101
|
Earnest TM, Cole JA, Luthey-Schulten Z. Simulating biological processes: stochastic physics from whole cells to colonies. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:052601. [PMID: 29424367 DOI: 10.1088/1361-6633/aaae2c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The last few decades have revealed the living cell to be a crowded spatially heterogeneous space teeming with biomolecules whose concentrations and activities are governed by intrinsically random forces. It is from this randomness, however, that a vast array of precisely timed and intricately coordinated biological functions emerge that give rise to the complex forms and behaviors we see in the biosphere around us. This seemingly paradoxical nature of life has drawn the interest of an increasing number of physicists, and recent years have seen stochastic modeling grow into a major subdiscipline within biological physics. Here we review some of the major advances that have shaped our understanding of stochasticity in biology. We begin with some historical context, outlining a string of important experimental results that motivated the development of stochastic modeling. We then embark upon a fairly rigorous treatment of the simulation methods that are currently available for the treatment of stochastic biological models, with an eye toward comparing and contrasting their realms of applicability, and the care that must be taken when parameterizing them. Following that, we describe how stochasticity impacts several key biological functions, including transcription, translation, ribosome biogenesis, chromosome replication, and metabolism, before considering how the functions may be coupled into a comprehensive model of a 'minimal cell'. Finally, we close with our expectation for the future of the field, focusing on how mesoscopic stochastic methods may be augmented with atomic-scale molecular modeling approaches in order to understand life across a range of length and time scales.
Collapse
Affiliation(s)
- Tyler M Earnest
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, United States of America. National Center for Supercomputing Applications, University of Illinois, Urbana, IL, 61801, United States of America
| | | | | |
Collapse
|
102
|
Sakatos A, Babunovic GH, Chase MR, Dills A, Leszyk J, Rosebrock T, Bryson B, Fortune SM. Posttranslational modification of a histone-like protein regulates phenotypic resistance to isoniazid in mycobacteria. SCIENCE ADVANCES 2018; 4:eaao1478. [PMID: 29732401 PMCID: PMC5931751 DOI: 10.1126/sciadv.aao1478] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 03/20/2018] [Indexed: 05/08/2023]
Abstract
There is increasing evidence that phenotypically drug-resistant bacteria may be important determinants of antibiotic treatment failure. Using high-throughput imaging, we defined distinct subpopulations of mycobacterial cells that exhibit heritable but semi-stable drug resistance. These subpopulations have distinct transcriptional signatures and growth characteristics at both bulk and single-cell levels, which are also heritable and semi-stable. We find that the mycobacterial histone-like protein HupB is required for the formation of these subpopulations. Using proteomic approaches, we further demonstrate that HupB is posttranslationally modified by lysine acetylation and lysine methylation. Mutation of a single posttranslational modification site specifically abolishes the formation of one of the drug-resistant subpopulations of cells, providing the first evidence in prokaryotes that posttranslational modification of a bacterial nucleoid-associated protein may epigenetically regulate cell state.
Collapse
Affiliation(s)
- Alexandra Sakatos
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Gregory H. Babunovic
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Michael R. Chase
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Alexander Dills
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - John Leszyk
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 02129, USA
| | - Tracy Rosebrock
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Stonehill College, North Easton, MA 02357, USA
| | - Bryan Bryson
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- The Ragon Institute of Massachusetts General Hospital, Harvard, and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author.
| |
Collapse
|
103
|
The Origin of Chromosomal Replication Is Asymmetrically Positioned on the Mycobacterial Nucleoid, and the Timing of Its Firing Depends on HupB. J Bacteriol 2018. [PMID: 29531181 DOI: 10.1128/jb.00044-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The bacterial chromosome undergoes dynamic changes in response to ongoing cellular processes and adaptation to environmental conditions. Among the many proteins involved in maintaining this dynamism, the most abundant is the nucleoid-associated protein (NAP) HU. In mycobacteria, the HU homolog, HupB, possesses an additional C-terminal domain that resembles that of eukaryotic histones H1/H5. Recently, we demonstrated that the highly abundant HupB protein occupies the entirety of the Mycobacterium smegmatis chromosome and that the HupB-binding sites exhibit a bias from the origin (oriC) to the terminus (ter). In this study, we used HupB fused with enhanced green fluorescent protein (EGFP) to perform the first analysis of chromosome dynamics and to track the oriC and replication machinery directly on the chromosome during the mycobacterial cell cycle. We show that the chromosome is located in an off-center position that reflects the unequal division and growth of mycobacterial cells. Moreover, unlike the situation in E. coli, the sister oriC regions of M. smegmatis move asymmetrically along the mycobacterial nucleoid. Interestingly, in this slow-growing organism, the initiation of the next round of replication precedes the physical separation of sister chromosomes. Finally, we show that HupB is involved in the precise timing of replication initiation.IMPORTANCE Although our view of mycobacterial nucleoid organization has evolved considerably over time, we still know little about the dynamics of the mycobacterial nucleoid during the cell cycle. HupB is a highly abundant mycobacterial nucleoid-associated protein (NAP) with an indispensable histone-like tail. It was previously suggested as a potential target for antibiotic therapy against tuberculosis. Here, we fused HupB with enhanced green fluorescent protein (EGFP) to study the dynamics of the mycobacterial chromosome in real time and to monitor the replication process directly on the chromosome. Our results reveal that, unlike the situation in Escherichia coli, the nucleoid of an apically growing mycobacterium is positioned asymmetrically within the cell throughout the cell cycle. We show that HupB is involved in controlling the timing of replication initiation. Since tuberculosis remains a serious health problem, studies concerning mycobacterial cell biology are of great importance.
Collapse
|
104
|
Knight SC, Tjian R, Doudna JA. Genomes in Focus: Development and Applications of CRISPR-Cas9 Imaging Technologies. Angew Chem Int Ed Engl 2018; 57:4329-4337. [PMID: 29080263 PMCID: PMC6014596 DOI: 10.1002/anie.201709201] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/14/2022]
Abstract
The discovery of the CRISPR-Cas9 endonuclease has enabled facile genome editing in living cells and organisms. Catalytically inactive Cas9 (dCas9) retains the ability to bind DNA in an RNA-guided fashion, and has additionally been explored as a tool for transcriptional modulation, epigenetic editing, and genome imaging. This Review highlights recent progress and challenges in the development of dCas9 for imaging genomic loci. The emergence and maturation of this technology offers the potential to answer mechanistic questions about chromosome dynamics and three-dimensional genome organization in vivo.
Collapse
Affiliation(s)
- Spencer C Knight
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, USA
- Li Ka Shing Biomedical and Health Sciences Center, University of California, Berkeley, Berkeley, CA, USA
- CIRM Center of Excellence, University of California, Berkeley, Berkeley, CA, USA
| | - Jennifer A Doudna
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, USA
- Li Ka Shing Biomedical and Health Sciences Center, University of California, Berkeley, Berkeley, CA, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
105
|
Liu G, Ma Q, Xu Y. Physical properties of DNA may direct the binding of nucleoid-associated proteins along the E. coli genome. Math Biosci 2018; 301:50-58. [PMID: 29625128 DOI: 10.1016/j.mbs.2018.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/22/2018] [Accepted: 03/28/2018] [Indexed: 11/26/2022]
Abstract
Nucleoid-associated proteins (NAPs) play important roles in both chromosome packaging and gene regulation in bacteria. The underlying mechanisms, however, remain elusive particularly for how NAPs contribute to chromosome packaging. We report here a characterization of the binding sites for several major NAPs in E. coli, namely HNS, IHF, Fis, Dps and a non-NAP protein, FNR, in terms of the physical properties of their binding DNA. Our study shows that (i) as compared with flanking regions, the binding sites for IHF, Fis and FNR tend to have high intrinsic curvature, while no characterized pattern of intrinsic curvature distribution around those of HNS and Dps; (ii) all the binding sites analyzed in this study except those of HNS are characterized by high structural flexibility; (iii) the intrinsic curvature and flexibility at the binding sites for Fis and IHF are found to be coupled with the sequence specificity required in their binding, while the physical properties of the binding regions for both Dps and FNR are independent of sequence specificity. Our data suggest that physical properties of DNA sequence may contribute to binding of NAPs and mediate genome packaging and transcriptional regulation of the downstream genes. Our results should be informative for prediction of NAPs binding sites and understanding of the bacterial chromosome packaging.
Collapse
Affiliation(s)
- Guoqing Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China; Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, the University of Georgia, Athens, GA 30602, USA.
| | - Qin Ma
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, the University of Georgia, Athens, GA 30602, USA; Bioinformatics and Mathematical Biosciences Lab, Department of Agronomy, Horticulture and Plant Science, South Dakot State University, SD 57007, USA
| | - Ying Xu
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, the University of Georgia, Athens, GA 30602, USA; College of Computer Science and Technology, Jilin University, Changchun 130012, China.
| |
Collapse
|
106
|
Guttula D, Liu F, van Kan JA, Arluison V, van der Maarel JRC. Effect of HU protein on the conformation and compaction of DNA in a nanochannel. SOFT MATTER 2018; 14:2322-2328. [PMID: 29457176 DOI: 10.1039/c7sm02118f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effect of the heat unstable nucleoid structuring protein HU on the conformation of single DNA molecules confined in a nanochannel was investigated with fluorescence microscopy. Pre-incubated DNA molecules contract in the longitudinal direction of the channel with increasing concentration of HU. This contraction is mainly due to HU-mediated bridging of distal DNA segments and is controlled by channel diameter as well as ionic composition and strength of the buffer. For over-threshold concentrations of HU, the DNA molecules compact into an condensed form. Divalent magnesium ions facilitate, but are not required for bridging nor condensation. The conformational response following exposure to HU was investigated with a nanofluidic device that allows an in situ change in environmental solution conditions. The stretch of the nucleoprotein complex first increases, reaches an apex in ∼20 min, and subsequently decreases to an equilibrium value pertaining to pre-incubated DNA molecules after ∼2 h. This observation is rationalised in terms of a time-dependent bending rigidity by structural rearrangement of bound HU protein followed by compaction through bridging interaction. Results are discussed in regard to previous results obtained for nucleoid associated proteins H-NS and Hfq, with important implications for protein binding related gene regulation.
Collapse
Affiliation(s)
- Durgarao Guttula
- Department of Physics, National University of Singapore, Singapore 117542, Singapore.
| | - Fan Liu
- Department of Physics, National University of Singapore, Singapore 117542, Singapore.
| | - Jeroen A van Kan
- Department of Physics, National University of Singapore, Singapore 117542, Singapore.
| | - Véronique Arluison
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris Saclay, 91191 Gif-sur-Yvette, France and Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | | |
Collapse
|
107
|
Knight SC, Tjian R, Doudna JA. Genome im Fokus: Entwicklung und Anwendungen von CRISPR-Cas9-Bildgebungstechnologien. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Robert Tjian
- Department of Molecular and Cell Biology; University of California; Berkeley CA USA
- Howard Hughes Medical Institute; USA
- Li Ka Shing Biomedical and Health Sciences Center; University of California; Berkeley CA USA
- CIRM Center of Excellence; University of California, Berkeley; Berkeley CA USA
| | - Jennifer A. Doudna
- Department of Chemistry; University of California; Berkeley CA USA
- Department of Molecular and Cell Biology; University of California; Berkeley CA USA
- Howard Hughes Medical Institute; USA
- Li Ka Shing Biomedical and Health Sciences Center; University of California; Berkeley CA USA
- MBIB Division; Lawrence Berkeley National Laboratory; Berkeley CA USA. Innovative Genomics Institute; University of California, Berkeley; Berkeley CA USA
| |
Collapse
|
108
|
Gutu A, Chang F, O'Shea EK. Dynamical localization of a thylakoid membrane binding protein is required for acquisition of photosynthetic competency. Mol Microbiol 2018; 108:16-31. [PMID: 29357135 PMCID: PMC5910887 DOI: 10.1111/mmi.13912] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/02/2018] [Indexed: 11/29/2022]
Abstract
Vipp1 is highly conserved and essential for photosynthesis, but its function is unclear as it does not participate directly in light-dependent reactions. We analyzed Vipp1 localization in live cyanobacterial cells and show that Vipp1 is highly dynamic, continuously exchanging between a diffuse fraction that is uniformly distributed throughout the cell and a punctate fraction that is concentrated at high curvature regions of the thylakoid located at the cell periphery. Experimentally perturbing the spatial distribution of Vipp1 by relocalizing it to the nucleoid causes a severe growth defect during the transition from non-photosynthetic (dark) to photosynthetic (light) growth. However, the same perturbation of Vipp1 in dark alone or light alone growth conditions causes no growth or thylakoid morphology defects. We propose that the punctuated dynamics of Vipp1 at the cell periphery in regions of high thylakoid curvature enable acquisition of photosynthetic competency, perhaps by facilitating biogenesis of photosynthetic complexes involved in light-dependent reactions of photosynthesis.
Collapse
Affiliation(s)
- Andrian Gutu
- Howard Hughes Medical Institute, Harvard University Faculty of Arts and Sciences Center for Systems Biology, Cambridge, MA 02138, USA.,Department of Molecular and Cellular Biology, Harvard University Faculty of Arts and Sciences, Cambridge, MA 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University Faculty of Arts and Sciences Center for Systems Biology, Cambridge, MA 02138, USA
| | - Frederick Chang
- Department of Molecular and Cellular Biology, Harvard University Faculty of Arts and Sciences, Cambridge, MA 02138, USA
| | - Erin K O'Shea
- Howard Hughes Medical Institute, Harvard University Faculty of Arts and Sciences Center for Systems Biology, Cambridge, MA 02138, USA.,Department of Molecular and Cellular Biology, Harvard University Faculty of Arts and Sciences, Cambridge, MA 02138, USA.,Department of Chemistry and Chemical Biology, Harvard University Faculty of Arts and Sciences Center for Systems Biology, Cambridge, MA 02138, USA
| |
Collapse
|
109
|
Lioy VS, Cournac A, Marbouty M, Duigou S, Mozziconacci J, Espéli O, Boccard F, Koszul R. Multiscale Structuring of the E. coli Chromosome by Nucleoid-Associated and Condensin Proteins. Cell 2018; 172:771-783.e18. [PMID: 29358050 DOI: 10.1016/j.cell.2017.12.027] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/02/2017] [Accepted: 12/19/2017] [Indexed: 12/26/2022]
Abstract
As in eukaryotes, bacterial genomes are not randomly folded. Bacterial genetic information is generally carried on a circular chromosome with a single origin of replication from which two replication forks proceed bidirectionally toward the opposite terminus region. Here, we investigate the higher-order architecture of the Escherichia coli genome, showing its partition into two structurally distinct entities by a complex and intertwined network of contacts: the replication terminus (ter) region and the rest of the chromosome. Outside of ter, the condensin MukBEF and the ubiquitous nucleoid-associated protein (NAP) HU promote DNA contacts in the megabase range. Within ter, the MatP protein prevents MukBEF activity, and contacts are restricted to ∼280 kb, creating a domain with distinct structural properties. We also show how other NAPs contribute to nucleoid organization, such as H-NS, which restricts short-range interactions. Combined, these results reveal the contributions of major evolutionarily conserved proteins in a bacterial chromosome organization.
Collapse
Affiliation(s)
- Virginia S Lioy
- Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Axel Cournac
- Institut Pasteur, Département Génomes et Génétique, Groupe Régulation spatiale des génomes, 75015 Paris, France; CNRS, UMR 3525, 75015 Paris, France
| | - Martial Marbouty
- Institut Pasteur, Département Génomes et Génétique, Groupe Régulation spatiale des génomes, 75015 Paris, France; CNRS, UMR 3525, 75015 Paris, France
| | - Stéphane Duigou
- Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | - Julien Mozziconacci
- Sorbonne Universités, Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600, Université Pierre et Marie Curie, 75005 Paris, France
| | - Olivier Espéli
- Centre Interdisciplinaire de Recherche en Biologie, Collège de France, UMR-CNRS 7241, INSERM U1050, Paris, France
| | - Frédéric Boccard
- Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| | - Romain Koszul
- Institut Pasteur, Département Génomes et Génétique, Groupe Régulation spatiale des génomes, 75015 Paris, France; CNRS, UMR 3525, 75015 Paris, France.
| |
Collapse
|
110
|
Abstract
With single-molecule localization microscopy (SMLM) it is possible to reveal the internal composition, architecture, and dynamics of molecular machines and large cellular complexes. SMLM remains technically challenging, and frequently its implementation requires tailored experimental conditions that depend on the complexity of the subcellular structure of interest. Here, we describe two simple, robust, and high-throughput protocols to study molecular motors and machineries responsible for chromosome transport and organization in bacteria using 2D- and 3D-SMLM.
Collapse
Affiliation(s)
- Diego I Cattoni
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, Montpellier, France
| | - Jean-Bernard Fiche
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, Montpellier, France
| | - Antoine Le Gall
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, Montpellier, France
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier, Montpellier, France.
| |
Collapse
|
111
|
Kriel NL, Gallant J, van Wyk N, van Helden P, Sampson SL, Warren RM, Williams MJ. Mycobacterial nucleoid associated proteins: An added dimension in gene regulation. Tuberculosis (Edinb) 2018. [DOI: 10.1016/j.tube.2017.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
112
|
Stringent Response Regulators Contribute to Recovery from Glucose Phosphate Stress in Escherichia coli. Appl Environ Microbiol 2017; 83:AEM.01636-17. [PMID: 28986375 DOI: 10.1128/aem.01636-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/28/2017] [Indexed: 01/18/2023] Open
Abstract
In enteric bacteria such as Escherichia coli, the transcription factor SgrR and the small RNA SgrS regulate the response to glucose phosphate stress, a metabolic dysfunction that results in growth inhibition and stems from the intracellular accumulation of sugar phosphates. SgrR activates the transcription of sgrS, and SgrS helps to rescue cells from stress in part by inhibiting the uptake of stressor sugar phosphates. While the regulatory targets of this stress response are well described, less is known about how the SgrR-SgrS response itself is regulated. To further characterize the regulation of the glucose phosphate stress response, we screened global regulator gene mutants for growth changes during glucose phosphate stress. We found that deleting dksA, which encodes a regulator of the stringent response to nutrient starvation, decreases growth under glucose phosphate stress conditions. The stringent response alarmone regulator ppGpp (synthesized by RelA and SpoT) also contributes to recovery from glucose phosphate stress: as with dksA, mutating relA and spoT worsens the growth defect of an sgrS mutant during stress, although the sgrS relA spoT mutant defect was only detectable under lower stress levels. In addition, mutating dksA or relA and spoT lowers sgrS expression (as measured with a P sgrS -lacZ fusion), suggesting that the observed growth defects may be due to decreased induction of the glucose phosphate stress response or related targets. This regulatory effect could occur through altered sgrR transcription, as dksA and relA spoT mutants also exhibit decreased expression of a P sgrR -lacZ fusion. Taken together, this work supports a role for stringent response regulators in aiding the recovery from glucose phosphate stress.IMPORTANCE Glucose phosphate stress leads to growth inhibition in bacteria such as Escherichia coli when certain sugar phosphates accumulate in the cell. The transcription factor SgrR and the small RNA SgrS alleviate this stress in part by preventing further sugar phosphate transport. While the regulatory mechanisms of this response have been characterized, the regulation of the SgrR-SgrS response itself is not as well understood. Here, we describe a role for stringent response regulators DksA and ppGpp in the response to glucose phosphate stress. sgrS dksA and sgrS relA spoT mutants exhibit growth defects under glucose phosphate stress conditions. These defects may be due to a decrease in stress response induction, as deleting dksA or relA and spoT also results in decreased expression of sgrS and sgrR This research presents one of the first regulatory effects on the glucose phosphate stress response outside SgrR and SgrS and depicts a novel connection between these two metabolic stress responses.
Collapse
|
113
|
Abstract
In bacteria, chromosomal DNA must be efficiently compacted to fit inside the small cell compartment while remaining available for the proteins involved in replication, segregation, and transcription. Among the nucleoid-associated proteins (NAPs) responsible for maintaining this highly organized and yet dynamic chromosome structure, the HU protein is one of the most conserved and highly abundant. HupB, a homologue of HU, was recently identified in mycobacteria. This intriguing mycobacterial NAP is composed of two domains: an N-terminal domain that resembles bacterial HU, and a long and distinctive C-terminal domain that contains several PAKK/KAAK motifs, which are characteristic of the H1/H5 family of eukaryotic histones. In this study, we analyzed the in vivo binding of HupB on the chromosome scale. By using PALM (photoactivated localization microscopy) and ChIP-Seq (chromatin immunoprecipitation followed by deep sequencing), we observed that the C-terminal domain is indispensable for the association of HupB with the nucleoid. Strikingly, the in vivo binding of HupB displayed a bias from the origin (oriC) to the terminus (ter) of the mycobacterial chromosome (numbers of binding sites decreased toward ter). We hypothesized that this binding mode reflects a role for HupB in organizing newly replicated oriC regions. Thus, HupB may be involved in coordinating replication with chromosome segregation.IMPORTANCE We currently know little about the organization of the mycobacterial chromosome and its dynamics during the cell cycle. Among the mycobacterial nucleoid-associated proteins (NAPs) responsible for chromosome organization and dynamics, HupB is one of the most intriguing. It contains a long and distinctive C-terminal domain that harbors several PAKK/KAAK motifs, which are characteristic of the eukaryotic histone H1/H5 proteins. The HupB protein is also known to be crucial for the survival of tubercle bacilli during infection. Here, we provide in vivo experimental evidence showing that the C-terminal domain of HupB is crucial for its DNA binding. Our results suggest that HupB may be involved in organizing newly replicated regions and could help coordinate chromosome replication with segregation. Given that tuberculosis (TB) remains a serious worldwide health problem (10.4 million new TB cases were diagnosed in 2015, according to WHO) and new multidrug-resistant Mycobacterium tuberculosis strains are continually emerging, further studies of the biological function of HupB are needed to determine if this protein could be a prospect for novel antimicrobial drug development.
Collapse
|
114
|
Charged residues in the H-NS linker drive DNA binding and gene silencing in single cells. Proc Natl Acad Sci U S A 2017; 114:12560-12565. [PMID: 29109287 DOI: 10.1073/pnas.1716721114] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nucleoid-associated proteins (NAPs) facilitate chromosome organization in bacteria, but the precise mechanism remains elusive. H-NS is a NAP that also plays a major role in silencing pathogen genes. We used genetics, single-particle tracking in live cells, superresolution microscopy, atomic force microscopy, and molecular dynamics simulations to examine H-NS/DNA interactions in single cells. We discovered a role for the unstructured linker region connecting the N-terminal oligomerization and C-terminal DNA binding domains. In the present work we demonstrate that linker amino acids promote engagement with DNA. In the absence of linker contacts, H-NS binding is significantly reduced, although no change in chromosome compaction is observed. H-NS is not localized to two distinct foci; rather, it is scattered all around the nucleoid. The linker makes DNA contacts that are required for gene silencing, while chromosome compaction does not appear to be an important H-NS function.
Collapse
|
115
|
Rosenthal K, Oehling V, Dusny C, Schmid A. Beyond the bulk: disclosing the life of single microbial cells. FEMS Microbiol Rev 2017; 41:751-780. [PMID: 29029257 PMCID: PMC5812503 DOI: 10.1093/femsre/fux044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 09/08/2017] [Indexed: 01/08/2023] Open
Abstract
Microbial single cell analysis has led to discoveries that are beyond what can be resolved with population-based studies. It provides a pristine view of the mechanisms that organize cellular physiology, unbiased by population heterogeneity or uncontrollable environmental impacts. A holistic description of cellular functions at the single cell level requires analytical concepts beyond the miniaturization of existing technologies, defined but uncontrolled by the biological system itself. This review provides an overview of the latest advances in single cell technologies and demonstrates their potential. Opportunities and limitations of single cell microbiology are discussed using selected application-related examples.
Collapse
Affiliation(s)
- Katrin Rosenthal
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Verena Oehling
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Christian Dusny
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Andreas Schmid
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| |
Collapse
|
116
|
DNA-RNA interactions are critical for chromosome condensation in Escherichia coli. Proc Natl Acad Sci U S A 2017; 114:12225-12230. [PMID: 29087325 DOI: 10.1073/pnas.1711285114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial chromosome (nucleoid) conformation dictates faithful regulation of gene transcription. The conformation is condition-dependent and is guided by several nucleoid-associated proteins (NAPs) and at least one nucleoid-associated noncoding RNA, naRNA4. Here we investigated the molecular mechanism of how naRNA4 and the major NAP, HU, acting together organize the chromosome structure by establishing multiple DNA-DNA contacts (DNA condensation). We demonstrate that naRNA4 uniquely acts by forming complexes that may not involve long stretches of DNA-RNA hybrid. Also, uncommonly, HU, a chromosome-associated protein that is essential in the DNA-RNA interactions, is not present in the final complex. Thus, HU plays a catalytic (chaperone) role in the naRNA4-mediated DNA condensation process.
Collapse
|
117
|
Hacker WC, Li S, Elcock AH. Features of genomic organization in a nucleotide-resolution molecular model of the Escherichia coli chromosome. Nucleic Acids Res 2017. [PMID: 28645155 PMCID: PMC5570083 DOI: 10.1093/nar/gkx541] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We describe structural models of the Escherichia coli chromosome in which the positions of all 4.6 million nucleotides of each DNA strand are resolved. Models consistent with two basic chromosomal orientations, differing in their positioning of the origin of replication, have been constructed. In both types of model, the chromosome is partitioned into plectoneme-abundant and plectoneme-free regions, with plectoneme lengths and branching patterns matching experimental distributions, and with spatial distributions of highly-transcribed chromosomal regions matching recent experimental measurements of the distribution of RNA polymerases. Physical analysis of the models indicates that the effective persistence length of the DNA and relative contributions of twist and writhe to the chromosome's negative supercoiling are in good correspondence with experimental estimates. The models exhibit characteristics similar to those of ‘fractal globules,’ and even the most genomically-distant parts of the chromosome can be physically connected, through paths combining linear diffusion and inter-segmental transfer, by an average of only ∼10 000 bp. Finally, macrodomain structures and the spatial distributions of co-expressed genes are analyzed: the latter are shown to depend strongly on the overall orientation of the chromosome. We anticipate that the models will prove useful in exploring other static and dynamic features of the bacterial chromosome.
Collapse
Affiliation(s)
- William C Hacker
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Shuxiang Li
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Adrian H Elcock
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
118
|
Abstract
Fluorescence nanoscopy uniquely combines minimally invasive optical access to the internal nanoscale structure and dynamics of cells and tissues with molecular detection specificity. While the basic physical principles of 'super-resolution' imaging were discovered in the 1990s, with initial experimental demonstrations following in 2000, the broad application of super-resolution imaging to address cell-biological questions has only more recently emerged. Nanoscopy approaches have begun to facilitate discoveries in cell biology and to add new knowledge. One current direction for method improvement is the ambition to quantitatively account for each molecule under investigation and assess true molecular colocalization patterns via multi-colour analyses. In pursuing this goal, the labelling of individual molecules to enable their visualization has emerged as a central challenge. Extending nanoscale imaging into (sliced) tissue and whole-animal contexts is a further goal. In this Review we describe the successes to date and discuss current obstacles and possibilities for further development.
Collapse
|
119
|
Antipov SS, Tutukina MN, Preobrazhenskaya EV, Kondrashov FA, Patrushev MV, Toshchakov SV, Dominova I, Shvyreva US, Vrublevskaya VV, Morenkov OS, Sukharicheva NA, Panyukov VV, Ozoline ON. The nucleoid protein Dps binds genomic DNA of Escherichia coli in a non-random manner. PLoS One 2017; 12:e0182800. [PMID: 28800583 PMCID: PMC5553809 DOI: 10.1371/journal.pone.0182800] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/25/2017] [Indexed: 11/18/2022] Open
Abstract
Dps is a multifunctional homododecameric protein that oxidizes Fe2+ ions accumulating them in the form of Fe2O3 within its protein cavity, interacts with DNA tightly condensing bacterial nucleoid upon starvation and performs some other functions. During the last two decades from discovery of this protein, its ferroxidase activity became rather well studied, but the mechanism of Dps interaction with DNA still remains enigmatic. The crucial role of lysine residues in the unstructured N-terminal tails led to the conventional point of view that Dps binds DNA without sequence or structural specificity. However, deletion of dps changed the profile of proteins in starved cells, SELEX screen revealed genomic regions preferentially bound in vitro and certain affinity of Dps for artificial branched molecules was detected by atomic force microscopy. Here we report a non-random distribution of Dps binding sites across the bacterial chromosome in exponentially growing cells and show their enrichment with inverted repeats prone to form secondary structures. We found that the Dps-bound regions overlap with sites occupied by other nucleoid proteins, and contain overrepresented motifs typical for their consensus sequences. Of the two types of genomic domains with extensive protein occupancy, which can be highly expressed or transcriptionally silent only those that are enriched with RNA polymerase molecules were preferentially occupied by Dps. In the dps-null mutant we, therefore, observed a differentially altered expression of several targeted genes and found suppressed transcription from the dps promoter. In most cases this can be explained by the relieved interference with Dps for nucleoid proteins exploiting sequence-specific modes of DNA binding. Thus, protecting bacterial cells from different stresses during exponential growth, Dps can modulate transcriptional integrity of the bacterial chromosome hampering RNA biosynthesis from some genes via competition with RNA polymerase or, vice versa, competing with inhibitors to activate transcription.
Collapse
Affiliation(s)
- S. S. Antipov
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Biophysics and Biotechnology, Voronezh State University, Voronezh, Russian Federation
- Department of Genomics of Microorganisms, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - M. N. Tutukina
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) Barcelona, Spain
- Department of Evolutionary Genomics, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Department of Structural and Functional Genomics,–Pushchino Research Center of the Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - E. V. Preobrazhenskaya
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - F. A. Kondrashov
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) Barcelona, Spain
- Department of Evolutionary Genomics, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 23 Pg. Lluís Companys, Barcelona, Spain
| | - M. V. Patrushev
- Department of Genomics of Microorganisms, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - S. V. Toshchakov
- Department of Genomics of Microorganisms, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - I. Dominova
- Department of Genomics of Microorganisms, Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - U. S. Shvyreva
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - V. V. Vrublevskaya
- Department of Cell Culture and Cell Engeneering, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - O. S. Morenkov
- Department of Cell Culture and Cell Engeneering, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - N. A. Sukharicheva
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - V. V. Panyukov
- Department of Structural and Functional Genomics,–Pushchino Research Center of the Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Bioinformatics, Institute of Mathematical Problems of Biology—the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - O. N. Ozoline
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Structural and Functional Genomics,–Pushchino Research Center of the Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- * E-mail:
| |
Collapse
|
120
|
Sequential eviction of crowded nucleoprotein complexes by the exonuclease RecBCD molecular motor. Proc Natl Acad Sci U S A 2017; 114:E6322-E6331. [PMID: 28716908 DOI: 10.1073/pnas.1701368114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In physiological settings, all nucleic acids motor proteins must travel along substrates that are crowded with other proteins. However, the physical basis for how motor proteins behave in these highly crowded environments remains unknown. Here, we use real-time single-molecule imaging to determine how the ATP-dependent translocase RecBCD travels along DNA occupied by tandem arrays of high-affinity DNA binding proteins. We show that RecBCD forces each protein into its nearest adjacent neighbor, causing rapid disruption of the protein-nucleic acid interaction. This mechanism is not the same way that RecBCD disrupts isolated nucleoprotein complexes on otherwise naked DNA. Instead, molecular crowding itself completely alters the mechanism by which RecBCD removes tightly bound protein obstacles from DNA.
Collapse
|
121
|
Japaridze A, Renevey S, Sobetzko P, Stoliar L, Nasser W, Dietler G, Muskhelishvili G. Spatial organization of DNA sequences directs the assembly of bacterial chromatin by a nucleoid-associated protein. J Biol Chem 2017; 292:7607-7618. [PMID: 28316324 PMCID: PMC5418058 DOI: 10.1074/jbc.m117.780239] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/11/2017] [Indexed: 11/28/2022] Open
Abstract
Structural differentiation of bacterial chromatin depends on cooperative binding of abundant nucleoid-associated proteins at numerous genomic DNA sites and stabilization of distinct long-range nucleoprotein structures. Histone-like nucleoid-structuring protein (H-NS) is an abundant DNA-bridging, nucleoid-associated protein that binds to an AT-rich conserved DNA sequence motif and regulates both the shape and the genetic expression of the bacterial chromosome. Although there is ample evidence that the mode of H-NS binding depends on environmental conditions, the role of the spatial organization of H-NS-binding sequences in the assembly of long-range nucleoprotein structures remains unknown. In this study, by using high-resolution atomic force microscopy combined with biochemical assays, we explored the formation of H-NS nucleoprotein complexes on circular DNA molecules having different arrangements of identical sequences containing high-affinity H-NS-binding sites. We provide the first experimental evidence that variable sequence arrangements result in various three-dimensional nucleoprotein structures that differ in their shape and the capacity to constrain supercoils and compact the DNA. We believe that the DNA sequence-directed versatile assembly of periodic higher-order structures reveals a general organizational principle that can be exploited for knowledge-based design of long-range nucleoprotein complexes and purposeful manipulation of the bacterial chromatin architecture.
Collapse
Affiliation(s)
- Aleksandre Japaridze
- From the Laboratory of Physics of Living Matter, EPFL (École Polytechnique Fédérale de Lausanne), CE 3 316 Lausanne, Switzerland
| | - Sylvain Renevey
- From the Laboratory of Physics of Living Matter, EPFL (École Polytechnique Fédérale de Lausanne), CE 3 316 Lausanne, Switzerland
| | | | | | - William Nasser
- UMR5240 CNRS/INSA/UCB, Université de Lyon, F-69003 INSA Lyon, Villeurbanne F-69621, France, and
| | - Giovanni Dietler
- From the Laboratory of Physics of Living Matter, EPFL (École Polytechnique Fédérale de Lausanne), CE 3 316 Lausanne, Switzerland,
| | - Georgi Muskhelishvili
- Jacobs University, D-28759 Bremen, Germany, .,Agricultural University of Georgia, 240 David Aghmashenebeli Alley, 0159 Tbilisi, Republik of Georgia
| |
Collapse
|
122
|
Trussart M, Yus E, Martinez S, Baù D, Tahara YO, Pengo T, Widjaja M, Kretschmer S, Swoger J, Djordjevic S, Turnbull L, Whitchurch C, Miyata M, Marti-Renom MA, Lluch-Senar M, Serrano L. Defined chromosome structure in the genome-reduced bacterium Mycoplasma pneumoniae. Nat Commun 2017; 8:14665. [PMID: 28272414 PMCID: PMC5344976 DOI: 10.1038/ncomms14665] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/20/2017] [Indexed: 12/24/2022] Open
Abstract
DNA-binding proteins are central regulators of chromosome organization; however, in genome-reduced bacteria their diversity is largely diminished. Whether the chromosomes of such bacteria adopt defined three-dimensional structures remains unexplored. Here we combine Hi-C and super-resolution microscopy to determine the structure of the Mycoplasma pneumoniae chromosome at a 10 kb resolution. We find a defined structure, with a global symmetry between two arms that connect opposite poles, one bearing the chromosomal Ori and the other the midpoint. Analysis of local structures at a 3 kb resolution indicates that the chromosome is organized into domains ranging from 15 to 33 kb. We provide evidence that genes within the same domain tend to be co-regulated, suggesting that chromosome organization influences transcriptional regulation, and that supercoiling regulates local organization. This study extends the current understanding of bacterial genome organization and demonstrates that a defined chromosomal structure is a universal feature of living systems.
Collapse
Affiliation(s)
- Marie Trussart
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Eva Yus
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Sira Martinez
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
| | - Davide Baù
- Gene Regulation, Stem Cells and Cancer Program. Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain
| | - Yuhei O Tahara
- Department of Biology, Graduate School of Science, Osaka City University, 558-8585 Osaka, Japan.,OCU Advanced Research Institute for Natural Science and Technology (OCARNA), Osaka City University, 558-8585 Osaka, Japan
| | - Thomas Pengo
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Advanced Light Microscopy Unit, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Michael Widjaja
- The ithree Institute, The University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Simon Kretschmer
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Jim Swoger
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Steven Djordjevic
- The ithree Institute, The University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Lynne Turnbull
- The ithree Institute, The University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Cynthia Whitchurch
- The ithree Institute, The University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, 558-8585 Osaka, Japan.,OCU Advanced Research Institute for Natural Science and Technology (OCARNA), Osaka City University, 558-8585 Osaka, Japan
| | - Marc A Marti-Renom
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.,Gene Regulation, Stem Cells and Cancer Program. Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Maria Lluch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Luís Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
123
|
Japaridze A, Muskhelishvili G, Benedetti F, Gavriilidou AFM, Zenobi R, De Los Rios P, Longo G, Dietler G. Hyperplectonemes: A Higher Order Compact and Dynamic DNA Self-Organization. NANO LETTERS 2017; 17:1938-1948. [PMID: 28191853 DOI: 10.1021/acs.nanolett.6b05294] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bacterial chromosome has a compact structure that dynamically changes its shape in response to bacterial growth rate and growth phase. Determining how chromatin remains accessible to DNA binding proteins, and transcription machinery is crucial to understand the link between genetic regulation, DNA structure, and topology. Here, we study very large supercoiled dsDNA using high-resolution characterization, theoretical modeling, and molecular dynamics calculations. We unveil a new type of highly ordered DNA organization forming in the presence of attractive DNA-DNA interactions, which we call hyperplectonemes. We demonstrate that their formation depends on DNA size, supercoiling, and bacterial physiology. We compare structural, nanomechanic, and dynamic properties of hyperplectonemes bound by three highly abundant nucleoid-associated proteins (FIS, H-NS, and HU). In all these cases, the negative supercoiling of DNA determines molecular dynamics, modulating their 3D shape. Overall, our findings provide a mechanistic insight into the critical role of DNA topology in genetic regulation.
Collapse
Affiliation(s)
- Aleksandre Japaridze
- Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Georgi Muskhelishvili
- Jacobs University , D-28759 Bremen, Germany
- Agricultural University of Georgia , 0159 Tbilisi, Georgia
| | - Fabrizio Benedetti
- Center for Integrative Genomics, University of Lausanne , 1015 Lausanne, Switzerland
- Vital-IT, SIB Swiss Institute of Bioinformatics , 1015 Lausanne, Switzerland
| | - Agni F M Gavriilidou
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich , 8093 Zurich, Switzerland
| | - Renato Zenobi
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich , 8093 Zurich, Switzerland
| | - Paolo De Los Rios
- Vital-IT, SIB Swiss Institute of Bioinformatics , 1015 Lausanne, Switzerland
- Laboratoire de Biophysique Statistique, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Giovanni Longo
- Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche , Rome, Italy
| | - Giovanni Dietler
- Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| |
Collapse
|
124
|
Abstract
Mitochondrial DNA (mtDNA) in cells is organized in nucleoids containing DNA and various proteins. This review discusses questions of organization and structural dynamics of nucleoids as well as their protein components. The structures of mt-nucleoid from different organisms are compared. The currently accepted model of nucleoid organization is described and questions needing answers for better understanding of the fine mechanisms of the mitochondrial genetic apparatus functioning are discussed.
Collapse
Affiliation(s)
- A A Kolesnikov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| |
Collapse
|
125
|
The Arginine Pairs and C-Termini of the Sso7c4 from Sulfolobus solfataricus Participate in Binding and Bending DNA. PLoS One 2017; 12:e0169627. [PMID: 28068385 PMCID: PMC5222340 DOI: 10.1371/journal.pone.0169627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/20/2016] [Indexed: 11/19/2022] Open
Abstract
The Sso7c4 from Sulfolobus solfataricus forms a dimer, which is believed to function as a chromosomal protein involved in genomic DNA compaction and gene regulation. Here, we present the crystal structure of wild-type Sso7c4 at a high resolution of 1.63 Å, showing that the two basic C-termini are disordered. Based on the fluorescence polarization (FP) binding assay, two arginine pairs, R11/R22' and R11'/R22, on the top surface participate in binding DNA. As shown in electron microscopy (EM) images, wild-type Sso7c4 compacts DNA through bridging and bending interactions, whereas the binding of C-terminally truncated proteins rigidifies and opens DNA molecules, and no compaction of the DNA occurs. Moreover, the FP, EM and fluorescence resonance energy transfer (FRET) data indicated that the two basic and flexible C-terminal arms of the Sso7c4 dimer play a crucial role in binding and bending DNA. Sso7c4 has been classified as a repressor-like protein because of its similarity to Escherichia coli Ecrep 6.8 and Ecrep 7.3 as well as Agrobacterium tumefaciens ACCR in amino acid sequence. Based on these data, we proposed a model of the Sso7c4-DNA complex using a curved DNA molecule in the catabolite activator protein-DNA complex. The DNA end-to-end distance measured with FRET upon wild-type Sso7c4 binding is almost equal to the distance measured in the model, which supports the fidelity of the proposed model. The FRET data also confirm the EM observation showing that the binding of wild-type Sso7c4 reduces the DNA length while the C-terminal truncation does not. A functional role for Sso7c4 in the organization of chromosomal DNA and/or the regulation of gene expression through bridging and bending interactions is suggested.
Collapse
|
126
|
Xiao J, Dufrêne YF. Optical and force nanoscopy in microbiology. Nat Microbiol 2016; 1:16186. [PMID: 27782138 PMCID: PMC5839876 DOI: 10.1038/nmicrobiol.2016.186] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022]
Abstract
Microbial cells have developed sophisticated multicomponent structures and machineries to govern basic cellular processes, such as chromosome segregation, gene expression, cell division, mechanosensing, cell adhesion and biofilm formation. Because of the small cell sizes, subcellular structures have long been difficult to visualize using diffraction-limited light microscopy. During the last three decades, optical and force nanoscopy techniques have been developed to probe intracellular and extracellular structures with unprecedented resolutions, enabling researchers to study their organization, dynamics and interactions in individual cells, at the single-molecule level, from the inside out, and all the way up to cell-cell interactions in microbial communities. In this Review, we discuss the principles, advantages and limitations of the main optical and force nanoscopy techniques available in microbiology, and we highlight some outstanding questions that these new tools may help to answer.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Biophysics &Biophysical Chemistry, The Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21212, USA
| | - Yves F Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO), Belgium
| |
Collapse
|
127
|
Ricci DP, Melfi MD, Lasker K, Dill DL, McAdams HH, Shapiro L. Cell cycle progression in Caulobacter requires a nucleoid-associated protein with high AT sequence recognition. Proc Natl Acad Sci U S A 2016; 113:E5952-E5961. [PMID: 27647925 PMCID: PMC5056096 DOI: 10.1073/pnas.1612579113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Faithful cell cycle progression in the dimorphic bacterium Caulobacter crescentus requires spatiotemporal regulation of gene expression and cell pole differentiation. We discovered an essential DNA-associated protein, GapR, that is required for Caulobacter growth and asymmetric division. GapR interacts with adenine and thymine (AT)-rich chromosomal loci, associates with the promoter regions of cell cycle-regulated genes, and shares hundreds of recognition sites in common with known master regulators of cell cycle-dependent gene expression. GapR target loci are especially enriched in binding sites for the transcription factors GcrA and CtrA and overlap with nearly all of the binding sites for MucR1, a regulator that controls the establishment of swarmer cell fate. Despite constitutive synthesis, GapR accumulates preferentially in the swarmer compartment of the predivisional cell. Homologs of GapR, which are ubiquitous among the α-proteobacteria and are encoded on multiple bacteriophage genomes, also accumulate in the predivisional cell swarmer compartment when expressed in Caulobacter The Escherichia coli nucleoid-associated protein H-NS, like GapR, selectively associates with AT-rich DNA, yet it does not localize preferentially to the swarmer compartment when expressed exogenously in Caulobacter, suggesting that recognition of AT-rich DNA is not sufficient for the asymmetric accumulation of GapR. Further, GapR does not silence the expression of H-NS target genes when expressed in E. coli, suggesting that GapR and H-NS have distinct functions. We propose that Caulobacter has co-opted a nucleoid-associated protein with high AT recognition to serve as a mediator of cell cycle progression.
Collapse
Affiliation(s)
- Dante P Ricci
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
| | - Michael D Melfi
- Department of Developmental Biology, Stanford University, Stanford, CA 94305; Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Keren Lasker
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
| | - David L Dill
- Department of Computer Science, Stanford University, Stanford, CA 94305
| | - Harley H McAdams
- Department of Developmental Biology, Stanford University, Stanford, CA 94305
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University, Stanford, CA 94305;
| |
Collapse
|
128
|
Earnest TM, Cole JA, Peterson JR, Hallock MJ, Kuhlman TE, Luthey-Schulten Z. Ribosome biogenesis in replicating cells: Integration of experiment and theory. Biopolymers 2016; 105:735-751. [PMID: 27294303 PMCID: PMC4958520 DOI: 10.1002/bip.22892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 11/08/2022]
Abstract
Ribosomes-the primary macromolecular machines responsible for translating the genetic code into proteins-are complexes of precisely folded RNA and proteins. The ways in which their production and assembly are managed by the living cell is of deep biological importance. Here we extend a recent spatially resolved whole-cell model of ribosome biogenesis in a fixed volume [Earnest et al., Biophys J 2015, 109, 1117-1135] to include the effects of growth, DNA replication, and cell division. All biological processes are described in terms of reaction-diffusion master equations and solved stochastically using the Lattice Microbes simulation software. In order to determine the replication parameters, we construct and analyze a series of Escherichia coli strains with fluorescently labeled genes distributed evenly throughout their chromosomes. By measuring these cells' lengths and number of gene copies at the single-cell level, we could fit a statistical model of the initiation and duration of chromosome replication. We found that for our slow-growing (120 min doubling time) E. coli cells, replication was initiated 42 min into the cell cycle and completed after an additional 42 min. While simulations of the biogenesis model produce the correct ribosome and mRNA counts over the cell cycle, the kinetic parameters for transcription and degradation are lower than anticipated from a recent analytical time dependent model of in vivo mRNA production. Describing expression in terms of a simple chemical master equation, we show that the discrepancies are due to the lack of nonribosomal genes in the extended biogenesis model which effects the competition of mRNA for ribosome binding, and suggest corrections to parameters to be used in the whole-cell model when modeling expression of the entire transcriptome. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 735-751, 2016.
Collapse
Affiliation(s)
- Tyler M. Earnest
- Center for the Physics of Living Cells, Urbana, IL, USA
- Department of Physics, University of Illinois, Urbana, IL USA
| | - John A. Cole
- Department of Physics, University of Illinois, Urbana, IL USA
| | | | | | - Thomas E. Kuhlman
- Center for the Physics of Living Cells, Urbana, IL, USA
- Department of Physics, University of Illinois, Urbana, IL USA
| | - Zaida Luthey-Schulten
- Center for the Physics of Living Cells, Urbana, IL, USA
- Department of Physics, University of Illinois, Urbana, IL USA
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| |
Collapse
|
129
|
Plochowietz A, Farrell I, Smilansky Z, Cooperman BS, Kapanidis AN. In vivo single-RNA tracking shows that most tRNA diffuses freely in live bacteria. Nucleic Acids Res 2016; 45:926-937. [PMID: 27625389 PMCID: PMC5314786 DOI: 10.1093/nar/gkw787] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 07/29/2016] [Accepted: 08/20/2016] [Indexed: 11/21/2022] Open
Abstract
Transfer RNA (tRNA) links messenger RNA nucleotide sequence with amino acid sequence during protein synthesis. Despite the importance of tRNA for translation, its subcellular distribution and diffusion properties in live cells are poorly understood. Here, we provide the first direct report on tRNA diffusion localization in live bacteria. We internalized tRNA labeled with organic fluorophores into live bacteria, applied single-molecule fluorescence imaging with single-particle tracking and localized and tracked single tRNA molecules over seconds. We observed two diffusive species: fast (with a diffusion coefficient of ∼8 μm2/s, consistent with free tRNA) and slow (consistent with tRNA bound to larger complexes). Our data indicate that a large fraction of internalized fluorescent tRNA (>70%) appears to diffuse freely in the bacterial cell. We also obtained the subcellular distribution of fast and slow diffusing tRNA molecules in multiple cells by normalizing for cell morphology. While fast diffusing tRNA is not excluded from the bacterial nucleoid, slow diffusing tRNA is localized to the cell periphery (showing a 30% enrichment versus a uniform distribution), similar to non-uniform localizations previously observed for mRNA and ribosomes.
Collapse
Affiliation(s)
- Anne Plochowietz
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK
| | - Ian Farrell
- Anima Inc, 75 Claremont Road, Suite 102, Bernardsville, NJ 07924-2270, USA.,Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104-6323, USA
| | - Zeev Smilansky
- Anima Inc, 75 Claremont Road, Suite 102, Bernardsville, NJ 07924-2270, USA
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104-6323, USA
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OX1 3PU, Oxford, UK
| |
Collapse
|
130
|
Abstract
If fully stretched out, a typical bacterial chromosome would be nearly 1 mm long, approximately 1,000 times the length of a cell. Not only must cells massively compact their genetic material, but they must also organize their DNA in a manner that is compatible with a range of cellular processes, including DNA replication, DNA repair, homologous recombination, and horizontal gene transfer. Recent work, driven in part by technological advances, has begun to reveal the general principles of chromosome organization in bacteria. Here, drawing on studies of many different organisms, we review the emerging picture of how bacterial chromosomes are structured at multiple length scales, highlighting the functions of various DNA-binding proteins and the impact of physical forces. Additionally, we discuss the spatial dynamics of chromosomes, particularly during their segregation to daughter cells. Although there has been tremendous progress, we also highlight gaps that remain in understanding chromosome organization and segregation.
Collapse
|
131
|
Bao YJ, Liang Z, Mayfield JA, McShan WM, Lee SW, Ploplis VA, Castellino FJ. Novel genomic rearrangements mediated by multiple genetic elements in Streptococcus pyogenes M23ND confer potential for evolutionary persistence. MICROBIOLOGY (READING, ENGLAND) 2016; 162:1346-1359. [PMID: 27329479 PMCID: PMC5903213 DOI: 10.1099/mic.0.000326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/20/2016] [Indexed: 12/19/2022]
Abstract
Symmetric genomic rearrangements around replication axes in genomes are commonly observed in prokaryotic genomes, including Group A Streptococcus (GAS). However, asymmetric rearrangements are rare. Our previous studies showed that the hypervirulent invasive GAS strain, M23ND, containing an inactivated transcriptional regulator system, covRS, exhibits unique extensive asymmetric rearrangements, which reconstructed a genomic structure distinct from other GAS genomes. In the current investigation, we identified the rearrangement events and examined the genetic consequences and evolutionary implications underlying the rearrangements. By comparison with a close phylogenetic relative, M18-MGAS8232, we propose a molecular model wherein a series of asymmetric rearrangements have occurred in M23ND, involving translocations, inversions and integrations mediated by multiple factors, viz., rRNA-comX (factor for late competence), transposons and phage-encoded gene segments. Assessments of the cumulative gene orientations and GC skews reveal that the asymmetric genomic rearrangements did not affect the general genomic integrity of the organism. However, functional distributions reveal re-clustering of a broad set of CovRS-regulated actively transcribed genes, including virulence factors and metabolic genes, to the same leading strand, with high confidence (p-value ~10-10). The re-clustering of the genes suggests a potential selection advantage for the spatial proximity to the transcription complexes, which may contain the global transcriptional regulator, CovRS, and other RNA polymerases. Their proximities allow for efficient transcription of the genes required for growth, virulence and persistence. A new paradigm of survival strategies of GAS strains is provided through multiple genomic rearrangements, while, at the same time, maintaining genomic integrity.
Collapse
Affiliation(s)
- Yun-Juan Bao
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jeffrey A. Mayfield
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - William M. McShan
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shaun W. Lee
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A. Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
132
|
McGovern M, Dorfman KD, Morse DC. Particle-directed assembly of semiflexible polymer chains. SOFT MATTER 2016; 12:6214-6222. [PMID: 27378073 DOI: 10.1039/c6sm00785f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We use Langevin dynamics simulations to study aggregation of semiflexible polymers driven by attractions between polymers and spherical particles. We consider a simple model with purely repulsive polymer/polymer and particle/particle interactions but attractive polymer/particle interactions. We find a rich "phase diagram" that contains several different types of globular and rod-like aggregates with either liquid-like or crystalline structure for the particle positions. Systems that exhibit rod-like aggregates with crystalline internal order exhibit a discontinuous rod-globule transition, while systems with liquid-like internal order exhibit a smooth crossover between isotropic and elongated aggregates with increasing chain stiffness. Polymers in elongated liquid-like aggregates often adopt helical configurations that wind around the axis of the aggregate.
Collapse
Affiliation(s)
- Michael McGovern
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA.
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA.
| | - David C Morse
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
133
|
Hammel M, Amlanjyoti D, Reyes FE, Chen JH, Parpana R, Tang HYH, Larabell CA, Tainer JA, Adhya S. HU multimerization shift controls nucleoid compaction. SCIENCE ADVANCES 2016; 2:e1600650. [PMID: 27482541 PMCID: PMC4966879 DOI: 10.1126/sciadv.1600650] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/14/2016] [Indexed: 05/05/2023]
Abstract
Molecular mechanisms controlling functional bacterial chromosome (nucleoid) compaction and organization are surprisingly enigmatic but partly depend on conserved, histone-like proteins HUαα and HUαβ and their interactions that span the nanoscale and mesoscale from protein-DNA complexes to the bacterial chromosome and nucleoid structure. We determined the crystal structures of these chromosome-associated proteins in complex with native duplex DNA. Distinct DNA binding modes of HUαα and HUαβ elucidate fundamental features of bacterial chromosome packing that regulate gene transcription. By combining crystal structures with solution x-ray scattering results, we determined architectures of HU-DNA nucleoproteins in solution under near-physiological conditions. These macromolecular conformations and interactions result in contraction at the cellular level based on in vivo imaging of native unlabeled nucleoid by soft x-ray tomography upon HUβ and ectopic HUα38 expression. Structural characterization of charge-altered HUαα-DNA complexes reveals an HU molecular switch that is suitable for condensing nucleoid and reprogramming noninvasive Escherichia coli into an invasive form. Collective findings suggest that shifts between networking and cooperative and noncooperative DNA-dependent HU multimerization control DNA compaction and supercoiling independently of cellular topoisomerase activity. By integrating x-ray crystal structures, x-ray scattering, mutational tests, and x-ray imaging that span from protein-DNA complexes to the bacterial chromosome and nucleoid structure, we show that defined dynamic HU interaction networks can promote nucleoid reorganization and transcriptional regulation as efficient general microbial mechanisms to help synchronize genetic responses to cell cycle, changing environments, and pathogenesis.
Collapse
Affiliation(s)
- Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Corresponding author. (M.H.); (J.A.T.)
| | - Dhar Amlanjyoti
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Francis E. Reyes
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jian-Hua Chen
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Rochelle Parpana
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henry Y. H. Tang
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Carolyn A. Larabell
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - John A. Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Corresponding author. (M.H.); (J.A.T.)
| | - Sankar Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
134
|
Danial JSH, Aguib Y, Yacoub MH. Advanced fluorescence microscopy techniques for the life sciences. Glob Cardiol Sci Pract 2016; 2016:e201616. [PMID: 29043264 PMCID: PMC5642830 DOI: 10.21542/gcsp.2016.16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The development of super-resolved fluorescence microscopy, for which the Nobel Prize was awarded in 2014, has been a topic of interest to physicists and biologists alike. It is inevitable that numerous questions in biomedical research cannot be answered by means other than direct observation. In this review, advances to fluorescence microscopy are covered in a widely accessible fashion to facilitate its use in decisions related to its acquisition and utilization in biomedical research.
Collapse
Affiliation(s)
- John S H Danial
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom.,Present address: Max Planck Institute for Intelligent systems, Heisenbergstraße 3, 70569 Stuttgart, Germany
| | | | - Magdi H Yacoub
- Aswan Heart Centre, Aswan, Egypt.,Qatar Cardiovascular Research Centre, Doha, Qatar.,Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, United Kingdom
| |
Collapse
|
135
|
Abstract
With the realization that bacteria achieve exquisite levels of spatiotemporal organization has come the challenge of discovering the underlying mechanisms. In this review, we describe three classes of such mechanisms, each of which has physical origins: the use of landmarks, the creation of higher-order structures that enable geometric sensing, and the emergence of length scales from systems of chemical reactions coupled to diffusion. We then examine the diversity of geometric cues that exist even in cells with relatively simple geometries, and end by discussing both new technologies that could drive further discovery and the implications of our current knowledge for the behavior, fitness, and evolution of bacteria. The organizational strategies described here are employed in a wide variety of systems and in species across all kingdoms of life; in many ways they provide a general blueprint for organizing the building blocks of life.
Collapse
Affiliation(s)
- Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544;
| | | |
Collapse
|
136
|
Comparative Genomics of Interreplichore Translocations in Bacteria: A Measure of Chromosome Topology? G3-GENES GENOMES GENETICS 2016; 6:1597-606. [PMID: 27172194 PMCID: PMC4889656 DOI: 10.1534/g3.116.028274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Genomes evolve not only in base sequence but also in terms of their architecture, defined by gene organization and chromosome topology. Whereas genome sequence data inform us about the changes in base sequences for a large variety of organisms, the study of chromosome topology is restricted to a few model organisms studied using microscopy and chromosome conformation capture techniques. Here, we exploit whole genome sequence data to study the link between gene organization and chromosome topology in bacteria. Using comparative genomics across ∼250 pairs of closely related bacteria we show that: (a) many organisms show a high degree of interreplichore translocations throughout the chromosome and not limited to the inversion-prone terminus (ter) or the origin of replication (oriC); (b) translocation maps may reflect chromosome topologies; and (c) symmetric interreplichore translocations do not disrupt the distance of a gene from oriC or affect gene expression states or strand biases in gene densities. In summary, we suggest that translocation maps might be a first line in defining a gross chromosome topology given a pair of closely related genome sequences.
Collapse
|
137
|
Brandi A, Giangrossi M, Giuliodori AM, Falconi M. An Interplay among FIS, H-NS, and Guanosine Tetraphosphate Modulates Transcription of the Escherichia coli cspA Gene under Physiological Growth Conditions. Front Mol Biosci 2016; 3:19. [PMID: 27252944 PMCID: PMC4877382 DOI: 10.3389/fmolb.2016.00019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/01/2016] [Indexed: 11/13/2022] Open
Abstract
CspA, the most characterized member of the csp gene family of Escherichia coli, is highly expressed not only in response to cold stress, but also during the early phase of growth at 37°C. Here, we investigate at molecular level the antagonistic role played by the nucleoid proteins FIS and H-NS in the regulation of cspA expression under non-stress conditions. By means of both probing experiments and immunological detection, we demonstrate in vitro the existence of binding sites for these proteins on the cspA regulatory region, in which FIS and H-NS bind simultaneously to form composite DNA-protein complexes. While the in vitro promoter activity of cspA is stimulated by FIS and repressed by H-NS, a compensatory effect is observed when both proteins are added in the transcription assay. Consistently with these findings, inactivation of fis and hns genes reversely affect the in vivo amount of cspA mRNA. In addition, by means of strains expressing a high level of the alarmone guanosine tetraphosphate ((p)ppGpp) and in vitro transcription assays, we show that the cspA promoter is sensitive to (p)ppGpp inhibition. The (p)ppGpp-mediated expression of fis and hns genes is also analyzed, thus clarifying some aspects of the regulatory loop governing cspA transcription.
Collapse
Affiliation(s)
- Anna Brandi
- Laboratory of Genetics, School of Bioscience and Veterinary Medicine, University of Camerino Camerino, Italy
| | - Mara Giangrossi
- Laboratory of Genetics, School of Bioscience and Veterinary Medicine, University of Camerino Camerino, Italy
| | - Anna M Giuliodori
- Laboratory of Genetics, School of Bioscience and Veterinary Medicine, University of Camerino Camerino, Italy
| | - Maurizio Falconi
- Laboratory of Genetics, School of Bioscience and Veterinary Medicine, University of Camerino Camerino, Italy
| |
Collapse
|
138
|
Moffitt JR, Pandey S, Boettiger AN, Wang S, Zhuang X. Spatial organization shapes the turnover of a bacterial transcriptome. eLife 2016; 5. [PMID: 27198188 PMCID: PMC4874777 DOI: 10.7554/elife.13065] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/20/2016] [Indexed: 12/21/2022] Open
Abstract
Spatial organization of the transcriptome has emerged as a powerful means for regulating the post-transcriptional fate of RNA in eukaryotes; however, whether prokaryotes use RNA spatial organization as a mechanism for post-transcriptional regulation remains unclear. Here we used super-resolution microscopy to image the E. coli transcriptome and observed a genome-wide spatial organization of RNA: mRNAs encoding inner-membrane proteins are enriched at the membrane, whereas mRNAs encoding outer-membrane, cytoplasmic and periplasmic proteins are distributed throughout the cytoplasm. Membrane enrichment is caused by co-translational insertion of signal peptides recognized by the signal-recognition particle. Time-resolved RNA-sequencing revealed that degradation rates of inner-membrane-protein mRNAs are on average greater that those of the other mRNAs and that this selective destabilization of inner-membrane-protein mRNAs is abolished by dissociating the RNA degradosome from the membrane. Together, these results demonstrate that the bacterial transcriptome is spatially organized and suggest that this organization shapes the post-transcriptional dynamics of mRNAs. DOI:http://dx.doi.org/10.7554/eLife.13065.001 Within a cell, molecules of messenger RNA (mRNA) encode the proteins that the cell needs to survive and thrive. The amount of mRNA within a cell therefore plays an important role in determining both the amount and types of proteins that a cell contains and, thus, the behavior of the cell. In eukaryotic organisms, like humans, it has been established that it is not just the amount of mRNA that influences cell behavior, but also where the mRNA molecules are found within the cell. However, in bacteria, which are much smaller than human cells, it has long been believed that the location of an mRNA within the cell does not affect its behavior. Despite this, recent studies that have looked at small numbers of bacterial mRNAs have shown that some of these molecules are found in larger numbers than usual at certain sites inside cells. This suggests that location may actually affect the activity of some bacterial mRNAs. But do similar localization patterns occur for all of the thousands of different mRNAs that bacteria can make? To address this question, Moffitt et al. developed an approach that allows large, defined sets of mRNAs to be imaged in bacteria. Using this approach to study E. coli revealed that a considerable fraction of all the mRNAs that these bacteria can make locate themselves at specific sites within a cell. For example, mRNAs that encode proteins that reside inside the cell’s inner membrane are found enriched at this membrane. This localization also plays an important role in the life of these mRNAs, as they are degraded more quickly than those found elsewhere in the cell. This enhanced degradation rate arises partly because the enzymes that break down mRNA molecules are also found at the membrane. Thus, bacteria can shape the process by which an mRNA is made into protein by controlling where in a cell the mRNA is located. The next steps are to understand why bacteria use cell location to influence the rate of mRNA degradation. DOI:http://dx.doi.org/10.7554/eLife.13065.002
Collapse
Affiliation(s)
- Jeffrey R Moffitt
- Howard Hughes Medical Institute, Harvard University, Cambridge, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Shristi Pandey
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Alistair N Boettiger
- Howard Hughes Medical Institute, Harvard University, Cambridge, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Siyuan Wang
- Howard Hughes Medical Institute, Harvard University, Cambridge, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University, Cambridge, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States.,Department of Physics, Harvard University, Cambridge, United States
| |
Collapse
|
139
|
Gao J, Yang X, Djekidel MN, Wang Y, Xi P, Zhang MQ. Developing bioimaging and quantitative methods to study 3D genome. QUANTITATIVE BIOLOGY 2016. [DOI: 10.1007/s40484-016-0065-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
140
|
Lee HJ, Gottesman S. sRNA roles in regulating transcriptional regulators: Lrp and SoxS regulation by sRNAs. Nucleic Acids Res 2016; 44:6907-23. [PMID: 27137887 PMCID: PMC5001588 DOI: 10.1093/nar/gkw358] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/21/2016] [Indexed: 11/13/2022] Open
Abstract
Post-transcriptional regulation of transcription factors contributes to regulatory circuits. We created translational reporter fusions for multiple central regulators in Escherichia coli and examined the effect of Hfq-dependent non-coding RNAs on these fusions. This approach yields an 'RNA landscape,' identifying Hfq-dependent sRNAs that regulate a given fusion. No significant sRNA regulation of crp or fnr was detected. hns was regulated only by DsrA, as previously reported. Lrp and SoxS were both found to be regulated post-transcriptionally. Lrp, ' L: eucine-responsive R: egulatory P: rotein,' regulates genes involved in amino acid biosynthesis and catabolism and other cellular functions. sRNAs DsrA, MicF and GcvB each independently downregulate the lrp translational fusion, confirming previous reports for MicF and GcvB. MicF and DsrA interact with an overlapping site early in the lrp ORF, while GcvB acts upstream at two independent sites in the long lrp leader. Surprisingly, GcvB was found to be responsible for significant downregulation of lrp after oxidative stress; MicF also contributed. SoxS, an activator of genes used to combat oxidative stress, is negatively regulated by sRNA MgrR. This study demonstrates that while not all global regulators are subject to sRNA regulation, post-transcriptional control by sRNAs allows multiple environmental signals to affect synthesis of the transcriptional regulator.
Collapse
Affiliation(s)
- Hyun-Jung Lee
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
141
|
Kazi MI, Conrado AR, Mey AR, Payne SM, Davies BW. ToxR Antagonizes H-NS Regulation of Horizontally Acquired Genes to Drive Host Colonization. PLoS Pathog 2016; 12:e1005570. [PMID: 27070545 PMCID: PMC4829181 DOI: 10.1371/journal.ppat.1005570] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/22/2016] [Indexed: 02/04/2023] Open
Abstract
The virulence regulator ToxR initiates and coordinates gene expression needed by Vibrio cholerae to colonize the small intestine and cause disease. Despite its prominence in V. cholerae virulence, our understanding of the direct ToxR regulon is limited to four genes: toxT, ompT, ompU and ctxA. Here, we determine ToxR’s genome-wide DNA-binding profile and demonstrate that ToxR is a global regulator of both progenitor genome-encoded genes and horizontally acquired islands that encode V. cholerae’s major virulence factors and define pandemic lineages. We show that ToxR shares more than a third of its regulon with the histone-like nucleoid structuring protein H-NS, and antagonizes H-NS binding at shared binding locations. Importantly, we demonstrate that this regulatory interaction is the critical function of ToxR in V. cholerae colonization and biofilm formation. In the absence of H-NS, ToxR is no longer required for V. cholerae to colonize the infant mouse intestine or for robust biofilm formation. We further illustrate a dramatic difference in regulatory scope between ToxR and other prominent virulence regulators, despite similar predicted requirements for DNA binding. Our results suggest that factors in addition to primary DNA structure influence the ability of ToxR to recognize its target promoters. The transcription factor ToxR initiates a virulence regulatory cascade required for V. cholerae to express essential host colonization factors and cause disease. Genome-wide expression studies suggest that ToxR regulates many genes important for V. cholerae pathogenesis, yet our knowledge of the direct regulon controlled by ToxR is limited to just four genes. Here, we determine ToxR’s genome-wide DNA-binding profile and show that ToxR is a global regulator of both progenitor genome-encoded genes and horizontally acquired islands that encode V. cholerae’s major virulence factors. Our results suggest that ToxR has gained regulatory control over important acquired elements that not only drive V. cholerae pathogenesis, but also define the major transitions of V. cholerae pandemic lineages. We demonstrate that ToxR shares more than a third of its regulon with the histone-like nucleoid structuring protein H-NS, and antagonizes H-NS for control of critical colonization functions. This regulatory interaction is the major role of ToxR in V. cholerae colonization, since deletion of hns abrogates the need for ToxR in V. cholerae host colonization. By comparing the genome-wide binding profiles of ToxR and other critical virulence regulators, we show that, despite similar predicted DNA binding requirements, ToxR is unique in its global control of progenitor-encoded and acquired genes. Our results suggest that factors in addition to primary DNA structure determine selection of ToxR binding sites.
Collapse
Affiliation(s)
- Misha I. Kazi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Aaron R. Conrado
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Alexandra R. Mey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Shelley M. Payne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Bryan W. Davies
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
142
|
Lack of the H-NS Protein Results in Extended and Aberrantly Positioned DNA during Chromosome Replication and Segregation in Escherichia coli. J Bacteriol 2016; 198:1305-16. [PMID: 26858102 DOI: 10.1128/jb.00919-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/02/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The architectural protein H-NS binds nonspecifically to hundreds of sites throughout the chromosome and can multimerize to stiffen segments of DNA as well as to form DNA-protein-DNA bridges. H-NS has been suggested to contribute to the orderly folding of the Escherichia coli chromosome in the highly compacted nucleoid. In this study, we investigated the positioning and dynamics of the origins, the replisomes, and the SeqA structures trailing the replication forks in cells lacking the H-NS protein. In H-NS mutant cells, foci of SeqA, replisomes, and origins were irregularly positioned in the cell. Further analysis showed that the average distance between the SeqA structures and the replisome was increased by ∼100 nm compared to that in wild-type cells, whereas the colocalization of SeqA-bound sister DNA behind replication forks was not affected. This result may suggest that H-NS contributes to the folding of DNA along adjacent segments. H-NS mutant cells were found to be incapable of adopting the distinct and condensed nucleoid structures characteristic of E. coli cells growing rapidly in rich medium. It appears as if H-NS mutant cells adopt a “slow-growth” type of chromosome organization under nutrient-rich conditions, which leads to a decreased cellular DNA content. IMPORTANCE It is not fully understood how and to what extent nucleoid-associated proteins contribute to chromosome folding and organization during replication and segregation in Escherichia coli. In this work, we find in vivo indications that cells lacking the nucleoid-associated protein H-NS have a lower degree of DNA condensation than wild-type cells. Our work suggests that H-NS is involved in condensing the DNA along adjacent segments on the chromosome and is not likely to tether newly replicated strands of sister DNA. We also find indications that H-NS is required for rapid growth with high DNA content and for the formation of a highly condensed nucleoid structure under such conditions.
Collapse
|
143
|
Dame RT, Tark-Dame M. Bacterial chromatin: converging views at different scales. Curr Opin Cell Biol 2016; 40:60-65. [PMID: 26942688 DOI: 10.1016/j.ceb.2016.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/04/2016] [Accepted: 02/14/2016] [Indexed: 01/13/2023]
Abstract
Bacterial genomes are functionally organized and compactly folded into a structure referred to as bacterial chromatin or the nucleoid. An important role in genome folding is attributed to Nucleoid-Associated Proteins, also referred to as bacterial chromatin proteins. Although a lot of molecular insight in the mechanisms of operation of these proteins has been generated in the test tube, knowledge on genome organization in the cellular context is still lagging behind severely. Here, we discuss important advances in the understanding of three-dimensional genome organization due to the application of Chromosome Conformation Capture and super-resolution microscopy techniques. We focus on bacterial chromatin proteins whose proposed role in genome organization is supported by these approaches. Moreover, we discuss recent insights into the interrelationship between genome organization and genome activity/stability in bacteria.
Collapse
Affiliation(s)
- Remus T Dame
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands.
| | - Mariliis Tark-Dame
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
144
|
Aloi A, Vargas Jentzsch A, Vilanova N, Albertazzi L, Meijer EW, Voets IK. Imaging Nanostructures by Single-Molecule Localization Microscopy in Organic Solvents. J Am Chem Soc 2016; 138:2953-6. [PMID: 26885701 DOI: 10.1021/jacs.5b13585] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The introduction of super-resolution fluorescence microscopy (SRM) opened an unprecedented vista into nanoscopic length scales, unveiling a new degree of complexity in biological systems in aqueous environments. Regrettably, supramolecular chemistry and material science benefited far less from these recent developments. Here we expand the scope of SRM to photoactivated localization microscopy (PALM) imaging of synthetic nanostructures that are highly dynamic in organic solvents. Furthermore, we characterize the photophysical properties of commonly used photoactivatable dyes in a wide range of solvents, which is made possible by the addition of a tiny amount of an alcohol. As proof-of-principle, we use PALM to image silica beads with radii close to Abbe's diffraction limit. Individual nanoparticles are readily identified and reliably sized in multicolor mixtures of large and small beads. We further use SRM to visualize nm-thin yet μm-long dynamic, supramolecular polymers, which are among the most challenging molecular systems to image.
Collapse
Affiliation(s)
- Antonio Aloi
- Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology , P.O. Box 513, Eindhoven 5600 MD, The Netherlands
| | - Andreas Vargas Jentzsch
- Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology , P.O. Box 513, Eindhoven 5600 MD, The Netherlands
| | - Neus Vilanova
- Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology , P.O. Box 513, Eindhoven 5600 MD, The Netherlands
| | - Lorenzo Albertazzi
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC) , C. Baldiri Reixac 15-21, Barcelona 08028, Spain
| | - E W Meijer
- Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology , P.O. Box 513, Eindhoven 5600 MD, The Netherlands
| | - Ilja K Voets
- Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology , P.O. Box 513, Eindhoven 5600 MD, The Netherlands
| |
Collapse
|
145
|
Understanding Spatial Genome Organization: Methods and Insights. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:7-20. [PMID: 26876719 PMCID: PMC4792841 DOI: 10.1016/j.gpb.2016.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/20/2022]
Abstract
The manner by which eukaryotic genomes are packaged into nuclei while maintaining crucial nuclear functions remains one of the fundamental mysteries in biology. Over the last ten years, we have witnessed rapid advances in both microscopic and nucleic acid-based approaches to map genome architecture, and the application of these approaches to the dissection of higher-order chromosomal structures has yielded much new information. It is becoming increasingly clear, for example, that interphase chromosomes form stable, multilevel hierarchical structures. Among them, self-associating domains like so-called topologically associating domains (TADs) appear to be building blocks for large-scale genomic organization. This review describes features of these broadly-defined hierarchical structures, insights into the mechanisms underlying their formation, our current understanding of how interactions in the nuclear space are linked to gene regulation, and important future directions for the field.
Collapse
|
146
|
Abstract
Transcription factors (TFs) play a central role in regulating gene expression in all bacteria. Yet until recently, studies of TF binding were limited to a small number of factors at a few genomic locations. Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) provides the ability to map binding sites globally for TFs, and the scalability of the technology enables the ability to map binding sites for every DNA binding protein in a prokaryotic organism. We have developed a protocol for ChIP-Seq tailored for use with mycobacteria and an analysis pipeline for processing the resulting data. The protocol and pipeline have been used to map over 100 TFs from Mycobacterium tuberculosis, as well as numerous TFs from related mycobacteria and other bacteria. The resulting data provide evidence that the long-accepted spatial relationship between TF binding site, promoter motif, and the corresponding regulated gene may be too simple a paradigm, failing to adequately capture the variety of TF binding sites found in prokaryotes. In this article we describe the protocol and analysis pipeline, the validation of these methods, and the results of applying these methods to M. tuberculosis.
Collapse
|
147
|
Biteen JS, Blainey PC, Cardon ZG, Chun M, Church GM, Dorrestein PC, Fraser SE, Gilbert JA, Jansson JK, Knight R, Miller JF, Ozcan A, Prather KA, Quake SR, Ruby EG, Silver PA, Taha S, van den Engh G, Weiss PS, Wong GCL, Wright AT, Young TD. Tools for the Microbiome: Nano and Beyond. ACS NANO 2016; 10:6-37. [PMID: 26695070 DOI: 10.1021/acsnano.5b07826] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The microbiome presents great opportunities for understanding and improving the world around us and elucidating the interactions that compose it. The microbiome also poses tremendous challenges for mapping and manipulating the entangled networks of interactions among myriad diverse organisms. Here, we describe the opportunities, technical needs, and potential approaches to address these challenges, based on recent and upcoming advances in measurement and control at the nanoscale and beyond. These technical needs will provide the basis for advancing the largely descriptive studies of the microbiome to the theoretical and mechanistic understandings that will underpin the discipline of microbiome engineering. We anticipate that the new tools and methods developed will also be more broadly useful in environmental monitoring, medicine, forensics, and other areas.
Collapse
Affiliation(s)
- Julie S Biteen
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Paul C Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology , and Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02138, United States
| | - Zoe G Cardon
- The Ecosystems Center, Marine Biological Laboratory , Woods Hole, Massachusetts 02543-1015, United States
| | - Miyoung Chun
- The Kavli Foundation , Oxnard, California 93030, United States
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering and Biophysics Program, Harvard University , Boston, Massachusetts 02115, United States
| | | | - Scott E Fraser
- Translational Imaging Center, University of Southern California , Molecular and Computational Biology, Los Angeles, California 90089, United States
| | - Jack A Gilbert
- Institute for Genomic and Systems Biology, Argonne National Laboratory , Argonne, Illinois 60439, United States
- Department of Ecology and Evolution and Department of Surgery, University of Chicago , Chicago, Illinois 60637, United States
| | - Janet K Jansson
- Earth and Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | | | | | | | | | | | - Edward G Ruby
- Kewalo Marine Laboratory, University of Hawaii-Manoa , Honolulu, Hawaii 96813, United States
| | - Pamela A Silver
- Wyss Institute for Biologically Inspired Engineering and Biophysics Program, Harvard University , Boston, Massachusetts 02115, United States
| | - Sharif Taha
- The Kavli Foundation , Oxnard, California 93030, United States
| | - Ger van den Engh
- Center for Marine Cytometry , Concrete, Washington 98237, United States
- Instituto Milenio de Oceanografía, Universidad de Concepción , Concepción, Chile
| | | | | | - Aaron T Wright
- Earth and Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | | |
Collapse
|
148
|
Männik J, Castillo DE, Yang D, Siopsis G, Männik J. The role of MatP, ZapA and ZapB in chromosomal organization and dynamics in Escherichia coli. Nucleic Acids Res 2016; 44:1216-26. [PMID: 26762981 PMCID: PMC4756834 DOI: 10.1093/nar/gkv1484] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/08/2015] [Indexed: 12/12/2022] Open
Abstract
Despite extensive research over several decades, a comprehensive view of how the Escherichia coli chromosome is organized within the nucleoid, and how two daughter chromosomes segregate has yet to emerge. Here we investigate the role of the MatP, ZapA and ZapB proteins in organizing the replication terminus (Ter) region and in the chromosomal segregation process. Quantitative image analysis of the fluorescently labeled Ter region shows that the replication terminus attaches to the divisome in a single segment along the perimeter of the cell in a MatP, ZapA and ZapB-dependent manner. The attachment does not significantly affect the bulk chromosome segregation in slow growth conditions. With or without the attachment, two chromosomal masses separate from each other at a speed comparable to the cell growth. The separation starts even before the replication terminus region positions itself at the center of the nucleoid. Modeling of the segregation based on conformational entropy correctly predicts the positioning of the replication terminus region within the nucleoid. However, the model produces a distinctly different chromosomal density distribution than the experiment, indicating that the conformational entropy plays a limited role in segregating the chromosomes in the late stages of replication.
Collapse
Affiliation(s)
- Jaana Männik
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840, USA
| | - Daniel E Castillo
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996-1200, USA
| | - Da Yang
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996-1200, USA
| | - George Siopsis
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996-1200, USA
| | - Jaan Männik
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996-0840, USA Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996-1200, USA
| |
Collapse
|
149
|
King JE, Roberts IS. Bacterial Surfaces: Front Lines in Host-Pathogen Interaction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:129-56. [PMID: 27193542 DOI: 10.1007/978-3-319-32189-9_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All bacteria are bound by at least one membrane that acts as a barrier between the cell's interior and the outside environment. Surface components within and attached to the cell membrane are essential for ensuring that the overall homeostasis of the cell is maintained. However, many surface components of the bacterial cell also have an indispensable role mediating interactions of the bacteria with their immediate environment and as such are essential to the pathogenesis of infectious disease. During the course of an infection, bacterial pathogens will encounter many different ecological niches where environmental conditions such as salinity, temperature, pH, and the availability of nutrients fluctuate. It is the bacterial cell surface that is at the front-line of these host-pathogen interactions often protecting the bacterium from hostile surroundings but at the same time playing a critical role in the adherence to host tissues promoting colonization and subsequent infection. To deal effectively with the changing environments that pathogens may encounter in different ecological niches within the host many of the surface components of the bacterial cell are subject to phenotypic variation resulting in heterogeneous subpopulations of bacteria within the clonal population. This dynamic phenotypic heterogeneity ensures that at least a small fraction of the population will be adapted for a particular circumstance should it arise. Diversity within the clonal population has often been masked by studies on entire bacterial populations where it was often assumed genes were expressed in a uniform manner. This chapter, therefore, aims to highlight the non-uniformity in certain cell surface structures and will discuss the implication of this heterogeneity in bacterial-host interaction. Some of the recent advances in studying bacterial surface structures at the single cell level will also be reviewed.
Collapse
Affiliation(s)
- Jane E King
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Ian S Roberts
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
150
|
Sydor AM, Czymmek KJ, Puchner EM, Mennella V. Super-Resolution Microscopy: From Single Molecules to Supramolecular Assemblies. Trends Cell Biol 2015; 25:730-748. [DOI: 10.1016/j.tcb.2015.10.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022]
|