101
|
Bains AK, Naba A. Proteomic insights into the extracellular matrix: a focus on proteoforms and their implications in health and disease. Expert Rev Proteomics 2024; 21:463-481. [PMID: 39512072 PMCID: PMC11602344 DOI: 10.1080/14789450.2024.2427136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
INTRODUCTION The extracellular matrix (ECM) is a highly organized and dynamic network of proteins and glycosaminoglycans that provides critical structural, mechanical, and biochemical support to cells. The functions of the ECM are directly influenced by the conformation of the proteins that compose it. ECM proteoforms, which can result from genetic, transcriptional, and/or post-translational modifications, adopt different conformations and, consequently, confer different structural properties and functionalities to the ECM in both physiological and pathological contexts. AREAS COVERED In this review, we discuss how bottom-up proteomics has been applied to identify, map, and quantify post-translational modifications (e.g. additions of chemical groups, proteolytic cleavage, or cross-links) and ECM proteoforms arising from alternative splicing or genetic variants. We further illustrate how proteoform-level information can be leveraged to gain novel insights into ECM protein structure and ECM functions in health and disease. EXPERT OPINION In the Expert opinion section, we discuss remaining challenges and opportunities with an emphasis on the importance of devising experimental and computational methods tailored to account for the unique biochemical properties of ECM proteins with the goal of increasing sequence coverage and, hence, accurate ECM proteoform identification.
Collapse
Affiliation(s)
- Amanpreet Kaur Bains
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
102
|
Sun X, Chen X, Wu B, Zhou L, Chen Y, Zheng S, Wang S, Liu Z. Clam Genome and Transcriptomes Provide Insights into Molecular Basis of Morphological Novelties and Adaptations in Mollusks. BIOLOGY 2024; 13:870. [PMID: 39596825 PMCID: PMC11592408 DOI: 10.3390/biology13110870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Bivalve mollusks, comprising animals enclosed in two shell valves, are well-adapted to benthic life in many intertidal zones. Clams have evolved the buried lifestyle, which depends on their unique soft tissue structure and their wedge-shaped muscular foot and long extendible siphons. However, molecular mechanisms of adaptative phenotype evolution remain largely unknown. In the present study, we obtain the high-quality chromosome-level genome of Manila clam R. philippinarum, an economically important marine bivalve in many coastal areas. The genome is constructed by the Hi-C assisted assembly, which yields 19 chromosomes with a total of 1.17 Gb and BUSCO integrity of 92.23%. The de novo assembled genome has a contig N50 length of 307.7 kb and scaffold N50 of 59.5 Mb. Gene family expansion analysis reveals that a total of 24 single-copy gene families have undergone the significant expansion or contraction, including E3 ubiquitin ligase and dynein heavy chain. The significant expansion of transposable elements has been also identified, including long terminal repeats (LTR) and non-LTR retrotransposons. The comparative transcriptomics among different clam tissues reveals that extracellular matrix (ECM) receptors and neuroactive ligand receptors may play the important roles in tissue structural support and neurotransmission during their infaunal life. These findings of gene family expansion and tissue-specific expression may reflect the unique soft tissue structure of clams, suggesting the evolution of lineage-specific morphological novelties. The high-quality genome and transcriptome data of R. philippinarum will not only facilitate the genetic studies on clams but will also provide valuable information on morphological novelties in mollusks.
Collapse
Affiliation(s)
- Xiujun Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| | - Xi Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| | - Biao Wu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| | - Liqing Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| | - Yancui Chen
- Zhangzhou Aquatic Technology Promotion Station, Zhangzhou 363000, China;
| | - Sichen Zheng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Songlin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhihong Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (X.S.); (X.C.); (B.W.); (L.Z.); (S.Z.); (S.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266071, China
| |
Collapse
|
103
|
Yang J, Hawthorne L, Stack S, Blagg B, Ali A, Zorlutuna P. Engineered Age-Mimetic Breast Cancer Models Reveal Differential Drug Responses in Young and Aged Microenvironments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616903. [PMID: 39416111 PMCID: PMC11482747 DOI: 10.1101/2024.10.06.616903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Aging is one of the most significant risk factors for breast cancer. With the growing interests in the alterations of the aging breast tissue microenvironment, it has been identified that aging is related to tumorigenesis, invasion, and drug resistance. However, current pre-clinical disease models often neglect the impact of aging and sometimes result in worse clinical outcomes. In this study, we utilized aged animal-generated materials to create and validate a novel age-mimetic breast cancer model that generates an aging microenvironment for cells and alters cells towards a phenotype found in the aged environment. Furthermore, we utilized the age-mimetic models for 3D breast cancer invasion assessment and high-throughput screening of over 700 drugs in the FDA-approved drug library. We identified 36 potential effective drug targets and 34 potential drug targets with different drug responses in different age groups, demonstrating the potential of this age-mimetic breast cancer model for further in-depth breast cancer studies and drug development.
Collapse
Affiliation(s)
- Jun Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Lauren Hawthorne
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Sharon Stack
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Brian Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Aktar Ali
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Pinar Zorlutuna
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| |
Collapse
|
104
|
Li W, Moretti L, Su X, Yeh CR, Torres MP, Barker TH. Strain-dependent glutathionylation of fibronectin fibers impacts mechano-chemical behavior and primes an integrin switch. Nat Commun 2024; 15:8751. [PMID: 39384749 PMCID: PMC11479631 DOI: 10.1038/s41467-024-52742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/18/2024] [Indexed: 10/11/2024] Open
Abstract
The extracellular matrix (ECM) is a protein polymer network that physically supports cells within a tissue. It acts as an important physical and biochemical stimulus directing cell behaviors. For fibronectin (Fn), a predominant component of the ECM, these physical and biochemical activities are inextricably linked as physical forces trigger conformational changes that impact its biochemical activity. Here, we analyze whether oxidative post-translational modifications, specifically glutathionylation, alter Fn's mechano-chemical characteristics through stretch-dependent protein modification. ECM post-translational modifications represent a potential for time- or stimulus-dependent changes in ECM structure-function relationships that could persist over time with potentially significant impacts on cell and tissue behaviors. In this study, we show evidence that glutathionylation of Fn ECM fibers is stretch-dependent and alters Fn fiber mechanical properties with implications on the selectivity of engaging integrin receptors. These data demonstrate the existence of multimodal post-translational modification mechanisms within the ECM with high relevance to the microenvironmental regulation of downstream cell behaviors.
Collapse
Affiliation(s)
- Wei Li
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA, USA
| | - Leandro Moretti
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA, USA
| | - Xinya Su
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Chiuan-Ren Yeh
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA, USA
| | - Matthew P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
105
|
Nowwarote N, Chahlaoui Z, Petit S, Duong LT, Dingli F, Loew D, Chansaenroj A, Kornsuthisopon C, Osathanon T, Ferre FC, Fournier BPJ. Decellularized extracellular matrix derived from dental pulp stem cells promotes gingival fibroblast adhesion and migration. BMC Oral Health 2024; 24:1166. [PMID: 39354504 PMCID: PMC11443845 DOI: 10.1186/s12903-024-04882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Decellularized extracellular matrix (dECM) has been proposed as a useful source of biomimetic materials for regenerative medicine due to its biological properties that regulate cell behaviors. The present study aimed to investigate the influence of decellularized ECM derived from dental pulp stem cells (DPSCs) on gingival fibroblast (GF) cell behaviors. Cells were isolated from dental pulp and gingival tissues. ECM was derived from culturing dental pulp stem cells in growth medium supplemented with ascorbic acid. A bioinformatic database of the extracellular matrix was constructed using Metascape. GFs were reseeded onto dECM, and their adhesion, spreading, and organization were subsequently observed. The migration ability of the cells was determined using a scratch assay. Protein expression was evaluated using immunofluorescence staining. RESULTS Type 1 collagen and fibronectin were detected on the ECM and dECM derived from DPSCs. Negative phalloidin and nuclei were noted in the dECM. The proteomic database revealed enrichment of several proteins involved in ECM organization, ECM-receptor interaction, and focal adhesion. Compared with those on the controls, the GFs on the dECM exhibited more organized stress fibers. Furthermore, cultured GFs on dECM exhibited significantly enhanced migration and proliferation abilities. Interestingly, GFs seeded on dECM showed upregulation of FN1, ITGB3, and CTNNB1 mRNA levels. CONCLUSIONS ECM derived from DSPCs generates a crucial microenvironment for regulating GF adhesion, migration and proliferation. Therefore, decellularized ECM from DPSCs could serve as a matrix for oral tissue repair.
Collapse
Affiliation(s)
- Nunthawan Nowwarote
- Centre de Recherche des Cordeliers, Molecular Oral Pathophysiology, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université, Paris, 75006, France.
- Department of Oral Biology, Dental Faculty Garancière, Université Paris Cité, Paris, 75006, France.
| | - Zakaria Chahlaoui
- Centre de Recherche des Cordeliers, Molecular Oral Pathophysiology, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université, Paris, 75006, France
| | - Stephane Petit
- Centre de Recherche des Cordeliers, Molecular Oral Pathophysiology, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université, Paris, 75006, France
| | - Lucas T Duong
- Centre de Recherche des Cordeliers, Molecular Oral Pathophysiology, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université, Paris, 75006, France
| | - Florent Dingli
- Centre de Recherche, CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, Paris, France
| | - Damarys Loew
- Centre de Recherche, CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, Paris, France
| | - Ajjima Chansaenroj
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chatvadee Kornsuthisopon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Francois Come Ferre
- Centre de Recherche des Cordeliers, Molecular Oral Pathophysiology, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université, Paris, 75006, France
- Department of Oral Biology, Dental Faculty Garancière, Université Paris Cité, Paris, 75006, France
| | - Benjamin P J Fournier
- Centre de Recherche des Cordeliers, Molecular Oral Pathophysiology, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université, Paris, 75006, France
- Department of Oral Biology, Dental Faculty Garancière, Université Paris Cité, Paris, 75006, France
| |
Collapse
|
106
|
Dabouz R, Abram P, Rivera JC, Chemtob S. Mast cells promote choroidal neovascularization in a model of age-related macular degeneration. J Neuroinflammation 2024; 21:247. [PMID: 39354493 PMCID: PMC11443945 DOI: 10.1186/s12974-024-03229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024] Open
Abstract
'Wet' age-related macular degeneration (AMD) is characterized by pathologic choroidal neovascularization (CNV) that destroys central vision. Abundant evidence points to inflammation and immune cell dysfunction in the progression of CNV in AMD. Mast cells are resident immune cells that control the inflammatory response. Mast cells accumulate and degranulate in the choroid of patients with AMD, suggesting they play a role in CNV. Activated mast cells secrete various biologically active mediators, including inflammatory cytokines and proteolytic enzymes such as tryptase. We investigated the role of mast cells in AMD using a model of CNV. Conditioned media from activated mast cells exerts proangiogenic effects on choroidal endothelial cells and choroidal explants. Laser-induced CNV in vivo was markedly attenuated in mice genetically depleted of mast cells (KitW-sh/W-sh) and in wild-type mice treated with mast cell stabilizer, ketotifen fumarate. Tryptase was found to elicit pronounced choroidal endothelial cell sprouting, migration and tubulogenesis; while tryptase inhibition diminished CNV. Transcriptomic analysis of laser-treated RPE/choroid complex revealed collagen catabolism and extracellular matrix (ECM) reorganization as significant events correlated in clusters of mast cell activation. Consistent with these analyses, compared to wildtype mice choroids of laser-treated mast cell-deficient mice displayed less ECM remodelling evaluated using collagen hybridizing peptide tissue binding. Findings herein provide strong support for mast cells as key players in the progression of pathologic choroidal angiogenesis and as potential therapeutic targets to prevent pathological neovascularization in 'wet' AMD.
Collapse
Affiliation(s)
- Rabah Dabouz
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada.
| | - Pénélope Abram
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada
- Department of Pharmacology, University of Montreal, Montreal, QC, Canada
| | - Jose Carlos Rivera
- CHU-Sainte Justine Research Center, Montreal, QC, Canada
- Department of Ophthalmology, University of Montreal, Montreal, QC, Canada
| | - Sylvain Chemtob
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada.
- Department of Ophthalmology, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
107
|
Yang MC, Chin IL, Fang H, Drack A, Nour S, Choi YS, O'Connor AJ, Greening DW, Kalionis B, Heath DE. Tailored environments for directed mesenchymal stromal cell proliferation and differentiation using decellularized extracellular matrices in conjunction with substrate modulus. Acta Biomater 2024; 187:110-122. [PMID: 39181177 DOI: 10.1016/j.actbio.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Decellularised extracellular matrix (dECM) produced by mesenchymal stromal cells (MSCs) is a promising biomaterial for improving the ex vivo expansion of MSCs. The dECMs are often deposited on high modulus surfaces such as tissue culture plastic or glass, and subsequent differentiation assays often bias towards osteogenesis. We tested the hypothesis that dECM deposited on substrates of varying modulus will produce cell culture environments that are tailored to promote the proliferation and/or lineage-specific differentiation of MSCs. dECM was produced on type I collagen-functionalised polyacrylamide hydrogels with discrete moduli (∼4, 10, and 40 kPa) or in a linear gradient of modulus that spans the same range, and the substrates were used as culture surfaces for MSCs. Fluorescence spectroscopy and mass spectrometry characterization revealed structural compositional changes in the dECM as a function of substrate modulus. Softer substrates (4 kPa) with dECM supported the largest number of MSCs after 7 days (∼1.6-fold increase compared to glass). Additionally, osteogenic differentiation was greatest on high modulus substrates (40 kPa and glass) with dECM. Nuclear translocation of YAP1 was observed on all surfaces with a modulus of 10 kPa or greater and may be a driver for the increased osteogenesis on the high modulus surfaces. These data demonstrate that dECM technology can be integrated with environmental parameters such as substrate modulus to improve/tailor MSC proliferation and differentiation during ex vivo culture. These results have potential impact in the improved expansion of MSCs for tailored therapeutic applications and in the development of advanced tissue engineering scaffolds. STATEMENT OF SIGNIFICANCE: Mesenchymal stromal cells (MSCs) are extensively used in tissue engineering and regenerative medicine due to their ability to proliferate, differentiate, and modulate the immune environment. Controlling MSC behavior is critical for advances in the field. Decellularised extracellular matrix (dECM) can maintain MSC properties in culture, increase their proliferation rate and capacity, and enhance their stimulated differentiation. Substrate stiffness is another key driver of cell function, and previous reports have primarily looked at dECM deposition and function on stiff substrates such as glass. Herein, we produce dECM on substrates of varying stiffness to create tailored environments that enhance desired MSC properties such as proliferation and differentiation. Additionally, we complete mechanistic studies including quantitative mass spec of the ECM to understand the biological function.
Collapse
Affiliation(s)
- Michael C Yang
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC, Australia; Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
| | - Ian L Chin
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Haoyun Fang
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC Australia
| | - Auriane Drack
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC Australia
| | - Shirin Nour
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC, Australia; Department of Chemical Engineering, Polymer Science Group, University of Melbourne, Parkville, VIC, Australia
| | - Yu Suk Choi
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiovascular Research, Translation, and Implementation, La Trobe University, Bundoora, VIC, Australia; Central Clinical School, Monash University, Clayton, VIC, Australia; Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC Australia
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC, Australia; Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, VIC, Australia.
| | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
108
|
Wassarman PM, Litscher ES. Female fertility and the mammalian egg's zona pellucida. Histol Histopathol 2024; 39:1273-1284. [PMID: 38487866 DOI: 10.14670/hh-18-728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
All mammalian eggs are surrounded by a relatively thick extracellular matrix (ECM) or zona pellucida (ZP) to which free-swimming sperm bind in a species-restricted manner during fertilization. The ZP consists of either three (e.g., Mus musculus) or four (e.g., Homo sapiens) glycosylated proteins, called ZP1-4. These proteins are unlike those found in somatic cell ECM, are encoded by single-copy genes on different chromosomes, and are well conserved among different mammals. Mammalian ZP proteins are synthesized as polypeptide precursors by growing oocytes that will become ovulated, unfertilized eggs. These precursors are processed to remove a signal-sequence and carboxy-terminal propeptide and are secreted into the extracellular space. Secreted ZP proteins assemble into long, crosslinked fibrils that exhibit a structural repeat due to the presence of ZP2-ZP3 dimers every 140 Å or so along fibrils. Fibrils are crosslinked by ZP1 and are oriented either perpendicular, parallel, or randomly to the plasma membrane of eggs depending on their position in the ZP. Free-swimming mouse sperm recognize and bind to ZP2 or ZP3 that serve as sperm receptors. Acrosome-intact sperm bind to ZP3 oligosaccharides and acrosome-reacted sperm bind to ZP2 polypeptide. ZP fibrils fail to assemble in the absence of either nascent ZP2 or ZP3 and results in mouse eggs that lack a ZP and female infertility. Gene sequence variations due to point, missense, or frameshift mutations in genes encoding ZP1-4 result in human eggs that lack a ZP or have an abnormal ZP and female infertility. These and other features of the mouse and human egg's ZP are discussed here.
Collapse
Affiliation(s)
- Paul M Wassarman
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Eveline S Litscher
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
109
|
Shekatkar M, Kheur S, Deshpande S, Sakhare S, Sanap A, Kheur M, Bhonde R. Critical appraisal of the chorioallantoic membrane model for studying angiogenesis in preclinical research. Mol Biol Rep 2024; 51:1026. [PMID: 39340708 DOI: 10.1007/s11033-024-09956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Angiogenesis, the biological mechanism by which new blood vessels are generated from existing ones, plays a vital role in growth and development. Effective preclinical screening is necessary for the development of medications that may enhance or inhibit angiogenesis in the setting of different disorders. Traditional in vitro and, in vivo models of angiogenesis are laborious and time-consuming, necessitating advanced infrastructure for embryo culture. MAIN BODY A challenge encountered by researchers studying angiogenesis is the lack of appropriate techniques to evaluate the impact of regulators on the angiogenic response. An ideal test should possess reliability, technical simplicity, easy quantifiability, and, most importantly, physiological relevance. The CAM model, leveraging the extraembryonic membrane of the chicken embryo, offers a unique combination of accessibility, low cost, and rapid development, making it an attractive option for angiogenesis assays. This review evaluates the strengths and limitations of the CAM model in the context of its anatomical and physiological properties, and its relevance to human pathophysiological conditions. Its abundant capillary network makes it a common choice for studying angiogenesis. The CAM assay serves as a substitute for animal models and offers a natural setting for developing blood vessels and the many elements involved in the intricate interaction with the host. Despite its advantages, the CAM model's limitations are notable. These include species-specific responses that may not always extrapolate to humans and the ethical considerations of using avian embryos. We discuss methodological adaptations that can mitigate some of these limitations and propose future directions to enhance the translational relevance of this model. This review underscores the CAM model's valuable role in angiogenesis research and aims to guide researchers in optimizing its use for more predictive and robust preclinical studies. CONCLUSION The highly vascularized chorioallantoic membrane (CAM) of fertilized chicken eggs is a cost-effective and easily available method for screening angiogenesis, in comparison to other animal models.
Collapse
Affiliation(s)
- Madhura Shekatkar
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Supriya Kheur
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Shantanu Deshpande
- Department of Pediatric and Preventive Dentistry, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Navi Mumbai, India
| | - Swapnali Sakhare
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Mohit Kheur
- Department of Prosthodontics, M.A. Rangoonwala College of Dental Sciences and Research Centre, Pune, Maharashtra, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
110
|
Li C, An N, Song Q, Hu Y, Yin W, Wang Q, Le Y, Pan W, Yan X, Wang Y, Liu J. Enhancing organoid culture: harnessing the potential of decellularized extracellular matrix hydrogels for mimicking microenvironments. J Biomed Sci 2024; 31:96. [PMID: 39334251 PMCID: PMC11429032 DOI: 10.1186/s12929-024-01086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Over the past decade, organoids have emerged as a prevalent and promising research tool, mirroring the physiological architecture of the human body. However, as the field advances, the traditional use of animal or tumor-derived extracellular matrix (ECM) as scaffolds has become increasingly inadequate. This shift has led to a focus on developing synthetic scaffolds, particularly hydrogels, that more accurately mimic three-dimensional (3D) tissue structures and dynamics in vitro. The ECM-cell interaction is crucial for organoid growth, necessitating hydrogels that meet organoid-specific requirements through modifiable physical and compositional properties. Advanced composite hydrogels have been engineered to more effectively replicate in vivo conditions, offering a more accurate representation of human organs compared to traditional matrices. This review explores the evolution and current uses of decellularized ECM scaffolds, emphasizing the application of decellularized ECM hydrogels in organoid culture. It also explores the fabrication of composite hydrogels and the prospects for their future use in organoid systems.
Collapse
Affiliation(s)
- Chen Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
| | - Ni An
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Qingru Song
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Yuelei Hu
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Wenzhen Yin
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Qi Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Yinpeng Le
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- School of Materials Science and Engineering, Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenting Pan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Xinlong Yan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Yunfang Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China.
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China.
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| | - Juan Liu
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China.
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
111
|
Donati L, Valicenti ML, Giannoni S, Morena F, Martino S. Biomaterials Mimicking Mechanobiology: A Specific Design for a Specific Biological Application. Int J Mol Sci 2024; 25:10386. [PMID: 39408716 PMCID: PMC11476540 DOI: 10.3390/ijms251910386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Mechanosensing and mechanotransduction pathways between the Extracellular Matrix (ECM) and cells form the essential crosstalk that regulates cell homeostasis, tissue development, morphology, maintenance, and function. Understanding these mechanisms involves creating an appropriate cell support that elicits signals to guide cellular functions. In this context, polymers can serve as ideal molecules for producing biomaterials designed to mimic the characteristics of the ECM, thereby triggering responsive mechanisms that closely resemble those induced by a natural physiological system. The generated specific stimuli depend on the different natural or synthetic origins of the polymers, the chemical composition, the assembly structure, and the physical and surface properties of biomaterials. This review discusses the most widely used polymers and their customization to develop biomaterials with tailored properties. It examines how the characteristics of biomaterials-based polymers can be harnessed to replicate the functions of biological cells, making them suitable for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Leonardo Donati
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Maria Luisa Valicenti
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Samuele Giannoni
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy
- Centro di Eccellenza Materiali Innovativi Nanostrutturati per Applicazioni Chimiche Fisiche e Biomediche (CEMIN), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
112
|
Richterová V, Pekař M. Effect of Silk Fibroin on the Mechanical and Transport Properties of Agarose Hydrogels. Gels 2024; 10:611. [PMID: 39451265 PMCID: PMC11508024 DOI: 10.3390/gels10100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024] Open
Abstract
In this work, the effect of incorporating silk fibroin, a fibrous biocompatible protein, into physically cross-linked agarose hydrogels was investigated as a simple model study to examine how supramolecular fibrous structures influence the properties of the hydrogels. The rheological and transport properties were studied. Fibroin did not change the general viscoelastic properties of the investigated hydrogels but changed the viscoelastic moduli values and also the mesh size, as calculated from rheometry data. Fibroin influenced the mechanical properties depending on its concentration: at lower concentrations, it increased the mesh size, while at higher concentrations, it acted as a filler, decreasing the mesh size. Similarly, the storage and loss moduli were affected, either increasing or decreasing based on the fibroin concentration. The fibroin effect on the diffusion of two dyes differing in their charge was the result of a combination of structural effects, responsible also for changes in the rheological properties, and a result of electrostatic interactions between the charged groups. For positively charged methylene blue, low fibroin concentrations accelerated diffusion, while higher concentrations slowed it by filling network vacancies. In contrast, for negatively charged eosin-B, fibroin strongly impeded diffusion at all concentrations due to electrostatic repulsion, leading to its accumulation at the hydrogel interface. The findings of this work may contribute to an understanding of the behavior of the extracellular matrix or soft tissues as well as to the development of the tailored design of hydrogel materials.
Collapse
Affiliation(s)
- Veronika Richterová
- Institute of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkynova 464/118, 612 00 Brno, Czech Republic;
| | | |
Collapse
|
113
|
de Hilster RHJ, Reinders-Luinge MA, Schuil A, Borghuis T, Harmsen MC, Burgess JK, Hylkema MN. A 3D Epithelial-Mesenchymal Co-Culture Model of the Airway Wall Using Native Lung Extracellular Matrix. Bioengineering (Basel) 2024; 11:946. [PMID: 39329688 PMCID: PMC11428669 DOI: 10.3390/bioengineering11090946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/02/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic lung disease characterized by ongoing inflammation, impaired tissue repair, and aberrant interplay between airway epithelium and fibroblasts, resulting in an altered extracellular matrix (ECM) composition. The ECM is the three-dimensional (3D) scaffold that provides mechanical support and biochemical signals to cells, now recognized not only as a consequence but as a potential driver of disease progression. To elucidate how the ECM influences pathophysiological changes occurring in COPD, in vitro models are needed that incorporate the ECM. ECM hydrogels are a novel experimental tool for incorporating the ECM in experimental setups. We developed an airway wall model by combining lung-derived ECM hydrogels with a co-culture of primary human fibroblasts and epithelial cells at an air-liquid interface. Collagen IV and a mixture of collagen I, fibronectin, and bovine serum albumin were used as basement membrane-mimicking coatings. The model was initially assembled using porcine lung-derived ECM hydrogels and subsequently with COPD and non-COPD human lung-derived ECM hydrogels. The resulting 3D construct exhibited considerable contraction and supported co-culture, resulting in a differentiated epithelial layer. This multi-component 3D model allows the investigation of remodelling mechanisms, exploring ECM involvement in cellular crosstalk, and holds promise as a model for drug discovery studies exploring ECM involvement in cellular interactions.
Collapse
Affiliation(s)
- Roderick H. J. de Hilster
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (R.H.J.d.H.)
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Marjan A. Reinders-Luinge
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (R.H.J.d.H.)
| | - Annemarie Schuil
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (R.H.J.d.H.)
| | - Theo Borghuis
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (R.H.J.d.H.)
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Martin C. Harmsen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (R.H.J.d.H.)
- KOLFF Institute—REGENERATE, University of Groningen, University Medical Center Groningen, FB41, 9713 AV Groningen, The Netherlands
| | - Janette K. Burgess
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (R.H.J.d.H.)
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- KOLFF Institute—REGENERATE, University of Groningen, University Medical Center Groningen, FB41, 9713 AV Groningen, The Netherlands
| | - Machteld N. Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (R.H.J.d.H.)
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
114
|
吴 俊, 孔 祥, 吕 强. [Research progress of silk-based biomaterials for peripheral nerve regeneration]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:1149-1156. [PMID: 39300893 PMCID: PMC11440169 DOI: 10.7507/1002-1892.202402071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/05/2024] [Indexed: 09/22/2024]
Abstract
Objective To describe the research progress of silk-based biomaterials in peripheral nerve repair and provide useful ideals to accelerate the regeneration of large-size peripheral nerve injury. Methods The relative documents about silk-based biomaterials used in peripheral nerve regeneration were reviewed and the different strategies that could accelerate peripheral nerve regeneration through building bioactive microenvironment with silk fibroin were discussed. Results Many silk fibroin tissue engineered nerve conduits have been developed to provide multiple biomimetic microstructures, and different microstructures have different mechanisms of promoting nerve repair. Biomimetic porous structures favor the nutrient exchange at wound sites and inhibit the invasion of scar tissue. The aligned structures can induce the directional growth of nerve tissue, while the multiple channels promote the axon elongation. When the fillers are introduced to the conduits, better growth, migration, and differentiation of nerve cells can be achieved. Besides biomimetic structures, different nerve growth factors and bioactive drugs can be loaded on silk carriers and released slowly at nerve wounds, providing suitable biochemical cues. Both the biomimetic structures and the loaded bioactive ingredients optimize the niches of peripheral nerves, resulting in quicker and better nerve repair. With silk biomaterials as a platform, fusing multiple ways to achieve the multidimensional regulation of nerve microenvironments is becoming a critical strategy in repairing large-size peripheral nerve injury. Conclusion Silk-based biomaterials are useful platforms to achieve the design of biomimetic hierarchical microstructures and the co-loading of various bioactive ingredients. Silk fibroin nerve conduits provide suitable microenvironment to accelerate functional recovery of peripheral nerves. Different optimizing strategies are available for silk fibroin biomaterials to favor the nerve regeneration, which would satisfy the needs of various nerve tissue repair. Bioactive silk conduits have promising future in large-size peripheral nerve regeneration.
Collapse
Affiliation(s)
- 俊峰 吴
- 浙江理工大学材料科学与工程学院智能生物材料研究所(杭州 310018)Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou Zhejiang, 310018, P. R. China
| | - 祥东 孔
- 浙江理工大学材料科学与工程学院智能生物材料研究所(杭州 310018)Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou Zhejiang, 310018, P. R. China
| | - 强 吕
- 浙江理工大学材料科学与工程学院智能生物材料研究所(杭州 310018)Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou Zhejiang, 310018, P. R. China
| |
Collapse
|
115
|
Francés-Herrero E, Bueno-Fernandez C, Rodríguez-Eguren A, Gómez-Álvarez M, Faus A, Soto-Prado A, Buigues A, Herraiz S, Pellicer A, Cervelló I. Growth factor-loaded ovarian extracellular matrix hydrogels promote in vivo ovarian niche regeneration and enhance fertility in premature ovarian insufficiency preclinical models. Acta Biomater 2024; 186:125-140. [PMID: 39111680 DOI: 10.1016/j.actbio.2024.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
Premature ovarian insufficiency (POI) means menopause before 40 years of age affecting about 1 % of women. Approaches based on cell therapy and the paracrine effects of stem cells or bioproducts such as platelet-rich plasma have been proposed, but concerns remain about undesired systemic effects, as well as the need to optimize delivery methods through bioengineering methods. This study explores the efficacy of decellularized bovine ovarian cortex extracellular matrix (OvaECM) hydrogels alone and as a growth factor (GF) carrier (OvaECM+GF) in a chemotherapy-induced POI murine model. In vitro assays showed a gradual release of GF from the OvaECM sustained for two weeks. Chemotherapy drastically reduced follicle numbers, but OvaECM+GF treatment restored pre-antral follicle development. Moreover, this treatment notably regenerated the ovarian microenvironment by increasing cell proliferation and microvessel density while reducing chemotherapy-induced apoptosis and fibrosis. Whole-ovary RNA sequencing and gene set enrichment analysis revealed an upregulation of regeneration-related genes and a downregulation of apoptotic pathways. The OvaECM+GF treatment also yielded significantly better outcomes following ovarian stimulation and in vitro fertilization. After two consecutive crossbreeding cycles, OvaECM+GF-treated mice showed normal reproductive function. This research showcases the biocompatibility and efficacy of OvaECM to reverse POI in mice, setting a foundation to explore innovative bioengineering-based POI therapies. STATEMENT OF SIGNIFICANCE: Premature ovarian insufficiency (POI) affects about 1 % of women worldwide, causing early menopause before 40 years old. Current treatments alleviate symptoms but do not restore ovarian function. This study explores an innovative approach using ovarian cortex extracellular matrix hydrogels to deliver growth factors into the murine ovarian niche and reverse POI. In vitro release kinetic assays demonstrated a gradual and sustained release of growth factors. In a POI-induced mouse model, intraovarian injections of the hydrogel encapsulating growth factors restored pre-antral follicle development, increased cell proliferation, reduced apoptosis and fibrosis, and improved ovarian response and in vitro fertilization outcomes. Long-term benefits included larger litter sizes. This innovative technique shows promise in regenerating the ovarian environment and improving reproductive outcomes.
Collapse
Affiliation(s)
- Emilio Francés-Herrero
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Clara Bueno-Fernandez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Adolfo Rodríguez-Eguren
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - María Gómez-Álvarez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Amparo Faus
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Alexandra Soto-Prado
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Anna Buigues
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Sonia Herraiz
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, 46010 Valencia, Spain; IVIRMA Global Research Alliance, IVI Roma Parioli, 00197 Rome, Italy
| | - Irene Cervelló
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain.
| |
Collapse
|
116
|
Rijns L, Rutten MGTA, Vrehen AF, Aldana AA, Baker MB, Dankers PYW. Mimicking the extracellular world: from natural to fully synthetic matrices utilizing supramolecular biomaterials. NANOSCALE 2024; 16:16290-16312. [PMID: 39161293 DOI: 10.1039/d4nr02088j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The extracellular matrix (ECM) has evolved around complex covalent and non-covalent interactions to create impressive function-from cellular signaling to constant remodeling. A major challenge in the biomedical field is the de novo design and control of synthetic ECMs for applications ranging from tissue engineering to neuromodulation to bioelectronics. As we move towards recreating the ECM's complexity in hydrogels, the field has taken several approaches to recapitulate the main important features of the native ECM (i.e. mechanical, bioactive and dynamic properties). In this review, we first describe the wide variety of hydrogel systems that are currently used, ranging from fully natural to completely synthetic to hybrid versions, highlighting the advantages and limitations of each class. Then, we shift towards supramolecular hydrogels that show great potential for their use as ECM mimics due to their biomimetic hierarchical structure, inherent (controllable) dynamic properties and their modular design, allowing for precise control over their mechanical and biochemical properties. In order to make the next step in the complexity of synthetic ECM-mimetic hydrogels, we must leverage the supramolecular self-assembly seen in the native ECM; we therefore propose to use supramolecular monomers to create larger, hierarchical, co-assembled hydrogels with complex and synergistic mechanical, bioactive and dynamic features.
Collapse
Affiliation(s)
- Laura Rijns
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Martin G T A Rutten
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Annika F Vrehen
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Ana A Aldana
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
117
|
Zhang W, Zhang N, Wu W, Li H, You H, Chen W. Atlas of mildly and highly insoluble matrisome driving liver fibrosis. Front Pharmacol 2024; 15:1435359. [PMID: 39286627 PMCID: PMC11403298 DOI: 10.3389/fphar.2024.1435359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
The excessive deposition and cross-linking of core matrisome components typically result in abnormal remodeling of the extracellular matrix (ECM), leading to increased liver stiffness and worsening liver fibrosis. Exploring the biochemical properties of the ECM scaffold can deepen our understanding of the pathological mechanisms driving liver fibrosis and potentially facilitate the identification of therapeutic targets. While traditional sodium dodecyl sulfate (SDS)-based liver decellularization followed by proteomics can uncover the matrisome components within the ECM scaffold, it lacks the ability to reveal physicochemical characteristics like solubility. In our present study, using adult mouse liver as an example, we introduced a novel two-step workflow that combines our previously enhanced SDS (ESDS) decellularization with the conventional SDS method, enabling the identification of matrisome members with mild and/or high solubilities. Through this approach, we visualized the atlas of the mildly and highly insoluble matrisome contents in the adult mouse liver, as well as the regulatory network of highly insoluble matrisome that largely governs liver stiffness. Given the strong correlation between increased matrisome insolubility and heightened ECM stiffness, we believe that this methodology holds promise for future research focused on liver stiffness.
Collapse
Affiliation(s)
- Wen Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenyue Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Li
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Chen
- State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Chinese Institutes for Medical Research (CIMR), Beijing, China
| |
Collapse
|
118
|
Lan M, Liu Y, Liu J, Zhang J, Haider MA, Zhang Y, Zhang Q. Matrix Viscoelasticity Tunes the Mechanobiological Behavior of Chondrocytes. Cell Biochem Funct 2024; 42:e4126. [PMID: 39324844 DOI: 10.1002/cbf.4126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/25/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
In articular cartilage, the pericellular matrix acting as a specialized mechanical microenvironment modulates environmental signals to chondrocytes through mechanotransduction. Matrix viscoelastic alterations during cartilage development and osteoarthritis (OA) degeneration play an important role in regulating chondrocyte fate and cartilage matrix homeostasis. In recent years, scientists are gradually realizing the importance of matrix viscoelasticity in regulating chondrocyte function and phenotype. Notably, this is an emerging field, and this review summarizes the existing literatures to the best of our knowledge. This review provides an overview of the viscoelastic properties of hydrogels and the role of matrix viscoelasticity in directing chondrocyte behavior. In this review, we elaborated the mechanotransuction mechanisms by which cells sense and respond to the viscoelastic environment and also discussed the underlying signaling pathways. Moreover, emerging insights into the role of matrix viscoelasticity in regulating chondrocyte function and cartilage formation shed light into designing cell-instructive biomaterial. We also describe the potential use of viscoelastic biomaterials in cartilage tissue engineering and regenerative medicine. Future perspectives on mechanobiological comprehension of the viscoelastic behaviors involved in tissue homeostasis, cellular responses, and biomaterial design are highlighted. Finally, this review also highlights recent strategies utilizing viscoelastic hydrogels for designing cartilage-on-a-chip.
Collapse
Affiliation(s)
- Minhua Lan
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yanli Liu
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Junjiang Liu
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Jing Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Muhammad Adnan Haider
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yanjun Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Quanyou Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
119
|
Libby JR, Royce H, Walker SR, Li L. The role of extracellular matrix in angiogenesis: Beyond adhesion and structure. BIOMATERIALS AND BIOSYSTEMS 2024; 15:100097. [PMID: 39129826 PMCID: PMC11315062 DOI: 10.1016/j.bbiosy.2024.100097] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/19/2024] [Accepted: 07/06/2024] [Indexed: 08/13/2024] Open
Abstract
While the extracellular matrix (ECM) has long been recognized for its structural contributions, anchoring cells for adhesion, providing mechanical support, and maintaining tissue integrity, recent efforts have elucidated its dynamic, reciprocal, and diverse properties on angiogenesis. The ECM modulates angiogenic signaling and mechanical transduction, influences the extent and degree of receptor activation, controls cellular behaviors, and serves as a reservoir for bioactive macromolecules. Collectively, these factors guide the formation, maturation, and stabilization of a functional vascular network. This review aims to shed light on the versatile roles of the ECM in angiogenesis, transcending its traditional functions as a mere structural material. We will explore its engagement and synergy in signaling modulation, interactions with various angiogenic factors, and highlight its importance in both health and disease. By capturing the essence of the ECM's diverse functionalities, we highlight the significance in the broader context of vascular biology, enabling the design of novel biomaterials to engineer vascularized tissues and their potential therapeutic implications.
Collapse
Affiliation(s)
- Jaxson R. Libby
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Haley Royce
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, USA
| | - Sarah R. Walker
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Linqing Li
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, USA
- Department of Chemistry, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
120
|
Parihar K, Ko SHB, Bradley RP, Taylor P, Ramakrishnan N, Baumgart T, Guo W, Weaver VM, Janmey PA, Radhakrishnan R. Asymmetric crowders and membrane morphology at the nexus of intracellular trafficking and oncology. MECHANOBIOLOGY IN MEDICINE 2024; 2:100071. [PMID: 38899029 PMCID: PMC11185830 DOI: 10.1016/j.mbm.2024.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A definitive understanding of the interplay between protein binding/migration and membrane curvature evolution is emerging but needs further study. The mechanisms defining such phenomena are critical to intracellular transport and trafficking of proteins. Among trafficking modalities, exosomes have drawn attention in cancer research as these nano-sized naturally occurring vehicles are implicated in intercellular communication in the tumor microenvironment, suppressing anti-tumor immunity and preparing the metastatic niche for progression. A significant question in the field is how the release and composition of tumor exosomes are regulated. In this perspective article, we explore how physical factors such as geometry and tissue mechanics regulate cell cortical tension to influence exosome production by co-opting the biophysics as well as the signaling dynamics of intracellular trafficking pathways and how these exosomes contribute to the suppression of anti-tumor immunity and promote metastasis. We describe a multiscale modeling approach whose impact goes beyond the fundamental investigation of specific cellular processes toward actual clinical translation. Exosomal mechanisms are critical to developing and approving liquid biopsy technologies, poised to transform future non-invasive, longitudinal profiling of evolving tumors and resistance to cancer therapies to bring us one step closer to the promise of personalized medicine.
Collapse
Affiliation(s)
- Kshitiz Parihar
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Seung-Hyun B. Ko
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan P. Bradley
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Phillip Taylor
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - N. Ramakrishnan
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Tobias Baumgart
- Department of Chemistry, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Valerie M. Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA
| | - Paul A. Janmey
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
121
|
Hu X, Bao M. Advances in micropatterning technology for mechanotransduction research. MECHANOBIOLOGY IN MEDICINE 2024; 2:100066. [PMID: 40395493 PMCID: PMC12082312 DOI: 10.1016/j.mbm.2024.100066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 05/22/2025]
Abstract
Micropatterning is a sophisticated technique that precisely manipulates the spatial distribution of cell adhesion proteins on various substrates across multiple scales. This precise control over adhesive regions facilitates the manipulation of architectures and physical constraints for single or multiple cells. Furthermore, it allows for an in-depth analysis of how chemical and physical properties influence cellular functionality. In this comprehensive review, we explore the current understanding of the impact of geometrical confinement on cellular functions across various dimensions, emphasizing the benefits of micropatterning in addressing fundamental biological queries. We advocate that utilizing directed self-organization via physical confinement and morphogen gradients on micropatterned surfaces represents an innovative approach to generating functional tissue and controlling morphogenesis in vitro. Integrating this technique with cutting-edge technologies, micropatterning presents a significant potential to bridge a crucial knowledge gap in understanding core biological processes.
Collapse
Affiliation(s)
- Xinyu Hu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Min Bao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325001, Zhejiang, China
| |
Collapse
|
122
|
Blázquez-Carmona P, Ruiz-Mateos R, Barrasa-Fano J, Shapeti A, Martín-Alfonso JE, Domínguez J, Van Oosterwyck H, Reina-Romo E, Sanz-Herrera JA. Quantitative atlas of collagen hydrogels reveals mesenchymal cancer cell traction adaptation to the matrix nanoarchitecture. Acta Biomater 2024; 185:281-295. [PMID: 38992411 DOI: 10.1016/j.actbio.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Collagen-based hydrogels are commonly used in mechanobiology to mimic the extracellular matrix. A quantitative analysis of the influence of collagen concentration and properties on the structure and mechanics of the hydrogels is essential for tailored design adjustments for specific in vitro conditions. We combined focused ion beam scanning electron microscopy and rheology to provide a detailed quantitative atlas of the mechanical and nanoscale three-dimensional structural alterations that occur when manipulating different hydrogel's physicochemistry. Moreover, we study the effects of such alterations on the phenotype of breast cancer cells and their mechanical interactions with the extracellular matrix. Regardless of the microenvironment's pore size, porosity or mechanical properties, cancer cells are able to reach a stable mesenchymal-like morphology. Additionally, employing 3D traction force microscopy, a positive correlation between cellular tractions and ECM mechanics is observed up to a critical threshold, beyond which tractions plateau. This suggests that cancer cells in a stable mesenchymal state calibrate their mechanical interactions with the ECM to keep their migration and invasiveness capacities unaltered. STATEMENT OF SIGNIFICANCE: The paper presents a thorough study on the mechanical microenvironment in breast cancer cells during their interaction with collagen based hydrogels of different compositions. The hydrogels' microstructure were obtained using state-of-the-art 3D microscopy, namely focused ion beam-scanning electron microscope (FIB-SEM). FIB-SEM was originally applied in this work to reconstruct complex fibered collagen microstructures within the nanometer range, to obtain key microarchitectural parameters. The mechanical microenvironment of cells was recovered using Traction Force Microscopy (TFM). The obtained results suggest that cells calibrate tractions such that they depend on mechanical, microstructural and physicochemical characteristics of the hydrogels, hence revealing a steric hindrance. We hypothesize that cancer cells studied in this paper tune their mechanical state to keep their migration and invasiveness capacities unaltered.
Collapse
Affiliation(s)
- Pablo Blázquez-Carmona
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - Raquel Ruiz-Mateos
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - Jorge Barrasa-Fano
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300. B-3001 Heverlee, Belgium
| | - Apeksha Shapeti
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300. B-3001 Heverlee, Belgium
| | - José Enrique Martín-Alfonso
- Escuela Técnica Superior de Ingeniería, Universidad de Huelva. Avda. de las Fuerzas Armadas s/n, 21007 Huelva, Spain
| | - Jaime Domínguez
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - Hans Van Oosterwyck
- Department of Mechanical Engineering, Biomechanics Section, KU Leuven, Celestijnenlaan 300. B-3001 Heverlee, Belgium
| | - Esther Reina-Romo
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain
| | - José Antonio Sanz-Herrera
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla. Avenida Camino de los Descubrimientos s/n, 41092 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBIS). C. Antonio Maura Montaner, 41013 Sevilla, Spain.
| |
Collapse
|
123
|
Sun C, Li S, Ding J. Biomaterials-Boosted Immunotherapy for Osteosarcoma. Adv Healthc Mater 2024; 13:e2400864. [PMID: 38771618 DOI: 10.1002/adhm.202400864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor that emanates from mesenchymal cells, commonly found in the epiphyseal end of long bones. The highly recurrent and metastatic nature of OS poses significant challenges to the efficacy of treatment and negatively affects patient prognosis. Currently, available clinical treatment strategies primarily focus on maximizing tumor resection and reducing localized symptoms rather than the complete eradication of malignant tumor cells to achieve ideal outcomes. The biomaterials-boosted immunotherapy for OS is characterized by high effectiveness and a favorable safety profile. This therapeutic approach manipulates the tumor microenvironments at the cellular and molecular levels to impede tumor progression. This review delves into the mechanisms underlying the treatment of OS, emphasizing biomaterials-enhanced tumor immunity. Moreover, it summarizes the immune cell phenotype and tumor microenvironment regulation, along with the ability of immune checkpoint blockade to activate the autoimmune system. Gaining a profound comprehension of biomaterials-boosted OS immunotherapy is imperative to explore more efficacious immunotherapy protocols and treatment options in this setting.
Collapse
Affiliation(s)
- Chao Sun
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Shuqiang Li
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
124
|
Osuala KO, Chalasani A, Aggarwal N, Ji K, Moin K. Paracrine Activation of STAT3 Drives GM-CSF Expression in Breast Carcinoma Cells, Generating a Symbiotic Signaling Network with Breast Carcinoma-Associated Fibroblasts. Cancers (Basel) 2024; 16:2910. [PMID: 39199680 PMCID: PMC11353178 DOI: 10.3390/cancers16162910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 09/01/2024] Open
Abstract
This study evaluated the paracrine signaling between breast carcinoma-associated fibroblasts (CAFs) and breast cancer (BCa) cells. Resolving cell-cell communication in the BCa tumor microenvironment (TME) will aid the development of new therapeutics. Here, we utilized our patented TAME (tissue architecture and microenvironment engineering) 3D culture microphysiological system, which is a suitable pathomimetic avatar for the study of the BCa TME. We cultured in 3D BCa cells and CAFs either alone or together in cocultures and found that when cocultured, CAFs enhanced the invasive characteristics of tumor cells, as shown by increased proliferation and spread of tumor cells into the surrounding matrix. Secretome analysis from 3D cultures revealed a relatively high secretion of IL-6 by CAFs. A marked increase in the secretion of granulocyte macrophage-colony stimulating factor (GM-CSF) when carcinoma cells and CAFs were in coculture was also observed. We theorized that the CAF-secreted IL-6 functions in a paracrine manner to induce GM-CSF expression and secretion from carcinoma cells. This was confirmed by evaluating the activation of STAT3 and gene expression of GM-CSF in carcinoma cells exposed to CAF-conditioned media (CAF-CM). In addition, the treatment of CAFs with BCa cell-CM yielded a brief upregulation of GM-CSF followed by a marked decrease, indicating a tightly regulated control of GM-CSF in CAFs. Secretion of IL-6 from CAFs drives the activation of STAT3 in BCa cells, which in turn drives the expression and secretion of GM-CSF. As a result, CAFs exposed to BCa cell-secreted GM-CSF upregulate inflammation-associated genes such as IL-6, IL-6R and IL-8, thereby forming a positive feedback loop. We propose that the tight regulation of GM-CSF in CAFs may be a novel regulatory pathway to target for disrupting the CAF:BCa cell symbiotic relationship. These data provide yet another piece of the cell-cell communication network governing the BCa TME.
Collapse
Affiliation(s)
- Kingsley O. Osuala
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
- Twelve Biosciences Research & Development, Kalamazoo, MI 49009, USA
| | - Anita Chalasani
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
| | - Neha Aggarwal
- Department of Physiology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA;
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Kamiar Moin
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
| |
Collapse
|
125
|
Wang Z, Zhao H. TMEM176B Prevents and alleviates bleomycin-induced pulmonary fibrosis via inhibiting transforming growth factor β-Smad signaling. Heliyon 2024; 10:e35444. [PMID: 39170226 PMCID: PMC11336771 DOI: 10.1016/j.heliyon.2024.e35444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Pulmonary fibrosis is a severe and progressive lung disease characterized by the abnormal accumulation of extracellular matrix, leading to scarring and loss of normal lung function. Recent bioinformatics analysis through the Gene Expression Omnibus (GEO) database identified a significant downregulation of Transmembrane Protein 176B (TMEM176B), previously unexplored in the context of fibrotic lung tissues. To investigate the functional role of TMEM176B, we induced pulmonary fibrosis in mice using bleomycin, TGFβ1, and silica, which consistently resulted in a marked decrease in TMEM176B expression. Intriguingly, overexpression of TMEM176B via adenoviral vectors prior to the induction of fibrosis led to significant improvements in fibrotic manifestations and lung function. Mechanistically, TMEM176B appears to mitigate pulmonary fibrosis by inhibiting the TGFβ1-SMAD signaling pathway, which is a critical mediator of fibroblast proliferation and differentiation and promotes extracellular matrix production. These findings suggest that TMEM176B plays an inhibitory role in the pathophysiological processes of pulmonary fibrosis, highlighting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hehua Zhao
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
126
|
Yu J, Du Q, Li X, Wei W, Fan Y, Zhang J, Chen J. Potential role of endothelial progenitor cells in the pathogenesis and treatment of cerebral aneurysm. Front Cell Neurosci 2024; 18:1456775. [PMID: 39193428 PMCID: PMC11348393 DOI: 10.3389/fncel.2024.1456775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Cerebral aneurysm (CA) is a significant health concern that results from pathological dilations of blood vessels in the brain and can lead to severe and potentially life-threatening conditions. While the pathogenesis of CA is complex, emerging studies suggest that endothelial progenitor cells (EPCs) play a crucial role. In this paper, we conducted a comprehensive literature review to investigate the potential role of EPCs in the pathogenesis and treatment of CA. Current research indicates that a decreased count and dysfunction of EPCs disrupt the balance between endothelial dysfunction and repair, thus increasing the risk of CA formation. Reversing these EPCs abnormalities may reduce the progression of vascular degeneration after aneurysm induction, indicating EPCs as a promising target for developing new therapeutic strategies to facilitate CA repair. This has motivated researchers to develop novel treatment options, including drug applications, endovascular-combined and tissue engineering therapies. Although preclinical studies have shown promising results, there is still a considerable way to go before clinical translation and eventual benefits for patients. Nonetheless, these findings offer hope for improving the treatment and management of this condition.
Collapse
Affiliation(s)
- Jin Yu
- Department of Neurosurgery, Wuhan Asia General Hospital, Wuhan, Hubei, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qian Du
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuncun Fan
- Department of Respiratory and Critical Care Medicine, Laifeng County People’s Hospital, Enshi, Hubei, China
| | - Jianjian Zhang
- Department of Neurosurgery, Wuhan Asia General Hospital, Wuhan, Hubei, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jincao Chen
- Department of Neurosurgery, Wuhan Asia General Hospital, Wuhan, Hubei, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
127
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
128
|
Uji T, Kandori T, Mizuta H. Identification of differential gene expression related to reproduction in the sporophytes of Saccharina japonica. FRONTIERS IN PLANT SCIENCE 2024; 15:1417582. [PMID: 39166251 PMCID: PMC11333212 DOI: 10.3389/fpls.2024.1417582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024]
Abstract
Saccharina japonica, a significant brown macroalga in the Pacific Ocean, serves as a food source and industrial material. In aquaculture, collecting mature sporophytes for seedling production is essential but challenging due to environmental changes. In this study, transcriptomic analysis of vegetative and sorus tissues was done to identify differentially expressed genes (DEGs) and enhance our understanding of sorus formation regulation in S. japonica. KEGG pathway and Gene Otology (GO) analysis revealed that upregulated DEGs were involved in folate biosynthesis, riboflavin metabolism, and amino acid biosynthesis. In addition, the upregulation of genes associated with cell wall remodeling, such as mannuronan C-5-epimerases, vanadium-dependent haloperoxidases, and NADPH oxidase, was observed in sorus parts. Meanwhile, downregulated DEGs in sorus portions included genes related to chloroplast function. These findings will help us understand the regulatory mechanisms behind sorus formation in S. japonica and extracellular matrix remodeling in brown algae.
Collapse
Affiliation(s)
- Toshiki Uji
- Laboratory of Aquaculture Genetics and Genomics, Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | | | | |
Collapse
|
129
|
Foda MY, Salem ML, AlAkwaa FM, El-Khawaga OY. Atorvastatin lowers breast cancer risk by reversing an early tumorigenic signature. Sci Rep 2024; 14:17803. [PMID: 39090164 PMCID: PMC11294600 DOI: 10.1038/s41598-024-67706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Breast cancer remains a significant health challenge with complex molecular mechanisms. While many studies have explored genetic markers in breast carcinogenesis, few have studied the potential impact of pharmacological interventions such as Atorvastatin on its genetic landscape. This study aimed to elucidate the molecular distinctions between normal and tumor-adjacent tissues in breast cancer and to investigate the potential protective role of atorvastatin, primarily known for its lipid-lowering effects, against breast cancer. Searching the Gene Expression Omnibus database identified two datasets, GSE9574 and GSE20437, comparing normal breast tissues with tumor-adjacent samples, which were merged, and one dataset, GSE63427, comparing paired pre- and post-treated patients with atorvastatin. Post-ComBat application showed merged datasets' consistency, revealing 116 DEGs between normal and tumor-adjacent tissues. Although initial GSE63427 data analysis suggested a minimal impact of atorvastatin, 105 DEGs post-treatment were discovered. Thirteen genes emerged as key players, both affected by Atorvastatin and dysregulated in tumor-adjacent tissues. Pathway analysis spotlighted the significance of these genes in processes like inflammation, oxidative stress, apoptosis, and cell cycle control. Moreover, there was a noticeable interaction between these genes and the immunological microenvironment in tumor-adjacent tissues, with Atorvastatin potentially altering the suppressive immune landscape to favor anti-tumor immunity. Survival analysis further highlighted the prognostic potential of the 13-gene panel, with 12 genes associated with improved survival outcomes. The 13-gene signature offers promising insights into breast cancer's molecular mechanisms and atorvastatin's potential therapeutic role. The preliminary findings advocate for an in-depth exploration of atorvastatin's impact on.
Collapse
Affiliation(s)
- Mohamed Y Foda
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed L Salem
- Immunology and Biotechnology Unit, Department of Zoology, Faculty of Science, and Center of Excellence in Cancer Research, Tanta University, Tanta, Egypt
| | - Fadhl M AlAkwaa
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Omali Y El-Khawaga
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
130
|
Arteel GE. Hepatic Extracellular Matrix and Its Role in the Regulation of Liver Phenotype. Semin Liver Dis 2024; 44:343-355. [PMID: 39191427 PMCID: PMC12057067 DOI: 10.1055/a-2404-7973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The hepatic extracellular matrix (ECM) is most accurately depicted as a dynamic compartment that comprises a diverse range of players that work bidirectionally with hepatic cells to regulate overall homeostasis. Although the classic meaning of the ECM referred to only proteins directly involved in generating the ECM structure, such as collagens, proteoglycans, and glycoproteins, the definition of the ECM is now broader and includes all components associated with this compartment. The ECM is critical in mediating phenotype at the cellular, organ, and even organismal levels. The purpose of this review is to summarize the prevailing mechanisms by which ECM mediates hepatic phenotype and discuss the potential or established role of this compartment in the response to hepatic injury in the context of steatotic liver disease.
Collapse
Affiliation(s)
- Gavin E. Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
131
|
Urciuolo F, Imparato G, Netti PA. Engineering Cell Instructive Microenvironments for In Vitro Replication of Functional Barrier Organs. Adv Healthc Mater 2024; 13:e2400357. [PMID: 38695274 DOI: 10.1002/adhm.202400357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Multicellular organisms exhibit synergistic effects among their components, giving rise to emergent properties crucial for their genesis and overall functionality and survival. Morphogenesis involves and relies upon intricate and biunivocal interactions among cells and their environment, that is, the extracellular matrix (ECM). Cells secrete their own ECM, which in turn, regulates their morphogenetic program by controlling time and space presentation of matricellular signals. The ECM, once considered passive, is now recognized as an informative space where both biochemical and biophysical signals are tightly orchestrated. Replicating this sophisticated and highly interconnected informative media in a synthetic scaffold for tissue engineering is unattainable with current technology and this limits the capability to engineer functional human organs in vitro and in vivo. This review explores current limitations to in vitro organ morphogenesis, emphasizing the interplay of gene regulatory networks, mechanical factors, and tissue microenvironment cues. In vitro efforts to replicate biological processes for barrier organs such as the lung and intestine, are examined. The importance of maintaining cells within their native microenvironmental context is highlighted to accurately replicate organ-specific properties. The review underscores the necessity for microphysiological systems that faithfully reproduce cell-native interactions, for advancing the understanding of developmental disorders and disease progression.
Collapse
Affiliation(s)
- Francesco Urciuolo
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Napoli, 80125, Italy
| | - Giorgia Imparato
- Centre for Advanced Biomaterials for Health Care (IIT@CRIB), Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, Napoli, 80125, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Napoli, 80125, Italy
- Centre for Advanced Biomaterials for Health Care (IIT@CRIB), Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, Napoli, 80125, Italy
| |
Collapse
|
132
|
Yang Q, Yan C, Sun Y, Xie Z, Yang L, Jiang M, Ni J, Chen B, Xu S, Yuan Z, Wu Y, Liu X, Yuan Z, Bai Z. Extracellular Matrix Remodeling Alleviates Memory Deficits in Alzheimer's Disease by Enhancing the Astrocytic Autophagy-Lysosome Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400480. [PMID: 38881515 PMCID: PMC11336928 DOI: 10.1002/advs.202400480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Extracellular matrix (ECM) remodeling is strongly linked to Alzheimer's disease (AD) risk; however, the underlying mechanisms are not fully understood. Here, it is found that the injection of chondroitinase ABC (ChABC), mimicking ECM remodeling, into the medial prefrontal cortex (mPFC) reversed short-term memory loss and reduced amyloid-beta (Aβ) deposition in 5xFAD mice. ECM remodeling also reactivated astrocytes, reduced the levels of aggrecan in Aβ plaques, and enhanced astrocyte recruitment to surrounding plaques. Importantly, ECM remodeling enhanced the autophagy-lysosome pathway in astrocytes, thereby mediating Aβ clearance and alleviating AD pathology. ECM remodeling also promoted Aβ plaque phagocytosis by astrocytes by activating the astrocytic phagocytosis receptor MERTK and promoting astrocytic vesicle circulation. The study identified a cellular mechanism in which ECM remodeling activates the astrocytic autophagy-lysosomal pathway and alleviates AD pathology. Targeting ECM remodeling may represent a potential therapeutic strategy for AD and serve as a reference for the treatment of this disease.
Collapse
Affiliation(s)
- Qinghu Yang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
| | - Chengxiang Yan
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Yahan Sun
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Zhen Xie
- Key Laboratory of Molecular Medicine and BiotherapyDepartment of BiologySchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
| | - Liang Yang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Ming Jiang
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and BiotherapyDepartment of BiologySchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
| | - Beining Chen
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Neurobiology, Interdisciplinary InnoCenter for Organoids, School of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Sen Xu
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Zhaoyue Yuan
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Yanyan Wu
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Xia Liu
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| | - Zengqiang Yuan
- The Brain Science CenterBeijing Institute of Basic Medical SciencesBeijing100850China
| | - Zhantao Bai
- School of Life Science & Research Center for Natural Peptide Drugs, Shaanxi Engineering & Technological Research Centre for Conservation & Utilization of Regional Biological ResourcesYanan UniversityYanan716000China
- Yanan Engineering & Technological Research Centre for Resource Peptide Drugs, Yanan Key Laboratory for Neural Immuno‐Tumor and Stem CellYanan716000China
| |
Collapse
|
133
|
Mao Y, Wickström SA. Mechanical state transitions in the regulation of tissue form and function. Nat Rev Mol Cell Biol 2024; 25:654-670. [PMID: 38600372 DOI: 10.1038/s41580-024-00719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
From embryonic development, postnatal growth and adult homeostasis to reparative and disease states, cells and tissues undergo constant changes in genome activity, cell fate, proliferation, movement, metabolism and growth. Importantly, these biological state transitions are coupled to changes in the mechanical and material properties of cells and tissues, termed mechanical state transitions. These mechanical states share features with physical states of matter, liquids and solids. Tissues can switch between mechanical states by changing behavioural dynamics or connectivity between cells. Conversely, these changes in tissue mechanical properties are known to control cell and tissue function, most importantly the ability of cells to move or tissues to deform. Thus, tissue mechanical state transitions are implicated in transmitting information across biological length and time scales, especially during processes of early development, wound healing and diseases such as cancer. This Review will focus on the biological basis of tissue-scale mechanical state transitions, how they emerge from molecular and cellular interactions, and their roles in organismal development, homeostasis, regeneration and disease.
Collapse
Affiliation(s)
- Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| | - Sara A Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
134
|
Kremer JL, Sanchez Ortega H, Souza-Siqueira T, Blanes Angeli C, Kei Iwai L, Palmisano G, Ferini Pacicco Lotfi C. Proteomic profiling of the extracellular matrix in the human adrenal cortex. Matrix Biol Plus 2024; 23:100158. [PMID: 39188294 PMCID: PMC11345916 DOI: 10.1016/j.mbplus.2024.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
The extracellular matrix (ECM) comprises macromolecules that shape a complex three-dimensional network. Filling the intercellular space and playing a crucial role in the structure and function of tissues, ECM regulates essential cellular processes such as adhesion, differentiation, and cell signaling. In the human adrenal gland, composed of cortex and medulla surrounded by a capsule, the ECM has not yet been directly described, although its impact on the processes of proliferation and steroidogenesis of the adrenal cortex is recognized. This study analyzes the ECM of the adult human adrenal cortex, which was separated into outer fraction (OF) and inner fraction (IF), by comparing their proteomic profiles. The study discusses the composition, spatial distribution, and relevance of differentially expressed ECM signatures of the adrenal cortex matrisome on adrenal structure and function. The findings were validated through database analysis (cross-validation), histochemical, and immunohistochemical approaches. A total of 121 ECM proteins were identified and categorized into glycoproteins, collagens, ECM regulators, proteoglycans, ECM-affiliated proteins, and secreted factors. Thirty-one ECM proteins were identified only in OF, nine only in IF, and 81 were identified in common with both fractions. Additionally, 106 ECM proteins were reported in the Human matrisome DB 2.0, and the proteins differentially expressed in OF and IF, were identified. This study provides significant insights into the composition and regulation of the ECM in the human adrenal cortex, shedding light on the adrenal microenvironment and its role in the functioning, maintenance, and renewal of the adrenal gland.
Collapse
Affiliation(s)
- Jean Lucas Kremer
- Laboratory of Cellular Structure and Function, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Henrique Sanchez Ortega
- Laboratory of Cellular Structure and Function, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Talita Souza-Siqueira
- Department of Clinical Medicine, Laboratory of Cellular, Genetic and Molecular Nephrology, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Claudia Blanes Angeli
- Glycoproteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil
| | - Leo Kei Iwai
- Laboratory of Applied Toxicology, Center of Toxins, Immune-response and Cell Signaling LETA/CeTICS Laboratory, Butantan Institute, São Paulo, Brazil
| | - Giuseppe Palmisano
- Glycoproteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Brazil
- School of Natural Science, Macquarie University, Sydney, Australia
| | - Claudimara Ferini Pacicco Lotfi
- Laboratory of Cellular Structure and Function, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
135
|
Feng X, Zhu R, Luo C, Zhan T, Feng Y, Zhu Y, Zhang H, Liu J, Li S, Zhang J, Sun D, Li J, Ding N, Hua R. Alterations in captive Alexandrine parakeet (Palaeornis eupatria) gut microbiome and metabolome in response to dietary change. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101302. [PMID: 39084149 DOI: 10.1016/j.cbd.2024.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
The Alexandrine parakeet (Palaeornis eupatria), also known as the Alexandrine parrot, is a critically endangered species in the world and a national second class protected animal. Current knowledge on gut microbiome and metabolome of captive Alexandrine parrots is limited. In the current study, we characterized the effect of dietary change with pellet feeding on the gut microbiome and metaboliome in Alexandrine parrots using 16S gene sequencing and liquid chromatography with tandem mass spectrometry (LC-MS/MS). Total of 12 Alexandrine parrots were used in a cross-over study with each period for 10 days. The results showed that dietary change with pellet feeding did not affect alpha indices of gut microbiota. Cyanobacteria, Firmicutes and Proteobacteria were the predominant bacterial phyla in the gut of Alexandrine parrot with Cynobacteria being the highest. Change of diet significantly increased the relative abundance of Actinobacteria and decreased Spirochaetota. The relative abundance of Fusobacteriota tended to increase with pellet feeding. No treatment effects were observed between the control and pellet feeding groups at the genus level. Based on the annotation results from Clusters of Orthologous Genes (COG) database, dietary change with pellet feeding significantly increased the relative abundance of genes coding for extracellular structures and lipid transport and metabolism. Metabolomics analysis combined with enrichment analysis revealed that dietary change altered the concentrations of gut metabolites as well as the metabolic pattern, and significantly affected the concentrations of fecal metabolites involved in isoflavonoid biosynthesis, flavonoid biosynthesis, nucleotide metabolism etc. In summary, dietary changes with pellet feeding affected the gut microbial composition and metabolites to some extent. The relevance of current findings to Alexandrine parrots' health and potential zoonosis need further exploring.
Collapse
Affiliation(s)
- Xin Feng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Rongxia Zhu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Caiyu Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Tongtong Zhan
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Yan Feng
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Yunyun Zhu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Huan Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Jia Liu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Shuhong Li
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Dongting Sun
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Jing Li
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Nan Ding
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China.
| | - Rong Hua
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China.
| |
Collapse
|
136
|
Schulte T, Chaves-Sanjuan A, Speranzini V, Sicking K, Milazzo M, Mazzini G, Rognoni P, Caminito S, Milani P, Marabelli C, Corbelli A, Diomede L, Fiordaliso F, Anastasia L, Pappone C, Merlini G, Bolognesi M, Nuvolone M, Fernández-Busnadiego R, Palladini G, Ricagno S. Helical superstructures between amyloid and collagen in cardiac fibrils from a patient with AL amyloidosis. Nat Commun 2024; 15:6359. [PMID: 39069558 PMCID: PMC11284220 DOI: 10.1038/s41467-024-50686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Systemic light chain (LC) amyloidosis (AL) is a disease where organs are damaged by an overload of a misfolded patient-specific antibody-derived LC, secreted by an abnormal B cell clone. The high LC concentration in the blood leads to amyloid deposition at organ sites. Indeed, cryogenic electron microscopy (cryo-EM) has revealed unique amyloid folds for heart-derived fibrils taken from different patients. Here, we present the cryo-EM structure of heart-derived AL amyloid (AL59) from another patient with severe cardiac involvement. The double-layered structure displays a u-shaped core that is closed by a β-arc lid and extended by a straight tail. Noteworthy, the fibril harbours an extended constant domain fragment, thus ruling out the variable domain as sole amyloid building block. Surprisingly, the fibrils were abundantly concatenated with a proteinaceous polymer, here identified as collagen VI (COLVI) by immuno-electron microscopy (IEM) and mass-spectrometry. Cryogenic electron tomography (cryo-ET) showed how COLVI wraps around the amyloid forming a helical superstructure, likely stabilizing and protecting the fibrils from clearance. Thus, here we report structural evidence of interactions between amyloid and collagen, potentially signifying a distinct pathophysiological mechanism of amyloid deposits.
Collapse
Affiliation(s)
- Tim Schulte
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097, San Donato Milanese, Italy
- Dept of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Box 1031, SE-17121, Solna, Sweden
| | | | - Valentina Speranzini
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Kevin Sicking
- University Medical Center Göttingen, Institute for Neuropathology, Göttinge, 37077, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Melissa Milazzo
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Giulia Mazzini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Paola Rognoni
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Serena Caminito
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Paolo Milani
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Chiara Marabelli
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Alessandro Corbelli
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, Milano, 20156, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, Milano, 20156, Italy
| | - Fabio Fiordaliso
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, Milano, 20156, Italy
| | - Luigi Anastasia
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097, San Donato Milanese, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, 20132, Italy
| | - Carlo Pappone
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097, San Donato Milanese, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, 20132, Italy
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, San Donato, Milan, 20097, Italy
| | - Giampaolo Merlini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Martino Bolognesi
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Mario Nuvolone
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Rubén Fernández-Busnadiego
- University Medical Center Göttingen, Institute for Neuropathology, Göttinge, 37077, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, 37077, Germany
- Faculty of Physics, University of Göttingen, Göttingen, 37077, Germany
| | - Giovanni Palladini
- Amyloidosis Treatment and Research Center, Fondazione IRCCS Policlinico San Matteo, Università Degli Studi di Pavia, Pavia, 27100, Italy
| | - Stefano Ricagno
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan 2, 20097, San Donato Milanese, Italy.
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy.
| |
Collapse
|
137
|
Hernández-Díaz N, Tzouganatou S, Mulik PR, Balestrini PA, Fogarty NME. Transcriptional insights from the human embryo identify laminin-511 as a suitable matrix for human trophoblast stem cell culture. Placenta 2024:S0143-4004(24)00602-7. [PMID: 39095275 DOI: 10.1016/j.placenta.2024.07.308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
The establishment of culture conditions to propagate self-renewing human trophoblast stem cells in long-term culture provides a paradigm for in vitro modelling of trophoblast. The extracellular matrix (ECM) is a critical determinant of cell identity and behaviour. Therefore, models aiming to reproduce cells in vitro should recapitulate the native cell-ECM microenvironment. Here, we mine human embryo transcriptional datasets to identify ECM components and cognate receptors expressed in the trophectoderm. Following, we identify laminin-511-E8 protein fragment as a physiologically relevant ECM capable of maintaining hTSCs in the stem cell state and retaining differentiation ability.
Collapse
Affiliation(s)
- Nathaly Hernández-Díaz
- Trophoblast and Human Embryo Lab, Centre for Gene Therapy and Regenerative Medicine, Tower Wing, Guy's Hospital, Great Maze Pond, King's College London, SE1 9RT, UK
| | - Sofia Tzouganatou
- Department of Metabolism, Digestion and Reproduction, Hammersmith Hospital School of Medicine, Imperial College London, SW7 2AZ, UK
| | - Praditi R Mulik
- Trophoblast and Human Embryo Lab, Centre for Gene Therapy and Regenerative Medicine, Tower Wing, Guy's Hospital, Great Maze Pond, King's College London, SE1 9RT, UK
| | - Paula A Balestrini
- Trophoblast and Human Embryo Lab, Centre for Gene Therapy and Regenerative Medicine, Tower Wing, Guy's Hospital, Great Maze Pond, King's College London, SE1 9RT, UK
| | - Norah M E Fogarty
- Trophoblast and Human Embryo Lab, Centre for Gene Therapy and Regenerative Medicine, Tower Wing, Guy's Hospital, Great Maze Pond, King's College London, SE1 9RT, UK.
| |
Collapse
|
138
|
Zhang J, Wu P, Wen Q. Optimization strategies for mesenchymal stem cell-based analgesia therapy: a promising therapy for pain management. Stem Cell Res Ther 2024; 15:211. [PMID: 39020426 PMCID: PMC11256674 DOI: 10.1186/s13287-024-03828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Pain is a very common and complex medical problem that has a serious impact on individuals' physical and mental health as well as society. Non-steroidal anti-inflammatory drugs and opioids are currently the main drugs used for pain management, but they are not effective in controlling all types of pain, and their long-term use can cause adverse effects that significantly impair patients' quality of life. Mesenchymal stem cells (MSCs) have shown great potential in pain treatment. However, limitations such as the low proliferation rate of MSCs in vitro and low survival rate in vivo restrict their analgesic efficacy and clinical translation. In recent years, researchers have explored various innovative approaches to improve the therapeutic effectiveness of MSCs in pain treatment. This article reviews the latest research progress of MSCs in pain treatment, with a focus on methods to enhance the analgesic efficacy of MSCs, including engineering strategies to optimize the in vitro culture environment of MSCs and to improve the in vivo delivery efficiency of MSCs. We also discuss the unresolved issues to be explored in future MSCs and pain research and the challenges faced by the clinical translation of MSC therapy, aiming to promote the optimization and clinical translation of MSC-based analgesia therapy.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Ping Wu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| | - Qingping Wen
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
139
|
Minisy FM, Shawki HH, Fujita T, Moustafa AM, Sener R, Nishio Y, Shimada IS, Saitoh S, Sugiura-Ogasawara M, Oishi H. Transcription Factor 23 is an Essential Determinant of Murine Term Parturition. Mol Cell Biol 2024; 44:316-333. [PMID: 39014976 PMCID: PMC11296541 DOI: 10.1080/10985549.2024.2376146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/27/2024] [Accepted: 06/30/2024] [Indexed: 07/18/2024] Open
Abstract
Pregnancy involving intricate tissue transformations governed by the progesterone hormone (P4). P4 signaling via P4 receptors (PRs) is vital for endometrial receptivity, decidualization, myometrial quiescence, and labor initiation. This study explored the role of TCF23 as a downstream target of PR during pregnancy. TCF23 was found to be expressed in female reproductive organs, predominantly in uterine stromal and smooth muscle cells. Tcf23 expression was high during midgestation and was specifically regulated by P4, but not estrogen. The Tcf23 knockout (KO) mouse was generated and analyzed. Female KO mice aged 4-6 months exhibited subfertility, reduced litter size, and defective parturition. Uterine histology revealed disrupted myometrial structure, altered collagen organization, and disarrayed smooth muscle sheets at the conceptus sites of KO mice. RNA-Seq analysis of KO myometrium revealed dysregulation of genes associated with cell adhesion and extracellular matrix organization. TCF23 potentially modulates TCF12 activity to mediate cell-cell adhesion and matrix modulation in smooth muscle cells. Overall, TCF23 deficiency leads to impaired myometrial remodeling, causing parturition delay and fetal demise. This study sheds light on the critical role of TCF23 as a dowstream mediator of PR in uterine remodeling, reflecting the importance of cell-cell communication and matrix dynamics in myometrial activation and parturition.
Collapse
Affiliation(s)
- Fatma M. Minisy
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Pathology, National Research Centre, Cairo, Egypt
| | - Hossam H. Shawki
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Animal Genetic Resources, National Gene Bank of Egypt, ARC, Giza, Egypt
| | - Tsubasa Fujita
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ahmed M. Moustafa
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Rumeysa Sener
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Youske Nishio
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Issei S. Shimada
- Department of Cell Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mayumi Sugiura-Ogasawara
- Department of Obstetrics and Gynecology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
140
|
Denisov S, Blinchevsky B, Friedman J, Gerbelli B, Ajeer A, Adams L, Greenwood C, Rogers K, Mourokh L, Lazarev P. Vitacrystallography: Structural Biomarkers of Breast Cancer Obtained by X-ray Scattering. Cancers (Basel) 2024; 16:2499. [PMID: 39061139 PMCID: PMC11275015 DOI: 10.3390/cancers16142499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
With breast cancer being one of the most widespread causes of death for women, there is an unmet need for its early detection. For this purpose, we propose a non-invasive approach based on X-ray scattering. We measured samples from 107 unique patients provided by the Breast Cancer Now Tissue Biobank, with the total dataset containing 2958 entries. Two different sample-to-detector distances, 2 and 16 cm, were used to access various structural biomarkers at distinct ranges of momentum transfer values. The biomarkers related to lipid metabolism are consistent with those of previous studies. Machine learning analysis based on the Random Forest Classifier demonstrates excellent performance metrics for cancer/non-cancer binary decisions. The best sensitivity and specificity values are 80% and 92%, respectively, for the sample-to-detector distance of 2 cm and 86% and 83% for the sample-to-detector distance of 16 cm.
Collapse
Affiliation(s)
- Sergey Denisov
- Matur UK Ltd., 5 New Street Square, London EC4A 3TW, UK; (S.D.); (B.B.); (P.L.)
- Institut de Chimie Physique, UMR8000, CNRS, Université Paris-Saclay, Bât. 349, 91405 Orsay, France
| | - Benjamin Blinchevsky
- Matur UK Ltd., 5 New Street Square, London EC4A 3TW, UK; (S.D.); (B.B.); (P.L.)
- EosDx, Inc., 1455 Adams Drive, Menlo Park, CA 94025, USA; (J.F.); (C.G.); (K.R.)
| | - Jonathan Friedman
- EosDx, Inc., 1455 Adams Drive, Menlo Park, CA 94025, USA; (J.F.); (C.G.); (K.R.)
- Physics Department, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA
| | - Barbara Gerbelli
- School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK; (B.G.); (A.A.); (L.A.)
| | - Ash Ajeer
- School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK; (B.G.); (A.A.); (L.A.)
| | - Lois Adams
- School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK; (B.G.); (A.A.); (L.A.)
| | - Charlene Greenwood
- EosDx, Inc., 1455 Adams Drive, Menlo Park, CA 94025, USA; (J.F.); (C.G.); (K.R.)
- School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK; (B.G.); (A.A.); (L.A.)
| | - Keith Rogers
- EosDx, Inc., 1455 Adams Drive, Menlo Park, CA 94025, USA; (J.F.); (C.G.); (K.R.)
- Shrivenham Campus, Cranfield University, Swindon SN6 8LA, UK
| | - Lev Mourokh
- EosDx, Inc., 1455 Adams Drive, Menlo Park, CA 94025, USA; (J.F.); (C.G.); (K.R.)
- Physics Department, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA
| | - Pavel Lazarev
- Matur UK Ltd., 5 New Street Square, London EC4A 3TW, UK; (S.D.); (B.B.); (P.L.)
- EosDx, Inc., 1455 Adams Drive, Menlo Park, CA 94025, USA; (J.F.); (C.G.); (K.R.)
| |
Collapse
|
141
|
Ma C, Gurkan-Cavusoglu E. A comprehensive review of computational cell cycle models in guiding cancer treatment strategies. NPJ Syst Biol Appl 2024; 10:71. [PMID: 38969664 PMCID: PMC11226463 DOI: 10.1038/s41540-024-00397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
This article reviews the current knowledge and recent advancements in computational modeling of the cell cycle. It offers a comparative analysis of various modeling paradigms, highlighting their unique strengths, limitations, and applications. Specifically, the article compares deterministic and stochastic models, single-cell versus population models, and mechanistic versus abstract models. This detailed analysis helps determine the most suitable modeling framework for various research needs. Additionally, the discussion extends to the utilization of these computational models to illuminate cell cycle dynamics, with a particular focus on cell cycle viability, crosstalk with signaling pathways, tumor microenvironment, DNA replication, and repair mechanisms, underscoring their critical roles in tumor progression and the optimization of cancer therapies. By applying these models to crucial aspects of cancer therapy planning for better outcomes, including drug efficacy quantification, drug discovery, drug resistance analysis, and dose optimization, the review highlights the significant potential of computational insights in enhancing the precision and effectiveness of cancer treatments. This emphasis on the intricate relationship between computational modeling and therapeutic strategy development underscores the pivotal role of advanced modeling techniques in navigating the complexities of cell cycle dynamics and their implications for cancer therapy.
Collapse
Affiliation(s)
- Chenhui Ma
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Evren Gurkan-Cavusoglu
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
142
|
Rappold R, Kalogeropoulos K, Auf dem Keller U, Vogel V, Slack E. Salmonella-driven intestinal edema in mice is characterized by tensed fibronectin fibers. FEBS J 2024; 291:3104-3127. [PMID: 38487972 DOI: 10.1111/febs.17120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Accepted: 03/05/2024] [Indexed: 07/19/2024]
Abstract
Intestinal edema is a common manifestation of numerous gastrointestinal diseases and is characterized by the accumulation of fluid in the interstitial space of the intestinal wall. Technical advances in laser capture microdissection and low-biomass proteomics now allow us to specifically characterize the intestinal edema proteome. Using advanced proteomics, we identify peptides derived from antimicrobial factors with high signal intensity, but also highlight major contributions from the blood clotting system, extracellular matrix (ECM) and protease-protease inhibitor networks. The ECM is a complex fibrillar network of macromolecules that provides structural and mechanical support to the intestinal tissue. One abundant component of the ECM observed in Salmonella-driven intestinal edema is the glycoprotein fibronectin, recognized for its structure-function interplay regulated by mechanical forces. Using mechanosensitive staining of fibronectin fibers reveals that they are tensed in the edema, despite the high abundance of proteases able to cleave fibronectin. In contrast, fibronectin fibers increasingly relax in other cecal tissue areas as the infection progresses. Co-staining for fibrin(ogen) indicates the formation of a provisional matrix in the edema, similar to what is observed in response to skin injury, while collagen staining reveals a sparse and disrupted collagen fiber network. These observations plus the absence of low tensional fibronectin fibers and the additional finding of a high number of protease inhibitors in the edema proteome could indicate a critical role of stretched fibronectin fibers in maintaining tissue integrity in the severely inflamed cecum. Understanding these processes may also provide valuable functional diagnostic markers of intestinal disease progression in the future.
Collapse
Affiliation(s)
- Ronja Rappold
- Institute of Translational Medicine, ETH Zurich, Switzerland
- Institute of Food, Nutrition and Health, ETH Zurich, Switzerland
| | | | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Viola Vogel
- Institute of Translational Medicine, ETH Zurich, Switzerland
- Botnar Research Center for Child Health, Basel, Switzerland
| | - Emma Slack
- Institute of Food, Nutrition and Health, ETH Zurich, Switzerland
- Botnar Research Center for Child Health, Basel, Switzerland
| |
Collapse
|
143
|
Busch C, Nyamondo K, Wheadon H. Complexities of modeling the bone marrow microenvironment to facilitate hematopoietic research. Exp Hematol 2024; 135:104233. [PMID: 38740324 DOI: 10.1016/j.exphem.2024.104233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Hematopoiesis occurs in the bone marrow (BM), within a specialized microenvironment referred to as the stem cell niche, where the hematopoietic stem cells (HSCs) reside and are regulated for quiescence, self-renewal and differentiation through intrinsic and extrinsic mechanisms. The BM contains at least two distinctive HSC-supportive niches: an endosteal osteoblastic niche that supports quiescence and self-renewal and a more vascular/perisinusoidal niche that promotes proliferation and differentiation. Both associate with supporting mesenchymal stromal cells. Within the more hypoxic osteoblastic niche, HSCs specifically interact with the osteoblasts that line the endosteal surface, which secrete several important HSC quiescence and maintenance regulatory factors. In vivo imaging indicates that the HSCs and progenitors located further away, in the vicinity of sinusoidal endothelial cells, are more proliferative. Here, HSCs interact with endothelial cells via specific cell adhesion molecules. Endothelial cells also secrete several factors important for HSC homeostasis and proliferation. In addition, HSCs and mesenchymal stromal cells are embedded within the extracellular matrix (ECM), an important network of proteins such as collagen, elastin, laminin, proteoglycans, vitronectin, and fibronectin. The ECM provides mechanical characteristics such as stiffness and elasticity important for cell behavior regulation. ECM proteins are also able to bind, sequester, display, and distribute growth factors across the BM, thus directly affecting stem cell fate and regulation of hematopoiesis. These important physical and chemical features of the BM require careful consideration when creating three-dimensional models of the BM.
Collapse
Affiliation(s)
- Caroline Busch
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kudzai Nyamondo
- Wellcome-Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Helen Wheadon
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
144
|
Chen R, Zou L. Combined analysis of single-cell sequencing and bulk transcriptome sequencing reveals new mechanisms for non-healing diabetic foot ulcers. PLoS One 2024; 19:e0306248. [PMID: 38950058 PMCID: PMC11216623 DOI: 10.1371/journal.pone.0306248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Diabetic foot ulcers (DFUs) pose a significant challenge in diabetes care. Yet, a comprehensive understanding of the underlying biological disparities between healing and non-healing DFUs remains elusive. We conducted bioinformatics analysis of publicly available transcriptome sequencing data in an attempt to elucidate these differences. Our analysis encompassed differential analysis to unveil shifts in cell composition and gene expression profiles between non-healing and healing DFUs. Cell communication alterations were explored employing the Cellchat R package. Pseudotime analysis and cytoTRACE allowed us to dissect the heterogeneity within fibroblast subpopulations. Our findings unveiled disruptions in various cell types, localized low-grade inflammation, compromised systemic antigen processing and presentation, and extensive extracellular matrix signaling disarray in non-healing DFU patients. Some of these anomalies partially reverted in healing DFUs, particularly within the abnormal ECM-receptor signaling pathway. Furthermore, we distinguished distinct fibroblast subpopulations in non-healing and healing DFUs, each with unique biological functions. Healing-associated fibroblasts exhibited heightened extracellular matrix (ECM) remodeling and a robust wound healing response, while non-healing-associated fibroblasts showed signs of cellular senescence and complement activation, among other characteristics. This analysis offers profound insights into the wound healing microenvironment, identifies pivotal cell types for DFU healing promotion, and reveals potential therapeutic targets for DFU management.
Collapse
Affiliation(s)
- Ran Chen
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lijun Zou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
145
|
Las Heras K, Garcia-Orue I, Rancan F, Igartua M, Santos-Vizcaino E, Hernandez RM. Modulating the immune system towards a functional chronic wound healing: A biomaterials and Nanomedicine perspective. Adv Drug Deliv Rev 2024; 210:115342. [PMID: 38797316 DOI: 10.1016/j.addr.2024.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Chronic non-healing wounds persist as a substantial burden for healthcare systems, influenced by factors such as aging, diabetes, and obesity. In contrast to the traditionally pro-regenerative emphasis of therapies, the recognition of the immune system integral role in wound healing has significantly grown, instigating an approach shift towards immunological processes. Thus, this review explores the wound healing process, highlighting the engagement of the immune system, and delving into the behaviors of innate and adaptive immune cells in chronic wound scenarios. Moreover, the article investigates biomaterial-based strategies for the modulation of the immune system, elucidating how the adjustment of their physicochemical properties or their synergistic combination with other agents such as drugs, proteins or mesenchymal stromal cells can effectively modulate the behaviors of different immune cells. Finally this review explores various strategies based on synthetic and biological nanostructures, including extracellular vesicles, to finely tune the immune system as natural immunomodulators or therapeutic nanocarriers with promising biophysical properties.
Collapse
Affiliation(s)
- Kevin Las Heras
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itxaso Garcia-Orue
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
| | - Fiorenza Rancan
- Department of Dermatology, Venereology und Allergology,Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
146
|
Ahn S, Jain A, Kasuba KC, Seimiya M, Okamoto R, Treutlein B, Müller DJ. Engineering fibronectin-templated multi-component fibrillar extracellular matrices to modulate tissue-specific cell response. Biomaterials 2024; 308:122560. [PMID: 38603826 DOI: 10.1016/j.biomaterials.2024.122560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024]
Abstract
Cells assemble fibronectin, the major extracellular matrix (ECM) protein, into fibrillar matrices, which serve as 3D architectural scaffolds to provide, together with other ECM proteins tissue-specific environments. Although recent approaches enable to bioengineer 3D fibrillar fibronectin matrices in vitro, it remains elusive how fibronectin can be co-assembled with other ECM proteins into complex 3D fibrillar matrices that recapitulate tissue-specific compositions and cellular responses. Here, we introduce the engineering of fibrillar fibronectin-templated 3D matrices that can be complemented with other ECM proteins, including vitronectin, collagen, and laminin to resemble ECM architectures observed in vivo. For the co-assembly of different ECM proteins, we employed their innate fibrillogenic mechanisms including shear forces, pH-dependent electrostatic interactions, or specific binding domains. Through recapitulating various tissue-specific ECM compositions and morphologies, the large scale multi-composite 3D fibrillar ECM matrices can guide fibroblast adhesion, 3D fibroblast tissue formation, or tissue morphogenesis of epithelial cells. In other examples, we customize multi-composite 3D fibrillar matrices to support the growth of signal propagating neuronal networks and of human brain organoids. We envision that these 3D fibrillar ECM matrices can be tailored in scale and composition to modulate tissue-specific responses across various biological length scales and systems, and thus to advance manyfold studies of cell biological systems.
Collapse
Affiliation(s)
- Seungkuk Ahn
- Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, 4056, Basel, Switzerland.
| | - Akanksha Jain
- Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, 4056, Basel, Switzerland
| | - Krishna Chaitanya Kasuba
- Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, 4056, Basel, Switzerland
| | - Makiko Seimiya
- Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, 4056, Basel, Switzerland
| | - Ryoko Okamoto
- Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, 4056, Basel, Switzerland
| | - Barbara Treutlein
- Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, 4056, Basel, Switzerland
| | - Daniel J Müller
- Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, 4056, Basel, Switzerland.
| |
Collapse
|
147
|
Alshehri AM, Wilson OC. Biomimetic Hydrogel Strategies for Cancer Therapy. Gels 2024; 10:437. [PMID: 39057460 PMCID: PMC11275631 DOI: 10.3390/gels10070437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Recent developments in biomimetic hydrogel research have expanded the scope of biomedical technologies that can be used to model, diagnose, and treat a wide range of medical conditions. Cancer presents one of the most intractable challenges in this arena due to the surreptitious mechanisms that it employs to evade detection and treatment. In order to address these challenges, biomimetic design principles can be adapted to beat cancer at its own game. Biomimetic design strategies are inspired by natural biological systems and offer promising opportunities for developing life-changing methods to model, detect, diagnose, treat, and cure various types of static and metastatic cancers. In particular, focusing on the cellular and subcellular phenomena that serve as fundamental drivers for the peculiar behavioral traits of cancer can provide rich insights into eradicating cancer in all of its manifestations. This review highlights promising developments in biomimetic nanocomposite hydrogels that contribute to cancer therapies via enhanced drug delivery strategies and modeling cancer mechanobiology phenomena in relation to metastasis and synergistic sensing systems. Creative efforts to amplify biomimetic design research to advance the development of more effective cancer therapies will be discussed in alignment with international collaborative goals to cure cancer.
Collapse
Affiliation(s)
- Awatef M. Alshehri
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC 20064, USA
- Department of Nanomedicine, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdelaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia;
| | - Otto C. Wilson
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
148
|
Iyer RR, Applegate CC, Arogundade OH, Bangru S, Berg IC, Emon B, Porras-Gomez M, Hsieh PH, Jeong Y, Kim Y, Knox HJ, Moghaddam AO, Renteria CA, Richard C, Santaliz-Casiano A, Sengupta S, Wang J, Zambuto SG, Zeballos MA, Pool M, Bhargava R, Gaskins HR. Inspiring a convergent engineering approach to measure and model the tissue microenvironment. Heliyon 2024; 10:e32546. [PMID: 38975228 PMCID: PMC11226808 DOI: 10.1016/j.heliyon.2024.e32546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Understanding the molecular and physical complexity of the tissue microenvironment (TiME) in the context of its spatiotemporal organization has remained an enduring challenge. Recent advances in engineering and data science are now promising the ability to study the structure, functions, and dynamics of the TiME in unprecedented detail; however, many advances still occur in silos that rarely integrate information to study the TiME in its full detail. This review provides an integrative overview of the engineering principles underlying chemical, optical, electrical, mechanical, and computational science to probe, sense, model, and fabricate the TiME. In individual sections, we first summarize the underlying principles, capabilities, and scope of emerging technologies, the breakthrough discoveries enabled by each technology and recent, promising innovations. We provide perspectives on the potential of these advances in answering critical questions about the TiME and its role in various disease and developmental processes. Finally, we present an integrative view that appreciates the major scientific and educational aspects in the study of the TiME.
Collapse
Affiliation(s)
- Rishyashring R. Iyer
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Catherine C. Applegate
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Opeyemi H. Arogundade
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ian C. Berg
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bashar Emon
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marilyn Porras-Gomez
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pei-Hsuan Hsieh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yoon Jeong
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yongdeok Kim
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hailey J. Knox
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amir Ostadi Moghaddam
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Carlos A. Renteria
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Craig Richard
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ashlie Santaliz-Casiano
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sourya Sengupta
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jason Wang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Samantha G. Zambuto
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maria A. Zeballos
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marcia Pool
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rohit Bhargava
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemical and Biochemical Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - H. Rex Gaskins
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
149
|
Wyle Y, Lu N, Hepfer J, Sayal R, Martinez T, Wang A. The Role of Biophysical Factors in Organ Development: Insights from Current Organoid Models. Bioengineering (Basel) 2024; 11:619. [PMID: 38927855 PMCID: PMC11200479 DOI: 10.3390/bioengineering11060619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Biophysical factors play a fundamental role in human embryonic development. Traditional in vitro models of organogenesis focused on the biochemical environment and did not consider the effects of mechanical forces on developing tissue. While most human tissue has a Young's modulus in the low kilopascal range, the standard cell culture substrate, plasma-treated polystyrene, has a Young's modulus of 3 gigapascals, making it 10,000-100,000 times stiffer than native tissues. Modern in vitro approaches attempt to recapitulate the biophysical niche of native organs and have yielded more clinically relevant models of human tissues. Since Clevers' conception of intestinal organoids in 2009, the field has expanded rapidly, generating stem-cell derived structures, which are transcriptionally similar to fetal tissues, for nearly every organ system in the human body. For this reason, we conjecture that organoids will make their first clinical impact in fetal regenerative medicine as the structures generated ex vivo will better match native fetal tissues. Moreover, autologously sourced transplanted tissues would be able to grow with the developing embryo in a dynamic, fetal environment. As organoid technologies evolve, the resultant tissues will approach the structure and function of adult human organs and may help bridge the gap between preclinical drug candidates and clinically approved therapeutics. In this review, we discuss roles of tissue stiffness, viscoelasticity, and shear forces in organ formation and disease development, suggesting that these physical parameters should be further integrated into organoid models to improve their physiological relevance and therapeutic applicability. It also points to the mechanotransductive Hippo-YAP/TAZ signaling pathway as a key player in the interplay between extracellular matrix stiffness, cellular mechanics, and biochemical pathways. We conclude by highlighting how frontiers in physics can be applied to biology, for example, how quantum entanglement may be applied to better predict spontaneous DNA mutations. In the future, contemporary physical theories may be leveraged to better understand seemingly stochastic events during organogenesis.
Collapse
Affiliation(s)
- Yofiel Wyle
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
| | - Nathan Lu
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Jason Hepfer
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Rahul Sayal
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Taylor Martinez
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA; (Y.W.); (N.L.); (J.H.); (R.S.); (T.M.)
- Institute for Pediatric Regenerative Medicine, Shriners Children’s, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616, USA
- Center for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, 4625 2nd Ave., Research II, Suite 3005, Sacramento, CA 95817, USA
| |
Collapse
|
150
|
Zhang M, Zhao F, Zhu Y, Brouwer LA, Van der Veen H, Burgess JK, Harmsen MC. Physical Properties and Biochemical Composition of Extracellular Matrix-Derived Hydrogels Dictate Vascularization Potential in an Organ-Dependent Fashion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29930-29945. [PMID: 38819955 PMCID: PMC11181272 DOI: 10.1021/acsami.4c05864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
The inherent extracellular matrix (ECM) originating from a specific tissue impacts the process of vascularization, specifically vascular network formation (VNF) orchestrated by endothelial cells (ECs). The specific contribution toward these processes of ECM from highly disparate organs such as the skin and lungs remains a relatively unexplored area. In this study, we compared VNF and ECM remodeling mediated by microvascular ECs within gel, lung, and combinations thereof (hybrid) ECM hydrogels. Irrespective of the EC source, the skin-derived ECM hydrogel exhibited a higher propensity to drive and support VNF compared to both lung and hybrid ECM hydrogels. There were distinct disparities in the physical properties of the three types of hydrogels, including viscoelastic properties and complex architectural configurations, including fiber diameter, pore area, and numbers among the fibers. The hybrid ECM hydrogel properties were unique and not the sum of the component ECM parts. Furthermore, cellular ECM remodeling responses varied with skin ECM hydrogels promoting matrix metalloproteinase 1 (MMP1) secretion, while hybrid ECM hydrogels exhibited increased MMP9, fibronectin, and collagen IV deposition. Principal component analysis (PCA) indicated that the influence of a gel's mechanical properties on VNF was stronger than the biochemical composition. These data indicate that the organ-specific properties of an ECM dictate its capacity to support VNF, while intriguingly showing that ECs respond to more than just the biochemical constituents of an ECM. The study suggests potential applications in regenerative medicine by strategically selecting ECM origin or combinations to manipulate vascularization, offering promising prospects for enhancing wound healing through pro-regenerative interventions.
Collapse
Affiliation(s)
- Meng Zhang
- Department
of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), Groningen 9713 GZ, The Netherlands
- University
Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering
and Materials Science-FB41, University of
Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Fenghua Zhao
- University
Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering
and Materials Science-FB41, University of
Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
- University
Medical Center Groningen, Department of Biomedical Engineering-FB40, University of Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Yuxuan Zhu
- Department
of Computer Science, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
| | - Linda A. Brouwer
- Department
of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), Groningen 9713 GZ, The Netherlands
| | - Hasse Van der Veen
- Department
of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), Groningen 9713 GZ, The Netherlands
| | - Janette K. Burgess
- Department
of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), Groningen 9713 GZ, The Netherlands
- University
Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering
and Materials Science-FB41, University of
Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
- University
Medical Center Groningen, Groningen Research Institute for Asthma
and COPD (GRIAC), University of Groningen, Hanzeplein 1 (EA11), Groningen 9713 AV, The Netherlands
| | - Martin C. Harmsen
- Department
of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), Groningen 9713 GZ, The Netherlands
- University
Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering
and Materials Science-FB41, University of
Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
- University
Medical Center Groningen, Groningen Research Institute for Asthma
and COPD (GRIAC), University of Groningen, Hanzeplein 1 (EA11), Groningen 9713 AV, The Netherlands
| |
Collapse
|