101
|
The dynamic changes of DNA methylation in primordial germ cell differentiation. Gene 2016; 591:305-12. [DOI: 10.1016/j.gene.2016.06.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/07/2016] [Accepted: 06/15/2016] [Indexed: 01/19/2023]
|
102
|
Yang Y, La H, Tang K, Miki D, Yang L, Wang B, Duan CG, Nie W, Wang X, Wang S, Pan Y, Tran EJ, An L, Zhang H, Zhu JK. SAC3B, a central component of the mRNA export complex TREX-2, is required for prevention of epigenetic gene silencing in Arabidopsis. Nucleic Acids Res 2016; 45:181-197. [PMID: 27672037 PMCID: PMC5224508 DOI: 10.1093/nar/gkw850] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022] Open
Abstract
Epigenetic regulation is important for organismal development and response to the environment. Alteration in epigenetic status has been known mostly from the perspective of enzymatic actions of DNA methylation and/or histone modifications. In a genetic screen for cellular factors involved in preventing epigenetic silencing, we isolated an Arabidopsis mutant defective in SAC3B, a component of the conserved TREX-2 complex that couples mRNA transcription with nuleo-cytoplasmic export. Arabidopsis SAC3B dysfunction causes gene silencing at transgenic and endogenous loci, accompanied by elevation in the repressive histone mark H3K9me2 and by reduction in RNA polymerase Pol II occupancy. SAC3B dysfunction does not alter promoter DNA methylation level of the transgene d35S::LUC, although the DNA demethylase ROS1 is also required for d35S::LUC anti-silencing. THP1 and NUA were identified as SAC3B-associated proteins whose mutations also caused d35S::LUC silencing. RNA-DNA hybrid exists at the repressed loci but is unrelated to gene suppression by the sac3b mutation. Genome-wide analyses demonstrated minor but clear involvement of SAC3B in regulating siRNAs and DNA methylation, particularly at a group of TAS and TAS-like loci. Together our results revealed not only a critical role of mRNA-export factors in transcriptional anti-silencing but also the contribution of SAC3B in shaping plant epigenetic landscapes.
Collapse
Affiliation(s)
- Yu Yang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China.,Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Honggui La
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China.,Department of Biochemistry and Molecular Biology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Lan Yang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Bangshing Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Cheng-Guo Duan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Wenfeng Nie
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Xingang Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Siwen Wang
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Yufeng Pan
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Elizabeth J Tran
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China .,CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China .,Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.,CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| |
Collapse
|
103
|
Schalk C, Drevensek S, Kramdi A, Kassam M, Ahmed I, Cognat V, Graindorge S, Bergdoll M, Baumberger N, Heintz D, Bowler C, Genschik P, Barneche F, Colot V, Molinier J. DNA DAMAGE BINDING PROTEIN2 Shapes the DNA Methylation Landscape. THE PLANT CELL 2016; 28:2043-2059. [PMID: 27531226 PMCID: PMC5059809 DOI: 10.1105/tpc.16.00474] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 05/22/2023]
Abstract
In eukaryotes, DNA repair pathways help to maintain genome integrity and epigenomic patterns. However, the factors at the nexus of DNA repair and chromatin modification/remodeling remain poorly characterized. Here, we uncover a previously unrecognized interplay between the DNA repair factor DNA DAMAGE BINDING PROTEIN2 (DDB2) and the DNA methylation machinery in Arabidopsis thaliana Loss-of-function mutation in DDB2 leads to genome-wide DNA methylation alterations. Genetic and biochemical evidence indicate that at many repeat loci, DDB2 influences de novo DNA methylation by interacting with ARGONAUTE4 and by controlling the local abundance of 24-nucleotide short interfering RNAs (siRNAs). We also show that DDB2 regulates active DNA demethylation mediated by REPRESSOR OF SILENCING1 and DEMETER LIKE3. Together, these findings reveal a role for the DNA repair factor DDB2 in shaping the Arabidopsis DNA methylation landscape in the absence of applied genotoxic stress.
Collapse
Affiliation(s)
- Catherine Schalk
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| | - Stéphanie Drevensek
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Amira Kramdi
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Mohamed Kassam
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Ikhlak Ahmed
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Valérie Cognat
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| | - Stéfanie Graindorge
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| | - Marc Bergdoll
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| | - Nicolas Baumberger
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| | - Chris Bowler
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Pascal Genschik
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| | - Fredy Barneche
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Vincent Colot
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, F-75005 Paris, France
| | - Jean Molinier
- Institut de Biologie Moléculaire de Plantes du CNRS, UPR 2357, F-67084 Strasbourg, France
| |
Collapse
|
104
|
Deleris A, Halter T, Navarro L. DNA Methylation and Demethylation in Plant Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:579-603. [PMID: 27491436 DOI: 10.1146/annurev-phyto-080615-100308] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Detection of plant and animal pathogens triggers a massive transcriptional reprogramming, which is directed by chromatin-based processes, and ultimately results in antimicrobial immunity. Although the implication of histone modifications in orchestrating biotic stress-induced transcriptional reprogramming has been well characterized, very little was known, until recently, about the role of DNA methylation and demethylation in this process. In this review, we summarize recent findings on the dynamics and biological relevance of DNA methylation and demethylation in plant immunity against nonviral pathogens. In particular, we report the implications of these epigenetic regulatory processes in the transcriptional and co-transcriptional control of immune-responsive genes and discuss their relevance in fine-tuning antimicrobial immune responses. Finally, we discuss the possible yet elusive role of DNA methylation and demethylation in systemic immune responses, transgenerational immune priming, and de novo epiallelism, which could be adaptive.
Collapse
Affiliation(s)
- A Deleris
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, Unité 1024, PSL Research University, 75005 Paris, France;
| | - T Halter
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, Unité 1024, PSL Research University, 75005 Paris, France;
| | - L Navarro
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8197, Institut National de la Santé et de la Recherche Médicale, Unité 1024, PSL Research University, 75005 Paris, France;
| |
Collapse
|
105
|
Wang J, Niu B, Huang J, Wang H, Yang X, Dong A, Makaroff C, Ma H, Wang Y. The PHD Finger Protein MMD1/DUET Ensures the Progression of Male Meiotic Chromosome Condensation and Directly Regulates the Expression of the Condensin Gene CAP-D3. THE PLANT CELL 2016; 28:1894-909. [PMID: 27385818 PMCID: PMC5006699 DOI: 10.1105/tpc.16.00040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/26/2016] [Accepted: 07/01/2016] [Indexed: 05/18/2023]
Abstract
Chromosome condensation, a process mediated by the condensin complex, is essential for proper chromosome segregation during cell division. Unlike rapid mitotic chromosome condensation, meiotic chromosome condensation occurs over a relatively long prophase I and is unusually complex due to the coordination with chromosome axis formation and homolog interaction. The molecular mechanisms that regulate meiotic chromosome condensation progression from prophase I to metaphase I are unclear. Here, we show that the Arabidopsis thaliana meiotic PHD-finger protein MMD1/DUET is required for progressive compaction of prophase I chromosomes to metaphase I bivalents. The MMD1 PHD domain is required for its function in chromosome condensation and binds to methylated histone tails. Transcriptome analysis and qRT-PCR showed that several condensin genes exhibit significantly reduced expression in mmd1 meiocytes. Furthermore, MMD1 specifically binds to the promoter region of the condensin subunit gene CAP-D3 to enhance its expression. Moreover, cap-d3 mutants exhibit similar chromosome condensation defects, revealing an MMD1-dependent mechanism for regulating meiotic chromosome condensation, which functions in part by promoting condensin gene expression. Together, these discoveries provide strong evidence that the histone reader MMD1/DUET defines an important step for regulating the progression of meiotic prophase I chromosome condensation.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Baixiao Niu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiyue Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hongkuan Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaohui Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | | | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
106
|
Jing Y, Sun H, Yuan W, Wang Y, Li Q, Liu Y, Li Y, Qian W. SUVH2 and SUVH9 Couple Two Essential Steps for Transcriptional Gene Silencing in Arabidopsis. MOLECULAR PLANT 2016; 9:1156-1167. [PMID: 27216319 DOI: 10.1016/j.molp.2016.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/07/2016] [Accepted: 05/15/2016] [Indexed: 05/18/2023]
Abstract
In Arabidopsis, an RNA-directed DNA methylation pathway (RdDM) is responsible for de novo establishment of DNA methylation and contributes to transcriptional gene silencing. Recently, the microrchidia (MORC)-type ATPases were shown to play essential roles in enforcing transcriptional gene silencing of a subset of genes and transposons by regulating the formation of higher-order chromatin architecture. However, how MORC proteins cooperate with the RdDM pathway components to regulate gene expression remains largely unclear. In this study, SUVH9 and MORC6 were identified from a screening of suppressors of idm1, which is a mutant defective in active DNA demethylation. SUVH9 and MORC6 are required for silencing of two reporter genes and some endogenous genes without enhancing DNA methylation levels. SUVH9, one of SU(VAR)3-9 homologs involved in RdDM, directly interacts with MORC6 and its two close homologs, MORC1 and MORC2. Similar to MORC6, SUVH9 and its homolog SUVH2 are required for heterochromatin condensation and formation of 3D chromatin architecture at SDC and Solo-LTR loci. We propose that SUVH2 and SUVH9 bind to the methylated DNA and facilitate the recruitment of a chromatin-remodeling complex to the target loci in association with MORC proteins.
Collapse
Affiliation(s)
- Yuqing Jing
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Han Sun
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Yuan
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yue Wang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Qi Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yannan Liu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
107
|
Gao X, Hong H, Li WC, Yang L, Huang J, Xiao YL, Chen XY, Chen GY. Downregulation of Rubisco Activity by Non-enzymatic Acetylation of RbcL. MOLECULAR PLANT 2016; 9:1018-27. [PMID: 27109602 DOI: 10.1016/j.molp.2016.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/08/2016] [Accepted: 03/29/2016] [Indexed: 05/24/2023]
Abstract
Atmospheric carbon dioxide (CO2) is assimilated by the most abundant but sluggish enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Here we show that acetylation of lysine residues of the Rubisco large subunit (RbcL), including Lys201 and Lys334 in the active sites, may be an important mechanism in the regulation of Rubisco activities. It is well known that Lys201 reacts with CO2 for carbamylation, a prerequisite for both carboxylase and oxygenase activities of Rubisco, and Lys334 contacts with ribulose-1,5-bisphosphate (RuBP). The acetylation level of RbcL in plants is lower during the day and higher at night, inversely correlating with the Rubisco carboxylation activity. A search of the chloroplast proteome database did not reveal a canonical acetyltransferase; instead, we found that a plant-derived metabolite, 7-acetoxy-4-methylcoumarin (AMC), can non-enzymatically acetylate both native Rubisco and synthesized RbcL peptides spanning Lys334 or Lys201. Furthermore, lysine residues were modified by synthesized 4-methylumbelliferone esters with different electro- and stereo-substitutes, resulting in varied Rubisco activities. 1-Chloroethyl 4-methylcoumarin-7-yl carbonate (ClMC) could transfer the chloroethyl carbamate group to lysine residues of RbcL and completely inactivate Rubisco, whereas bis(4-methylcoumarin-7-yl) carbonate (BMC) improved Rubisco activity through increasing the level of Lys201 carbamylation. Our findings indicate that RbcL acetylation negatively regulates Rubisco activity, and metabolic derivatives can be designed to dissect and improve CO2 fixation efficiency of plants through lysine modification.
Collapse
Affiliation(s)
- Xiang Gao
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, 200032 Shanghai, China; University of Chinese Academy of Sciences, 200032 Shanghai, China
| | - Hui Hong
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, 200032 Shanghai, China; University of Chinese Academy of Sciences, 200032 Shanghai, China
| | - Wei-Chao Li
- CAS Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, 200032 Shanghai, China; University of Chinese Academy of Sciences, 200032 Shanghai, China
| | - Lili Yang
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute for Biological Sciences, 200032 Shanghai, China; University of Chinese Academy of Sciences, 200032 Shanghai, China
| | - Jirong Huang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, 200032 Shanghai, China; Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute for Biological Sciences, 200032 Shanghai, China
| | - You-Li Xiao
- CAS Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, 200032 Shanghai, China
| | - Xiao-Ya Chen
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, 200032 Shanghai, China.
| | - Gen-Yun Chen
- Laboratory of Photosynthesis and Environmental Biology, Shanghai Institute for Biological Sciences, 200032 Shanghai, China.
| |
Collapse
|
108
|
Liao CJ, Lai Z, Lee S, Yun DJ, Mengiste T. Arabidopsis HOOKLESS1 Regulates Responses to Pathogens and Abscisic Acid through Interaction with MED18 and Acetylation of WRKY33 and ABI5 Chromatin. THE PLANT CELL 2016; 28:1662-81. [PMID: 27317674 PMCID: PMC4981130 DOI: 10.1105/tpc.16.00105] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/16/2016] [Indexed: 05/03/2023]
Abstract
Arabidopsis thaliana HOOKLESS1 (HLS1) encodes a putative histone acetyltransferase with known functions in seedling growth. Here, we show that HLS1 regulates plant responses to pathogens and abscisic acid (ABA) through histone acetylation at chromatin of target loci. The hls1 mutants show impaired responses to bacterial and fungal infection, accelerated senescence, and impaired responses to ABA. HLS1 modulates the expression of WRKY33 and ABA INSENSITIVE5 (ABI5), known regulators of pathogen and ABA responses, respectively, through direct association with these loci. Histone 3 acetylation (H3Ac), a positive mark of transcription, at WRKY33 and ABI5 requires HLS1 function. ABA treatment and pathogen infection enhance HLS1 recruitment and H3Ac at WRKY33. HLS1 associates with Mediator, a eukaryotic transcription coregulatory complex, through direct interaction with mediator subunit 18 (MED18), with which it shares multiple functions. HLS1 recruits MED18 to the WRKY33 promoter, boosting WKRY33 expression, suggesting the synergetic action of HLS1 and MED18. By contrast, MED18 recruitment to ABI5 and transcriptional activation are independent of HLS1. ABA-mediated priming of resistance to fungal infection was abrogated in hls1 and wrky33 mutants but correlated with ABA-induced HLS1 accumulation. In sum, HLS1 provides a regulatory node in pathogen and hormone response pathways through interaction with the Mediator complex and important transcription factors.
Collapse
Affiliation(s)
- Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Zhibing Lai
- National Key Laboratory of Crop Genetics Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Sanghun Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Dae-Jin Yun
- Division of Applied Life Sciences (BK 21 Program), Gyeongsang National University, Jinju City 660-701, Korea
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
109
|
Sanchez R, Mackenzie SA. Genome-Wide Discriminatory Information Patterns of Cytosine DNA Methylation. Int J Mol Sci 2016; 17:ijms17060938. [PMID: 27322251 PMCID: PMC4926471 DOI: 10.3390/ijms17060938] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/16/2016] [Accepted: 06/02/2016] [Indexed: 12/11/2022] Open
Abstract
Cytosine DNA methylation (CDM) is a highly abundant, heritable but reversible chemical modification to the genome. Herein, a machine learning approach was applied to analyze the accumulation of epigenetic marks in methylomes of 152 ecotypes and 85 silencing mutants of Arabidopsis thaliana. In an information-thermodynamics framework, two measurements were used: (1) the amount of information gained/lost with the CDM changes I R and (2) the uncertainty of not observing a SNP L C R . We hypothesize that epigenetic marks are chromosomal footprints accounting for different ontogenetic and phylogenetic histories of individual populations. A machine learning approach is proposed to verify this hypothesis. Results support the hypothesis by the existence of discriminatory information (DI) patterns of CDM able to discriminate between individuals and between individual subpopulations. The statistical analyses revealed a strong association between the topologies of the structured population of Arabidopsis ecotypes based on I R and on LCR, respectively. A statistical-physical relationship between I R and L C R was also found. Results to date imply that the genome-wide distribution of CDM changes is not only part of the biological signal created by the methylation regulatory machinery, but ensures the stability of the DNA molecule, preserving the integrity of the genetic message under continuous stress from thermal fluctuations in the cell environment.
Collapse
Affiliation(s)
- Robersy Sanchez
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA.
| | - Sally A Mackenzie
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
110
|
Structure and function of histone methylation-binding proteins in plants. Biochem J 2016; 473:1663-80. [DOI: 10.1042/bcj20160123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/29/2016] [Indexed: 12/28/2022]
Abstract
Post-translational modifications of histones play important roles in modulating many essential biological processes in both animals and plants. These covalent modifications, including methylation, acetylation, phosphorylation, ubiquitination, SUMOylation and so on, are laid out and erased by histone-modifying enzymes and read out by effector proteins. Recent studies have revealed that a number of developmental processes in plants are under the control of histone post-translational modifications, such as floral transition, seed germination, organogenesis and morphogenesis. Therefore, it is critical to identify those protein domains, which could specifically recognize these post-translational modifications to modulate chromatin structure and regulate gene expression. In the present review, we discuss the recent progress in understanding the structure and function of the histone methylation readers in plants, by focusing on Arabidopsis thaliana proteins.
Collapse
|
111
|
Zhang CJ, Hou XM, Tan LM, Shao CR, Huang HW, Li YQ, Li L, Cai T, Chen S, He XJ. The Arabidopsis acetylated histone-binding protein BRAT1 forms a complex with BRP1 and prevents transcriptional silencing. Nat Commun 2016; 7:11715. [PMID: 27273316 PMCID: PMC4899616 DOI: 10.1038/ncomms11715] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 04/21/2016] [Indexed: 12/20/2022] Open
Abstract
Transposable elements and other repetitive DNA sequences are usually subject to DNA methylation and transcriptional silencing. However, anti-silencing mechanisms that promote transcription in these regions are not well understood. Here, we describe an anti-silencing factor, Bromodomain and ATPase domain-containing protein 1 (BRAT1), which we identified by a genetic screen in Arabidopsis thaliana. BRAT1 interacts with an ATPase domain-containing protein, BRP1 (BRAT1 Partner 1), and both prevent transcriptional silencing at methylated genomic regions. Although BRAT1 mediates DNA demethylation at a small set of loci targeted by the 5-methylcytosine DNA glycosylase ROS1, the involvement of BRAT1 in anti-silencing is largely independent of DNA demethylation. We also demonstrate that the bromodomain of BRAT1 binds to acetylated histone, which may facilitate the prevention of transcriptional silencing. Thus, BRAT1 represents a potential link between histone acetylation and transcriptional anti-silencing at methylated genomic regions, which may be conserved in eukaryotes. Transposons and repetitive sequences are typically subject to transcription silencing. Here, Zhang et al. find that the bromodomain-containing protein BRAT1 forms a complex with BRP1, recognizes histone acetylation and acts to prevent transcriptional silencing in Arabidopsis.
Collapse
Affiliation(s)
- Cui-Jun Zhang
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Xiao-Mei Hou
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Lian-Mei Tan
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Chang-Rong Shao
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Huan-Wei Huang
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yong-Qiang Li
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Tao Cai
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, No. 7, Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| |
Collapse
|
112
|
The cytosolic Fe-S cluster assembly component MET18 is required for the full enzymatic activity of ROS1 in active DNA demethylation. Sci Rep 2016; 6:26443. [PMID: 27193999 PMCID: PMC4872223 DOI: 10.1038/srep26443] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/29/2016] [Indexed: 02/08/2023] Open
Abstract
DNA methylation patterns in plants are dynamically regulated by DNA methylation and active DNA demethylation in response to both environmental changes and development of plant. Beginning with the removal of methylated cytosine by ROS1/DME family of 5-methylcytosine DNA glycosylases, active DNA demethylation in plants occurs through base excision repair. So far, many components involved in active DNA demethylation remain undiscovered. Through a forward genetic screening of Arabidopsis mutants showing DNA hypermethylation at the EPF2 promoter region, we identified the conserved iron-sulfur cluster assembly protein MET18. MET18 dysfunction caused DNA hypermethylation at more than 1000 loci as well as the silencing of reporter genes and some endogenous genes. MET18 can directly interact with ROS1 in vitro and in vivo. ROS1 activity was reduced in the met18 mutant plants and point mutation in the conserved Fe-S cluster binding motif of ROS1 disrupted its biological function. Interestingly, a large number of DNA hypomethylated loci, especially in the CHH context, were identified from the met18 mutants and most of the hypo-DMRs were from TE regions. Our results suggest that MET18 can regulate both active DNA demethylation and DNA methylation pathways in Arabidopsis.
Collapse
|
113
|
Poulios S, Vlachonasios KE. Synergistic action of histone acetyltransferase GCN5 and receptor CLAVATA1 negatively affects ethylene responses in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:905-18. [PMID: 26596766 DOI: 10.1093/jxb/erv503] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
GENERAL CONTROL NON-REPRESSIBLE 5 (GCN5) is a histone acetyltransferase (HAT) and the catalytic subunit of several multicomponent HAT complexes that acetylate lysine residues of histone H3. Mutants in AtGCN5 display pleiotropic developmental defects including aberrant meristem function. Shoot apical meristem (SAM) maintenance is regulated by CLAVATA1 (CLV1), a receptor kinase that controls the size of the shoot and floral meristems. Upon activation through CLV3 binding, CLV1 signals to the transcription factor WUSCHEL (WUS), restricting WUS expression and thus the meristem size. We hypothesized that GCN5 and CLV1 act together to affect SAM function. Using genetic and molecular approaches, we generated and characterized clv gcn5 mutants. Surprisingly, the clv1-1 gcn5-1 double mutant exhibited constitutive ethylene responses, suggesting that GCN5 and CLV signaling act synergistically to inhibit ethylene responses in Arabidopsis. This genetic and molecular interaction was mediated by ETHYLENE INSENSITIVE 3/ EIN3-LIKE1 (EIN3/EIL1) transcription factors. Our data suggest that signals from the CLV transduction pathway reach the GCN5-containing complexes in the nucleus and alter the histone acetylation status of ethylene-responsive genes, thus translating the CLV information to transcriptional activity and uncovering a link between histone acetylation and SAM maintenance in the complex mode of ethylene signaling.
Collapse
Affiliation(s)
- Stylianos Poulios
- Department of Botany, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos E Vlachonasios
- Department of Botany, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
114
|
Yamamuro C, Zhu JK, Yang Z. Epigenetic Modifications and Plant Hormone Action. MOLECULAR PLANT 2016; 9:57-70. [PMID: 26520015 PMCID: PMC5575749 DOI: 10.1016/j.molp.2015.10.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/27/2015] [Accepted: 10/22/2015] [Indexed: 05/18/2023]
Abstract
The action of phytohormones in plants requires the spatiotemporal regulation of their accumulation and responses at various levels. Recent studies reveal an emerging relationship between the function of phytohormones and epigenetic modifications. In particular, evidence suggests that auxin biosynthesis, transport, and signal transduction is modulated by microRNAs and epigenetic factors such as histone modification, chromatin remodeling, and DNA methylation. Furthermore, some phytohormones have been shown to affect epigenetic modifications. These findings are shedding light on the mode of action of phytohormones and are opening up a new avenue of research on phytohormones as well as on the mechanisms regulating epigenetic modifications.
Collapse
Affiliation(s)
- Chizuko Yamamuro
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Horticultural Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PRC.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Zhenbiao Yang
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
115
|
Roy S. Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. PLANT SIGNALING & BEHAVIOR 2016; 11:e1117723. [PMID: 26636625 PMCID: PMC4871670 DOI: 10.1080/15592324.2015.1117723] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 05/18/2023]
Abstract
Plants have developed highly efficient and remarkable mechanisms to survive under frequent and extreme environmental stress conditions. Exposure of plants to various stress factors is associated with coordinated changes in gene expression at the transcriptional level and hence transcription factors, such as those belonging to the MYB family play a central role in triggering the right responses. MYB transcription factors have been extensively studied in regard of their involvement in the regulation of a number of such stress responses in plants. Genetic and molecular biological studies, primarily in Arabidopsis, have also begun to unravel the role of MYB transcription factors in the epigenetic regulation of stress responses in plants. This review focuses on the role of MYB transcription factors in the regulation of various stress responses in general, highlighting on recent advances in our understanding of the involvement of this class of transcription factors in epigenetic regulation of stress response in plant genome.
Collapse
Affiliation(s)
- Sujit Roy
- Department of Botany, UGC Center of Advanced Studies, Golapbag, The University of Burdwan, Burdwan, West Bengal, India
| |
Collapse
|
116
|
Hong S, Cheng X. DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:321-341. [PMID: 27826845 DOI: 10.1007/978-3-319-43624-1_14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The modification of DNA bases is a classic hallmark of epigenetics. Four forms of modified cytosine-5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine-have been discovered in eukaryotic DNA. In addition to cytosine carbon-5 modifications, cytosine and adenine methylated in the exocyclic amine-N4-methylcytosine and N6-methyladenine-are other modified DNA bases discovered even earlier. Each modified base can be considered a distinct epigenetic signal with broader biological implications beyond simple chemical changes. Since 1994, crystal structures of proteins and enzymes involved in writing, reading, and erasing modified bases have become available. Here, we present a structural synopsis of writers, readers, and erasers of the modified bases from prokaryotes and eukaryotes. Despite significant differences in structures and functions, they are remarkably similar regarding their engagement in flipping a target base/nucleotide within DNA for specific recognitions and/or reactions. We thus highlight base flipping as a common structural framework broadly applied by distinct classes of proteins and enzymes across phyla for epigenetic regulations of DNA.
Collapse
Affiliation(s)
- Samuel Hong
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, 30322, USA. .,Molecular and Systems Pharmacology Graduate Program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, 30322, USA.
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA, 30322, USA
| |
Collapse
|
117
|
Espinas NA, Saze H, Saijo Y. Epigenetic Control of Defense Signaling and Priming in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1201. [PMID: 27563304 PMCID: PMC4980392 DOI: 10.3389/fpls.2016.01201] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/28/2016] [Indexed: 05/20/2023]
Abstract
Immune recognition of pathogen-associated molecular patterns or effectors leads to defense activation at the pathogen challenged sites. This is followed by systemic defense activation at distant non-challenged sites, termed systemic acquired resistance (SAR). These inducible defenses are accompanied by extensive transcriptional reprogramming of defense-related genes. SAR is associated with priming, in which a subset of these genes is kept at a poised state to facilitate subsequent transcriptional regulation. Transgenerational inheritance of defense-related priming in plants indicates the stability of such primed states. Recent studies have revealed the importance and dynamic engagement of epigenetic mechanisms, such as DNA methylation and histone modifications that are closely linked to chromatin reconfiguration, in plant adaptation to different biotic stresses. Herein we review current knowledge regarding the biological significance and underlying mechanisms of epigenetic control for immune responses in plants. We also argue for the importance of host transposable elements as critical regulators of interactions in the evolutionary "arms race" between plants and pathogens.
Collapse
Affiliation(s)
- Nino A. Espinas
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate UniversityOkinawa, Japan
- *Correspondence: Nino A. Espinas, Yusuke Saijo,
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate UniversityOkinawa, Japan
| | - Yusuke Saijo
- Nara Institute of Science and TechnologyIkoma, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and TechnologyKawaguchi, Japan
- *Correspondence: Nino A. Espinas, Yusuke Saijo,
| |
Collapse
|
118
|
Gallusci P, Hodgman C, Teyssier E, Seymour GB. DNA Methylation and Chromatin Regulation during Fleshy Fruit Development and Ripening. FRONTIERS IN PLANT SCIENCE 2016; 7:807. [PMID: 27379113 PMCID: PMC4905957 DOI: 10.3389/fpls.2016.00807] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/23/2016] [Indexed: 05/19/2023]
Abstract
Fruit ripening is a developmental process that results in the leaf-like carpel organ of the flower becoming a mature ovary primed for dispersal of the seeds. Ripening in fleshy fruits involves a profound metabolic phase change that is under strict hormonal and genetic control. This work reviews recent developments in our understanding of the epigenetic regulation of fruit ripening. We start by describing the current state of the art about processes involved in histone post-translational modifications and the remodeling of chromatin structure and their impact on fruit development and ripening. However, the focus of the review is the consequences of changes in DNA methylation levels on the expression of ripening-related genes. This includes those changes that result in heritable phenotypic variation in the absence of DNA sequence alterations, and the mechanisms for their initiation and maintenance. The majority of the studies described in the literature involve work on tomato, but evidence is emerging that ripening in other fruit species may also be under epigenetic control. We discuss how epigenetic differences may provide new targets for breeding and crop improvement.
Collapse
Affiliation(s)
- Philippe Gallusci
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux Villenave d’Ornon, France
- *Correspondence: Philippe Gallusci,
| | - Charlie Hodgman
- School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Emeline Teyssier
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux Villenave d’Ornon, France
| | - Graham B. Seymour
- School of Biosciences, University of Nottingham Sutton Bonington, UK
| |
Collapse
|
119
|
Zhang S, Zhan X, Xu X, Cui P, Zhu JK, Xia Y, Xiong L. Two domain-disrupted hda6 alleles have opposite epigenetic effects on transgenes and some endogenous targets. Sci Rep 2015; 5:17832. [PMID: 26666962 PMCID: PMC4678874 DOI: 10.1038/srep17832] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/06/2015] [Indexed: 12/22/2022] Open
Abstract
HDA6 is a RPD3-like histone deacetylase. In Arabidopsis, it mediates transgene and some endogenous target transcriptional gene silencing (TGS) via histone deacetylation and DNA methylation. Here, we characterized two hda6 mutant alleles that were recovered as second-site suppressors of the DNA demethylation mutant ros1-1. Although both alleles derepressed 35S::NPTII and RD29A::LUC in the ros1-1 background, they had distinct effects on the expression of these two transgenes. In accordance to expression profiles of two transgenes, the alleles have distinct opposite methylation profiles on two reporter gene promoters. Furthermore, both alleles could interact in vitro and in vivo with the DNA methyltransferase1 with differential interactive strength and patterns. Although these alleles accumulated different levels of repressive/active histone marks, DNA methylation but not histone modifications in the two transgene promoters was found to correlate with the level of derepression of the reporter genes between the two had6 alleles. Our study reveals that mutations in different domains of HDA6 convey different epigenetic status that in turn controls the expression of the transgenes as well as some endogenous loci.
Collapse
Affiliation(s)
- Shoudong Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China.,Division of Biological and Environmental Sciences &Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xiangqiang Zhan
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Xu
- College of life sciences, Nanjing Agricultural University, Nanjing, China
| | - Peng Cui
- Division of Biological and Environmental Sciences &Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China.,Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Liming Xiong
- Division of Biological and Environmental Sciences &Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
120
|
Dicer-independent RNA-directed DNA methylation in Arabidopsis. Cell Res 2015; 26:66-82. [PMID: 26642813 DOI: 10.1038/cr.2015.145] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/30/2022] Open
Abstract
RNA-directed DNA methylation (RdDM) is an important de novo DNA methylation pathway in plants. Small interfering RNAs (siRNAs) generated by Dicers from RNA polymerase IV (Pol IV) transcripts are thought to guide sequence-specific DNA methylation. To gain insight into the mechanism of RdDM, we performed whole-genome bisulfite sequencing of a collection of Arabidopsis mutants, including plants deficient in Pol IV (nrpd1) or Dicer (dcl1/2/3/4) activity. Unexpectedly, of the RdDM target loci that required Pol IV and/or Pol V, only 16% were fully dependent on Dicer activity. DNA methylation was partly or completely independent of Dicer activity at the remaining Pol IV- and/or Pol V-dependent loci, despite the loss of 24-nt siRNAs. Instead, DNA methylation levels correlated with the accumulation of Pol IV-dependent 25-50 nt RNAs at most loci in Dicer mutant plants. Our results suggest that RdDM in plants is largely guided by a previously unappreciated class of Dicer-independent non-coding RNAs, and that siRNAs are required to maintain DNA methylation at only a subset of loci.
Collapse
|
121
|
Nishiyama A, Yamaguchi L, Nakanishi M. Regulation of maintenance DNA methylation via histone ubiquitylation. J Biochem 2015; 159:9-15. [PMID: 26590302 DOI: 10.1093/jb/mvv113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/07/2015] [Indexed: 11/13/2022] Open
Abstract
DNA methylation is one of the most stable but dynamically regulated epigenetic marks that act as determinants of cell fates during embryonic development through regulation of various forms of gene expression. DNA methylation patterns must be faithfully propagated throughout successive cell divisions in order to maintain cell-specific function. We have recently demonstrated that Uhrf1-dependent ubiquitylation of histone H3 at lysine 23 is critical for Dnmt1 recruitment to DNA replication sites, which catalyzes the conversion of hemi-methylated DNA to fully methylated DNA. In this review, we provide an overview of recent progress in understanding the mechanism underlying maintenance DNA methylation.
Collapse
Affiliation(s)
- Atsuya Nishiyama
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Luna Yamaguchi
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Makoto Nakanishi
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
122
|
Wang Y, Cheng ZZ, Chen X, Zheng Q, Yang ZM. CrGNAT gene regulates excess copper accumulation and tolerance in Chlamydomonas reinhardtii. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:120-129. [PMID: 26475193 DOI: 10.1016/j.plantsci.2015.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 06/05/2023]
Abstract
Excess copper (Cu) in environment affects the growth and metabolism of plants and green algae. However, the molecular mechanism for regulating plant tolerance to excess Cu is not fully understood. Here, we report a gene CrGNAT enconding an acetyltransferase in Chlamydomonas reinhardtii and identified its role in regulating tolerance to Cu toxicity. Expression of CrGNAT was significantly induced by 75-400μM Cu. The top induction occurred at 100μM. Transgenic algae overexpressing CrGNAT (35S::CrGNAT) in C. reinhardtii showed high tolerance to excess Cu, with improved cell population, chlorophyll accumulation and photosynthesis efficiency, but with low degree of oxidation with regard to reduced hydrogen peroxide, lipid peroxides and non-protein thiol compounds. In contrast, CrGNAT knock-down lines with antisense led to sensitivity to Cu stress. 35S::CrGNAT algae accumulated more Cu and other metals (Zn, Fe, Cu, Mn and Mg) than wild-type, whereas the CrGNAT down-regulated algae (35S::AntiCrGNAT) had moderate levels of Cu and Mn, but no effects on Zn, Fe and Mg accumulation as compared to wild-type. The elevated metal absorption in CrGNAT overexpression algae implies that the metals can be removed from water media. Quantitative RT-PCR analysis revealed that expression of two genes encoding N-lysine histone methyltransferases was repressed in 35S::CrGNAT algae, suggesting that CrGNAT-regulated algal tolerance to Cu toxicity is likely associated with histone methylation and chromatin remodeling. The present work provided an example a basis to develop techniques for environmental restoration of metal-contaminated aquatic ecosystems.
Collapse
Affiliation(s)
- Ye Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Zhen Zhen Cheng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Xi Chen
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Qi Zheng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
123
|
MET18 Connects the Cytosolic Iron-Sulfur Cluster Assembly Pathway to Active DNA Demethylation in Arabidopsis. PLoS Genet 2015; 11:e1005559. [PMID: 26492035 PMCID: PMC4619598 DOI: 10.1371/journal.pgen.1005559] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/08/2015] [Indexed: 11/24/2022] Open
Abstract
DNA demethylation mediated by the DNA glycosylase ROS1 helps determine genomic DNA methylation patterns and protects active genes from being silenced. However, little is known about the mechanism of regulation of ROS1 enzymatic activity. Using a forward genetic screen, we identified an anti-silencing (ASI) factor, ASI3, the dysfunction of which causes transgene promoter hyper-methylation and silencing. Map-based cloning identified ASI3 as MET18, a component of the cytosolic iron-sulfur cluster assembly (CIA) pathway. Mutation in MET18 leads to hyper-methylation at thousands of genomic loci, the majority of which overlap with hypermethylated loci identified in ros1 and ros1dml2dml3 mutants. Affinity purification followed by mass spectrometry indicated that ROS1 physically associates with MET18 and other CIA components. Yeast two-hybrid and split luciferase assays showed that ROS1 can directly interact with MET18 and another CIA component, AE7. Site-directed mutagenesis of ROS1 indicated that the conserved iron-sulfur motif is indispensable for ROS1 enzymatic activity. Our results suggest that ROS1-mediated active DNA demethylation requires MET18-dependent transfer of the iron-sulfur cluster, highlighting an important role of the CIA pathway in epigenetic regulation. DNA cytosine methylation is a major epigenetic mark that confers transcriptional regulation. Active removal of DNA methylation is important for plants and mammals during development and in responses to various stress conditions. In the model plant species Arabidopsis thaliana, active DNA demethylation depends on a family of 5-methylcytosine DNA glycosylases/demethylases including ROS1, DME, and others. While the epigenetic function of this demethylase family is well-known, little is known about how their enzymatic activities may be regulated. In this report, we carried out a forward genetic screen for anti-silencing factors and identified MET18, a conserved component of cytosolic iron-sulfur cluster assembly (CIA) pathway in eukaryotes, as being required for the ROS1-dependent active DNA demethylation. Dysfunction of MET18 causes DNA hyper-methylation at thousands of genomic loci where DNA methylation is pruned by ROS1. In addition, ROS1 physically interacts with MET18 and other CIA pathway components; while a conserved iron-sulfur-binding motif is indispensable for ROS1 enzyme activity. Our results suggested that MET18 affects DNA demethylation by influencing ROS1 enzymatic activity via direct interaction with the iron-sulfur-binding motif of ROS1, highlighting a direct connection between iron-sulfur cluster assembly and active DNA demethylation.
Collapse
|
124
|
Wang J, Meng X, Yuan C, Harrison AP, Chen M. The roles of cross-talk epigenetic patterns in Arabidopsis thaliana. Brief Funct Genomics 2015; 15:278-87. [PMID: 26141715 DOI: 10.1093/bfgp/elv025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epigenetic mechanisms, including histone modifications, DNA cytosine methylation, histone variants and noncoding RNAs (ncRNAs), play a key role in determining transcriptional outcomes. Recently, many studies have demonstrated that the different epigenetic mechanisms interplay with each other rather than work independently. In this article, we outline a framework for how different epigenetic mechanisms work with each other in Arabidopsis thalianaWe build a network of cross-talk between chromatin marks based on six classes of cross-talk interactions. The first pattern details coordinated modifications that act together to enhance or repress gene expression. The second pattern details bivalent modifications that act antagonistically toward gene expression. The third pattern is for unilateral promotion of one modification by the existence of another modification. The fourth pattern is for unilateral inhibition of one modification by another modification. The fifth pattern is for mutual inhibitory patterns. The sixth pattern is for epigenetic modifications that appear independent.We also explore the mutual regulation between chromatin marks and ncRNAs in various ways. These regulations can be divided into six parts: how ncRNA affects the binding of chromatin mark, such as miR2Epi, siR2Epi and lncR2Epi; how chromatin mark regulates ncRNA, such as Epi2miR, Epi2siR and Epi2lncR.A comprehensive network of cross-talk between different epigenetic mechanisms will help in fully understanding the functional roles and biological impacts of epigenetic regulation.
Collapse
|
125
|
Abstract
Environmental conditions can change the activity of plant genes via epigenetic effects that alter the competence of genetic information to be expressed. This may provide a powerful strategy for plants to adapt to environmental change. However, as epigenetic changes do not modify DNA sequences and are therefore reversible, only those epi-mutations that are transmitted through the germline can be expected to contribute to a long-term adaptive response. The major challenge for the investigation of epigenetic adaptation theories is therefore to identify genomic loci that undergo epigenetic changes in response to environmental conditions, which alter their expression in a heritable way and which improve the plant's ability to adapt to the inducing conditions. This review focuses on the role of DNA methylation as a prominent epigenetic mark that controls chromatin conformation, and on its potential in mediating expression changes in response to environmental signals.
Collapse
Affiliation(s)
- Peter Meyer
- Centre for Plant Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
126
|
Li Q, Wang X, Sun H, Zeng J, Cao Z, Li Y, Qian W. Regulation of Active DNA Demethylation by a Methyl-CpG-Binding Domain Protein in Arabidopsis thaliana. PLoS Genet 2015; 11:e1005210. [PMID: 25933434 PMCID: PMC4416881 DOI: 10.1371/journal.pgen.1005210] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022] Open
Abstract
Active DNA demethylation plays crucial roles in the regulation of gene expression in both plants and animals. In Arabidopsis thaliana, active DNA demethylation is initiated by the ROS1 subfamily of 5-methylcytosine-specific DNA glycosylases via a base excision repair mechanism. Recently, IDM1 and IDM2 were shown to be required for the recruitment of ROS1 to some of its target loci. However, the mechanism(s) by which IDM1 is targeted to specific genomic loci remains to be determined. Affinity purification of IDM1- and IDM2- associating proteins demonstrated that IDM1 and IDM2 copurify together with two novel components, methyl-CpG-binding domain protein 7 (MBD7) and IDM2-like protein 1 (IDL1). IDL1 encodes an α-crystallin domain protein that shows high sequence similarity with IDM2. MBD7 interacts with IDM2 and IDL1 in vitro and in vivo and they form a protein complex associating with IDM1 in vivo. MBD7 directly binds to the target loci and is required for the H3K18 and H3K23 acetylation in planta. MBD7 dysfunction causes DNA hypermethylation and silencing of reporter genes and a subset of endogenous genes. Our results suggest that a histone acetyltransferase complex functions in active DNA demethylation and in suppression of gene silencing at some loci in Arabidopsis.
Collapse
Affiliation(s)
- Qi Li
- State Key Laboratory of Protein and Plant Gene Research, The Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Xiaokang Wang
- State Key Laboratory of Protein and Plant Gene Research, The Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Han Sun
- State Key Laboratory of Protein and Plant Gene Research, The Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Jun Zeng
- State Key Laboratory of Protein and Plant Gene Research, The Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Zhendong Cao
- State Key Laboratory of Protein and Plant Gene Research, The Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Yan Li
- State Key Laboratory of Protein and Plant Gene Research, The Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, The Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
127
|
Vriet C, Hennig L, Laloi C. Stress-induced chromatin changes in plants: of memories, metabolites and crop improvement. Cell Mol Life Sci 2015; 72:1261-73. [PMID: 25578097 PMCID: PMC11113909 DOI: 10.1007/s00018-014-1792-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 01/18/2023]
Abstract
Exposure of plants to adverse environmental conditions leads to extensive transcriptional changes. Genome-wide approaches and gene function studies have revealed the importance of chromatin-level control in the regulation of stress-responsive gene expression. Advances in understanding chromatin modifications implicated in plant stress response and identifying proteins involved in chromatin-mediated transcriptional responses to stress are briefly presented in this review. We then highlight how chromatin-mediated gene expression changes can be coupled to the metabolic status of the cell, since many of the chromatin-modifying proteins involved in transcriptional regulation depend on cofactors and metabolites that are shared with enzymes in basic metabolism. Lastly, we discuss the stability and heritability of stress-induced chromatin changes and the potential of chromatin-based strategies for increasing stress tolerance of crops.
Collapse
Affiliation(s)
- Cécile Vriet
- BVME UMR 7265, Lab Genet Biophys Plantes, Aix Marseille Université, Marseille, 13284, France,
| | | | | |
Collapse
|
128
|
Abstract
Interest in the field of epigenetics has increased rapidly over the last decade, with the term becoming more identifiable in biomedical research, scientific fields outside of the molecular sciences, such as ecology and physiology, and even mainstream culture. It has become increasingly clear, however, that different investigators ascribe different definitions to the term. Some employ epigenetics to explain changes in gene expression, others use it to refer to transgenerational effects and/or inherited expression states. This disagreement on a clear definition has made communication difficult, synthesis of epigenetic research across fields nearly impossible, and has in many ways biased methodologies and interpretations. This article discusses the history behind the multitude of definitions that have been employed since the conception of epigenetics, analyzes the components of these definitions, and offers solutions for clarifying the field and mitigating the problems that have arisen due to these definitional ambiguities.
Collapse
Affiliation(s)
- Carrie Deans
- Department of Entomology, Texas A&M University, College Station, Texas 77843
| | - Keith A Maggert
- Department of Biology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
129
|
Regulatory link between DNA methylation and active demethylation in Arabidopsis. Proc Natl Acad Sci U S A 2015; 112:3553-7. [PMID: 25733903 DOI: 10.1073/pnas.1502279112] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
De novo DNA methylation through the RNA-directed DNA methylation (RdDM) pathway and active DNA demethylation play important roles in controlling genome-wide DNA methylation patterns in plants. Little is known about how cells manage the balance between DNA methylation and active demethylation activities. Here, we report the identification of a unique RdDM target sequence, where DNA methylation is required for maintaining proper active DNA demethylation of the Arabidopsis genome. In a genetic screen for cellular antisilencing factors, we isolated several REPRESSOR OF SILENCING 1 (ros1) mutant alleles, as well as many RdDM mutants, which showed drastically reduced ROS1 gene expression and, consequently, transcriptional silencing of two reporter genes. A helitron transposon element (TE) in the ROS1 gene promoter negatively controls ROS1 expression, whereas DNA methylation of an RdDM target sequence between ROS1 5' UTR and the promoter TE region antagonizes this helitron TE in regulating ROS1 expression. This RdDM target sequence is also targeted by ROS1, and defective DNA demethylation in loss-of-function ros1 mutant alleles causes DNA hypermethylation of this sequence and concomitantly causes increased ROS1 expression. Our results suggest that this sequence in the ROS1 promoter region serves as a DNA methylation monitoring sequence (MEMS) that senses DNA methylation and active DNA demethylation activities. Therefore, the ROS1 promoter functions like a thermostat (i.e., methylstat) to sense DNA methylation levels and regulates DNA methylation by controlling ROS1 expression.
Collapse
|
130
|
Wang C, Dong X, Jin D, Zhao Y, Xie S, Li X, He X, Lang Z, Lai J, Zhu JK, Gong Z. Methyl-CpG-binding domain protein MBD7 is required for active DNA demethylation in Arabidopsis. PLANT PHYSIOLOGY 2015; 167:905-14. [PMID: 25593350 PMCID: PMC4348759 DOI: 10.1104/pp.114.252106] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/14/2015] [Indexed: 05/20/2023]
Abstract
Although researchers have established that DNA methylation and active demethylation are dynamically regulated in plant cells, the molecular mechanism for the regulation of active DNA demethylation is not well understood. By using an Arabidopsis (Arabidopsis thaliana) line expressing the Promoter RESPONSIVE TO DEHYDRATION 29A:LUCIFERASE (ProRD29A:LUC) and Promoter cauliflower mosaic virus 35S:NEOMYCIN PHOSPHOTRANSFERASE II (Pro35S:NPTII) transgenes, we isolated an mbd7 (for methyl-CpG-binding domain protein7) mutant. The mbd7 mutation causes an inactivation of the Pro35S:NPTII transgene but does not affect the expression of the ProRD29A:LUC transgene. The silencing of the Pro35S:NPTII reporter gene is associated with DNA hypermethylation of the reporter gene. MBD7 interacts physically with REPRESSOR OF SILENCING5/INCREASED DNA METHYLATION2, a protein in the small heat shock protein family. MBD7 prefers to target the genomic loci with high densities of DNA methylation around chromocenters. The Gypsy-type long terminal repeat retrotransposons mainly distributed around chromocenters are most affected by mbd7 in all transposons. Our results suggest that MBD7 is required for active DNA demethylation and antisilencing of the genomic loci with high densities of DNA methylation in Arabidopsis.
Collapse
Affiliation(s)
- Chunlei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences (C.W., D.J., Y.Z., X.L., Z.G.), State Key Laboratory of Agrobiotechnology (X.D., J.L.), and China National Maize Improvement Center, Department of Plant Genetics and Breeding (X.D., J.L.), China Agricultural University, Beijing 100193, China;Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47906 (S.X., Z.L., J.-K.Z.);National Institute of Biological Sciences, Beijing 102206, China (X.H.); andShanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| | - Xiaomei Dong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences (C.W., D.J., Y.Z., X.L., Z.G.), State Key Laboratory of Agrobiotechnology (X.D., J.L.), and China National Maize Improvement Center, Department of Plant Genetics and Breeding (X.D., J.L.), China Agricultural University, Beijing 100193, China;Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47906 (S.X., Z.L., J.-K.Z.);National Institute of Biological Sciences, Beijing 102206, China (X.H.); andShanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| | - Dan Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences (C.W., D.J., Y.Z., X.L., Z.G.), State Key Laboratory of Agrobiotechnology (X.D., J.L.), and China National Maize Improvement Center, Department of Plant Genetics and Breeding (X.D., J.L.), China Agricultural University, Beijing 100193, China;Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47906 (S.X., Z.L., J.-K.Z.);National Institute of Biological Sciences, Beijing 102206, China (X.H.); andShanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| | - Yusheng Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences (C.W., D.J., Y.Z., X.L., Z.G.), State Key Laboratory of Agrobiotechnology (X.D., J.L.), and China National Maize Improvement Center, Department of Plant Genetics and Breeding (X.D., J.L.), China Agricultural University, Beijing 100193, China;Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47906 (S.X., Z.L., J.-K.Z.);National Institute of Biological Sciences, Beijing 102206, China (X.H.); andShanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| | - Shaojun Xie
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences (C.W., D.J., Y.Z., X.L., Z.G.), State Key Laboratory of Agrobiotechnology (X.D., J.L.), and China National Maize Improvement Center, Department of Plant Genetics and Breeding (X.D., J.L.), China Agricultural University, Beijing 100193, China;Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47906 (S.X., Z.L., J.-K.Z.);National Institute of Biological Sciences, Beijing 102206, China (X.H.); andShanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| | - Xiaojie Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences (C.W., D.J., Y.Z., X.L., Z.G.), State Key Laboratory of Agrobiotechnology (X.D., J.L.), and China National Maize Improvement Center, Department of Plant Genetics and Breeding (X.D., J.L.), China Agricultural University, Beijing 100193, China;Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47906 (S.X., Z.L., J.-K.Z.);National Institute of Biological Sciences, Beijing 102206, China (X.H.); andShanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| | - Xinjian He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences (C.W., D.J., Y.Z., X.L., Z.G.), State Key Laboratory of Agrobiotechnology (X.D., J.L.), and China National Maize Improvement Center, Department of Plant Genetics and Breeding (X.D., J.L.), China Agricultural University, Beijing 100193, China;Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47906 (S.X., Z.L., J.-K.Z.);National Institute of Biological Sciences, Beijing 102206, China (X.H.); andShanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| | - Zhaobo Lang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences (C.W., D.J., Y.Z., X.L., Z.G.), State Key Laboratory of Agrobiotechnology (X.D., J.L.), and China National Maize Improvement Center, Department of Plant Genetics and Breeding (X.D., J.L.), China Agricultural University, Beijing 100193, China;Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47906 (S.X., Z.L., J.-K.Z.);National Institute of Biological Sciences, Beijing 102206, China (X.H.); andShanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences (C.W., D.J., Y.Z., X.L., Z.G.), State Key Laboratory of Agrobiotechnology (X.D., J.L.), and China National Maize Improvement Center, Department of Plant Genetics and Breeding (X.D., J.L.), China Agricultural University, Beijing 100193, China;Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47906 (S.X., Z.L., J.-K.Z.);National Institute of Biological Sciences, Beijing 102206, China (X.H.); andShanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| | - Jian-Kang Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences (C.W., D.J., Y.Z., X.L., Z.G.), State Key Laboratory of Agrobiotechnology (X.D., J.L.), and China National Maize Improvement Center, Department of Plant Genetics and Breeding (X.D., J.L.), China Agricultural University, Beijing 100193, China;Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47906 (S.X., Z.L., J.-K.Z.);National Institute of Biological Sciences, Beijing 102206, China (X.H.); andShanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences (C.W., D.J., Y.Z., X.L., Z.G.), State Key Laboratory of Agrobiotechnology (X.D., J.L.), and China National Maize Improvement Center, Department of Plant Genetics and Breeding (X.D., J.L.), China Agricultural University, Beijing 100193, China;Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47906 (S.X., Z.L., J.-K.Z.);National Institute of Biological Sciences, Beijing 102206, China (X.H.); andShanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.-K.Z.)
| |
Collapse
|
131
|
Lang Z, Lei M, Wang X, Tang K, Miki D, Zhang H, Mangrauthia SK, Liu W, Nie W, Ma G, Yan J, Duan CG, Hsu CC, Wang C, Tao WA, Gong Z, Zhu JK. The methyl-CpG-binding protein MBD7 facilitates active DNA demethylation to limit DNA hyper-methylation and transcriptional gene silencing. Mol Cell 2015; 57:971-983. [PMID: 25684209 DOI: 10.1016/j.molcel.2015.01.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/21/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
DNA methylation is a conserved epigenetic mark that plays important roles in plant and vertebrate development, genome stability, and gene regulation. Canonical Methyl-CpG-binding domain (MBD) proteins are important interpreters of DNA methylation that recognize methylated CG sites and recruit chromatin remodelers, histone deacetylases, and histone methyltransferases to repress transcription. Here, we show that Arabidopsis MBD7 and Increased DNA Methylation 3 (IDM3) are anti-silencing factors that prevent gene repression and DNA hypermethylation. MBD7 preferentially binds to highly methylated, CG-dense regions and physically associates with other anti-silencing factors, including the histone acetyltransferase IDM1 and the alpha-crystallin domain proteins IDM2 and IDM3. IDM1 and IDM2 were previously shown to facilitate active DNA demethylation by the 5-methylcytosine DNA glycosylase/lyase ROS1. Thus, MBD7 tethers the IDM proteins to methylated DNA, which enables the function of DNA demethylases that in turn limit DNA methylation and prevent transcriptional gene silencing.
Collapse
Affiliation(s)
- Zhaobo Lang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Mingguang Lei
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Xingang Wang
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Kai Tang
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huiming Zhang
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Satendra K Mangrauthia
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA; Biotechnology Section, Directorate of Rice Research, Hyderabad 500030, India
| | - Wenshan Liu
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA; School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Wenfeng Nie
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA; Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Guojie Ma
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Jun Yan
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Cheng-Guo Duan
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Chunlei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
132
|
Li Y, Córdoba-Cañero D, Qian W, Zhu X, Tang K, Zhang H, Ariza RR, Roldán-Arjona T, Zhu JK. An AP endonuclease functions in active DNA demethylation and gene imprinting in Arabidopsis [corrected]. PLoS Genet 2015; 11:e1004905. [PMID: 25569774 PMCID: PMC4287435 DOI: 10.1371/journal.pgen.1004905] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/18/2014] [Indexed: 11/19/2022] Open
Abstract
Active DNA demethylation in plants occurs through base excision repair, beginning with removal of methylated cytosine by the ROS1/DME subfamily of 5-methylcytosine DNA glycosylases. Active DNA demethylation in animals requires the DNA glycosylase TDG or MBD4, which functions after oxidation or deamination of 5-methylcytosine, respectively. However, little is known about the steps following DNA glycosylase action in the active DNA demethylation pathways in plants and animals. We show here that the Arabidopsis APE1L protein has apurinic/apyrimidinic endonuclease activities and functions downstream of ROS1 and DME. APE1L and ROS1 interact in vitro and co-localize in vivo. Whole genome bisulfite sequencing of ape1l mutant plants revealed widespread alterations in DNA methylation. We show that the ape1l/zdp double mutant displays embryonic lethality. Notably, the ape1l+/-zdp-/- mutant shows a maternal-effect lethality phenotype. APE1L and the DNA phosphatase ZDP are required for FWA and MEA gene imprinting in the endosperm and are important for seed development. Thus, APE1L is a new component of the active DNA demethylation pathway and, together with ZDP, regulates gene imprinting in Arabidopsis.
Collapse
Affiliation(s)
- Yan Li
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Science, Peking University, Beijing, China
| | - Dolores Córdoba-Cañero
- Department of Genetics, University of Córdoba/Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/Reina Sofía University Hospital, Córdoba, Spain
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Science, Peking University, Beijing, China
| | - Xiaohong Zhu
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Kai Tang
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rafael R. Ariza
- Department of Genetics, University of Córdoba/Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/Reina Sofía University Hospital, Córdoba, Spain
| | - Teresa Roldán-Arjona
- Department of Genetics, University of Córdoba/Maimonides Institute for Biomedical Research of Cordoba (IMIBIC)/Reina Sofía University Hospital, Córdoba, Spain
- * E-mail: (TRA); (JKZ)
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (TRA); (JKZ)
| |
Collapse
|
133
|
Kim JM, Sasaki T, Ueda M, Sako K, Seki M. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:114. [PMID: 25784920 PMCID: PMC4345800 DOI: 10.3389/fpls.2015.00114] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/11/2015] [Indexed: 05/11/2023]
Abstract
Chromatin regulation is essential to regulate genes and genome activities. In plants, the alteration of histone modification and DNA methylation are coordinated with changes in the expression of stress-responsive genes to adapt to environmental changes. Several chromatin regulators have been shown to be involved in the regulation of stress-responsive gene networks under abiotic stress conditions. Specific histone modification sites and the histone modifiers that regulate key stress-responsive genes have been identified by genetic and biochemical approaches, revealing the importance of chromatin regulation in plant stress responses. Recent studies have also suggested that histone modification plays an important role in plant stress memory. In this review, we summarize recent progress on the regulation and alteration of histone modification (acetylation, methylation, phosphorylation, and SUMOylation) in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants.
Collapse
Affiliation(s)
- Jong-Myong Kim
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Taku Sasaki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
| | - Minoru Ueda
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
| | - Kaori Sako
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- *Correspondence: Motoaki Seki, Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan e-mail:
| |
Collapse
|
134
|
Zhai L, Sun W, Zhang K, Jia H, Liu L, Liu Z, Teng F, Zhang Z. Identification and characterization of Argonaute gene family and meiosis-enriched Argonaute during sporogenesis in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:1042-52. [PMID: 24735215 DOI: 10.1111/jipb.12205] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/14/2014] [Indexed: 05/03/2023]
Abstract
Argonaute (AGO) proteins play a key role in regulation of gene expression through small RNA-directed RNA cleavage and translational repression, and are essential for multiple developmental processes. In the present study, 17 AGO genes of maize (Zea mays L., ZmAGOs) were identified using a Hidden Markov Model and validated by rapid amplification of cDNA ends assay. Subsequently, quantitative PCR revealed that expressions of these genes were higher in reproductive than in vegetative tissues. AGOs presented five temporal and spatial expression patterns, which were likely modulated by DNA methylation, 5'-untranslated exons and microRNA-mediated feedback loops. Intriguingly, ZmAGO18b was highly expressed in tassels during meiosis. Furthermore, in situ hybridization and immunofluorescence showed that ZmAGO18b was enriched in the tapetum and germ cells in meiotic anthers. We hypothesized that ZmAGOs are highly expressed in reproductive tissues, and that ZmAGO18b is a tapetum and germ cell-specific member of the AGO family in maize.
Collapse
Affiliation(s)
- Lihong Zhai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Han S, Uludag MO, Usanmaz SE, Ayaloglu-Butun F, Akcali KC, Demirel-Yilmaz E. Resveratrol affects histone 3 lysine 27 methylation of vessels and blood biomarkers in DOCA salt-induced hypertension. Mol Biol Rep 2014; 42:35-42. [DOI: 10.1007/s11033-014-3737-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/10/2014] [Indexed: 01/06/2023]
|
136
|
Kim J, Kim JH, Richards EJ, Chung KM, Woo HR. Arabidopsis VIM proteins regulate epigenetic silencing by modulating DNA methylation and histone modification in cooperation with MET1. MOLECULAR PLANT 2014; 7:1470-1485. [PMID: 25009302 PMCID: PMC4207863 DOI: 10.1093/mp/ssu079] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Methylcytosine-binding proteins containing SRA (SET- and RING-Associated) domain are required for the establishment and/or maintenance of DNA methylation in both plants and animals. We previously proposed that Arabidopsis VIM/ORTH proteins with an SRA domain maintain DNA methylation and epigenetic gene silencing in heterochromatic regions. However, their endogenous targets of epigenetic gene silencing have not been analyzed globally and the mechanisms by which VIM proteins coordinate DNA methylation and epigenetic silencing are largely unknown. In this study, a genome-wide transcript profiling analysis revealed 544 derepressed genes in a vim1/2/3 triple mutant, including 133 known genes. VIM1 bound to promoter and transcribed regions of the up-regulated genes in vim1/2/3 and VIM deficiency caused severe DNA hypomethylation in all sequence contexts at direct VIM1 targets. We found a drastic loss of H3K9me2 at heterochromatic chromocenters in vim1/2/3 nuclei. Furthermore, aberrant changes in transcriptionally active and repressive histone modifications were observed at VIM1 targets in vim1/2/3. VIM1-binding capacity to target genes was significantly reduced in the met1 background, indicating that VIM1 primarily recognizes CG methylation deposited by MET1. Overall, our data indicate that VIM proteins regulate genome-wide epigenetic gene silencing through coordinated modulation of DNA methylation and histone modification status in collaboration with MET1.
Collapse
Affiliation(s)
- Jeongsik Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 711-873, Republic of Korea
| | - Jin Hee Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 711-873, Republic of Korea
| | - Eric J Richards
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY 14853, USA
| | - Kyung Min Chung
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Jeonju, Jeollabuk-do 561-180, Republic of Korea; Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Jeollabuk-do 561-180, Republic of Korea.
| | - Hye Ryun Woo
- Department of New Biology, DGIST, Daegu 711-873, Republic of Korea.
| |
Collapse
|
137
|
Rogato A, Richard H, Sarazin A, Voss B, Cheminant Navarro S, Champeimont R, Navarro L, Carbone A, Hess WR, Falciatore A. The diversity of small non-coding RNAs in the diatom Phaeodactylum tricornutum. BMC Genomics 2014; 15:698. [PMID: 25142710 PMCID: PMC4247016 DOI: 10.1186/1471-2164-15-698] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/30/2014] [Indexed: 11/10/2022] Open
Abstract
Background Marine diatoms constitute a major component of eukaryotic phytoplankton and stand at the crossroads of several evolutionary lineages. These microalgae possess peculiar genomic features and novel combinations of genes acquired from bacterial, animal and plant ancestors. Furthermore, they display both DNA methylation and gene silencing activities. Yet, the biogenesis and regulatory function of small RNAs (sRNAs) remain ill defined in diatoms. Results Here we report the first comprehensive characterization of the sRNA landscape and its correlation with genomic and epigenomic information in Phaeodactylum tricornutum. The majority of sRNAs is 25 to 30 nt-long and maps to repetitive and silenced Transposable Elements marked by DNA methylation. A subset of this population also targets DNA methylated protein-coding genes, suggesting that gene body methylation might be sRNA-driven in diatoms. Remarkably, 25-30 nt sRNAs display a well-defined and unprecedented 180 nt-long periodic distribution at several highly methylated regions that awaits characterization. While canonical miRNAs are not detectable, other 21-25 nt sRNAs of unknown origin are highly expressed. Besides, non-coding RNAs with well-described function, namely tRNAs and U2 snRNA, constitute a major source of 21-25 nt sRNAs and likely play important roles under stressful environmental conditions. Conclusions P. tricornutum has evolved diversified sRNA pathways, likely implicated in the regulation of largely still uncharacterized genetic and epigenetic processes. These results uncover an unexpected complexity of diatom sRNA population and previously unappreciated features, providing new insights into the diversification of sRNA-based processes in eukaryotes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-698) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Hugues Richard
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Laboratory of Computational and Quantitative Biology, F-75006 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Qian W, Miki D, Lei M, Zhu X, Zhang H, Liu Y, Li Y, Lang Z, Wang J, Tang K, Liu R, Zhu JK. Regulation of active DNA demethylation by an α-crystallin domain protein in Arabidopsis. Mol Cell 2014; 55:361-71. [PMID: 25002145 DOI: 10.1016/j.molcel.2014.06.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/03/2014] [Accepted: 05/20/2014] [Indexed: 12/20/2022]
Abstract
DNA methylation patterns are dynamically controlled by DNA methylation and active DNA demethylation, but the mechanisms of regulation of active DNA demethylation are not well understood. Through forward genetic screens for Arabidopsis mutants showing DNA hypermethylation at specific loci and increased silencing of reporter genes, we identified IDM2 (increased DNA methylation 2) as a regulator of DNA demethylation and gene silencing. IDM2 dysfunction causes DNA hypermethylation and silencing of reporter genes and some endogenous genes. These effects of idm2 mutations are similar to those of mutations in IDM1, a regulator of active DNA demethylation. IDM2 encodes an α-crystallin domain protein in the nucleus. IDM2 and IDM1 interact physically and partially colocalize at discrete subnuclear foci. IDM2 is required for the full activity of H3K18 acetylation but not H3K23 acetylation of IDM1 in planta. Our results suggest that IDM2 functions in active DNA demethylation and in antisilencing by regulating IDM1.
Collapse
Affiliation(s)
- Weiqiang Qian
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mingguang Lei
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Xiaohong Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Huiming Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Yunhua Liu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Yan Li
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhaobo Lang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Jing Wang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA
| | - Renyi Liu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
139
|
Overproduction of stomatal lineage cells in Arabidopsis mutants defective in active DNA demethylation. Nat Commun 2014; 5:4062. [PMID: 24898766 PMCID: PMC4097119 DOI: 10.1038/ncomms5062] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/07/2014] [Indexed: 11/25/2022] Open
Abstract
DNA methylation is a reversible epigenetic mark regulating genome stability and function in many eukaryotes. In Arabidopsis, active DNA demethylation depends on the function of the ROS1 subfamily of genes that encode 5-methylcytosine DNA glycosylases/lyases. ROS1-mediated DNA demethylation plays a critical role in the regulation of transgenes, transposable elements and some endogenous genes, but there have been no reports of clear developmental phenotypes in ros1 mutant plants. Here we report that, in the ros1 mutant, the promoter region of the peptide ligand gene EPF2 is hypermethylated, which greatly reduces EPF2 expression and thereby leads to a phenotype of overproduction of stomatal lineage cells. EPF2 gene expression in ros1 is restored and the defective epidermal cell patterning is suppressed by mutations in genes in the RNA-directed DNA methylation pathway. Our results show that active DNA demethylation combats the activity of RNA-directed DNA methylation to influence the initiation of stomatal lineage cells.
Collapse
|
140
|
Vecellio M, Spallotta F, Nanni S, Colussi C, Cencioni C, Derlet A, Bassetti B, Tilenni M, Carena MC, Farsetti A, Sbardella G, Castellano S, Mai A, Martelli F, Pompilio G, Capogrossi MC, Rossini A, Dimmeler S, Zeiher A, Gaetano C. The histone acetylase activator pentadecylidenemalonate 1b rescues proliferation and differentiation in the human cardiac mesenchymal cells of type 2 diabetic patients. Diabetes 2014; 63:2132-47. [PMID: 24458358 DOI: 10.2337/db13-0731] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study investigates the diabetes-associated alterations present in cardiac mesenchymal cells (CMSC) obtained from normoglycemic (ND-CMSC) and type 2 diabetic patients (D-CMSC), identifying the histone acetylase (HAT) activator pentadecylidenemalonate 1b (SPV106) as a potential pharmacological intervention to restore cellular function. D-CMSC were characterized by a reduced proliferation rate, diminished phosphorylation at histone H3 serine 10 (H3S10P), decreased differentiation potential, and premature cellular senescence. A global histone code profiling of D-CMSC revealed that acetylation on histone H3 lysine 9 (H3K9Ac) and lysine 14 (H3K14Ac) was decreased, whereas the trimethylation of H3K9Ac and lysine 27 significantly increased. These observations were paralleled by a downregulation of the GCN5-related N-acetyltransferases (GNAT) p300/CBP-associated factor and its isoform 5-α general control of amino acid synthesis (GCN5a), determining a relative decrease in total HAT activity. DNA CpG island hypermethylation was detected at promoters of genes involved in cell growth control and genomic stability. Remarkably, treatment with the GNAT proactivator SPV106 restored normal levels of H3K9Ac and H3K14Ac, reduced DNA CpG hypermethylation, and recovered D-CMSC proliferation and differentiation. These results suggest that epigenetic interventions may reverse alterations in human CMSC obtained from diabetic patients.
Collapse
Affiliation(s)
- Matteo Vecellio
- Laboratorio di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino, Milan, ItalyDivision of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
| | - Francesco Spallotta
- Laboratorio di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino, Milan, ItalyDivision of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
| | - Simona Nanni
- Institute of Medical Pathology, Catholic University of Rome, Policlinico A. Gemelli, Rome, Italy
| | - Claudia Colussi
- Institute of Medical Pathology, Catholic University of Rome, Policlinico A. Gemelli, Rome, Italy
| | - Chiara Cencioni
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
| | - Anja Derlet
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Beatrice Bassetti
- Laboratorio di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino, Milan, Italy
| | - Manuela Tilenni
- Laboratorio di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino, Milan, Italy
| | - Maria Cristina Carena
- Laboratorio di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino, Milan, ItalyDivision of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
| | - Antonella Farsetti
- Consiglio Nazionale delle Ricerche, Institute of Cellular Biology and Neurobiology, Rome, Italy
| | - Gianluca Sbardella
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Fisciano (SA), Italy
| | - Sabrina Castellano
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Fisciano (SA), Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technology, University of Rome, Rome, Italy
| | - Fabio Martelli
- Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, Laboratorio di Cardiologia Molecolare, San Donato Milanese, Milan, Italy
| | - Giulio Pompilio
- Laboratorio di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino, Milan, Italy
| | - Maurizio C Capogrossi
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, Rome, Italy
| | - Alessandra Rossini
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Andreas Zeiher
- Internal Medicine Clinic III, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
| | - Carlo Gaetano
- Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
141
|
Zhao Y, Xie S, Li X, Wang C, Chen Z, Lai J, Gong Z. REPRESSOR OF SILENCING5 Encodes a Member of the Small Heat Shock Protein Family and Is Required for DNA Demethylation in Arabidopsis. THE PLANT CELL 2014; 26:2660-2675. [PMID: 24920332 PMCID: PMC4114958 DOI: 10.1105/tpc.114.126730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In Arabidopsis thaliana, active DNA demethylation is initiated by the DNA glycosylase REPRESSOR OF SILENCING1 (ROS1) and its paralogs DEMETER, DEMETER-LIKE2 (DML2), and DML3. How these demethylation enzymes are regulated, however, is poorly understood. Here, using a transgenic Arabidopsis line harboring the stress-inducible RESPONSIVE TO DEHYDRATION29A (RD29A) promoter-LUCIFERASE (LUC) reporter gene and the cauliflower mosaic virus 35S promoter (35S)-NEOMYCIN PHOSPHOTRANSFERASE II (NPTII) antibiotic resistance marker gene, we characterize a ROS locus, ROS5, that encodes a protein in the small heat shock protein family. ROS5 mutations lead to the silencing of the 35S-NPTII transgene due to DNA hypermethylation but do not affect the expression of the RD29A-LUC transgene. ROS5 physically interacts with the histone acetyltransferase ROS4/INCREASED DNA METHYLATION1 (IDM1) and is required to prevent the DNA hypermethylation of some genes that are also regulated by ROS1 and IDM1. We propose that ROS5 regulates DNA demethylation by interacting with IDM1, thereby creating a chromatin environment that facilitates the binding of ROS1 to erase DNA methylation.
Collapse
Affiliation(s)
- Yusheng Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaojun Xie
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Xiaojie Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chunlei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhongzhou Chen
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China National Center for Plant Gene Research, Beijing 100193, China
| |
Collapse
|
142
|
Abstract
Cytosine DNA methylation is an epigenetic modification in eukaryotes that maintains genome integrity and regulates gene expression. The DNA methylation patterns in plants are more complex than those in animals, and plants and animals have common as well as distinct pathways in regulating DNA methylation. Recent studies involving genetic, molecular, biochemical and genomic approaches have greatly expanded our knowledge of DNA methylation in plants. The roles of many proteins as well as non-coding RNAs in DNA methylation have been uncovered.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521 ; Howard Hughes Medical Institute, University of California, Riverside, CA 92521
| |
Collapse
|
143
|
Tang H, Fang H, Yin E, Brasier AR, Sowers LC, Zhang K. Multiplexed parallel reaction monitoring targeting histone modifications on the QExactive mass spectrometer. Anal Chem 2014; 86:5526-34. [PMID: 24823915 DOI: 10.1021/ac500972x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Histone acetylation and methylation play an important role in the regulation of gene expression. Irregular patterns of histone global acetylation and methylation have frequently been seen in various diseases. Quantitative analysis of these patterns is of high value for the evaluation of disease development and of outcomes from therapeutic treatment. Targeting histone acetylation and methylation by selected reaction monitoring (SRM) is one of the current quantitative methods. Here, we reported the use of the multiplexed parallel reaction monitoring (PRM) method on the QExactive mass spectrometer to target previously known lysine acetylation and methylation sites of histone H3 and H4 for the purpose of establishing precursor-product pairs for SRM. 55 modified peptides among which 29 were H3 K27/K36 modified peptides were detected from 24 targeted precursor ions included in the inclusion list. The identification was carried out directly from the trypsin digests of core histones that were separated without derivatization on a homemade capillary column packed with Waters YMC ODS-AQ reversed phase materials. Besides documenting the higher-energy c-trap dissociation (HCD) MS(2) spectra of previously known histone H3/H4 acetylated and methylated tryptic peptides, we identified novel H3 K18 methylation, H3 K27 monomethyl/acetyl duel modifications, H2B K23 acetylation, and H4 K20 acetylation in mammalian histones. The information gained from these experiments sets the foundation for quantification of histone modifications by targeted mass spectrometry methods directly from core histone samples.
Collapse
Affiliation(s)
- Hui Tang
- Department of Pharmacology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | | | | | | | | | | |
Collapse
|
144
|
Kim MY, Zilberman D. DNA methylation as a system of plant genomic immunity. TRENDS IN PLANT SCIENCE 2014; 19:320-6. [PMID: 24618094 DOI: 10.1016/j.tplants.2014.01.014] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 05/06/2023]
Abstract
Transposons are selfish genetic sequences that can increase their copy number and inflict substantial damage on their hosts. To combat these genomic parasites, plants have evolved multiple pathways to identify and silence transposons by methylating their DNA. Plants have also evolved mechanisms to limit the collateral damage from the antitransposon machinery. In this review, we examine recent developments that have elucidated many of the molecular workings of these pathways. We also highlight the evidence that the methylation and demethylation pathways interact, indicating that plants have a highly sophisticated, integrated system of transposon defense that has an important role in the regulation of gene expression.
Collapse
Affiliation(s)
- M Yvonne Kim
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Daniel Zilberman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
145
|
An Rrp6-like protein positively regulates noncoding RNA levels and DNA methylation in Arabidopsis. Mol Cell 2014; 54:418-30. [PMID: 24726328 DOI: 10.1016/j.molcel.2014.03.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/02/2014] [Accepted: 02/28/2014] [Indexed: 01/11/2023]
Abstract
Rrp6-mediated nuclear RNA surveillance tunes eukaryotic transcriptomes through noncoding RNA degradation and mRNA quality control, including exosomal RNA decay and transcript retention triggered by defective RNA processing. It is unclear whether Rrp6 can positively regulate noncoding RNAs and whether RNA retention occurs in normal cells. Here we report that AtRRP6L1, an Arabidopsis Rrp6-like protein, controls RNA-directed DNA methylation through positive regulation of noncoding RNAs. Discovered in a forward genetic screen, AtRRP6L1 mutations decrease DNA methylation independently of exosomal RNA degradation. Accumulation of Pol V-transcribed scaffold RNAs requires AtRRP6L1 that binds to RNAs in vitro and in vivo. AtRRP6L1 helps retain Pol V-transcribed RNAs in chromatin to enable their scaffold function. In addition, AtRRP6L1 is required for genome-wide Pol IV-dependent siRNA production that may involve retention of Pol IV transcripts. Our results suggest that AtRRP6L1 functions in epigenetic regulation by helping with the retention of noncoding RNAs in normal cells.
Collapse
|
146
|
Candaele J, Demuynck K, Mosoti D, Beemster GT, Inzé D, Nelissen H. Differential methylation during maize leaf growth targets developmentally regulated genes. PLANT PHYSIOLOGY 2014; 164:1350-64. [PMID: 24488968 PMCID: PMC3938625 DOI: 10.1104/pp.113.233312] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/28/2014] [Indexed: 05/20/2023]
Abstract
DNA methylation is an important and widespread epigenetic modification in plant genomes, mediated by DNA methyltransferases (DMTs). DNA methylation is known to play a role in genome protection, regulation of gene expression, and splicing and was previously associated with major developmental reprogramming in plants, such as vernalization and transition to flowering. Here, we show that DNA methylation also controls the growth processes of cell division and cell expansion within a growing organ. The maize (Zea mays) leaf offers a great tool to study growth processes, as the cells progressively move through the spatial gradient encompassing the division zone, transition zone, elongation zone, and mature zone. Opposite to de novo DMTs, the maintenance DMTs were transcriptionally regulated throughout the growth zone of the maize leaf, concomitant with differential CCGG methylation levels in the four zones. Surprisingly, the majority of differentially methylated sequences mapped on or close to gene bodies and not to repeat-rich loci. Moreover, especially the 5' and 3' regions of genes, which show overall low methylation levels, underwent differential methylation in a developmental context. Genes involved in processes such as chromatin remodeling, cell cycle progression, and growth regulation, were differentially methylated. The presence of differential methylation located upstream of the gene anticorrelated with transcript expression, while gene body differential methylation was unrelated to the expression level. These data indicate that DNA methylation is correlated with the decision to exit mitotic cell division and to enter cell expansion, which adds a new epigenetic level to the regulation of growth processes.
Collapse
|
147
|
Inheritance of Trans Chromosomal Methylation patterns from Arabidopsis F1 hybrids. Proc Natl Acad Sci U S A 2014; 111:2017-22. [PMID: 24449910 DOI: 10.1073/pnas.1323656111] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hybridization in plants leads to transinteractions between the parental genomes and epigenomes that can result in changes to both 24 nt siRNA and cytosine methylation ((m)C) levels in the hybrid. In Arabidopsis the principle processes altering the hybrid methylome are Trans Chromosomal Methylation (TCM) and Trans Chromosomal deMethylation (TCdM) in which the (m)C pattern of a genomic segment attains the same (m)C pattern of the corresponding segment on the other parental chromosome. We examined two loci that undergo TCM/TCdM in the Arabidopsis C24/Landsberg erecta (Ler) F1 hybrids, which show patterns of inheritance dependent on the properties of the particular donor and recipient chromosomal segments. At At1g64790 the TCM- and TCdM-derived (m)C patterns are maintained in the F2 generation but are transmitted in outcrosses or backcrosses only by the C24 genomic segment. At a region between and adjacent to At3g43340 and At3g43350, the originally unmethylated Ler genomic segment receives the C24 (m)C pattern in the F1, which is then maintained in backcross plants independent of the presence of the parental C24 segment. In backcrosses to an unmethylated Ler allele, the newly methylated F1 Ler segment may act as a TCM source in a process comparable to paramutation in maize. TCM-derived (m)C patterns are associated with reduced expression of both At3g43340 and At3g43350 in F1 and F2 plants, providing support for such events influencing the transcriptome. The inheritance of the F1 (m)C patterns and the segregation of other genetic and epigenetic determinants may contribute to the reduced hybrid vigor in the F2 and subsequent generations.
Collapse
|
148
|
Wang B, Li F, Huang C, Yang X, Qian Y, Xie Y, Zhou X. V2 of tomato yellow leaf curl virus can suppress methylation-mediated transcriptional gene silencing in plants. J Gen Virol 2014; 95:225-230. [PMID: 24187017 DOI: 10.1099/vir.0.055798-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tomato yellow leaf curl virus (TYLCV) is a DNA virus belonging to the genus Begomovirus. TYLCV replicates using double-stranded DNA intermediates that can become the target of plant transcriptional gene silencing (TGS). Here, we show that the V2 protein of TYLCV can suppress TGS of a transcriptionally silenced green fluorescent protein (GFP) transgene in Nicotiana benthamiana line 16-TGS. Through bisulfite sequencing and chop-PCR, we demonstrated that the TYLCV V2 can reverse GFP transgene silencing by reducing the methylation levels in the 35S promoter sequence. Both AtSN1 and MEA-ISR loci in Arabidopsis thaliana were previously reported to be strongly methylated, and we show that the methylation status of both loci was significantly reduced in TYLCV V2 transgenic Arabidopsis plants. We conclude that TYLCV can efficiently suppress TGS when it infects plants, and its V2 protein is responsible for the TGS suppression activity.
Collapse
Affiliation(s)
- Bi Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, PR China
| | - Fangfang Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, PR China
| | - Changjun Huang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, PR China
| | - Xiuling Yang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, PR China
| | - Yajuan Qian
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, PR China
| | - Yan Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, PR China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
149
|
Ohnishi T, Sekine D, Kinoshita T. Genomic Imprinting in Plants. EPIGENETIC SHAPING OF SOCIOSEXUAL INTERACTIONS - FROM PLANTS TO HUMANS 2014; 86:1-25. [DOI: 10.1016/b978-0-12-800222-3.00001-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
150
|
Arabidopsis EDM2 promotes IBM1 distal polyadenylation and regulates genome DNA methylation patterns. Proc Natl Acad Sci U S A 2013; 111:527-32. [PMID: 24248388 DOI: 10.1073/pnas.1320106110] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is important for the silencing of transposons and other repetitive elements in many higher eukaryotes. However, plant and mammalian genomes have evolved to contain repetitive elements near or inside their genes. How these genes are kept from being silenced by DNA methylation is not well understood. A forward genetics screen led to the identification of the putative chromatin regulator Enhanced Downy Mildew 2 (EDM2) as a cellular antisilencing factor and regulator of genome DNA methylation patterns. EDM2 contains a composite Plant Homeo Domain that recognizes both active and repressive histone methylation marks at the intronic repeat elements in genes such as the Histone 3 lysine 9 demethylase gene Increase in BONSAI Methylation 1 (IBM1) and is necessary for maintaining the expression of these genes by promoting mRNA distal polyadenylation. Because of its role in maintaining IBM1 expression, EDM2 is required for preventing CHG methylation in the bodies of thousands of genes. Our results thus increase the understanding of antisilencing, genome methylation patterns, and regulation of alternative RNA processing by intronic heterochromatin.
Collapse
|