geochemical and/or physical properties of vents. Many of these pervasive deep-ocean organisms are capable of lithotrophy, suggesting that they are poised to use inorganic electron donors encountered in hydrothermal plumes.
Collapse
|
104
|
Fierer N, Barberán A, Laughlin DC. Seeing the forest for the genes: using metagenomics to infer the aggregated traits of microbial communities. Front Microbiol 2014; 5:614. [PMID: 25429288 PMCID: PMC4228856 DOI: 10.3389/fmicb.2014.00614] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 10/28/2014] [Indexed: 02/03/2023] Open
Abstract
Most environments harbor large numbers of microbial taxa with ecologies that remain poorly described and characterizing the functional capabilities of whole communities remains a key challenge in microbial ecology. Shotgun metagenomic analyses are increasingly recognized as a powerful tool to understand community-level attributes. However, much of this data is under-utilized due, in part, to a lack of conceptual strategies for linking the metagenomic data to the most relevant community-level characteristics. Microbial ecologists could benefit by borrowing the concept of community-aggregated traits (CATs) from plant ecologists to glean more insight from the ever-increasing amount of metagenomic data being generated. CATs can be used to quantify the mean and variance of functional traits found in a given community. A CAT-based strategy will often yield far more useful information for predicting the functional attributes of diverse microbial communities and changes in those attributes than the more commonly used analytical strategies. A more careful consideration of what CATs to measure and how they can be quantified from metagenomic data, will help build a more integrated understanding of complex microbial communities.
Collapse
Affiliation(s)
- Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, CO, USA ; Department of Ecology and Evolutionary Biology, University of Colorado Boulder, CO, USA
| | - Albert Barberán
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, CO, USA
| | - Daniel C Laughlin
- Environmental Research Institute, School of Science, University of Waikato Hamilton, New Zealand
| |
Collapse
|
105
|
Wilbanks EG, Jaekel U, Salman V, Humphrey PT, Eisen JA, Facciotti MT, Buckley DH, Zinder SH, Druschel GK, Fike DA, Orphan VJ. Microscale sulfur cycling in the phototrophic pink berry consortia of the Sippewissett Salt Marsh. Environ Microbiol 2014; 16:3398-415. [PMID: 24428801 PMCID: PMC4262008 DOI: 10.1111/1462-2920.12388] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/30/2013] [Accepted: 01/05/2014] [Indexed: 11/27/2022]
Abstract
Microbial metabolism is the engine that drives global biogeochemical cycles, yet many key transformations are carried out by microbial consortia over short spatiotemporal scales that elude detection by traditional analytical approaches. We investigate syntrophic sulfur cycling in the 'pink berry' consortia of the Sippewissett Salt Marsh through an integrative study at the microbial scale. The pink berries are macroscopic, photosynthetic microbial aggregates composed primarily of two closely associated species: sulfide-oxidizing purple sulfur bacteria (PB-PSB1) and sulfate-reducing bacteria (PB-SRB1). Using metagenomic sequencing and (34) S-enriched sulfate stable isotope probing coupled with nanoSIMS, we demonstrate interspecies transfer of reduced sulfur metabolites from PB-SRB1 to PB-PSB1. The pink berries catalyse net sulfide oxidation and maintain internal sulfide concentrations of 0-500 μm. Sulfide within the berries, captured on silver wires and analysed using secondary ion mass spectrometer, increased in abundance towards the berry interior, while δ(34) S-sulfide decreased from 6‰ to -31‰ from the exterior to interior of the berry. These values correspond to sulfate-sulfide isotopic fractionations (15-53‰) consistent with either sulfate reduction or a mixture of reductive and oxidative metabolisms. Together this combined metagenomic and high-resolution isotopic analysis demonstrates active sulfur cycling at the microscale within well-structured macroscopic consortia consisting of sulfide-oxidizing anoxygenic phototrophs and sulfate-reducing bacteria.
Collapse
Affiliation(s)
- Elizabeth G Wilbanks
- Department of Department of Microbiology Graduate Group, University of CaliforniaDavis, CA, 95616, USA
| | - Ulrike Jaekel
- Department of Evolution and Ecology, University of CaliforniaDavis, CA, 95616, USA
- Department of Microbiology and Immunology, University of CaliforniaDavis, CA, 95616, USA
| | - Verena Salman
- Department of Biomedical Engineering, University of CaliforniaDavis, CA, 95616, USA
| | - Parris T Humphrey
- UC Davis Genome Center, University of CaliforniaDavis, CA, 95616, USA
| | - Jonathan A Eisen
- Arctic Technology, Shell Technology NorwayOslo, N-0277, Norway
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, 02138, USA
- Department of Marine Sciences, University of North Carolina at Chapel HillChapel Hill, NC, 27599, USA
| | - Marc T Facciotti
- Department of Marine Sciences, University of North Carolina at Chapel HillChapel Hill, NC, 27599, USA
- Ecology and Evolutionary Biology, University of ArizonaTucson, AZ, 85721, USA
| | - Daniel H Buckley
- Crop and Soil Sciences, Cornell UniversityIthaca, NY, 14853, USA
| | - Stephen H Zinder
- Department of Microbiology, Cornell UniversityIthaca, NY, 14853, USA
| | - Gregory K Druschel
- Department of Earth Sciences, Indiana University-Purdue UniversityIndianapolis, IN, 46202, USA
| | - David A Fike
- Department of Earth and Planetary Sciences, Washington UniversitySt. Louis, MO, 63130, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of TechnologyPasadena, CA, 91125, USA
| |
Collapse
|
106
|
Dmytrenko O, Russell SL, Loo WT, Fontanez KM, Liao L, Roeselers G, Sharma R, Stewart FJ, Newton ILG, Woyke T, Wu D, Lang JM, Eisen JA, Cavanaugh CM. The genome of the intracellular bacterium of the coastal bivalve, Solemya velum: a blueprint for thriving in and out of symbiosis. BMC Genomics 2014; 15:924. [PMID: 25342549 PMCID: PMC4287430 DOI: 10.1186/1471-2164-15-924] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Symbioses between chemoautotrophic bacteria and marine invertebrates are rare examples of living systems that are virtually independent of photosynthetic primary production. These associations have evolved multiple times in marine habitats, such as deep-sea hydrothermal vents and reducing sediments, characterized by steep gradients of oxygen and reduced chemicals. Due to difficulties associated with maintaining these symbioses in the laboratory and culturing the symbiotic bacteria, studies of chemosynthetic symbioses rely heavily on culture independent methods. The symbiosis between the coastal bivalve, Solemya velum, and its intracellular symbiont is a model for chemosynthetic symbioses given its accessibility in intertidal environments and the ability to maintain it under laboratory conditions. To better understand this symbiosis, the genome of the S. velum endosymbiont was sequenced. RESULTS Relative to the genomes of obligate symbiotic bacteria, which commonly undergo erosion and reduction, the S. velum symbiont genome was large (2.7 Mb), GC-rich (51%), and contained a large number (78) of mobile genetic elements. Comparative genomics identified sets of genes specific to the chemosynthetic lifestyle and necessary to sustain the symbiosis. In addition, a number of inferred metabolic pathways and cellular processes, including heterotrophy, branched electron transport, and motility, suggested that besides the ability to function as an endosymbiont, the bacterium may have the capacity to live outside the host. CONCLUSIONS The physiological dexterity indicated by the genome substantially improves our understanding of the genetic and metabolic capabilities of the S. velum symbiont and the breadth of niches the partners may inhabit during their lifecycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Jonathan A Eisen
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, 4081 Biological Laboratories, Cambridge, MA 02138, USA.
| | | |
Collapse
|
107
|
Dupont CL, McCrow JP, Valas R, Moustafa A, Walworth N, Goodenough U, Roth R, Hogle SL, Bai J, Johnson ZI, Mann E, Palenik B, Barbeau KA, Venter JC, Allen AE. Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities. ISME JOURNAL 2014; 9:1076-92. [PMID: 25333462 PMCID: PMC4410273 DOI: 10.1038/ismej.2014.198] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/20/2014] [Accepted: 09/01/2014] [Indexed: 12/16/2022]
Abstract
Transitions in community genomic features and biogeochemical processes were examined in surface and subsurface chlorophyll maximum (SCM) microbial communities across a trophic gradient from mesotrophic waters near San Diego, California to the oligotrophic Pacific. Transect end points contrasted in thermocline depth, rates of nitrogen and CO2 uptake, new production and SCM light intensity. Relative to surface waters, bacterial SCM communities displayed greater genetic diversity and enrichment in putative sulfur oxidizers, multiple actinomycetes, low-light-adapted Prochlorococcus and cell-associated viruses. Metagenomic coverage was not correlated with transcriptional activity for several key taxa within Bacteria. Low-light-adapted Prochlorococcus, Synechococcus, and low abundance gamma-proteobacteria enriched in the>3.0-μm size fraction contributed disproportionally to global transcription. The abundance of these groups also correlated with community functions, such as primary production or nitrate uptake. In contrast, many of the most abundant bacterioplankton, including SAR11, SAR86, SAR112 and high-light-adapted Prochlorococcus, exhibited low levels of transcriptional activity and were uncorrelated with rate processes. Eukaryotes such as Haptophytes and non-photosynthetic Aveolates were prevalent in surface samples while Mamielles and Pelagophytes dominated the SCM. Metatranscriptomes generated with ribosomal RNA-depleted mRNA (total mRNA) coupled to in vitro polyadenylation compared with polyA-enriched mRNA revealed a trade-off in detection eukaryotic organelle and eukaryotic nuclear origin transcripts, respectively. Gene expression profiles of SCM eukaryote populations, highly similar in sequence identity to the model pelagophyte Pelagomonas sp. CCMP1756, suggest that pelagophytes are responsible for a majority of nitrate assimilation within the SCM.
Collapse
Affiliation(s)
- Chris L Dupont
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - John P McCrow
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - Ruben Valas
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - Ahmed Moustafa
- Department of Biology and Biotechnology Graduate Program, American University in Cairo, New Cairo, Egypt
| | - Nathan Walworth
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA, USA
| | | | - Robyn Roth
- Department of Biology, Washington University, St Louis, MO, USA
| | - Shane L Hogle
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Jing Bai
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - Zackary I Johnson
- 1] Marine Laboratory, Nicholas School of the Environment, Beaufort, NC, USA [2] Biology Department, Duke University, Durham, NC, USA
| | | | - Brian Palenik
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Katherine A Barbeau
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - J Craig Venter
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA, USA
| | - Andrew E Allen
- 1] Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA, USA [2] Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
108
|
Abstract
Viruses can swap DNA between bacteria that live in regions of the oceans with little or no oxygen.
Collapse
Affiliation(s)
- Jillian Petersen
- Jillian Petersen is in the Symbiosis Department, Max Planck Institute of Marine Microbiology, Bremen, Germany
| | - Nicole Dubilier
- Nicole Dubilier is in the Symbiosis Department, Max Planck Institute of Marine Microbiology, Bremen, Germany
| |
Collapse
|
109
|
Kubo K, Kojima H, Fukui M. Vertical distribution of major sulfate-reducing bacteria in a shallow eutrophic meromictic lake. Syst Appl Microbiol 2014; 37:510-9. [DOI: 10.1016/j.syapm.2014.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 11/26/2022]
|
110
|
Effects of ecological engineered oxygenation on the bacterial community structure in an anoxic fjord in western Sweden. ISME JOURNAL 2014; 9:656-69. [PMID: 25238400 DOI: 10.1038/ismej.2014.172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 08/05/2014] [Accepted: 08/15/2014] [Indexed: 11/09/2022]
Abstract
Oxygen-depleted bodies of water are becoming increasingly common in marine ecosystems. Solutions to reverse this trend are needed and under development, for example, by the Baltic deep-water OXygenation (BOX) project. In the framework of this project, the Swedish Byfjord was chosen for a pilot study, investigating the effects of an engineered oxygenation on long-term anoxic bottom waters. The strong stratification of the water column of the Byfjord was broken up by pumping surface water into the deeper layers, triggering several inflows of oxygen-rich water and increasing oxygen levels in the lower water column and the benthic zone up to 110 μmol l(-1).We used molecular ecologic methods to study changes in bacterial community structure in response to the oxygenation in the Byfjord. Water column samples from before, during and after the oxygenation as well as from two nearby control fjords were analyzed. Our results showed a strong shift in bacterial community composition when the bottom water in the Byfjord became oxic. Initially dominant indicator species for oxygen minimum zones such as members of the SUP05 clade declined in abundance during the oxygenation event and nearly vanished after the oxygenation was accomplished. In contrast, aerobic species like SAR11 that initially were restricted to surface waters could later be detected deep into the water column. Overall, the bacterial community in the formerly anoxic bottom waters changed to a community structure similar to those found in oxic waters, showing that an engineered oxygenation of a large body of anoxic marine water is possible and emulates that of a natural oxygenation event.
Collapse
|
111
|
Naim MA, Morillo JA, Sørensen SJ, Waleed AAS, Smidt H, Sipkema D. Host-specific microbial communities in three sympatric North Sea sponges. FEMS Microbiol Ecol 2014; 90:390-403. [DOI: 10.1111/1574-6941.12400] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/24/2014] [Accepted: 07/24/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Mohd Azrul Naim
- Laboratory of Microbiology; Wageningen University; Wageningen The Netherlands
- Institute of Oceanography and Maritime Studies; International Islamic University Malaysia; Jalan Istana, Kuantan Pahang Malaysia
| | - Jose A. Morillo
- Laboratory of Microbiology; Wageningen University; Wageningen The Netherlands
- Institute of Water Research, Department of Microbiology; University of Granada; Granada Spain
| | - Søren J. Sørensen
- Molecular Microbial Ecology Group; University of Copenhagen; Copenhagen Denmark
| | - Abu Al-Soud Waleed
- Molecular Microbial Ecology Group; University of Copenhagen; Copenhagen Denmark
| | - Hauke Smidt
- Laboratory of Microbiology; Wageningen University; Wageningen The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology; Wageningen University; Wageningen The Netherlands
| |
Collapse
|
112
|
Placing an upper limit on cryptic marine sulphur cycling. Nature 2014; 513:530-3. [PMID: 25209667 DOI: 10.1038/nature13698] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 07/16/2014] [Indexed: 12/22/2022]
Abstract
A quantitative understanding of sources and sinks of fixed nitrogen in low-oxygen waters is required to explain the role of oxygen-minimum zones (OMZs) in controlling the fixed nitrogen inventory of the global ocean. Apparent imbalances in geochemical nitrogen budgets have spurred numerous studies to measure the contributions of heterotrophic and autotrophic N2-producing metabolisms (denitrification and anaerobic ammonia oxidation, respectively). Recently, 'cryptic' sulphur cycling was proposed as a partial solution to the fundamental biogeochemical problem of closing marine fixed-nitrogen budgets in intensely oxygen-deficient regions. The degree to which the cryptic sulphur cycle can fuel a loss of fixed nitrogen in the modern ocean requires the quantification of sulphur recycling in OMZ settings. Here we provide a new constraint for OMZ sulphate reduction based on isotopic profiles of oxygen ((18)O/(16)O) and sulphur ((33)S/(32)S, (34)S/(32)S) in seawater sulphate through oxygenated open-ocean and OMZ-bearing water columns. When coupled with observations and models of sulphate isotope dynamics and data-constrained model estimates of OMZ water-mass residence time, we find that previous estimates for sulphur-driven remineralization and loss of fixed nitrogen from the oceans are near the upper limit for what is possible given in situ sulphate isotope data.
Collapse
|
113
|
Roux S, Hawley AK, Torres Beltran M, Scofield M, Schwientek P, Stepanauskas R, Woyke T, Hallam SJ, Sullivan MB. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife 2014; 3:e03125. [PMID: 25171894 PMCID: PMC4164917 DOI: 10.7554/elife.03125] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/27/2014] [Indexed: 11/13/2022] Open
Abstract
Viruses modulate microbial communities and alter ecosystem functions. However, due to cultivation bottlenecks, specific virus-host interaction dynamics remain cryptic. In this study, we examined 127 single-cell amplified genomes (SAGs) from uncultivated SUP05 bacteria isolated from a model marine oxygen minimum zone (OMZ) to identify 69 viral contigs representing five new genera within dsDNA Caudovirales and ssDNA Microviridae. Infection frequencies suggest that ∼1/3 of SUP05 bacteria is viral-infected, with higher infection frequency where oxygen-deficiency was most severe. Observed Microviridae clonality suggests recovery of bloom-terminating viruses, while systematic co-infection between dsDNA and ssDNA viruses posits previously unrecognized cooperation modes. Analyses of 186 microbial and viral metagenomes revealed that SUP05 viruses persisted for years, but remained endemic to the OMZ. Finally, identification of virus-encoded dissimilatory sulfite reductase suggests SUP05 viruses reprogram their host's energy metabolism. Together, these results demonstrate closely coupled SUP05 virus-host co-evolutionary dynamics with the potential to modulate biogeochemical cycling in climate-critical and expanding OMZs.
Collapse
Affiliation(s)
- Simon Roux
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
| | - Alyse K Hawley
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Monica Torres Beltran
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Melanie Scofield
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Patrick Schwientek
- U.S Department of Energy Joint Genome Institute, Walnut Creek, United States
| | | | - Tanja Woyke
- U.S Department of Energy Joint Genome Institute, Walnut Creek, United States
| | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, Canada
| | - Matthew B Sullivan
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
| |
Collapse
|
114
|
Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes. Proc Natl Acad Sci U S A 2014; 111:11395-400. [PMID: 25053816 DOI: 10.1073/pnas.1322132111] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Marine oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified waters. Currently OMZs are expanding due to global climate change with resulting feedback on marine ecosystem function. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally stratified fjord to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components for nitrification, anaerobic ammonium oxidation (anammox), denitrification, and inorganic carbon fixation were differentially expressed across the redoxcline and covaried with distribution patterns of ubiquitous OMZ microbes including Thaumarchaeota, Nitrospina, Nitrospira, Planctomycetes, and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters, and denitrification, sulfur oxidation, and inorganic carbon fixation pathways affiliated with the SUP05 group of nitrate-reducing sulfur oxidizers dominated suboxic and anoxic waters. Nitrifier nitrite oxidation and anammox pathways affiliated with Nirospina, Nitrospira, and Planctomycetes, respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The numerical abundance of SUP05 proteins mediating inorganic carbon fixation under anoxic conditions suggests that SUP05 will become increasingly important in global ocean carbon and nutrient cycling as OMZs expand.
Collapse
|
115
|
Jensen S, Lynch MDJ, Ray JL, Neufeld JD, Hovland M. Norwegian deep-water coral reefs: cultivation and molecular analysis of planktonic microbial communities. Environ Microbiol 2014; 17:3597-609. [DOI: 10.1111/1462-2920.12531] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Sigmund Jensen
- Department of Biology; University of Bergen; Bergen Norway
- Institute of Marine Research; Bergen Norway
| | | | | | - Josh D. Neufeld
- Department of Biology; University of Waterloo; Waterloo Ontario Canada
| | - Martin Hovland
- Centre for Geobiology; University of Bergen; Bergen Norway
- Ambio Tech Team; Stavanger Norway
| |
Collapse
|
116
|
Watanabe T, Kojima H, Fukui M. Complete genomes of freshwater sulfur oxidizers Sulfuricella denitrificans skB26 and Sulfuritalea hydrogenivorans sk43H: genetic insights into the sulfur oxidation pathway of betaproteobacteria. Syst Appl Microbiol 2014; 37:387-95. [PMID: 25017294 DOI: 10.1016/j.syapm.2014.05.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/02/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
Despite detailed studies of marine sulfur-oxidizing bacteria, our knowledge concerning their counterparts in freshwater lake ecosystems is limited. Genome sequencing of the freshwater sulfur-oxidizing betaproteobacteria Sulfuricella denitrificans skB26 and Sulfuritalea hydrogenivorans sk43H have been completed. Strain skB26 possessed a circular plasmid of 86.6-kbp in addition to its chromosome, and an approximate 18-kbp region of the plasmid was occupied by an arxA-like operon, encoding a new clade of anaerobic arsenite oxidase. Multilocus sequence analysis showed that strain skB26 could not be assigned to any existing order; thus a novel order, Sulfuricellales, is proposed. The genomes of strains skB26 and sk43H were examined, focusing on the composition and the phylogeny of genes involved in the oxidation of inorganic sulfur compounds. Strains skB26 and sk43H shared a common pathway, which consisted of Sqr, SoxEF, SoxXYZAB, Dsr proteins, AprBA, Sat, and SoeABC. Comparative genomics of betaproteobacterial sulfur oxidizers showed that this pathway was also shared by the freshwater sulfur oxidizers Thiobacillus denitrificans and Sideroxydans lithotrophicus. It also revealed the presence of a conserved gene cluster, which was located immediately upstream of the betaproteobacterial dsr operon.
Collapse
Affiliation(s)
- Tomohiro Watanabe
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.
| | - Hisaya Kojima
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Manabu Fukui
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
117
|
Pachiadaki MG, Yakimov MM, LaCono V, Leadbetter E, Edgcomb V. Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin. ISME JOURNAL 2014; 8:2478-89. [PMID: 24950109 DOI: 10.1038/ismej.2014.100] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/30/2014] [Accepted: 05/11/2014] [Indexed: 11/09/2022]
Abstract
Deep-sea hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea are considered some of the most hostile environments on Earth. Little is known about the biochemical adaptations of microorganisms living in these habitats. This first metatranscriptome analysis of DHAB samples provides significant insights into shifts in metabolic activities of microorganisms as physicochemical conditions change from deep Mediterranean sea water to brine. The analysis of Thetis DHAB interface indicates that sulfate reduction occurs in both the upper (7.0-16.3% salinity) and lower (21.4-27.6%) halocline, but that expression of dissimilatory sulfate reductase is reduced in the more hypersaline lower halocline. High dark-carbon assimilation rates in the upper interface coincided with high abundance of transcripts for ribulose 1,5-bisphosphate carboxylase affiliated to sulfur-oxidizing bacteria. In the lower interface, increased expression of genes associated with methane metabolism and osmoregulation is noted. In addition, in this layer, nitrogenase transcripts affiliated to uncultivated putative methanotrophic archaea were detected, implying nitrogen fixation in this anoxic habitat, and providing evidence of linked carbon, nitrogen and sulfur cycles.
Collapse
Affiliation(s)
| | | | - Violetta LaCono
- CNR-Institute for Coastal Marine Environment, Messina, Italy
| | | | | |
Collapse
|
118
|
Tseng CH, Tang SL. Marine microbial metagenomics: from individual to the environment. Int J Mol Sci 2014; 15:8878-92. [PMID: 24857918 PMCID: PMC4057765 DOI: 10.3390/ijms15058878] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/29/2014] [Accepted: 05/08/2014] [Indexed: 01/12/2023] Open
Abstract
Microbes are the most abundant biological entities on earth, therefore, studying them is important for understanding their roles in global ecology. The science of metagenomics is a relatively young field of research that has enjoyed significant effort since its inception in 1998. Studies using next-generation sequencing techniques on single genomes and collections of genomes have not only led to novel insights into microbial genomics, but also revealed a close association between environmental niches and genome evolution. Herein, we review studies investigating microbial genomics (largely in the marine ecosystem) at the individual and community levels to summarize our current understanding of microbial ecology in the environment.
Collapse
Affiliation(s)
- Ching-Hung Tseng
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei 11529, Taiwan.
| | - Sen-Lin Tang
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
119
|
Hanke A, Hamann E, Sharma R, Geelhoed JS, Hargesheimer T, Kraft B, Meyer V, Lenk S, Osmers H, Wu R, Makinwa K, Hettich RL, Banfield JF, Tegetmeyer HE, Strous M. Recoding of the stop codon UGA to glycine by a BD1-5/SN-2 bacterium and niche partitioning between Alpha- and Gammaproteobacteria in a tidal sediment microbial community naturally selected in a laboratory chemostat. Front Microbiol 2014; 5:231. [PMID: 24904545 PMCID: PMC4032931 DOI: 10.3389/fmicb.2014.00231] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/30/2014] [Indexed: 11/13/2022] Open
Abstract
Sandy coastal sediments are global hotspots for microbial mineralization of organic matter and denitrification. These sediments are characterized by advective porewater flow, tidal cycling and an active and complex microbial community. Metagenomic sequencing of microbial communities sampled from such sediments showed that potential sulfur oxidizing Gammaproteobacteria and members of the enigmatic BD1-5/SN-2 candidate phylum were abundant in situ (>10% and ~2% respectively). By mimicking the dynamic oxic/anoxic environmental conditions of the sediment in a laboratory chemostat, a simplified microbial community was selected from the more complex inoculum. Metagenomics, proteomics and fluorescence in situ hybridization showed that this simplified community contained both a potential sulfur oxidizing Gammaproteobacteria (at 24 ± 2% abundance) and a member of the BD1-5/SN-2 candidate phylum (at 7 ± 6% abundance). Despite the abundant supply of organic substrates to the chemostat, proteomic analysis suggested that the selected gammaproteobacterium grew partially autotrophically and performed hydrogen/formate oxidation. The enrichment of a member of the BD1-5/SN-2 candidate phylum enabled, for the first time, direct microscopic observation by fluorescent in situ hybridization and the experimental validation of the previously predicted translation of the stop codon UGA into glycine.
Collapse
Affiliation(s)
- Anna Hanke
- Microbial Fitness Group, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Emmo Hamann
- Microbial Fitness Group, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Ritin Sharma
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee Knoxville, TN, USA ; Chemical Science Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Jeanine S Geelhoed
- Microbial Fitness Group, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Theresa Hargesheimer
- Microbial Fitness Group, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Beate Kraft
- Microbial Fitness Group, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Volker Meyer
- Microbial Fitness Group, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Sabine Lenk
- Microbial Fitness Group, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Harald Osmers
- Microbial Fitness Group, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Rong Wu
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology Delft, Netherlands
| | - Kofi Makinwa
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology Delft, Netherlands
| | - Robert L Hettich
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee Knoxville, TN, USA ; Chemical Science Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, Department of Environmental Science, Policy, and Management, University of California Berkeley, CA, USA
| | - Halina E Tegetmeyer
- Microbial Fitness Group, Max Planck Institute for Marine Microbiology Bremen, Germany ; Center for Biotechnology, University of Bielefeld Bielefeld, Germany
| | - Marc Strous
- Microbial Fitness Group, Max Planck Institute for Marine Microbiology Bremen, Germany ; Center for Biotechnology, University of Bielefeld Bielefeld, Germany ; Department of Geoscience, University of Calgary Calgary, AB, Canada
| |
Collapse
|
120
|
Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ. Sulfur oxidation genes in diverse deep-sea viruses. Science 2014; 344:757-60. [PMID: 24789974 DOI: 10.1126/science.1252229] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Viruses are the most abundant biological entities in the oceans and a pervasive cause of mortality of microorganisms that drive biogeochemical cycles. Although the ecological and evolutionary effects of viruses on marine phototrophs are well recognized, little is known about their impact on ubiquitous marine lithotrophs. Here, we report 18 genome sequences of double-stranded DNA viruses that putatively infect widespread sulfur-oxidizing bacteria. Fifteen of these viral genomes contain auxiliary metabolic genes for the α and γ subunits of reverse dissimilatory sulfite reductase (rdsr). This enzyme oxidizes elemental sulfur, which is abundant in the hydrothermal plumes studied here. Our findings implicate viruses as a key agent in the sulfur cycle and as a reservoir of genetic diversity for bacterial enzymes that underpin chemosynthesis in the deep oceans.
Collapse
Affiliation(s)
- Karthik Anantharaman
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melissa B Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - John A Breier
- Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Kathleen A Wendt
- Department of Soil, Water, and Climate, University of Minnesota-Twin Cities, St. Paul, MN 55108, USA
| | - Brandy M Toner
- Department of Soil, Water, and Climate, University of Minnesota-Twin Cities, St. Paul, MN 55108, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA. Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA. Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
121
|
D'Ambrosio L, Ziervogel K, MacGregor B, Teske A, Arnosti C. Composition and enzymatic function of particle-associated and free-living bacteria: a coastal/offshore comparison. ISME JOURNAL 2014; 8:2167-79. [PMID: 24763371 DOI: 10.1038/ismej.2014.67] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 03/19/2014] [Accepted: 03/23/2014] [Indexed: 11/09/2022]
Abstract
We compared the function and composition of free-living and particle-associated microbial communities at an inshore site in coastal North Carolina and across a depth profile on the Blake Ridge (offshore). Hydrolysis rates of six different polysaccharide substrates were compared for particle-associated (>3 μm) and free-living (<3 to 0.2 μm) microbial communities. The 16S rRNA- and rDNA-based clone libraries were produced from the same filters used to measure hydrolysis rates. Particle-associated and free-living communities resembled one another; they also showed similar enzymatic hydrolysis rates and substrate preferences. All six polysaccharides were hydrolyzed inshore. Offshore, only a subset was hydrolyzed in surface water and at depths of 146 and 505 m; just three polysaccharides were hydrolyzed at 505 m. The spectrum of bacterial taxa changed more subtly between inshore and offshore surface waters, but changed greatly with depth offshore. None of the OTUs occurred at all sites: 27 out of the 28 major OTUs defined in this study were found either exclusively in a surface or in a mid-depth/bottom water sample. This distinction was evident with both 16S rRNA and rDNA analyses. At the offshore site, despite the low community overlap, bacterial communities maintained a degree of functional redundancy on the whole bacterial community level with respect to hydrolysis of high-molecular-weight substrates.
Collapse
Affiliation(s)
- Lindsay D'Ambrosio
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kai Ziervogel
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Barbara MacGregor
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carol Arnosti
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
122
|
Parsons RJ, Nelson CE, Carlson CA, Denman CC, Andersson AJ, Kledzik AL, Vergin KL, McNally SP, Treusch AH, Giovannoni SJ. Marine bacterioplankton community turnover within seasonally hypoxic waters of a subtropical sound: Devil's Hole, Bermuda. Environ Microbiol 2014; 17:3481-99. [DOI: 10.1111/1462-2920.12445] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/23/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Rachel J. Parsons
- Bermuda Institute for Ocean Science (BIOS); St. George's GE 01 Bermuda
| | - Craig E. Nelson
- Department of Ecology, Evolution and Marine Biology; Marine Science Institute; University of California; Santa Barbara CA USA
- Center for Microbial Oceanography: Research and Education; Department of Oceanography; University of Hawai‘i at Mānoa; Honolulu HI USA
| | - Craig A. Carlson
- Bermuda Institute for Ocean Science (BIOS); St. George's GE 01 Bermuda
- Department of Ecology, Evolution and Marine Biology; Marine Science Institute; University of California; Santa Barbara CA USA
| | - Carmen C. Denman
- Department of Microbiology; Oregon State University; Corvallis OR USA
- London School of Hygiene and Tropical Medicine; London UK
| | - Andreas J. Andersson
- Bermuda Institute for Ocean Science (BIOS); St. George's GE 01 Bermuda
- Scripps Institution of Oceanography; University of California San Diego; San Diego CA USA
| | - Andrew L. Kledzik
- Department of Marine and Environmental Systems; Florida Institute of Technology; Melbourne FL USA
| | - Kevin L. Vergin
- Department of Microbiology; Oregon State University; Corvallis OR USA
| | - Sean P. McNally
- Bermuda Institute for Ocean Science (BIOS); St. George's GE 01 Bermuda
- College of the Environment and Life Sciences; The University of Rhode Island; Kingston RI USA
| | - Alexander H. Treusch
- Department of Microbiology; Oregon State University; Corvallis OR USA
- Department of Biology; Nordic Centre for Earth Evolution; University of Southern Denmark; Odense Denmark
| | | |
Collapse
|
123
|
Williams TJ, Cavicchioli R. Marine metaproteomics: deciphering the microbial metabolic food web. Trends Microbiol 2014; 22:248-60. [PMID: 24731505 DOI: 10.1016/j.tim.2014.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022]
Abstract
Metaproteomics can be applied to marine systems to discover metabolic processes in the ocean. This review describes current breakthroughs regarding marine microbes in the areas of microbial procurement of nutrients, important and previously unrecognized metabolic processes, functional roles for proteins with previously unknown functions, and intricate networks of metabolic interactions between symbiotic microbes and their hosts. By recognizing that metaproteomics empowers our understanding of the roles that marine microbes play in global biogeochemical cycles, the achievements to date from this advancing field highlight the enormous potential that the future holds.
Collapse
Affiliation(s)
- Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
124
|
Kojima H, Watanabe T, Iwata T, Fukui M. Identification of major planktonic sulfur oxidizers in stratified freshwater lake. PLoS One 2014; 9:e93877. [PMID: 24695535 PMCID: PMC3973623 DOI: 10.1371/journal.pone.0093877] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/10/2014] [Indexed: 11/29/2022] Open
Abstract
Planktonic sulfur oxidizers are important constituents of ecosystems in stratified water bodies, and contribute to sulfide detoxification. In contrast to marine environments, taxonomic identities of major planktonic sulfur oxidizers in freshwater lakes still remain largely unknown. Bacterioplankton community structure was analyzed in a stratified freshwater lake, Lake Mizugaki in Japan. In the clone libraries of 16S rRNA gene, clones very closely related to a sulfur oxidizer isolated from this lake, Sulfuritalea hydrogenivorans, were detected in deep anoxic water, and occupied up to 12.5% in each library of different water depth. Assemblages of planktonic sulfur oxidizers were specifically analyzed by constructing clone libraries of genes involved in sulfur oxidation, aprA, dsrA, soxB and sqr. In the libraries, clones related to betaproteobacteria were detected with high frequencies, including the close relatives of Sulfuritalea hydrogenivorans.
Collapse
Affiliation(s)
- Hisaya Kojima
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- * E-mail:
| | - Tomohiro Watanabe
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Tomoya Iwata
- Department of Environmental Sciences, University of Yamanashi, Kofu, Japan
| | - Manabu Fukui
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
125
|
Brown MV, Ostrowski M, Grzymski JJ, Lauro FM. A trait based perspective on the biogeography of common and abundant marine bacterioplankton clades. Mar Genomics 2014; 15:17-28. [PMID: 24662471 DOI: 10.1016/j.margen.2014.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/08/2014] [Accepted: 03/08/2014] [Indexed: 11/26/2022]
Abstract
Marine microbial communities provide much of the energy upon which all higher trophic levels depend, particularly in open-ocean and oligotrophic systems, and play a pivotal role in biogeochemical cycling. How and why species are distributed in the global oceans, and whether net ecosystem function can be accurately predicted from community composition are fundamental questions for marine scientists. Many of the most abundant clades of marine bacteria, including the Prochlorococcus, Synechococcus, SAR11, SAR86 and Roseobacter, have a very broad, if not a cosmopolitan distribution. However this is not reflected in an underlying genetic identity. Rather, widespread distribution in these organisms is achieved by the existence of closely related but discrete ecotypes that display niche adaptations. Closely related ecotypes display specific nutritional or energy generating mechanisms and are adapted to different physical parameters including temperature, salinity, and hydrostatic pressure. Furthermore, biotic phenomena such as selective grazing and viral loss contribute to the success or failure of ecotypes allowing some to compete effectively in particular marine provinces but not in others. An additional layer of complexity is added by ocean currents and hydrodynamic specificity of water body masses that bound microbial dispersal and immigration. These vary in space and time with respect to intensity and direction, making the definition of large biogeographic provinces problematic. A deterministic theory aimed at understanding how all these factors shape microbial life in the oceans can only proceed through analysis of microbial traits, rather than pure phylogenetic assessments. Trait based approaches seek mechanistic explanations for the observed temporal and spatial patterns. This review will present successful recent advances in phylogenetic and trait based biogeographic analyses in some of the most abundant marine taxa.
Collapse
Affiliation(s)
- Mark V Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Evolution and Ecology Research Center, University of New South Wales, Sydney, Australia
| | - Martin Ostrowski
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Joseph J Grzymski
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, USA
| | - Federico M Lauro
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
126
|
Gene-centric approach to integrating environmental genomics and biogeochemical models. Proc Natl Acad Sci U S A 2014; 111:1879-84. [PMID: 24449851 DOI: 10.1073/pnas.1313713111] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rapid advances in molecular microbial ecology have yielded an unprecedented amount of data about the evolutionary relationships and functional traits of microbial communities that regulate global geochemical cycles. Biogeochemical models, however, are trailing in the wake of the environmental genomics revolution, and such models rarely incorporate explicit representations of bacteria and archaea, nor are they compatible with nucleic acid or protein sequence data. Here, we present a functional gene-based framework for describing microbial communities in biogeochemical models by incorporating genomics data to provide predictions that are readily testable. To demonstrate the approach in practice, nitrogen cycling in the Arabian Sea oxygen minimum zone (OMZ) was modeled to examine key questions about cryptic sulfur cycling and dinitrogen production pathways in OMZs. Simulations support previous assertions that denitrification dominates over anammox in the central Arabian Sea, which has important implications for the loss of fixed nitrogen from the oceans. Furthermore, cryptic sulfur cycling was shown to attenuate the secondary nitrite maximum often observed in OMZs owing to changes in the composition of the chemolithoautotrophic community and dominant metabolic pathways. Results underscore the need to explicitly integrate microbes into biogeochemical models rather than just the metabolisms they mediate. By directly linking geochemical dynamics to the genetic composition of microbial communities, the method provides a framework for achieving mechanistic insights into patterns and biogeochemical consequences of marine microbes. Such an approach is critical for informing our understanding of the key role microbes play in modulating Earth's biogeochemistry.
Collapse
|
127
|
Georges AA, El-Swais H, Craig SE, Li WKW, Walsh DA. Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton. ISME JOURNAL 2014; 8:1301-13. [PMID: 24401863 DOI: 10.1038/ismej.2013.234] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/26/2013] [Accepted: 11/23/2013] [Indexed: 11/09/2022]
Abstract
In this study, we used comparative metaproteomics to investigate the metabolic activity of microbial plankton inhabiting a seasonally hypoxic basin in the Northwest Atlantic Ocean (Bedford Basin). From winter to spring, we observed a seasonal increase in high-affinity membrane transport proteins involved in scavenging of organic substrates; Rhodobacterales transporters were strongly associated with the spring phytoplankton bloom, whereas SAR11 transporters were abundant in the underlying waters. A diverse array of transporters for organic compounds were similar to the SAR324 clade, revealing an active heterotrophic lifestyle in coastal waters. Proteins involved in methanol oxidation (from the OM43 clade) and carbon monoxide (from a wide variety of bacteria) were identified throughout Bedford Basin. Metabolic niche partitioning between the SUP05 and ARCTIC96BD-19 clades, which together comprise the Gamma-proteobacterial sulfur oxidizers group was apparent. ARCTIC96BD-19 proteins involved in the transport of organic compounds indicated that in productive coastal waters this lineage tends toward a heterotrophic metabolism. In contrast, the identification of sulfur oxidation proteins from SUP05 indicated the use of reduced sulfur as an energy source in hypoxic bottom water. We identified an abundance of Marine Group I Thaumarchaeota proteins in the hypoxic deep layer, including proteins for nitrification and carbon fixation. No transporters for organic compounds were detected among the thaumarchaeal proteins, suggesting a reliance on autotrophic carbon assimilation. In summary, our analyses revealed the spatiotemporal structure of numerous metabolic activities in the coastal ocean that are central to carbon, nitrogen and sulfur cycling in the sea.
Collapse
Affiliation(s)
- Anna A Georges
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Heba El-Swais
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Susanne E Craig
- Department of Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
| | - William K W Li
- Department of Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
| | - David A Walsh
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
128
|
Ganesh S, Parris DJ, DeLong EF, Stewart FJ. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. THE ISME JOURNAL 2014; 8:187-211. [PMID: 24030599 PMCID: PMC3869020 DOI: 10.1038/ismej.2013.144] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 01/27/2023]
Abstract
Marine oxygen minimum zones (OMZs) support diverse microbial communities with roles in major elemental cycles. It is unclear how the taxonomic composition and metabolism of OMZ microorganisms vary between particle-associated and free-living size fractions. We used amplicon (16S rRNA gene) and shotgun metagenome sequencing to compare microbial communities from large (>1.6 μm) and small (0.2-1.6 μm) filter size fractions along a depth gradient in the OMZ off Chile. Despite steep vertical redox gradients, size fraction was a significantly stronger predictor of community composition compared to depth. Phylogenetic diversity showed contrasting patterns, decreasing towards the anoxic OMZ core in the small size fraction, but exhibiting maximal values at these depths within the larger size fraction. Fraction-specific distributions were evident for key OMZ taxa, including anammox planctomycetes, whose coding sequences were enriched up to threefold in the 0.2-1.6 μm community. Functional gene composition also differed between fractions, with the >1.6 μm community significantly enriched in genes mediating social interactions, including motility, adhesion, cell-to-cell transfer, antibiotic resistance and mobile element activity. Prokaryotic transposase genes were three to six fold more abundant in this fraction, comprising up to 2% of protein-coding sequences, suggesting that particle surfaces may act as hotbeds for transposition-based genome changes in marine microbes. Genes for nitric and nitrous oxide reduction were also more abundant (three to seven fold) in the larger size fraction, suggesting microniche partitioning of key denitrification steps. These results highlight an important role for surface attachment in shaping community metabolic potential and genome content in OMZ microorganisms.
Collapse
Affiliation(s)
- Sangita Ganesh
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Darren J Parris
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Edward F DeLong
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Parsons Laboratory 48, Cambridge, MA, USA
- Center for Microbial Ecology: Research and Education, Honolulu, Hawaii, USA
| | - Frank J Stewart
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
129
|
Beam JP, Jay ZJ, Kozubal MA, Inskeep WP. Niche specialization of novel Thaumarchaeota to oxic and hypoxic acidic geothermal springs of Yellowstone National Park. ISME JOURNAL 2013; 8:938-51. [PMID: 24196321 DOI: 10.1038/ismej.2013.193] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/06/2013] [Accepted: 09/17/2013] [Indexed: 11/09/2022]
Abstract
Novel lineages of the phylum Thaumarchaeota are endemic to thermal habitats, and may exhibit physiological capabilities that are not yet observed in members of this phylum. The primary goals of this study were to conduct detailed phylogenetic and functional analyses of metagenome sequence assemblies of two different thaumarchaeal populations found in high-temperature (65-72 °C), acidic (pH~3) iron oxide and sulfur sediment environments of Yellowstone National Park (YNP). Metabolic reconstruction was coupled with detailed geochemical measurements of each geothermal habitat and reverse-transcriptase PCR to confirm the in situ activity of these populations. Phylogenetic analyses of ribosomal and housekeeping proteins place these archaea near the root of the thaumarchaeal branch. Metabolic reconstruction suggests that these populations are chemoorganotrophic and couple growth with the reduction of oxygen or nitrate in iron oxide habitats, or sulfur in hypoxic sulfur sediments. The iron oxide population has the potential for growth via the oxidation of sulfide to sulfate using a novel reverse sulfate reduction pathway. Possible carbon sources include aromatic compounds (for example, 4-hydroxyphenylacetate), complex carbohydrates (for example, starch), oligopeptides and amino acids. Both populations contain a type III ribulose bisphosphate carboxylase/oxygenase used for carbon dioxide fixation or adenosine monophosphate salvage. No evidence for the oxidation of ammonia was obtained from de novo sequence assemblies. Our results show that thermoacidophilic Thaumarchaeota from oxic iron mats and hypoxic sulfur sediments exhibit different respiratory machinery depending on the presence of oxygen versus sulfide, represent deeply rooted lineages within the phylum Thaumarchaeota and are endemic to numerous sites in YNP.
Collapse
Affiliation(s)
- Jacob P Beam
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Zackary J Jay
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Mark A Kozubal
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - William P Inskeep
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| |
Collapse
|
130
|
Integrated metagenomic and metatranscriptomic analyses of microbial communities in the meso- and bathypelagic realm of north pacific ocean. Mar Drugs 2013; 11:3777-801. [PMID: 24152557 PMCID: PMC3826135 DOI: 10.3390/md11103777] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 11/30/2022] Open
Abstract
Although emerging evidence indicates that deep-sea water contains an untapped reservoir of high metabolic and genetic diversity, this realm has not been studied well compared with surface sea water. The study provided the first integrated meta-genomic and -transcriptomic analysis of the microbial communities in deep-sea water of North Pacific Ocean. DNA/RNA amplifications and simultaneous metagenomic and metatranscriptomic analyses were employed to discover information concerning deep-sea microbial communities from four different deep-sea sites ranging from the mesopelagic to pelagic ocean. Within the prokaryotic community, bacteria is absolutely dominant (~90%) over archaea in both metagenomic and metatranscriptomic data pools. The emergence of archaeal phyla Crenarchaeota, Euryarchaeota, Thaumarchaeota, bacterial phyla Actinobacteria, Firmicutes, sub-phyla Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria, and the decrease of bacterial phyla Bacteroidetes and Alphaproteobacteria are the main composition changes of prokaryotic communities in the deep-sea water, when compared with the reference Global Ocean Sampling Expedition (GOS) surface water. Photosynthetic Cyanobacteria exist in all four metagenomic libraries and two metatranscriptomic libraries. In Eukaryota community, decreased abundance of fungi and algae in deep sea was observed. RNA/DNA ratio was employed as an index to show metabolic activity strength of microbes in deep sea. Functional analysis indicated that deep-sea microbes are leading a defensive lifestyle.
Collapse
|
131
|
Microbial communities of deep-sea methane seeps at Hikurangi continental margin (New Zealand). PLoS One 2013; 8:e72627. [PMID: 24098632 PMCID: PMC3787109 DOI: 10.1371/journal.pone.0072627] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/11/2013] [Indexed: 01/31/2023] Open
Abstract
The methane-emitting cold seeps of Hikurangi margin (New Zealand) are among the few deep-sea chemosynthetic ecosystems of the Southern Hemisphere known to date. Here we compared the biogeochemistry and microbial communities of a variety of Hikurangi cold seep ecosystems. These included highly reduced seep habitats dominated by bacterial mats, partially oxidized habitats populated by heterotrophic ampharetid polychaetes and deeply oxidized habitats dominated by chemosynthetic frenulate tubeworms. The ampharetid habitats were characterized by a thick oxic sediment layer that hosted a diverse and biomass-rich community of aerobic methanotrophic Gammaproteobacteria. These bacteria consumed up to 25% of the emanating methane and clustered within three deep-branching groups named Marine Methylotrophic Group (MMG) 1-3. MMG1 and MMG2 methylotrophs belong to the order Methylococcales, whereas MMG3 methylotrophs are related to the Methylophaga. Organisms of the groups MMG1 and MMG3 are close relatives of chemosynthetic endosymbionts of marine invertebrates. The anoxic sediment layers of all investigated seeps were dominated by anaerobic methanotrophic archaea (ANME) of the ANME-2 clade and sulfate-reducing Deltaproteobacteria. Microbial community analysis using Automated Ribosomal Intergenic Spacer Analysis (ARISA) showed that the different seep habitats hosted distinct microbial communities, which were strongly influenced by the seep-associated fauna and the geographic location. Despite outstanding features of Hikurangi seep communities, the organisms responsible for key ecosystem functions were similar to those found at seeps worldwide. This suggests that similar types of biogeochemical settings select for similar community composition regardless of geographic distance. Because ampharetid polychaetes are widespread at cold seeps the role of aerobic methanotrophy may have been underestimated in seafloor methane budgets.
Collapse
|
132
|
Wright JJ, Mewis K, Hanson NW, Konwar KM, Maas KR, Hallam SJ. Genomic properties of Marine Group A bacteria indicate a role in the marine sulfur cycle. ISME JOURNAL 2013; 8:455-68. [PMID: 24030600 PMCID: PMC3906813 DOI: 10.1038/ismej.2013.152] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/10/2013] [Accepted: 07/28/2013] [Indexed: 01/20/2023]
Abstract
Marine Group A (MGA) is a deeply branching and uncultivated phylum of bacteria. Although their functional roles remain elusive, MGA subgroups are particularly abundant and diverse in oxygen minimum zones and permanent or seasonally stratified anoxic basins, suggesting metabolic adaptation to oxygen-deficiency. Here, we expand a previous survey of MGA diversity in O2-deficient waters of the Northeast subarctic Pacific Ocean (NESAP) to include Saanich Inlet (SI), an anoxic fjord with seasonal O2 gradients and periodic sulfide accumulation. Phylogenetic analysis of small subunit ribosomal RNA (16S rRNA) gene clone libraries recovered five previously described MGA subgroups and defined three novel subgroups (SHBH1141, SHBH391, and SHAN400) in SI. To discern the functional properties of MGA residing along gradients of O2 in the NESAP and SI, we identified and sequenced to completion 14 fosmids harboring MGA-associated 16S RNA genes from a collection of 46 fosmid libraries sourced from NESAP and SI waters. Comparative analysis of these fosmids, in addition to four publicly available MGA-associated large-insert DNA fragments from Hawaii Ocean Time-series and Monterey Bay, revealed widespread genomic differentiation proximal to the ribosomal RNA operon that did not consistently reflect subgroup partitioning patterns observed in 16S rRNA gene clone libraries. Predicted protein-coding genes associated with adaptation to O2-deficiency and sulfur-based energy metabolism were detected on multiple fosmids, including polysulfide reductase (psrABC), implicated in dissimilatory polysulfide reduction to hydrogen sulfide and dissimilatory sulfur oxidation. These results posit a potential role for specific MGA subgroups in the marine sulfur cycle.
Collapse
Affiliation(s)
- Jody J Wright
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Keith Mewis
- Genome Science and Technology Program, University of British Columbia, Vancouver, BC, Canada
| | - Niels W Hanson
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| | - Kishori M Konwar
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Kendra R Maas
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Steven J Hallam
- 1] Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada [2] Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
133
|
Schunck H, Lavik G, Desai DK, Großkopf T, Kalvelage T, Löscher CR, Paulmier A, Contreras S, Siegel H, Holtappels M, Rosenstiel P, Schilhabel MB, Graco M, Schmitz RA, Kuypers MMM, LaRoche J. Giant hydrogen sulfide plume in the oxygen minimum zone off Peru supports chemolithoautotrophy. PLoS One 2013; 8:e68661. [PMID: 23990875 PMCID: PMC3749208 DOI: 10.1371/journal.pone.0068661] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 06/01/2013] [Indexed: 11/30/2022] Open
Abstract
In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km2, which contained ∼2.2×104 tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km3 the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further sulfate reduction and potentially stabilize the sulfidic OMZ waters.
Collapse
Affiliation(s)
- Harald Schunck
- Research Division Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany
| | - Gaute Lavik
- Department of Biogeochemistry, Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Dhwani K. Desai
- Research Division Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tobias Großkopf
- Research Division Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Tim Kalvelage
- Department of Biogeochemistry, Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Carolin R. Löscher
- Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany
| | - Aurélien Paulmier
- Department of Biogeochemistry, Max-Planck-Institute for Marine Microbiology, Bremen, Germany
- Laboratory for Studies in Geophysics and Spatial Oceanography, Institute of Research for Development, Toulouse, France
- Dirección de Investigaciones Oceanográficas, Instituto del Mar del Perú, Callao, Peru
| | - Sergio Contreras
- Department of Biogeochemistry, Max-Planck-Institute for Marine Microbiology, Bremen, Germany
- Large Lakes Observatory, University of Minnesota Duluth, Duluth, Minnesota, United States of America
| | - Herbert Siegel
- Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Moritz Holtappels
- Department of Biogeochemistry, Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Markus B. Schilhabel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Michelle Graco
- Dirección de Investigaciones Oceanográficas, Instituto del Mar del Perú, Callao, Peru
| | - Ruth A. Schmitz
- Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany
| | - Marcel M. M. Kuypers
- Department of Biogeochemistry, Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Julie LaRoche
- Research Division Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
134
|
Campbell BJ, Polson SW, Zeigler Allen L, Williamson SJ, Lee CK, Wommack KE, Cary SC. Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities. Front Microbiol 2013; 4:182. [PMID: 23898323 PMCID: PMC3721025 DOI: 10.3389/fmicb.2013.00182] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/17/2013] [Indexed: 02/01/2023] Open
Abstract
Hydrothermal vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based hydrothermal system along the East Pacific Rise (EPR) and a sediment-based hydrothermal system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea hydrothermal environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and hydrothermal system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct hydrothermal diffuse flow environments.
Collapse
Affiliation(s)
- Barbara J Campbell
- Department of Biological Sciences, Life Science Facility, Clemson University Clemson, SC, USA
| | | | | | | | | | | | | |
Collapse
|
135
|
Sulfur oxidizers dominate carbon fixation at a biogeochemical hot spot in the dark ocean. ISME JOURNAL 2013; 7:2349-60. [PMID: 23842654 DOI: 10.1038/ismej.2013.113] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/25/2013] [Accepted: 05/31/2013] [Indexed: 11/09/2022]
Abstract
Bacteria and archaea in the dark ocean (>200 m) comprise 0.3-1.3 billion tons of actively cycled marine carbon. Many of these microorganisms have the genetic potential to fix inorganic carbon (autotrophs) or assimilate single-carbon compounds (methylotrophs). We identified the functions of autotrophic and methylotrophic microorganisms in a vent plume at Axial Seamount, where hydrothermal activity provides a biogeochemical hot spot for carbon fixation in the dark ocean. Free-living members of the SUP05/Arctic96BD-19 clade of marine gamma-proteobacterial sulfur oxidizers (GSOs) are distributed throughout the northeastern Pacific Ocean and dominated hydrothermal plume waters at Axial Seamount. Marine GSOs expressed proteins for sulfur oxidation (adenosine phosphosulfate reductase, sox (sulfur oxidizing system), dissimilatory sulfite reductase and ATP sulfurylase), carbon fixation (ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO)), aerobic respiration (cytochrome c oxidase) and nitrogen regulation (PII). Methylotrophs and iron oxidizers were also active in plume waters and expressed key proteins for methane oxidation and inorganic carbon fixation (particulate methane monooxygenase/methanol dehydrogenase and RuBisCO, respectively). Proteomic data suggest that free-living sulfur oxidizers and methylotrophs are among the dominant primary producers in vent plume waters in the northeastern Pacific Ocean.
Collapse
|
136
|
Akerman NH, Butterfield DA, Huber JA. Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids. Front Microbiol 2013; 4:185. [PMID: 23847608 PMCID: PMC3703533 DOI: 10.3389/fmicb.2013.00185] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 06/18/2013] [Indexed: 11/13/2022] Open
Abstract
Microorganisms throughout the dark ocean use reduced sulfur compounds for chemolithoautotrophy. In many deep-sea hydrothermal vents, sulfide oxidation is quantitatively the most important chemical energy source for microbial metabolism both at and beneath the seafloor. In this study, the presence and activity of vent endemic Epsilonproteobacteria was examined in six low-temperature diffuse vents over a range of geochemical gradients from Axial Seamount, a deep-sea volcano in the Northeast Pacific. PCR primers were developed and applied to target the sulfur oxidation soxB gene of Epsilonproteobacteria. soxB genes belonging to the genera Sulfurimonas and Sulfurovum are both present and expressed at most diffuse vent sites, but not in background seawater. Although Sulfurovum-like soxB genes were detected in all fluid samples, the RNA profiles were nearly identical among the vents and suggest that Sulfurimonas-like species are the primary Epsilonproteobacteria responsible for actively oxidizing sulfur via the Sox pathway at each vent. Community patterns of subseafloor Epsilonproteobacteria 16S rRNA genes were best matched to methane concentrations in vent fluids, as well as individual vent locations, indicating that both geochemistry and geographical isolation play a role in structuring subseafloor microbial populations. The data show that in the subseafloor at Axial Seamount, Epsilonproteobacteria are expressing the soxB gene and that microbial patterns in community distribution are linked to both vent location and chemistry.
Collapse
Affiliation(s)
- Nancy H Akerman
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory Woods Hole, MA, USA
| | | | | |
Collapse
|
137
|
Sheik CS, Jain S, Dick GJ. Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics. Environ Microbiol 2013; 16:304-17. [PMID: 23809230 DOI: 10.1111/1462-2920.12165] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 05/09/2013] [Accepted: 05/24/2013] [Indexed: 11/27/2022]
Abstract
Chemolithotrophy is a pervasive metabolic lifestyle for microorganisms in the dark ocean. The SAR324 group of Deltaproteobacteria is ubiquitous in the ocean and has been implicated in sulfur oxidation and carbon fixation, but also contains genomic signatures of C1 utilization and heterotrophy. Here, we reconstructed the metagenome and metatranscriptome of a population of SAR324 from a hydrothermal plume and surrounding waters in the deep Gulf of California to gain insight into the genetic capability and transcriptional dynamics of this enigmatic group. SAR324's metabolism is signified by genes that encode a novel particulate hydrocarbon monooxygenase (pHMO), degradation pathways for corresponding alcohols and short-chain fatty acids, dissimilatory sulfur oxidation, formate dehydrogenase (FDH) and a nitrite reductase (NirK). Transcripts of the pHMO, NirK, FDH and transporters for exogenous carbon and amino acid uptake were highly abundant in plume waters. Sulfur oxidation genes were also abundant in the plume metatranscriptome, indicating SAR324 may also utilize reduced sulfur species in hydrothermal fluids. These results suggest that aspects of SAR324's versatile metabolism (lithotrophy, heterotrophy and alkane oxidation) operate simultaneously, and may explain SAR324's ubiquity in the deep Gulf of California and in the global marine biosphere.
Collapse
Affiliation(s)
- Cody S Sheik
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | |
Collapse
|
138
|
Beman JM, Leilei Shih J, Popp BN. Nitrite oxidation in the upper water column and oxygen minimum zone of the eastern tropical North Pacific Ocean. ISME JOURNAL 2013; 7:2192-205. [PMID: 23804152 DOI: 10.1038/ismej.2013.96] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/23/2013] [Accepted: 05/17/2013] [Indexed: 02/01/2023]
Abstract
Nitrogen (N) is an essential nutrient in the sea and its distribution is controlled by microorganisms. Within the N cycle, nitrite (NO2(-)) has a central role because its intermediate redox state allows both oxidation and reduction, and so it may be used by several coupled and/or competing microbial processes. In the upper water column and oxygen minimum zone (OMZ) of the eastern tropical North Pacific Ocean (ETNP), we investigated aerobic NO2(-) oxidation, and its relationship to ammonia (NH3) oxidation, using rate measurements, quantification of NO2(-)-oxidizing bacteria via quantitative PCR (QPCR), and pyrosequencing. (15)NO2(-) oxidation rates typically exhibited two subsurface maxima at six stations sampled: one located below the euphotic zone and beneath NH3 oxidation rate maxima, and another within the OMZ. (15)NO2(-) oxidation rates were highest where dissolved oxygen concentrations were <5 μM, where NO2(-) accumulated, and when nitrate (NO3(-)) reductase genes were expressed; they are likely sustained by NO3(-) reduction at these depths. QPCR and pyrosequencing data were strongly correlated (r(2)=0.79), and indicated that Nitrospina bacteria numbered up to 9.25% of bacterial communities. Different Nitrospina groups were distributed across different depth ranges, suggesting significant ecological diversity within Nitrospina as a whole. Across the data set, (15)NO2(-) oxidation rates were decoupled from (15)NH4(+) oxidation rates, but correlated with Nitrospina (r(2)=0.246, P<0.05) and NO2(-) concentrations (r(2)=0.276, P<0.05). Our findings suggest that Nitrospina have a quantitatively important role in NO2(-) oxidation and N cycling in the ETNP, and provide new insight into their ecology and interactions with other N-cycling processes in this biogeochemically important region of the ocean.
Collapse
Affiliation(s)
- J Michael Beman
- Life and Environmental Sciences and Sierra Nevada Research Institute, University of California, Merced, Merced, CA, USA
| | | | | |
Collapse
|
139
|
A phylogenetic analysis of the phylum Fibrobacteres. Syst Appl Microbiol 2013; 36:376-82. [PMID: 23759599 DOI: 10.1016/j.syapm.2013.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/03/2013] [Accepted: 04/19/2013] [Indexed: 11/21/2022]
Abstract
Members of the phylum Fibrobacteres are highly efficient cellulolytic bacteria, best known for their role in rumen function and as potential sources of novel enzymes for bioenergy applications. Despite being key members of ruminants and other digestive microbial communities, our knowledge of this phylum remains incomplete, as much of our understanding is focused on two recognized species, Fibrobacter succinogenes and F. intestinalis. As a result, we lack insights regarding the environmental niche, host range, and phylogenetic organization of this phylum. Here, we analyzed over 1000 16S rRNA Fibrobacteres sequences available from public databases to establish a phylogenetic framework for this phylum. We identify both species- and genus-level clades that are suggestive of previously unknown taxonomic relationships between Fibrobacteres in addition to their putative lifestyles as host-associated or free-living. Our results shed light on this poorly understood phylum and will be useful for elucidating the function, distribution, and diversity of these bacteria in their niches.
Collapse
|
140
|
Determining indicator taxa across spatial and seasonal gradients in the Columbia River coastal margin. ISME JOURNAL 2013; 7:1899-911. [PMID: 23719153 DOI: 10.1038/ismej.2013.79] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/13/2013] [Accepted: 04/11/2013] [Indexed: 12/21/2022]
Abstract
Bacterioplankton communities are deeply diverse and highly variable across space and time, but several recent studies demonstrate repeatable and predictable patterns in this diversity. We expanded on previous studies by determining patterns of variability in both individual taxa and bacterial communities across coastal environmental gradients. We surveyed bacterioplankton diversity across the Columbia River coastal margin, USA, using amplicon pyrosequencing of 16S rRNA genes from 596 water samples collected from 2007 to 2010. Our results showed seasonal shifts and annual reassembly of bacterioplankton communities in the freshwater-influenced Columbia River, estuary, and plume, and identified indicator taxa, including species from freshwater SAR11, Oceanospirillales, and Flavobacteria groups, that characterize the changing seasonal conditions in these environments. In the river and estuary, Actinobacteria and Betaproteobacteria indicator taxa correlated strongly with seasonal fluctuations in particulate organic carbon (ρ=-0.664) and residence time (ρ=0.512), respectively. In contrast, seasonal change in communities was not detected in the coastal ocean and varied more with the spatial variability of environmental factors including temperature and dissolved oxygen. Indicator taxa of coastal ocean environments included SAR406 and SUP05 taxa from the deep ocean, and Prochlorococcus and SAR11 taxa from the upper water column. We found that in the Columbia River coastal margin, freshwater-influenced environments were consistent and predictable, whereas coastal ocean community variability was difficult to interpret due to complex physical conditions. This study moves beyond beta-diversity patterns to focus on the occurrence of specific taxa and lends insight into the potential ecological roles these taxa have in coastal ocean environments.
Collapse
|
141
|
Cleary DF, Becking LE, de Voogd NJ, Pires AC, Polónia AR, Egas C, Gomes NC. Habitat- and host-related variation in sponge bacterial symbiont communities in Indonesian waters. FEMS Microbiol Ecol 2013; 85:465-82. [DOI: 10.1111/1574-6941.12135] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 04/10/2013] [Accepted: 04/16/2013] [Indexed: 01/20/2023] Open
Affiliation(s)
- Daniel F.R. Cleary
- Departamento de Biologia; CESAM - Centro de Estudos do Ambiente e do Mar; Universidade de Aveiro; Aveiro Portugal
| | - Leontine E. Becking
- Naturalis Biodiversity Center; Leiden The Netherlands
- Institute for Marine Resources and Ecosystem Studies (IMARES); Wageningen UR; Den Helder The Netherlands
| | | | - Ana C.C. Pires
- Departamento de Biologia; CESAM - Centro de Estudos do Ambiente e do Mar; Universidade de Aveiro; Aveiro Portugal
| | - Ana R.M. Polónia
- Departamento de Biologia; CESAM - Centro de Estudos do Ambiente e do Mar; Universidade de Aveiro; Aveiro Portugal
| | - Conceição Egas
- Biocant-Biotechnology Innovation Center; Cantanhede Portugal
| | - Newton C.M. Gomes
- Departamento de Biologia; CESAM - Centro de Estudos do Ambiente e do Mar; Universidade de Aveiro; Aveiro Portugal
| |
Collapse
|
142
|
Dick GJ, Anantharaman K, Baker BJ, Li M, Reed DC, Sheik CS. The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats. Front Microbiol 2013; 4:124. [PMID: 23720658 PMCID: PMC3659317 DOI: 10.3389/fmicb.2013.00124] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/30/2013] [Indexed: 11/24/2022] Open
Abstract
Hydrothermal plumes are an important yet understudied component of deep-sea vent microbial ecosystems. The significance of plume microbial processes can be appreciated from three perspectives: (1) mediation of plume biogeochemistry, (2) dispersal of seafloor hydrothermal vent microbes between vents sites, (3) as natural laboratories for understanding the ecology, physiology, and function of microbial groups that are distributed throughout the pelagic deep sea. Plume microbiology has been largely neglected in recent years, especially relative to the extensive research conducted on seafloor and subseafloor systems. Rapidly advancing technologies for investigating microbial communities provide new motivation and opportunities to characterize this important microbial habitat. Here we briefly highlight microbial contributions to plume and broader ocean (bio)geochemistry and review recent work to illustrate the ecological and biogeographic linkages between plumes, seafloor vent habitats, and other marine habitats such as oxygen minimum zones (OMZs), cold seeps, and oil spills. 16S rRNA gene surveys and metagenomic/-transcriptomic data from plumes point to dominant microbial populations, genes, and functions that are also operative in OMZs (SUP05, ammonia-oxidizing Archaea, and SAR324 Deltaproteobacteria) and hydrocarbon-rich environments (methanotrophs). Plume microbial communities are distinct from those on the seafloor or in the subsurface but contain some signatures of these habitats, consistent with the notion that plumes are potential vectors for dispersal of microorganisms between seafloor vent sites. Finally, we put forward three pressing questions for the future of deep-sea hydrothermal plume research and consider interactions between vents and oceans on global scales.
Collapse
Affiliation(s)
- Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan Ann Arbor, MI, USA ; Department of Ecology and Evolutionary Biology, University of Michigan Ann Arbor, MI, USA ; Center for Computational Medicine and Bioinformatics, University of Michigan Ann Arbor, MI, USA
| | | | | | | | | | | |
Collapse
|
143
|
Wilkins D, Yau S, Williams TJ, Allen MA, Brown MV, DeMaere MZ, Lauro FM, Cavicchioli R. Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol Rev 2013; 37:303-35. [DOI: 10.1111/1574-6976.12007] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/11/2012] [Accepted: 10/01/2012] [Indexed: 11/27/2022] Open
|
144
|
Wright KE, Williamson C, Grasby SE, Spear JR, Templeton AS. Metagenomic evidence for sulfur lithotrophy by Epsilonproteobacteria as the major energy source for primary productivity in a sub-aerial arctic glacial deposit, Borup Fiord Pass. Front Microbiol 2013; 4:63. [PMID: 23626586 PMCID: PMC3631710 DOI: 10.3389/fmicb.2013.00063] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 03/04/2013] [Indexed: 02/01/2023] Open
Abstract
We combined free enenergy calculations and metagenomic analyses of an elemental sulfur (S0) deposit on the surface of Borup Fiord Pass Glacier in the Canadian High Arctic to investigate whether the energy available from different redox reactions in an environment predicts microbial metabolism. Many S, C, Fe, As, Mn, and NH4+ oxidation reactions were predicted to be energetically feasible in the deposit, and aerobic oxidation of S0 was the most abundant chemical energy source. Small subunit ribosomal RNA (SSU rRNA) gene sequence data showed that the dominant phylotypes were Sulfurovum and Sulfuricurvum, both Epsilonproteobacteria known to be capable of sulfur lithotrophy. Sulfur redox genes were abundant in the metagenome, but sox genes were significantly more abundant than reverse dsr (dissimilatory sulfite reductase)genes. Interestingly, there appeared to be habitable niches that were unoccupied at the depth of genome coverage obtained. Photosynthesis and NH4+ oxidation should both be energetically favorable, but we found few or no functional genes for oxygenic or anoxygenic photosynthesis, or for NH4+ oxidation by either oxygen (nitrification) or nitrite (anammox). The free energy, SSU rRNA gene and quantitative functional gene data are all consistent with the hypothesis that sulfur-based chemolithoautotrophy by Epsilonproteobacteria (Sulfurovum and Sulfuricurvum) is the main form of primary productivity at this site, instead of photosynthesis. This is despite the presence of 24-h sunlight, and the fact that photosynthesis is not known to be inhibited by any of the environmental conditions present. This is the first time that Sulfurovum and Sulfuricurvum have been shown to dominate a sub-aerial environment, rather than anoxic or sulfidic settings. We also found that Flavobacteria dominate the surface of the sulfur deposits. We hypothesize that this aerobic heterotroph uses enough oxygen to create a microoxic environment in the sulfur below, where the Epsilonproteobacteria can flourish.
Collapse
Affiliation(s)
- Katherine E Wright
- Department of Geological Sciences, University of Colorado at Boulder Boulder, CO, USA
| | | | | | | | | |
Collapse
|
145
|
Kato S, Nakawake M, Kita J, Yamanaka T, Utsumi M, Okamura K, Ishibashi JI, Ohkuma M, Yamagishi A. Characteristics of microbial communities in crustal fluids in a deep-sea hydrothermal field of the suiyo seamount. Front Microbiol 2013; 4:85. [PMID: 23626587 PMCID: PMC3627986 DOI: 10.3389/fmicb.2013.00085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 03/27/2013] [Indexed: 12/04/2022] Open
Abstract
To directly access the sub-seafloor microbial communities, seafloor drilling has been done in a deep-sea hydrothermal field of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific. In the present study, crustal fluids were collected from the boreholes, and the bacterial and archaeal communities in the fluids were investigated by culture-independent molecular analysis based on 16S rRNA gene sequences. Bottom seawater, sands, rocks, sulfide mound, and chimneys were also collected around the boreholes and analyzed for comparisons. Comprehensive analysis revealed the characteristics of the microbial community composition in the crustal fluids. Phylotypes closely related to cultured species, e.g., Alteromonas, Halomonas, Marinobacter, were relatively abundant in some crustal fluid samples, whereas the phylotypes related to Pelagibacter and the SUP05-group were relatively abundant in the seawater samples. Phylotypes related to other uncultured environmental clones in Alphaproteobacteria and Gammaproteobacteria were relatively abundant in the sand, rock, sulfide mound, and chimney samples. Furthermore, comparative analysis with previous studies of the Suiyo Seamount crustal fluids indicates the change in the microbial community composition for 3 years. Our results provide novel insights into the characteristics of the microbial communities in crustal fluids beneath a deep-sea hydrothermal field.
Collapse
Affiliation(s)
- Shingo Kato
- Japan Collection of Microorganisms, RIKEN BioResource Center Wako-shi, Saitama, Japan ; Department of Molecular Biology, Tokyo University of Pharmacy and Life Science Hachioji, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Dang H, Zhou H, Zhang Z, Yu Z, Hua E, Liu X, Jiao N. Molecular detection of Candidatus Scalindua pacifica and environmental responses of sediment anammox bacterial community in the Bohai Sea, China. PLoS One 2013; 8:e61330. [PMID: 23577216 PMCID: PMC3620062 DOI: 10.1371/journal.pone.0061330] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/08/2013] [Indexed: 11/18/2022] Open
Abstract
The Bohai Sea is a large semi-enclosed shallow water basin, which receives extensive river discharges of various terrestrial and anthropogenic materials such as sediments, nutrients and contaminants. How these terrigenous inputs may influence the diversity, community structure, biogeographical distribution, abundance and ecophysiology of the sediment anaerobic ammonium oxidation (anammox) bacteria was unknown. To answer this question, an investigation employing both 16S rRNA and hzo gene biomarkers was carried out. Ca. Scalindua bacteria were predominant in the surface sediments of the Bohai Sea, while non-Scalindua anammox bacteria were also detected in the Yellow River estuary and inner part of Liaodong Bay that received strong riverine and anthropogenic impacts. A novel 16S rRNA gene sequence clade was identified, putatively representing an anammox bacterial new candidate species tentatively named "Ca. Scalindua pacifica". Several groups of environmental factors, usually with distinct physicochemical or biogeochemical natures, including general marine and estuarine physicochemical properties, availability of anammox substrates (inorganic N compounds), alternative reductants and oxidants, environmental variations caused by river discharges and associated contaminants such as heavy metals, were identified to likely play important roles in influencing the ecology and biogeochemical functioning of the sediment anammox bacteria. In addition to inorganic N compounds that might play a key role in shaping the anammox microbiota, organic carbon, organic nitrogen, sulfate, sulfide and metals all showed the potentials to participate in the anammox process, releasing the strict dependence of the anammox bacteria upon the direct availability of inorganic N nutrients that might be limiting in certain areas of the Bohai Sea. The importance of inorganic N nutrients and certain other environmental factors to the sediment anammox microbiota suggests that these bacteria were active for the in situ N transforming process and maintained a versatile life style well adapted to the varying environmental conditions of the studied coastal ocean.
Collapse
Affiliation(s)
- Hongyue Dang
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Bioengineering and Biotechnology in Universities of Shandong, Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China.
| | | | | | | | | | | | | |
Collapse
|
147
|
Distinctive microbial community structure in highly stratified deep-sea brine water columns. Appl Environ Microbiol 2013; 79:3425-37. [PMID: 23542623 DOI: 10.1128/aem.00254-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.
Collapse
|
148
|
Sylvan JB, Sia TY, Haddad AG, Briscoe LJ, Toner BM, Girguis PR, Edwards KJ. Low temperature geomicrobiology follows host rock composition along a geochemical gradient in lau basin. Front Microbiol 2013; 4:61. [PMID: 23543862 PMCID: PMC3608910 DOI: 10.3389/fmicb.2013.00061] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/04/2013] [Indexed: 02/01/2023] Open
Abstract
The East Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) comprise a ridge segment in the southwest Pacific Ocean where rapid transitions in the underlying mantle chemistry manifest themselves as gradients in seafloor rock geochemistry. We studied the geology and microbial diversity of three silicate rock samples and three inactive sulfide chimney samples collected, from north to south, at the vent fields Kilo Moana, ABE, Tui Malila, and Mariner. This is the first study of microbial populations on basaltic andesite, which was sampled at Mariner vent field. Silicate rock geochemistry exhibits clear latitudinal trends that are mirrored by changes in bacterial community composition. α-proteobacteria, ε-proteobacteria, and Bacteroidetes are most common on a silicate collected from Kilo Moana and their proportions decrease linearly on silicates collected further south. Conversely, a silicate from Mariner vent field hosts high proportions of a unique lineage of Chloroflexi unrelated (<90% sequence similarity) to previously recovered environmental clones or isolates, which decrease at ABE and are absent at Kilo Moana. The exteriors of inactive sulfide structures are dominated by lineages of sulfur oxidizing α-proteobacteria, γ-proteobacteria, and ε-proteobacteria, while the interior of one chimney is dominated by putative sulfur-reducing δ-proteobacteria. A comparison of bacterial communities on inactive sulfides from this and previous studies reveals the presence of a clade of uncultured Bacteroidetes exclusive to sulfidic environments, and a high degree of heterogeneity in bacterial community composition from one sulfide structure to another. In light of the heterogeneous nature of bacterial communities observed here and in previous studies of both active and inactive hydrothermal sulfide structures, the presence of numerous niches may be detected on these structures in the future by finer scale sampling and analysis.
Collapse
Affiliation(s)
- Jason B Sylvan
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
149
|
Rodriguez-Mora MJ, Scranton MI, Taylor GT, Chistoserdov AY. Bacterial community composition in a large marine anoxic basin: a Cariaco Basin time-series survey. FEMS Microbiol Ecol 2013; 84:625-39. [PMID: 23398056 DOI: 10.1111/1574-6941.12094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 01/18/2013] [Accepted: 02/05/2013] [Indexed: 11/30/2022] Open
Abstract
Redox transition zones play a crucial role in biogeochemical cycles of several major elements. Because microorganisms mediate many reactions of these cycles, they actively participate in establishing geochemical gradients. In turn, the geochemical gradients structure microbial communities. We studied the interrelationship between the bacterial community structure and the geochemical gradient in the Cariaco Basin, the largest truly marine anoxic basin. This study's dataset includes bacterial community composition in 113 water column samples as well as the data for environmental variables (gradients of oxygen, hydrogen sulfide, sulfite, thiosulfate, ammonia, nitrate, nitrite, dissolved manganese and iron, dark CO2 fixation, and bacterial abundance) collected between 1997 and 2006. Several prominent bacterial groups are present throughout the entire water column. These include members of Gamma-, Delta-, and Epsilonproteobacteria, as well as members of the Marine Group A, the candidate divisions OP11 and Car731c. Canonical correspondence analysis indicated that microbial communities segregate along vectors representing oxygenated conditions, nitrite, nitrate and anoxic environments represented by chemoautotrophy, ammonia, sulfite, and hydrogen sulfide.
Collapse
|
150
|
SUP05 dominates the Gammaproteobacterial sulfur oxidizer assemblages in pelagic redoxclines of the central Baltic and Black Seas. Appl Environ Microbiol 2013; 79:2767-76. [PMID: 23417000 DOI: 10.1128/aem.03777-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Gammaproteobacterial sulfur oxidizers (GSOs), particularly SUP05-related sequences, have been found worldwide in numerous oxygen-deficient marine environments. However, knowledge regarding their abundance, distribution, and ecological role is scarce. In this study, on the basis of phylogenetic analyses of 16S rRNA gene sequences originating from a Baltic Sea pelagic redoxcline, the in situ abundances of different GSO subgroups were quantified by CARD-FISH (catalyzed reporter fluorescence in situ hybridization) with oligonucleotide probes developed specifically for this purpose. Additionally, ribulose bisphosphate carboxylase/oxygenase form II (cbbM) gene transcript clone libraries were used to detect potential active chemolithoautotrophic GSOs in the Baltic Sea. Taken together, the results obtained by these two approaches demonstrated the existence of two major phylogenetic subclusters embedded within the GSO, one of them affiliated with sequences of the previously described SUP05 subgroup. CARD-FISH analyses revealed that only SUP05 occurred in relatively high numbers, reaching 10 to 30% of the total prokaryotes around the oxic-anoxic interface, where oxygen and sulfide concentrations are minimal. The applicability of the oligonucleotide probes was confirmed with samples from the Black Sea redoxcline, in which the SUP05 subgroup accounted for 10 to 13% of the total prokaryotic abundance. The cbbM transcripts presumably originating from SUP05 cells support previous evidence for the chemolithoautotrophic activity of this phylogenetic group. Our findings on the vertical distribution and high abundance of SUP05 suggest that this group plays an important role in marine redoxcline biogeochemistry, probably as anaerobic or aerobic sulfur oxidizers.
Collapse
|