101
|
Oberst P, Agirman G, Jabaudon D. Principles of progenitor temporal patterning in the developing invertebrate and vertebrate nervous system. Curr Opin Neurobiol 2019; 56:185-193. [PMID: 30999235 DOI: 10.1016/j.conb.2019.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
During the development of the central nervous system, progenitors successively generate distinct types of neurons which assemble into the circuits that underlie our ability to interact with the environment. Spatial and temporal patterning mechanisms are partially evolutionarily conserved processes that allow generation of neuronal diversity from a limited set of progenitors. Here, we review examples of temporal patterning in neuronal progenitors in the Drosophila ventral nerve cord and in the mammalian cerebral cortex. We discuss cell-autonomous mechanisms and environmental influences on the temporal transitions of neuronal progenitors. Identifying the principles controlling the temporal specification of progenitors across species, as highlighted here, may help understand the evolutionary constraints over brain circuit design and function.
Collapse
Affiliation(s)
- Polina Oberst
- Department of Basic Neurosciences, University of Geneva, Switzerland
| | - Gulistan Agirman
- Department of Basic Neurosciences, University of Geneva, Switzerland; GIGA-Neurosciences, University of Liège, C.H.U. Sart-Tilman, Liège, Belgium
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Switzerland; Department of Neurology, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
102
|
Kast RJ, Levitt P. Precision in the development of neocortical architecture: From progenitors to cortical networks. Prog Neurobiol 2019; 175:77-95. [PMID: 30677429 PMCID: PMC6402587 DOI: 10.1016/j.pneurobio.2019.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/02/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023]
Abstract
Of all brain regions, the 6-layered neocortex has undergone the most dramatic changes in size and complexity during mammalian brain evolution. These changes, occurring in the context of a conserved set of organizational features that emerge through stereotypical developmental processes, are considered responsible for the cognitive capacities and sensory specializations represented within the mammalian clade. The modern experimental era of developmental neurobiology, spanning 6 decades, has deciphered a number of mechanisms responsible for producing the diversity of cortical neuron types, their precise connectivity and the role of gene by environment interactions. Here, experiments providing insight into the development of cortical projection neuron differentiation and connectivity are reviewed. This current perspective integrates discussion of classic studies and new findings, based on recent technical advances, to highlight an improved understanding of the neuronal complexity and precise connectivity of cortical circuitry. These descriptive advances bring new opportunities for studies related to the developmental origins of cortical circuits that will, in turn, improve the prospects of identifying pathogenic targets of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ryan J Kast
- Department of Pediatrics and Program in Developmental Neuroscience and Developmental Neurogenetics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Pat Levitt
- Department of Pediatrics and Program in Developmental Neuroscience and Developmental Neurogenetics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA.
| |
Collapse
|
103
|
Hashimoto Y, Gotoh H, Ono K, Nomura T. Differential potentials of neural progenitors for the generation of neurons and non-neuronal cells in the developing amniote brain. Sci Rep 2019; 9:4514. [PMID: 30872629 PMCID: PMC6418204 DOI: 10.1038/s41598-019-40599-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/20/2019] [Indexed: 12/26/2022] Open
Abstract
Mature mammalian brains consist of variety of neuronal and non-neuronal cell types, which are progressively generated from embryonic neural progenitors through the embryonic and postnatal periods. However, it remains unknown whether all embryonic progenitors equivalently contribute to multiple cell types, or individual neural progenitors have variable potentials to generate specific cell types in a stochastic manner. Here, we performed population-level tracing of mouse embryonic neural progenitors by using Tol2-mediated genome integration vectors. We identified that neural progenitors in early embryonic stages predominantly contribute to cortical or subcortical neurons than astrocytes, ependymal cells, and neuroblasts in the postnatal brain. Notably, neurons and astrocytes were cumulatively labeled by the increase of total labeled cells, suggesting constant neurogenic and gliogenic potentials of individual neural progenitors. On the contrary, numbers of labeled ependymal cell are more fluctuated, implicating intrinsic variability of progenitor potentials for ependymal cell generation. Differential progenitor potentials that contribute to neurons, astrocytes, and ependymal cells were also detected in the developing avian pallium. Our data suggest evolutionary conservations of coherent and variable potentials of neural progenitors that generate multiple cell types in the developing amniote brain.
Collapse
Affiliation(s)
- Yuki Hashimoto
- Developmental Neurobiology, Graduate School of Medicine, Kyoto Prefectural University of Medicine, 1-5 Shimogamo-hangi cho, Sakyoku, Kyoto, 606-0823, Japan
| | - Hitoshi Gotoh
- Developmental Neurobiology, Graduate School of Medicine, Kyoto Prefectural University of Medicine, 1-5 Shimogamo-hangi cho, Sakyoku, Kyoto, 606-0823, Japan
| | - Katsuhiko Ono
- Developmental Neurobiology, Graduate School of Medicine, Kyoto Prefectural University of Medicine, 1-5 Shimogamo-hangi cho, Sakyoku, Kyoto, 606-0823, Japan
| | - Tadashi Nomura
- Developmental Neurobiology, Graduate School of Medicine, Kyoto Prefectural University of Medicine, 1-5 Shimogamo-hangi cho, Sakyoku, Kyoto, 606-0823, Japan.
| |
Collapse
|
104
|
Fregoso SP, Dwyer BE, Franco SJ. Lmx1a drives Cux2 expression in the cortical hem through activation of a conserved intronic enhancer. Development 2019; 146:dev.170068. [PMID: 30770393 DOI: 10.1242/dev.170068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 02/11/2019] [Indexed: 01/06/2023]
Abstract
During neocortical development, neurons are produced by a diverse pool of neural progenitors. A subset of progenitors express the Cux2 gene and are fate restricted to produce certain neuronal subtypes; however, the upstream pathways that specify these progenitor fates remain unknown. To uncover the transcriptional networks that regulate Cux2 expression in the forebrain, we characterized a conserved Cux2 enhancer that recapitulates Cux2 expression specifically in the cortical hem. Using a bioinformatic approach, we identified putative transcription factor (TF)-binding sites for cortical hem-patterning TFs. We found that the homeobox TF Lmx1a can activate the Cux2 enhancer in vitro Furthermore, we showed that Lmx1a-binding sites were required for enhancer activity in the cortical hem in vivo Mis-expression of Lmx1a in hippocampal progenitors caused an increase in Cux2 enhancer activity outside the cortical hem. Finally, we compared several human enhancers with cortical hem-restricted activity and found that recurrent Lmx1a-binding sites are a top shared feature. Uncovering the network of TFs involved in regulating Cux2 expression will increase our understanding of the mechanisms pivotal in establishing Cux2 lineage fates in the developing forebrain.
Collapse
Affiliation(s)
- Santiago P Fregoso
- Graduate Program in Cell Biology, Stem Cells and Development, University of Colorado Graduate School - Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brett E Dwyer
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Santos J Franco
- Graduate Program in Cell Biology, Stem Cells and Development, University of Colorado Graduate School - Anschutz Medical Campus, Aurora, CO 80045, USA .,Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine - Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
105
|
Marcucci F, Soares CA, Mason C. Distinct timing of neurogenesis of ipsilateral and contralateral retinal ganglion cells. J Comp Neurol 2019; 527:212-224. [PMID: 29761490 PMCID: PMC6237670 DOI: 10.1002/cne.24467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/30/2022]
Abstract
In higher vertebrates, the circuit formed by retinal ganglion cells (RGCs) projecting ipsilaterally (iRGCs) or contralaterally (cRGCs) to the brain permits binocular vision and depth perception. iRGCs and cRGCs differ in their position within the retina and in expression of transcription, guidance and activity-related factors. To parse whether these two populations also differ in the timing of their genesis, a feature of distinct neural subtypes and associated projections, we used newer birthdating methods and cell subtype specific markers to determine birthdate and cell cycle exit more precisely than previously. In the ventrotemporal (VT) retina, i- and cRGCs intermingle and neurogenesis in this zone lags behind RGC production in the rest of the retina where only cRGCs are positioned. In addition, within the VT retina, i- and cRGC populations are born at distinct times: neurogenesis of iRGCs surges at E13, and cRGCs arise as early as E14, not later in embryogenesis as reported. Moreover, in the ventral ciliary margin zone (CMZ), which contains progenitors that give rise to some iRGCs in ventral neural retina (Marcucci et al., 2016), cell cycle exit is slower than in other retinal regions in which progenitors give rise only to cRGCs. Further, when the cell cycle regulator Cyclin D2 is missing, cell cycle length in the CMZ is further reduced, mirroring the reduction of both i- and cRGCs in the Cyclin D2 mutant. These results strengthen the view that differential regulation of cell cycle dynamics at the progenitor level is associated with specific RGC fates and laterality of axonal projection.
Collapse
Affiliation(s)
- Florencia Marcucci
- Department of Pathology and Cell Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
| | - Célia A. Soares
- Department of Pathology and Cell Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
| | - Carol Mason
- Department of Pathology and Cell Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
- Department of Ophthalmology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
| |
Collapse
|
106
|
Abstract
To understand how neurons assemble to form functional circuits, it is necessary to obtain a detailed knowledge of their diversity and to define the developmental specification programs that give rise to this diversity. Invertebrates and vertebrates appear to share common developmental principles of neuronal specification in which cascades of transcription factors temporally pattern progenitors, while spatial cues modify the outcomes of this temporal patterning. Here, we highlight these conserved mechanisms and describe how they are used in distinct neural structures. We present the questions that remain for a better understanding of neuronal specification. Single-cell RNA profiling approaches will potentially shed light on these questions, allowing not only the characterization of neuronal diversity in adult brains, but also the investigation of the developmental trajectories leading to the generation and maintenance of this diversity.
Collapse
Affiliation(s)
- Isabel Holguera
- Department of Biology, New York University, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA. .,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
107
|
Mancinelli S, Lodato S. Decoding neuronal diversity in the developing cerebral cortex: from single cells to functional networks. Curr Opin Neurobiol 2018; 53:146-155. [DOI: 10.1016/j.conb.2018.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022]
|
108
|
Xie F, You L, Cai D, Liu M, Yue Y, Wang Y, Yuan K. Fast Inhibitory Decay Facilitates Adult-like Temporal Processing in Layer 5 of Developing Primary Auditory Cortex. Cereb Cortex 2018; 28:4319-4335. [PMID: 29121216 DOI: 10.1093/cercor/bhx284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/06/2017] [Indexed: 11/12/2022] Open
Abstract
The protracted maturational process of temporal processing in layer 4 (L4) of primary auditory cortex (A1) has been extensively studied. Accumulating evidences show that layer 5 (L5) receives direct thalamic inputs as well. How the temporal responses in L5 may developmentally emerge remains unclear. Using in vivo loose-patch recordings in rat A1, we found that putative pyramidal (Pyr) neurons in developing L5 exhibited adult-like stimulus-following ability but less bursting shortly after hearing onset. L5 Pyr neurons in adult A1 exhibited phase-locking similar to L4 neurons, while L5 fast-spiking (FS) neurons showed greater phase-locking at 7 and 12.5 pps. In developing L5, whole-cell recordings revealed inhibition with decay constant comparable to that in adult L5, thereby avoiding the summation of inhibition that contributed to the strong adaptation in L4. Given the targets of L5 outputs, the relatively precocious temporal processing in L5 might contribute to temporal response maturation in connected cortical and subcortical areas. Our findings were in agreement with the idea that L5 may be a "hub" for processing cortical inputs and outputs that can operate independently of L4.
Collapse
Affiliation(s)
- Fenghua Xie
- Department of Biomedical Engineering, School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Ling You
- Department of Biomedical Engineering, School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Dongqin Cai
- Department of Biomedical Engineering, School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Miaomiao Liu
- Department of Biomedical Engineering, School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Yin Yue
- Department of Biomedical Engineering, School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Yiwei Wang
- Department of Biomedical Engineering, School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Kexin Yuan
- Department of Biomedical Engineering, School of Medicine, IDG/McGovern Institute for Brain Research, Center for Brain-Inspired Computing Research, Tsinghua University, Beijing, China
| |
Collapse
|
109
|
Progressive divisions of multipotent neural progenitors generate late-born chandelier cells in the neocortex. Nat Commun 2018; 9:4595. [PMID: 30389944 PMCID: PMC6214958 DOI: 10.1038/s41467-018-07055-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/02/2018] [Indexed: 01/12/2023] Open
Abstract
Diverse γ-aminobutyric acid (GABA)-ergic interneurons provide different modes of inhibition to support circuit operation in the neocortex. However, the cellular and molecular mechanisms underlying the systematic generation of assorted neocortical interneurons remain largely unclear. Here we show that NKX2.1-expressing radial glial progenitors (RGPs) in the mouse embryonic ventral telencephalon divide progressively to generate distinct groups of interneurons, which occupy the neocortex in a time-dependent, early inside-out and late outside-in, manner. Notably, the late-born chandelier cells, one of the morphologically and physiologically highly distinguishable GABAergic interneurons, arise reliably from continuously dividing RGPs that produce non-chandelier cells initially. Selective removal of Partition defective 3, an evolutionarily conserved cell polarity protein, impairs RGP asymmetric cell division, resulting in premature depletion of RGPs towards the late embryonic stages and a consequent loss of chandelier cells. These results suggest that consecutive asymmetric divisions of multipotent RGPs generate diverse neocortical interneurons in a progressive manner. Diverse GABAergic neurons arise from progenitors in the medial ganglionic eminence. Here, the authors show these progenitors are progressively fate-restricted, with early-born interneurons occupying cortex in an “inside-out” pattern and later-born types like chandelier cells generated “outside-in”.
Collapse
|
110
|
Cerrato V, Parmigiani E, Figueres-Oñate M, Betizeau M, Aprato J, Nanavaty I, Berchialla P, Luzzati F, de’Sperati C, López-Mascaraque L, Buffo A. Multiple origins and modularity in the spatiotemporal emergence of cerebellar astrocyte heterogeneity. PLoS Biol 2018; 16:e2005513. [PMID: 30260948 PMCID: PMC6178385 DOI: 10.1371/journal.pbio.2005513] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 10/09/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
The morphological, molecular, and functional heterogeneity of astrocytes is under intense scrutiny, but how this diversity is ontogenetically achieved remains largely unknown. Here, by quantitative in vivo clonal analyses and proliferation studies, we demonstrate that the major cerebellar astrocyte types emerge according to an unprecedented and remarkably orderly developmental program comprising (i) a time-dependent decline in both clone size and progenitor multipotency, associated with clone allocation first to the hemispheres and then to the vermis(ii) distinctive clonal relationships among astrocyte types, revealing diverse lineage potentials of embryonic and postnatal progenitors; and (iii) stereotyped clone architectures and recurrent modularities that correlate to layer-specific dynamics of postnatal proliferation/differentiation. In silico simulations indicate that the sole presence of a unique multipotent progenitor at the source of the whole astrogliogenic program is unlikely and rather suggest the involvement of additional committed components. Astrocytes are abundant cells of the brain essential to support and shape neuronal activity. They can be grouped in different subclasses based on their remarkable variety of morphologies, molecular profiles, and specialized functions. Although different astrocyte types likely display specialized interactions with distinct neuron categories, the different classes of astrocytes have only partially been unmasked. How astrocyte heterogeneity is ontogenetically achieved remains largely unknown. Here we approached this question by studying the development of the main astrocyte types of the cerebellum. The reconstruction of developmental lineages in the mouse embryo combined with proliferation studies and computational modeling demonstrate that cerebellar astrocyte types emerge according to an unprecedented and remarkably orderly developmental program. Embryonic progenitor cells produce either only a single astrocyte type or more types. These distinct astrocyte lineages display stereotyped architectures and recurrent modularities. Moreover, the generation of astrocytes follows a well-defined spatiotemporal pattern, defined by a time-dependent allocation of astrocytes to distinct cerebellar territories and an inside-out sequence of differentiation, coupled with a decline over time in both progenitor amplification and capability to produce distinct astrocyte types. These results provide the first evidence that an ontogenetic program, tightly regulated in space and time, determines astrocyte heterogeneity.
Collapse
Affiliation(s)
- Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Turin, Italy
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
| | - María Figueres-Oñate
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute -CSIC-, Spanish National Research Council, Madrid, Spain
| | - Marion Betizeau
- Brain Research Institute, University of Zurich Irchel, Zurich, Switzerland
| | - Jessica Aprato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
| | - Ishira Nanavaty
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
| | - Paola Berchialla
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Federico Luzzati
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Turin, Italy
- Department of Life Sciences and System Biology, University of Turin, Turin, Italy
| | - Claudio de’Sperati
- Laboratory of Action, Perception and Cognition, Vita-Salute San Raffaele University, Milan, Italy
- Experimental Psychology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura López-Mascaraque
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute -CSIC-, Spanish National Research Council, Madrid, Spain
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Turin, Italy
- * E-mail:
| |
Collapse
|
111
|
Kawaguchi A. Temporal patterning of neocortical progenitor cells: How do they know the right time? Neurosci Res 2018; 138:3-11. [PMID: 30227161 DOI: 10.1016/j.neures.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
During mammalian neocortical development, neural progenitor cells undergo sequential division to produce different types of progenies. Regulation of when and how many cells with a specific fate are produced from neural progenitor cells, i.e., 'temporal patterning' for cytogenesis, is crucial for the formation of the functional neocortex. Recently advanced techniques for transcriptome profiling at the single-cell level provide a solid basis to investigate the molecular nature underlying temporal patterning, including examining the necessity of cell-cycle progression. Evidence has indicated that cell-intrinsic programs and extrinsic cues coordinately regulate the timing of both the change in the division mode of neural progenitors from proliferative to neurogenic and their laminar fate transition from deep-layer to upper-layer neurons. Epigenetic modulation, transcriptional cascades, and post-transcriptional regulation are reported to function as cell-intrinsic programs, whereas extrinsic cues from the environment or surrounding cells supposedly function in a negative feedback or positive switching manner for temporal patterning. These findings suggest that neural progenitor cells have intrinsic temporal programs that can progress cell-autonomously and cell-cycle independently, while extrinsic cues play a critical role in tuning the temporal programs to let neural progenitor cells know the 'right' time to progress.
Collapse
Affiliation(s)
- Ayano Kawaguchi
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
112
|
Mihalas AB, Hevner RF. Clonal analysis reveals laminar fate multipotency and daughter cell apoptosis of mouse cortical intermediate progenitors. Development 2018; 145:dev164335. [PMID: 30217810 PMCID: PMC6141770 DOI: 10.1242/dev.164335] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/29/2018] [Indexed: 01/21/2023]
Abstract
In developing cerebral cortex, most pyramidal-projection neurons are produced by intermediate progenitors (IPs), derived in turn from radial glial progenitors. Although IPs produce neurons for all cortical layers, it is unknown whether individual IPs produce multiple or single laminar fates, and the potential of IPs for extended proliferation remains uncertain. Previously, we found that, at the population level, early IPs (present during lower-layer neurogenesis) produce lower- and upper-layer neurons, whereas late IPs produce upper-layer neurons only. Here, we employed mosaic analysis with double markers (MADM) in mice to sparsely label early IP clones. Most early IPs produced 1-2 neurons for deep layers only. Less frequently, early IPs produced larger clones (up to 12 neurons) spanning lower and upper layers, or upper layers only. The majority of IP-derived clones (∼66%) were associated with asymmetric cell death after the first division. These data demonstrate that laminar fate is not predetermined, at least in some IPs. Rather, the heterogeneous sizes and laminar fates of early IP clones are correlated with cell division/death/differentiation choices and neuron birthdays, respectively.
Collapse
Affiliation(s)
- Anca B Mihalas
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Robert F Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98104, USA
| |
Collapse
|
113
|
Kelly SM, Raudales R, He M, Lee JH, Kim Y, Gibb LG, Wu P, Matho K, Osten P, Graybiel AM, Huang ZJ. Radial Glial Lineage Progression and Differential Intermediate Progenitor Amplification Underlie Striatal Compartments and Circuit Organization. Neuron 2018; 99:345-361.e4. [PMID: 30017396 PMCID: PMC6094944 DOI: 10.1016/j.neuron.2018.06.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/20/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
The circuitry of the striatum is characterized by two organizational plans: the division into striosome and matrix compartments, thought to mediate evaluation and action, and the direct and indirect pathways, thought to promote or suppress behavior. The developmental origins of these organizations and their developmental relationships are unknown, leaving a conceptual gap in understanding the cortico-basal ganglia system. Through genetic fate mapping, we demonstrate that striosome-matrix compartmentalization arises from a lineage program embedded in lateral ganglionic eminence radial glial progenitors mediating neurogenesis through two distinct types of intermediate progenitors (IPs). The early phase of this program produces striosomal spiny projection neurons (SPNs) through fate-restricted apical IPs (aIPSs) with limited capacity; the late phase produces matrix SPNs through fate-restricted basal IPs (bIPMs) with expanded capacity. Notably, direct and indirect pathway SPNs arise within both aIPS and bIPM pools, suggesting that striosome-matrix architecture is the fundamental organizational plan of basal ganglia circuitry.
Collapse
Affiliation(s)
- Sean M Kelly
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11790, USA
| | - Ricardo Raudales
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience, Stony Brook University, Stony Brook, NY 11790, USA
| | - Miao He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jannifer H Lee
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yongsoo Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Leif G Gibb
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Priscilla Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Katherine Matho
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Z Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
114
|
Uzquiano A, Gladwyn-Ng I, Nguyen L, Reiner O, Götz M, Matsuzaki F, Francis F. Cortical progenitor biology: key features mediating proliferation versus differentiation. J Neurochem 2018; 146:500-525. [PMID: 29570795 DOI: 10.1111/jnc.14338] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/26/2018] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
Abstract
The cerebral cortex is a highly organized structure whose development depends on diverse progenitor cell types, namely apical radial glia, intermediate progenitors, and basal radial glia cells, which are responsible for the production of the correct neuronal output. In recent years, these progenitor cell types have been deeply studied, particularly basal radial glia and their role in cortical expansion and gyrification. We review here a broad series of factors that regulate progenitor behavior and daughter cell fate. We first describe the different neuronal progenitor types, emphasizing the differences between lissencephalic and gyrencephalic species. We then review key factors shown to influence progenitor proliferation versus differentiation, discussing their roles in progenitor dynamics, neuronal production, and potentially brain size and complexity. Although spindle orientation has been considered a critical factor for mode of division and daughter cell output, we discuss other features that are emerging as crucial for these processes such as organelle and cell cycle dynamics. Additionally, we highlight the importance of adhesion molecules and the polarity complex for correct cortical development. Finally, we briefly discuss studies assessing progenitor multipotency and its possible contribution to the production of specific neuronal populations. This review hence summarizes recent aspects of cortical progenitor cell biology, and pinpoints emerging features critical for their behavior.
Collapse
Affiliation(s)
- Ana Uzquiano
- INSERM, UMR-S 839, Paris, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Ivan Gladwyn-Ng
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig Maximilians University Munich, Planegg/Munich, Germany.,Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilian University Munich, Planegg/Munich, Germany
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, Center for Developmental Biology, RIKEN Kobe Institute, Kobe, Hyogo, Japan
| | - Fiona Francis
- INSERM, UMR-S 839, Paris, France.,Sorbonne Université, Université Pierre et Marie Curie, Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
115
|
Fan X, Dong J, Zhong S, Wei Y, Wu Q, Yan L, Yong J, Sun L, Wang X, Zhao Y, Wang W, Yan J, Wang X, Qiao J, Tang F. Spatial transcriptomic survey of human embryonic cerebral cortex by single-cell RNA-seq analysis. Cell Res 2018; 28:730-745. [PMID: 29867213 PMCID: PMC6028726 DOI: 10.1038/s41422-018-0053-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/09/2018] [Accepted: 05/02/2018] [Indexed: 01/07/2023] Open
Abstract
The cellular complexity of human brain development has been intensively investigated, although a regional characterization of the entire human cerebral cortex based on single-cell transcriptome analysis has not been reported. Here, we performed RNA-seq on over 4,000 individual cells from 22 brain regions of human mid-gestation embryos. We identified 29 cell sub-clusters, which showed different proportions in each region and the pons showed especially high percentage of astrocytes. Embryonic neurons were not as diverse as adult neurons, although they possessed important features of their destinies in adults. Neuron development was unsynchronized in the cerebral cortex, as dorsal regions appeared to be more mature than ventral regions at this stage. Region-specific genes were comprehensively identified in each neuronal sub-cluster, and a large proportion of these genes were neural disease related. Our results present a systematic landscape of the regionalized gene expression and neuron maturation of the human cerebral cortex.
Collapse
Affiliation(s)
- Xiaoying Fan
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Biomedical Institute for Pioneering Investigation via Convergence and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China
| | - Ji Dong
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Biomedical Institute for Pioneering Investigation via Convergence and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China
| | - Suijuan Zhong
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology; Institute of Brain-Intelligence Science and Technology Zhangjiang Laboratory (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Shanghai Center for Brain Science and Intelligence Technology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuan Wei
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
| | - Qian Wu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology; Institute of Brain-Intelligence Science and Technology Zhangjiang Laboratory (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Shanghai Center for Brain Science and Intelligence Technology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liying Yan
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
| | - Jun Yong
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
| | - Le Sun
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology; Institute of Brain-Intelligence Science and Technology Zhangjiang Laboratory (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Shanghai Center for Brain Science and Intelligence Technology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoye Wang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
| | - Yangyu Zhao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
| | - Wei Wang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
| | - Jie Yan
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology; Institute of Brain-Intelligence Science and Technology Zhangjiang Laboratory (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Shanghai Center for Brain Science and Intelligence Technology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Institute for Brain Disorders, Beijing, 100069, China.
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China. .,Biomedical Institute for Pioneering Investigation via Convergence and Center for Reproductive Medicine, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
116
|
Abstract
Primary microcephaly (MCPH, for "microcephaly primary hereditary") is a disorder of brain development that results in a head circumference more than 3 standard deviations below the mean for age and gender. It has a wide variety of causes, including toxic exposures, in utero infections, and metabolic conditions. While the genetic microcephaly syndromes are relatively rare, studying these syndromes can reveal molecular mechanisms that are critical in the regulation of neural progenitor cells, brain size, and human brain evolution. Many of the causative genes for MCPH encode centrosomal proteins involved in centriole biogenesis. However, other MCPH genes fall under different mechanistic categories, notably DNA replication and repair. Recent gene discoveries and functional studies have implicated novel cellular processes, such as cytokinesis, centromere and kinetochore function, transmembrane or intracellular transport, Wnt signaling, and autophagy, as well as the apical polarity complex. Thus, MCPH genes implicate a wide variety of molecular and cellular mechanisms in the regulation of cerebral cortical size during development.
Collapse
Affiliation(s)
- Divya Jayaraman
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Harvard-MIT MD-PhD Program, Harvard Medical School, Boston, Massachusetts 02115, USA.,Current affiliation: Boston Combined Residency Program (Child Neurology), Boston Children's Hospital, Boston, Massachusetts 02115, USA;
| | - Byoung-Il Bae
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
117
|
Abstract
Understanding the development of the human brain in relation with evolution is an important frontier field in developmental biology. In particular, investigating the mechanisms underlying the greatly increased relative size and complexity of the cerebral cortex, the seat of our enhanced cognitive abilities, remains a fascinating yet largely unsolved question. Though many advances in our understanding have been gained from the study of animal models, as well as human genetics and embryology, large gaps remain in our knowledge of the molecular mechanisms that control human cortical development. Interestingly, many aspects of corticogenesis can be recapitulated in vitro from mouse and human embryonic or induced pluripotent stem cells (PSCs), using a variety of experimental systems from 2D models to organoids to xenotransplantation. This has provided the opportunity to study these processes in an accessible and physiologically relevant setting. In this chapter, we will discuss how conserved and divergent features of primate/human corticogenesis can be modeled and studied mechanistically using PSC-based models of corticogenesis. We will also review what has been learned through these approaches about pathological defects of human corticogenesis, from early neurogenesis to late neuronal maturation and connectivity.
Collapse
|
118
|
The Dorsal Wave of Neocortical Oligodendrogenesis Begins Embryonically and Requires Multiple Sources of Sonic Hedgehog. J Neurosci 2018; 38:5237-5250. [PMID: 29739868 DOI: 10.1523/jneurosci.3392-17.2018] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 01/06/2023] Open
Abstract
Neural progenitor cells in the developing dorsal forebrain give rise to excitatory neurons, astrocytes, and oligodendrocytes for the neocortex. While we are starting to gain a better understanding about the mechanisms that direct the formation of neocortical neurons and astrocytes, far less is known about the molecular mechanisms that instruct dorsal forebrain progenitors to make oligodendrocytes. In this study, we show that Sonic hedgehog (Shh) signaling is required in dorsal progenitors for their late embryonic transition to oligodendrogenesis. Using genetic lineage-tracing in mice of both sexes, we demonstrate that most oligodendrocytes in the embryonic neocortex derive from Emx1+ dorsal forebrain progenitors. Deletion of the Shh signaling effector Smo specifically in Emx1+ progenitors led to significantly decreased oligodendrocyte numbers in the embryonic neocortex. Conversely, knock-out of the Shh antagonist Sufu was sufficient to increase neocortical oligodendrogenesis. Using conditional knock-out strategies, we found that Shh ligand is supplied to dorsal progenitors through multiple sources. Loss of Shh from Dlx5/6+ interneurons caused a significant reduction in oligodendrocytes in the embryonic neocortex. This phenotype was identical to that observed upon Shh deletion from the entire CNS using Nestin-Cre, indicating that interneurons migrating into the neocortex from the subpallium are the primary neural source of Shh for dorsal oligodendrogenesis. Additionally, deletion of Shh from migrating interneurons together with the choroid plexus epithelium led to a more severe loss of oligodendrocytes, suggesting that the choroid plexus is an important non-neural source of Shh ligand. Together, our studies demonstrate that the dorsal wave of neocortical oligodendrogenesis occurs earlier than previously appreciated and requires highly regulated Shh signaling from multiple embryonic sources.SIGNIFICANCE STATEMENT Most neocortical oligodendrocytes are made by neural progenitors in the dorsal forebrain, but the mechanisms that specify this fate are poorly understood. This study identifies Sonic hedgehog (Shh) signaling as a critical pathway in the transition from neurogenesis to oligodendrogenesis in dorsal forebrain progenitors during late embryonic development. The timing of this neuron-to-glia "switch" coincides with the arrival of migrating interneurons into the dorsal germinal zone, which we identify as a critical source of Shh ligand, which drives oligodendrogenesis. Our data provide evidence for a new model in which Shh signaling increases in the dorsal forebrain late in embryonic development to provide a temporally regulated mechanism that initiates the third wave of neocortical oligodendrogenesis.
Collapse
|
119
|
Antón-Bolaños N, Espinosa A, López-Bendito G. Developmental interactions between thalamus and cortex: a true love reciprocal story. Curr Opin Neurobiol 2018; 52:33-41. [PMID: 29704748 DOI: 10.1016/j.conb.2018.04.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/13/2018] [Indexed: 01/08/2023]
Abstract
The developmental programs that control the specification of cortical and thalamic territories are maintained largely as independent processes. However, bulk of evidence demonstrates the requirement of the reciprocal interactions between cortical and thalamic neurons as key for the correct development of functional thalamocortical circuits. This reciprocal loop of connections is essential for sensory processing as well as for the execution of complex sensory-motor tasks. Here, we review recent advances in our understanding of how mutual collaborations between both brain regions define area patterning and cell differentiation in the thalamus and cortex.
Collapse
Affiliation(s)
- Noelia Antón-Bolaños
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant 03550, Spain
| | - Ana Espinosa
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant 03550, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant 03550, Spain.
| |
Collapse
|
120
|
Yoon KJ, Vissers C, Ming GL, Song H. Epigenetics and epitranscriptomics in temporal patterning of cortical neural progenitor competence. J Cell Biol 2018; 217:1901-1914. [PMID: 29666150 PMCID: PMC5987727 DOI: 10.1083/jcb.201802117] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022] Open
Abstract
Yoon et al. review epigenetic and epitranscriptomic mechanisms that regulate the lineage specification of neural progenitor cells in the developing brain. During embryonic brain development, neural progenitor/stem cells (NPCs) sequentially give rise to different subtypes of neurons and glia via a highly orchestrated process. To accomplish the ordered generation of distinct progenies, NPCs go through multistep transitions of their developmental competence. The molecular mechanisms driving precise temporal coordination of these transitions remains enigmatic. Epigenetic regulation, including changes in chromatin structures, DNA methylation, and histone modifications, has been extensively investigated in the context of cortical neurogenesis. Recent studies of chemical modifications on RNA, termed epitranscriptomics, have also revealed their critical roles in neural development. In this review, we discuss advances in understanding molecular regulation of the sequential lineage specification of NPCs in the embryonic mammalian brain with a focus on epigenetic and epitranscriptomic mechanisms. In particular, the discovery of lineage-specific gene transcripts undergoing rapid turnover in NPCs suggests that NPC developmental fate competence is determined much earlier, before the final cell division, and is more tightly controlled than previously appreciated. We discuss how multiple regulatory systems work in harmony to coordinate NPC behavior and summarize recent findings in the context of a model of epigenetic and transcriptional prepatterning to explain NPC developmental competence.
Collapse
Affiliation(s)
- Ki-Jun Yoon
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA
| | - Caroline Vissers
- The Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA.,The Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA .,The Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA.,The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
121
|
GFAP-Positive Progenitor Cell Production is Concentrated in Specific Encephalic Regions in Young Adult Mice. Neurosci Bull 2018; 34:769-778. [PMID: 29663175 DOI: 10.1007/s12264-018-0228-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/05/2018] [Indexed: 12/14/2022] Open
Abstract
Previous genetic fate-mapping studies have indicated that embryonic glial fibrillary acidic protein-positive (GFAP+) cells are multifunctional progenitor/neural stem cells that can produce astrocytes as well as neurons and oligodendrocytes throughout the adult mouse central nervous system (CNS). However, emerging evidence from recent studies indicates that GFAP+ cells adopt different cell fates and generate different cell types in different regions. Moreover, the fate of GFAP+ cells in the young adult mouse CNS is not well understood. In the present study, hGFAP-Cre/R26R transgenic mice were used to investigate the lineage of embryonic GFAP+ cells in the young adult mouse CNS. At postnatal day 21, we found that GFAP+ cells mainly generated NeuN+ neurons in the cerebral cortex (both ventral and dorsal), hippocampus, and cerebellum. Strangely, these cells were negative for the Purkinje cell marker calbindin in the cerebellum and the neuronal marker NeuN in the thalamus. Thus, contrary to previous studies, our genetic fate-mapping revealed that the cell fate of embryonic GFAP+ cells at the young adult stage is significantly different from that at the adult stage.
Collapse
|
122
|
Li H, Shuster SA, Li J, Luo L. Linking neuronal lineage and wiring specificity. Neural Dev 2018; 13:5. [PMID: 29653548 PMCID: PMC5899351 DOI: 10.1186/s13064-018-0102-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/14/2018] [Indexed: 02/01/2023] Open
Abstract
Brain function requires precise neural circuit assembly during development. Establishing a functional circuit involves multiple coordinated steps ranging from neural cell fate specification to proper matching between pre- and post-synaptic partners. How neuronal lineage and birth timing influence wiring specificity remains an open question. Recent findings suggest that the relationships between lineage, birth timing, and wiring specificity vary in different neuronal circuits. In this review, we summarize our current understanding of the cellular, molecular, and developmental mechanisms linking neuronal lineage and birth timing to wiring specificity in a few specific systems in Drosophila and mice, and review different methods employed to explore these mechanisms.
Collapse
Affiliation(s)
- Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - S. Andrew Shuster
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305 USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
123
|
Abstract
Cux1 and Cux2 are the vertebrate members of a family of homeodomain transcription factors (TF) containing Cut repeat DNA-binding sequences. Perturbation of their expression has been implicated in a wide variety of diseases and disorders, ranging from cancer to autism spectrum disorder (ASD). Within the nervous system, both genes are expressed during neurogenesis and in specific neuronal subpopulations. Their role during development and circuit specification is discussed here, with a particular focus on the cortex where their restricted expression in pyramidal neurons of the upper layers appears to be responsible for many of the specialized functions of these cells, and where their functions have been extensively investigated. Finally, we discuss how Cux TF represent a promising avenue for manipulating neuronal function and for reprogramming.
Collapse
|
124
|
Sultan KT, Shi SH. Generation of diverse cortical inhibitory interneurons. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.306. [PMID: 29115042 PMCID: PMC5814332 DOI: 10.1002/wdev.306] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 12/16/2022]
Abstract
First described by Ramon y Cajal as 'short-axon' cells over a century ago, inhibitory interneurons in the cerebral cortex make up ~20-30% of the neuronal milieu. A key feature of these interneurons is the striking structural and functional diversity, which allows them to modulate neural activity in diverse ways and ultimately endow neural circuits with remarkable computational power. Here, we review our current understanding of the generation of cortical interneurons, with a focus on recent efforts to bridge the gap between progenitor behavior and interneuron production, and how these aspects influence interneuron diversity and organization. WIREs Dev Biol 2018, 7:e306. doi: 10.1002/wdev.306 This article is categorized under: Nervous System Development > Vertebrates: General Principles.
Collapse
Affiliation(s)
- Khadeejah T Sultan
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medical College, New York, NY, USA
| | - Song-Hai Shi
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
125
|
Nomura T, Yamashita W, Gotoh H, Ono K. Species-Specific Mechanisms of Neuron Subtype Specification Reveal Evolutionary Plasticity of Amniote Brain Development. Cell Rep 2018; 22:3142-3151. [DOI: 10.1016/j.celrep.2018.02.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/19/2017] [Accepted: 02/22/2018] [Indexed: 10/17/2022] Open
|
126
|
Mukhtar T, Taylor V. Untangling Cortical Complexity During Development. J Exp Neurosci 2018; 12:1179069518759332. [PMID: 29551911 PMCID: PMC5846925 DOI: 10.1177/1179069518759332] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/23/2018] [Indexed: 12/23/2022] Open
Abstract
The cerebral cortex is composed of billions of morphologically and functionally distinct neurons. These neurons are produced and organized in a regimental fashion during development. The ability of neurons to encode and elicit complex cognitive and motor functions depends on their precise molecular processes, identity, and connectivity established during development. Elucidating the cellular and molecular mechanisms that regulate development of the neocortex has been a challenge for many years. The cerebral cortical neuronal subtypes are classified based on morphology, function, intrinsic synaptic properties, location, connectivity, and marker gene expression. Development of the neocortex requires an orchestration of a series of processes including the appropriate determination, migration and positioning of the neurons, acquisition of layer-specific transcriptional hallmarks, and formation of precise axonal projections and networks. Historically, fate mapping, genome-wide analysis, and transcriptome profiling have provided many opportunities for the characterization of neuronal subtypes. During the course of this review, we will address the regimental organization of the cerebral cortex, dissect the cellular subtypes that contribute to cortical complexity, and outline their molecular hallmarks to understand cellular diversity in the cerebral cortex with a focus on the excitatory neurons.
Collapse
Affiliation(s)
- Tanzila Mukhtar
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
127
|
España-Serrano L, Guerra Martín-Palanco N, Montero-Pedrazuela A, Pérez-Santamarina E, Vidal R, García-Consuegra I, Valdizán EM, Pazos A, Palomo T, Jiménez-Arriero MÁ, Guadaño-Ferraz A, Hoenicka J. The Addiction-Related Protein ANKK1 is Differentially Expressed During the Cell Cycle in Neural Precursors. Cereb Cortex 2018; 27:2809-2819. [PMID: 27166167 DOI: 10.1093/cercor/bhw129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
TaqIA is a polymorphism associated with addictions and dopamine-related traits. It is located in the ankyrin repeat and kinase domain containing 1 gene (ANKK1) nearby the gene for the dopamine D2 receptor (D2R). Since ANKK1 function is unknown, TaqIA-associated traits have been explained only by differences in D2R. Here we report ANKK1 studies in mouse and human brain using quantitative real-time PCR, Western blot, immunohistochemistry, and flow cytometry. ANKK1 mRNA and protein isoforms vary along neurodevelopment in the human and mouse brain. In mouse adult brain ANKK1 is located in astrocytes, nuclei of postmitotic neurons and neural precursors from neurogenic niches. In both embryos and adults, nuclei of neural precursors show significant variation of ANKK1 intensity. We demonstrate a correlation between ANKK1 and the cell cycle. Cell synchronization experiments showed a significant increment of ANKK1-kinase in mitotic cells while ANKK1-kinase overexpression affects G1 and M phase that were found to be modulated by ANKK1 alleles and apomorphine treatment. Furthermore, during embryonic neurogenesis ANKK1 was expressed in slow-dividing neuroblasts and rapidly dividing precursors which are mitotic cells. These results suggest a role of ANKK1 during the cell cycle in neural precursors thus providing biological support to brain structure involvement in the TaqIA-associated phenotypes.
Collapse
Affiliation(s)
- Laura España-Serrano
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Spain
| | - Noelia Guerra Martín-Palanco
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Spain
| | - Ana Montero-Pedrazuela
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Estela Pérez-Santamarina
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain.,Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Rebeca Vidal
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Spain.,Departamento de Fisiología y Farmacología, Universidad de Cantabria, Instituto de Biomedicina y Biotecnología de Cantabria (UC-CSIC-SODERCAN), Santander 39011, Spain
| | - Inés García-Consuegra
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Spain
| | - Elsa María Valdizán
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Spain.,Departamento de Fisiología y Farmacología, Universidad de Cantabria, Instituto de Biomedicina y Biotecnología de Cantabria (UC-CSIC-SODERCAN), Santander 39011, Spain
| | - Angel Pazos
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Spain.,Departamento de Fisiología y Farmacología, Universidad de Cantabria, Instituto de Biomedicina y Biotecnología de Cantabria (UC-CSIC-SODERCAN), Santander 39011, Spain
| | - Tomás Palomo
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Spain
| | - Miguel Ángel Jiménez-Arriero
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Spain
| | - Ana Guadaño-Ferraz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Janet Hoenicka
- Laboratory of Neurosciences, Psychiatry Department, Instituto de Investigación Sanitaria del Hospital Universitario 12 de Octubre, Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Spain.,Centro de Investigación Príncipe Felipe, Valencia 46012, Spain.,Laboratory of Neurogenetics and Molecular Medicine, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona 08950, Spain
| |
Collapse
|
128
|
Adnani L, Han S, Li S, Mattar P, Schuurmans C. Mechanisms of Cortical Differentiation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:223-320. [DOI: 10.1016/bs.ircmb.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
129
|
Mizutani KI. Physiological significance of multipolar cells generated from neural stem cells and progenitors for the establishment of neocortical cytoarchitecture. Genes Cells 2017; 23:6-15. [PMID: 29193520 DOI: 10.1111/gtc.12546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/29/2017] [Indexed: 11/28/2022]
Abstract
Neurogenesis encompasses an entire set of events that leads to the generation of newborn neurons from neural stem cells and more committed progenitor cells, including cell division, the production of migratory precursors and their progeny, differentiation and integration into circuits. In particular, the precise control of neuronal migration and morphological changes is essential for the development of the neocortex. Postmitotic cells within the intermediate zone have been found to transiently assume a characteristic "multipolar" morphology, after which a multipolar-to-bipolar transition occurs before the cells enter the cortical plate; however, the importance of this multipolar phase in the establishment of mature cortical cytoarchitecture and the precise genetic control of this phase remains largely unknown. Thus, this review article focuses on the multipolar phase in the developing neocortex. It begins by summarizing the molecular mechanism that underlies multipolar migration for the regulation of each step in multipolar phase in intermediate zone. The physiological significance of this multipolar phase in the establishment of mature cortical lamination and neurodevelopmental disorders associated with migration defects is then described.
Collapse
Affiliation(s)
- Ken-Ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| |
Collapse
|
130
|
Beattie R, Hippenmeyer S. Mechanisms of radial glia progenitor cell lineage progression. FEBS Lett 2017; 591:3993-4008. [PMID: 29121403 PMCID: PMC5765500 DOI: 10.1002/1873-3468.12906] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Abstract
The mammalian cerebral cortex is responsible for higher cognitive functions such as perception, consciousness, and acquiring and processing information. The neocortex is organized into six distinct laminae, each composed of a rich diversity of cell types which assemble into highly complex cortical circuits. Radial glia progenitors (RGPs) are responsible for producing all neocortical neurons and certain glia lineages. Here, we discuss recent discoveries emerging from clonal lineage analysis at the single RGP cell level that provide us with an inaugural quantitative framework of RGP lineage progression. We further discuss the importance of the relative contribution of intrinsic gene functions and non‐cell‐autonomous or community effects in regulating RGP proliferation behavior and lineage progression.
Collapse
Affiliation(s)
- Robert Beattie
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
131
|
Kctd13 deletion reduces synaptic transmission via increased RhoA. Nature 2017; 551:227-231. [PMID: 29088697 DOI: 10.1038/nature24470] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 10/04/2017] [Indexed: 11/08/2022]
Abstract
Copy-number variants of chromosome 16 region 16p11.2 are linked to neuropsychiatric disorders and are among the most prevalent in autism spectrum disorders. Of many 16p11.2 genes, Kctd13 has been implicated as a major driver of neurodevelopmental phenotypes. The function of KCTD13 in the mammalian brain, however, remains unknown. Here we delete the Kctd13 gene in mice and demonstrate reduced synaptic transmission. Reduced synaptic transmission correlates with increased levels of Ras homolog gene family, member A (RhoA), a KCTD13/CUL3 ubiquitin ligase substrate, and is reversed by RhoA inhibition, suggesting increased RhoA as an important mechanism. In contrast to a previous knockdown study, deletion of Kctd13 or kctd13 does not increase brain size or neurogenesis in mice or zebrafish, respectively. These findings implicate Kctd13 in the regulation of neuronal function relevant to neuropsychiatric disorders and clarify the role of Kctd13 in neurogenesis and brain size. Our data also reveal a potential role for RhoA as a therapeutic target in disorders associated with KCTD13 deletion.
Collapse
|
132
|
Furlan G, Cuccioli V, Vuillemin N, Dirian L, Muntasell AJ, Coolen M, Dray N, Bedu S, Houart C, Beaurepaire E, Foucher I, Bally-Cuif L. Life-Long Neurogenic Activity of Individual Neural Stem Cells and Continuous Growth Establish an Outside-In Architecture in the Teleost Pallium. Curr Biol 2017; 27:3288-3301.e3. [PMID: 29107546 PMCID: PMC5678050 DOI: 10.1016/j.cub.2017.09.052] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/14/2017] [Accepted: 09/25/2017] [Indexed: 01/08/2023]
Abstract
Spatiotemporal variations of neurogenesis are thought to account for the evolution of brain shape. In the dorsal telencephalon (pallium) of vertebrates, it remains unresolved which ancestral neurogenesis mode prefigures the highly divergent cytoarchitectures that are seen in extant species. To gain insight into this question, we developed genetic tools to generate here the first 4-dimensional (3D + birthdating time) map of pallium construction in the adult teleost zebrafish. Using a Tet-On-based genetic birthdating strategy, we identify a “sequential stacking” construction mode where neurons derived from the zebrafish pallial germinal zone arrange in outside-in, age-related layers from a central core generated during embryogenesis. We obtained no evidence for overt radial or tangential neuronal migrations. Cre-lox-mediated tracing, which included following Brainbow clones, further demonstrates that this process is sustained by the persistent neurogenic activity of individual pallial neural stem cells (NSCs) from embryo to adult. Together, these data demonstrate that the spatiotemporal control of NSC activity is an important driver of the macroarchitecture of the zebrafish adult pallium. This simple mode of pallium construction shares distinct traits with pallial genesis in mammals and non-mammalian amniotes such as birds or reptiles, suggesting that it may exemplify the basal layout from which vertebrate pallial architectures were elaborated. Neurons of the teleost pallium are arranged in concentric age-dependent layers Neurons of the central pallial domain, Dc, are born during embryogenesis Most pallial neurons are generated from ventricular her4-positive radial glia The majority of individual pallial radial glia are neurogenic throughout life
Collapse
Affiliation(s)
- Giacomo Furlan
- Team Zebrafish Neurogenetics, Paris-Saclay Institute for Neuroscience (Neuro-PSI), UMR 9197, CNRS-Université Paris-Sud, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Valentina Cuccioli
- Team Zebrafish Neurogenetics, Paris-Saclay Institute for Neuroscience (Neuro-PSI), UMR 9197, CNRS-Université Paris-Sud, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; Unit Zebrafish Neurogenetics, Developmental and Stem Cell Biology Department, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France; CNRS UMR 3738, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Nelly Vuillemin
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS UMR 7645 and INSERM U1182, 91128 Palaiseau, France
| | - Lara Dirian
- Team Zebrafish Neurogenetics, Paris-Saclay Institute for Neuroscience (Neuro-PSI), UMR 9197, CNRS-Université Paris-Sud, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Anna Janue Muntasell
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, IoPPN, King's College London, London SE1 1UL, UK
| | - Marion Coolen
- Team Zebrafish Neurogenetics, Paris-Saclay Institute for Neuroscience (Neuro-PSI), UMR 9197, CNRS-Université Paris-Sud, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; Unit Zebrafish Neurogenetics, Developmental and Stem Cell Biology Department, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France; CNRS UMR 3738, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Nicolas Dray
- Team Zebrafish Neurogenetics, Paris-Saclay Institute for Neuroscience (Neuro-PSI), UMR 9197, CNRS-Université Paris-Sud, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; Unit Zebrafish Neurogenetics, Developmental and Stem Cell Biology Department, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France; CNRS UMR 3738, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Sébastien Bedu
- Team Zebrafish Neurogenetics, Paris-Saclay Institute for Neuroscience (Neuro-PSI), UMR 9197, CNRS-Université Paris-Sud, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; Unit Zebrafish Neurogenetics, Developmental and Stem Cell Biology Department, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France; CNRS UMR 3738, 25 Rue du Dr. Roux, 75015 Paris, France
| | - Corinne Houart
- Centre for Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, IoPPN, King's College London, London SE1 1UL, UK
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, École Polytechnique, CNRS UMR 7645 and INSERM U1182, 91128 Palaiseau, France
| | - Isabelle Foucher
- Team Zebrafish Neurogenetics, Paris-Saclay Institute for Neuroscience (Neuro-PSI), UMR 9197, CNRS-Université Paris-Sud, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; Unit Zebrafish Neurogenetics, Developmental and Stem Cell Biology Department, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France; CNRS UMR 3738, 25 Rue du Dr. Roux, 75015 Paris, France.
| | - Laure Bally-Cuif
- Team Zebrafish Neurogenetics, Paris-Saclay Institute for Neuroscience (Neuro-PSI), UMR 9197, CNRS-Université Paris-Sud, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France; Unit Zebrafish Neurogenetics, Developmental and Stem Cell Biology Department, Institut Pasteur, 25 Rue du Dr Roux, 75015 Paris, France; CNRS UMR 3738, 25 Rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
133
|
Martínez-Cerdeño V, García-Moreno F, Tosches MA, Csillag A, Manger PR, Molnár Z. Update on forebrain evolution: From neurogenesis to thermogenesis. Semin Cell Dev Biol 2017; 76:15-22. [PMID: 28964836 DOI: 10.1016/j.semcdb.2017.09.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 01/25/2023]
Abstract
Comparative developmental studies provide growing understanding of vertebrate forebrain evolution. This short review directs the spotlight to some newly emerging aspects, including the evolutionary origin of the proliferative region known as the subventricular zone (SVZ) and of intermediate progenitor cells (IPCs) that populate the SVZ, neural circuits that originated within homologous regions across all amniotes, and the role of thermogenesis in the acquisition of an increased brain size. These data were presented at the 8th European Conference on Comparative Neurobiology.
Collapse
Affiliation(s)
- Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine, UC Davis, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children Northern California, USA; MIND Institute, UC Davis School of Medicine, CA, USA.
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Parque Científico UPV/EHU Edif. Sede, E-48940 Leioa, Spain
| | | | - András Csillag
- Department of Anatomy, Histology and Embryology, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of Witwatersrand, South Africa
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK.
| |
Collapse
|
134
|
Govindan S, Jabaudon D. Coupling progenitor and neuronal diversity in the developing neocortex. FEBS Lett 2017; 591:3960-3977. [PMID: 28895133 DOI: 10.1002/1873-3468.12846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 12/16/2022]
Abstract
The adult neocortex is composed of several types of glutamatergic neurons, which are sequentially born from progenitors during development. The extent and nature of progenitor diversity, and how it relates to neuronal diversity, is still poorly understood. In this review, we discuss key features of neocortical progenitors across several species, including their morphological properties, cell cycling behaviour and molecular signatures, and how these features relate to the competence of these cells to generate distinct types of progenies.
Collapse
Affiliation(s)
| | - Denis Jabaudon
- Department of Basic Neuroscience, University of Geneva, Switzerland
| |
Collapse
|
135
|
Li X, Xie J, Hei M, Tang J, Wang Y, Förster E, Zhao S. High level of CTP synthase induces formation of cytoophidia in cortical neurons and impairs corticogenesis. Histochem Cell Biol 2017; 149:61-73. [DOI: 10.1007/s00418-017-1612-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 12/17/2022]
|
136
|
The Future Vocation of Neural Stem Cells: Lineage Commitment in Brain Development and Evolution. Neurochem Res 2017; 43:162-165. [PMID: 28836066 DOI: 10.1007/s11064-017-2380-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/13/2017] [Accepted: 08/08/2017] [Indexed: 02/01/2023]
Abstract
Understanding the fate commitment of neural stem cells is critical to identify the regulatory mechanisms in developing brains. Genetic lineage-tracing has provided a powerful strategy to unveil the heterogeneous nature of stem cells and their descendants. However, recent studies have reported controversial data regarding the heterogeneity of neural stem cells in the developing mouse neocortex, which prevents a decisive conclusion on this issue. Here, we review the progress that has been made using lineage-tracing analyses of the developing neocortex and discuss stem cell heterogeneity from the viewpoint of comparative and evolutionary biology.
Collapse
|
137
|
Kaplan ES, Ramos-Laguna KA, Mihalas AB, Daza RAM, Hevner RF. Neocortical Sox9+ radial glia generate glutamatergic neurons for all layers, but lack discernible evidence of early laminar fate restriction. Neural Dev 2017; 12:14. [PMID: 28814327 DOI: 10.1186/s13064-017-0091-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/07/2017] [Indexed: 11/10/2022] Open
Abstract
Glutamatergic neurons in the cerebral cortex are derived from embryonic neural stem cells known as radial glial progenitors (RGPs). Early RGPs, present at the onset of cortical neurogenesis, are classically thought to produce columnar clones of glutamatergic neurons spanning the cortical layers. Recently, however, it has been reported that a subset of early RGPs may undergo early commitment to upper layer neuron fates, thus bypassing genesis of deep layer neurons. However, the latter mode of early RGP differentiation was not confirmed in some other studies, and remains controversial. To further investigate the clonal output from early RGPs, we employed genetic lineage tracing driven by Sox9, a transcription factor gene that is expressed in all early RGPs. We found that early RGPs produced columnar clones spanning all cortical layers, with no evidence of significant laminar fate restriction. These data support the classic progressive restriction model of cortical neurogenesis, and suggest that early RGPs do not undergo early commitment to only upper or lower layer fates.
Collapse
Affiliation(s)
- E S Kaplan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - K A Ramos-Laguna
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - A B Mihalas
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - R A M Daza
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - R F Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA. .,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, 98104, USA.
| |
Collapse
|
138
|
Neural Stem Cells to Cerebral Cortex: Emerging Mechanisms Regulating Progenitor Behavior and Productivity. J Neurosci 2017; 36:11394-11401. [PMID: 27911741 DOI: 10.1523/jneurosci.2359-16.2016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/23/2016] [Accepted: 08/30/2016] [Indexed: 12/16/2022] Open
Abstract
This review accompanies a 2016 SFN mini-symposium presenting examples of current studies that address a central question: How do neural stem cells (NSCs) divide in different ways to produce heterogeneous daughter types at the right time and in proper numbers to build a cerebral cortex with the appropriate size and structure? We will focus on four aspects of corticogenesis: cytokinesis events that follow apical mitoses of NSCs; coordinating abscission with delamination from the apical membrane; timing of neurogenesis and its indirect regulation through emergence of intermediate progenitors; and capacity of single NSCs to generate the correct number and laminar fate of cortical neurons. Defects in these mechanisms can cause microcephaly and other brain malformations, and understanding them is critical to designing diagnostic tools and preventive and corrective therapies.
Collapse
|
139
|
Jabaudon D. Fate and freedom in developing neocortical circuits. Nat Commun 2017; 8:16042. [PMID: 28671189 PMCID: PMC5500875 DOI: 10.1038/ncomms16042] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/23/2017] [Indexed: 12/22/2022] Open
Abstract
The activity of neuronal circuits of the neocortex underlies our ability to perceive the world and interact with our environment. During development, these circuits emerge from dynamic interactions between cell-intrinsic, genetically determined programs and input/activity-dependent signals, which together shape these circuits into adulthood. Building on a large body of experimental work, several recent technological developments now allow us to interrogate these nature–nurture interactions with single gene/single input/single-cell resolution. Focusing on excitatory glutamatergic neurons, this review discusses the genetic and input-dependent mechanisms controlling how individual cortical neurons differentiate into specialized cells to assemble into stereotypical local circuits within global, large-scale networks.
Proper functioning of the neocortex – the center of higher-order brain functions – depends on the correct assembly of neocortical neural circuits during development. Here the author discusses how cell-intrinsic developmental programs and activity-dependent signals together shape the formation of neocortical circuits.
Collapse
Affiliation(s)
- Denis Jabaudon
- Department of Basic Neurosciences, Geneva University, 1 rue Michel Servet, 1211 Geneva, Switzerland.,Clinic of Neurology, Geneva University Hospital, 1 rue Michel Servet, 1211 Geneva, Switzerland.,Geneva Neurocenter, Geneva University, 1 rue Michel Servet, 1211 Geneva, Switzerland
| |
Collapse
|
140
|
Neurog2 and Ascl1 together regulate a postmitotic derepression circuit to govern laminar fate specification in the murine neocortex. Proc Natl Acad Sci U S A 2017; 114:E4934-E4943. [PMID: 28584103 DOI: 10.1073/pnas.1701495114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A derepression mode of cell-fate specification involving the transcriptional repressors Tbr1, Fezf2, Satb2, and Ctip2 operates in neocortical projection neurons to specify six layer identities in sequence. Less well understood is how laminar fate transitions are regulated in cortical progenitors. The proneural genes Neurog2 and Ascl1 cooperate in progenitors to control the temporal switch from neurogenesis to gliogenesis. Here we asked whether these proneural genes also regulate laminar fate transitions. Several defects were observed in the derepression circuit in Neurog2-/-;Ascl1-/- mutants: an inability to repress expression of Tbr1 (a deep layer VI marker) during upper-layer neurogenesis, a loss of Fezf2+/Ctip2+ layer V neurons, and precocious differentiation of normally late-born, Satb2+ layer II-IV neurons. Conversely, in stable gain-of-function transgenics, Neurog2 promoted differentiative divisions and extended the period of Tbr1+/Ctip2+ deep-layer neurogenesis while reducing Satb2+ upper-layer neurogenesis. Similarly, acute misexpression of Neurog2 in early cortical progenitors promoted Tbr1 expression, whereas both Neurog2 and Ascl1 induced Ctip2. However, Neurog2 was unable to influence the derepression circuit when misexpressed in late cortical progenitors, and Ascl1 repressed only Satb2. Nevertheless, neurons derived from late misexpression of Neurog2 and, to a lesser extent, Ascl1, extended aberrant subcortical axon projections characteristic of early-born neurons. Finally, Neurog2 and Ascl1 altered the expression of Ikaros and Foxg1, known temporal regulators. Proneural genes thus act in a context-dependent fashion as early determinants, promoting deep-layer neurogenesis in early cortical progenitors via input into the derepression circuit while also influencing other temporal regulators.
Collapse
|
141
|
Fame RM, Dehay C, Kennedy H, Macklis JD. Subtype-Specific Genes that Characterize Subpopulations of Callosal Projection Neurons in Mouse Identify Molecularly Homologous Populations in Macaque Cortex. Cereb Cortex 2017; 27:1817-1830. [PMID: 26874185 DOI: 10.1093/cercor/bhw023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Callosal projection neurons (CPN) interconnect the neocortical hemispheres via the corpus callosum and are implicated in associative integration of multimodal information. CPN have undergone differential evolutionary elaboration, leading to increased diversity of cortical neurons-and more extensive and varied connections in neocortical gray and white matter-in primates compared with rodents. In mouse, distinct sets of genes are enriched in discrete subpopulations of CPN, indicating the molecular diversity of rodent CPN. Elements of rodent CPN functional and organizational diversity might thus be present in the further elaborated primate cortex. We address the hypothesis that genes controlling mouse CPN subtype diversity might reflect molecular patterns shared among mammals that arose prior to the divergence of rodents and primates. We find that, while early expression of the examined CPN-enriched genes, and postmigratory expression of these CPN-enriched genes in deep layers are highly conserved (e.g., Ptn, Nnmt, Cited2, Dkk3), in contrast, the examined genes expressed by superficial layer CPN show more variable levels of conservation (e.g., EphA3, Chn2). These results suggest that there has been evolutionarily differential retraction and elaboration of superficial layer CPN subpopulations between mouse and macaque, with independent derivation of novel populations in primates. Together, these data inform future studies regarding CPN subpopulations that are unique to primates and rodents, and indicate putative evolutionary relationships.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Colette Dehay
- Inserm U1208, Stem Cell and Brain Research Institute, Bron, France.,Université de Lyon, Université Lyon 1, Bron, France
| | - Henry Kennedy
- Inserm U1208, Stem Cell and Brain Research Institute, Bron, France.,Université de Lyon, Université Lyon 1, Bron, France
| | - Jeffrey D Macklis
- Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
142
|
Saade M, Gonzalez-Gobartt E, Escalona R, Usieto S, Martí E. Shh-mediated centrosomal recruitment of PKA promotes symmetric proliferative neuroepithelial cell division. Nat Cell Biol 2017; 19:493-503. [PMID: 28446817 DOI: 10.1038/ncb3512] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/16/2017] [Indexed: 12/18/2022]
Abstract
Tight control of the balance between self-expanding symmetric and self-renewing asymmetric neural progenitor divisions is crucial to regulate the number of cells in the developing central nervous system. We recently demonstrated that Sonic hedgehog (Shh) signalling is required for the expansion of motor neuron progenitors by maintaining symmetric divisions. Here we show that activation of Shh/Gli signalling in dividing neuroepithelial cells controls the symmetric recruitment of PKA to the centrosomes that nucleate the mitotic spindle, maintaining symmetric proliferative divisions. Notably, Shh signalling upregulates the expression of pericentrin, which is required to dock PKA to the centrosomes, which in turn exerts a positive feedback onto Shh signalling. Thus, by controlling centrosomal protein assembly, we propose that Shh signalling overcomes the intrinsic asymmetry at the centrosome during neuroepithelial cell division, thereby promoting self-expanding symmetric divisions and the expansion of the progenitor pool.
Collapse
Affiliation(s)
- Murielle Saade
- Instituto de Biología Molecular de Barcelona, CSIC, ParcCientífic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elena Gonzalez-Gobartt
- Instituto de Biología Molecular de Barcelona, CSIC, ParcCientífic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Rene Escalona
- Instituto de Biología Molecular de Barcelona, CSIC, ParcCientífic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Susana Usieto
- Instituto de Biología Molecular de Barcelona, CSIC, ParcCientífic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elisa Martí
- Instituto de Biología Molecular de Barcelona, CSIC, ParcCientífic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain
| |
Collapse
|
143
|
Sweeney NT, James KN, Nistorica A, Lorig-Roach RM, Feldheim DA. Expression of transcription factors divides retinal ganglion cells into distinct classes. J Comp Neurol 2017; 527:225-235. [PMID: 28078709 DOI: 10.1002/cne.24172] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022]
Abstract
Retinal ganglion cells (RGCs) are tasked with transmitting all light information from the eye to the retinal recipient areas of the brain. RGCs can be classified into many different types by morphology, gene expression, axonal projections, and functional responses to different light stimuli. Ultimately, these classification systems should be unified into an all-encompassing taxonomy. Toward that end, we show here that nearly all RGCs express either Islet-2 (Isl2), Tbr2, or a combination of Satb1 and Satb2. We present gene expression data supporting the hypothesis that Satb1 and Satb2 are expressed in ON-OFF direction-selective (DS) RGCs, complementing our previous work demonstrating that RGCs that express Isl2 and Tbr2 are non-DS and non-image-forming, respectively. Expression of these transcription factors emerges at distinct embryonic ages and only in postmitotic cells. Finally, we demonstrate that these transcription factor-defined RGC classes are born throughout RGC genesis.
Collapse
Affiliation(s)
- Neal T Sweeney
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Kiely N James
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Andreea Nistorica
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - Ryan M Lorig-Roach
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| | - David A Feldheim
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California
| |
Collapse
|
144
|
Wu ZQ, Li D, Huang Y, Chen XP, Huang W, Liu CF, Zhao HQ, Xu RX, Cheng M, Schachner M, Ma QH. Caspr Controls the Temporal Specification of Neural Progenitor Cells through Notch Signaling in the Developing Mouse Cerebral Cortex. Cereb Cortex 2017; 27:1369-1385. [PMID: 26740489 DOI: 10.1093/cercor/bhv318] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The generation of layer-specific neurons and astrocytes by radial glial cells during development of the cerebral cortex follows a precise temporal sequence, which is regulated by intrinsic and extrinsic factors. The molecular mechanisms controlling the timely generation of layer-specific neurons and astrocytes remain not fully understood. In this study, we show that the adhesion molecule contactin-associated protein (Caspr), which is involved in the maintenance of the polarized domains of myelinated axons, is essential for the timing of generation of neurons and astrocytes in the developing mouse cerebral cortex. Caspr is expressed by radial glial cells, which are neural progenitor cells that generate both neurons and astrocytes. Absence of Caspr in neural progenitor cells delays the production cortical neurons and induces precocious formation of cortical astrocytes, without affecting the numbers of progenitor cells. At the molecular level, Caspr cooperates with the intracellular domain of Notch to repress transcription of the Notch effector Hes1. Suppression of Notch signaling via a Hes1 shRNA rescues the abnormal neurogenesis and astrogenesis in Caspr-deficient mice. These findings establish Caspr as a novel key regulator that controls the temporal specification of cell fate in radial glial cells of the developing cerebral cortex through Notch signaling.
Collapse
Affiliation(s)
- Zhi-Qiang Wu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Di Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Ya Huang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Xi-Ping Chen
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Wenhui Huang
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg D-66421, Germany
| | - Chun-Feng Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - He-Qing Zhao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Ru-Xiang Xu
- Affiliated Bayi Brain Hospital, Beijing Military Hospital, Southern Medical University, Beijing 100070, China
| | - Mei Cheng
- Binzhou Medical University, Yantai, Shandong Province 264000, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| |
Collapse
|
145
|
Usui N, Co M, Harper M, Rieger MA, Dougherty JD, Konopka G. Sumoylation of FOXP2 Regulates Motor Function and Vocal Communication Through Purkinje Cell Development. Biol Psychiatry 2017; 81:220-230. [PMID: 27009683 PMCID: PMC4983264 DOI: 10.1016/j.biopsych.2016.02.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mutations in the gene encoding the transcription factor forkhead box P2 (FOXP2) result in brain developmental abnormalities, including reduced gray matter in both human patients and rodent models and speech and language deficits. However, neither the region-specific function of FOXP2 in the brain, in particular the cerebellum, nor the effects of any posttranslational modifications of FOXP2 in the brain and disorders have been explored. METHODS We characterized sumoylation of FOXP2 biochemically and analyzed the region-specific function and sumoylation of FOXP2 in the developing mouse cerebellum. Using in utero electroporation to manipulate the sumoylation state of FOXP2 as well as Foxp2 expression levels in Purkinje cells of the cerebellum in vivo, we reduced Foxp2 expression approximately 40% in the mouse cerebellum. Such a reduction approximates the haploinsufficiency observed in human patients who demonstrate speech and language impairments. RESULTS We identified sumoylation of FOXP2 at K674 (K673 in mice) in the cerebellum of neonates. In vitro co-immunoprecipitation and in vivo colocalization experiments suggest that PIAS3 acts as the small ubiquitin-like modifier E3 ligase for FOXP2 sumoylation. This sumoylation modifies transcriptional regulation by FOXP2. We demonstrated that FOXP2 sumoylation is required for regulation of cerebellar motor function and vocal communication, likely through dendritic outgrowth and arborization of Purkinje cells in the mouse cerebellum. CONCLUSIONS Sumoylation of FOXP2 in neonatal mouse cerebellum regulates Purkinje cell development and motor functions and vocal communication, demonstrating evidence for sumoylation in regulating mammalian behaviors.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-911, USA
| | - Marissa Co
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-911, USA
| | - Matthew Harper
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-911, USA
| | - Michael A. Rieger
- Department of Genetics and Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph D. Dougherty
- Department of Genetics and Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
146
|
Calvente I, Vázquez-Pérez A, Fernández MF, Núñez MI, Múñoz-Hoyos A. Radiofrequency exposure in the Neonatal Medium Care Unit. ENVIRONMENTAL RESEARCH 2017; 152:66-72. [PMID: 27741450 DOI: 10.1016/j.envres.2016.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 06/06/2023]
Abstract
The aims of this study were to characterize electromagnetic fields of radiofrequency (RF-EMF) levels generated in a Neonatal Medium Care Unit and to analyze RF-EMF levels inside unit's incubators. Spot and long-term measurements were made with a dosimeter. The spot measurement mean was 1.51±0.48V/m. Higher values were found in the proximity to the window and to the incubator evaluated. Mean field strength for the entire period of 17h was 0.81 (±0.07)V/m and the maximum value was 1.58V/m for long-term RF-EMF measurements in the incubator. Values found during the night period were higher than those found during the day period. It is important to consider RF-EMF exposure levels in neonatal care units, due to some evidence of adverse health effects found in children and adults. Characterization of RF-EMF exposure may be important to further investigate the mechanisms and underlying effects of electromagnetic fields (EMF) on infant health. A prudent avoidance strategy should be adopted because newborns are at a vulnerable stage of development and the actual impact of EMF on premature infants is unknown.
Collapse
Affiliation(s)
- I Calvente
- Unit Research Support of the San Cecilio University Hospital, Biosanitary Institute of Granada (ibs.GRANADA), University Hospitals of Granada/University of Granada, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Av. de la Investigación, 11, torre A, planta 11, 18016 Granada, Spain
| | | | - M F Fernández
- Unit Research Support of the San Cecilio University Hospital, Biosanitary Institute of Granada (ibs.GRANADA), University Hospitals of Granada/University of Granada, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Av. de la Investigación, 11, torre A, planta 11, 18016 Granada, Spain; CIBER en Epidemiología y Salud Pública (CIBERESP), Spain
| | - M I Núñez
- Unit Research Support of the San Cecilio University Hospital, Biosanitary Institute of Granada (ibs.GRANADA), University Hospitals of Granada/University of Granada, Granada, Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, Av. de la Investigación, 11, torre A, planta 11, 18016 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Spain; CIBER en Epidemiología y Salud Pública (CIBERESP), Spain.
| | - A Múñoz-Hoyos
- Department of Pediatrics, University of Granada, Spain
| |
Collapse
|
147
|
Houlihan SL, Lanctot AA, Guo Y, Feng Y. Upregulation of neurovascular communication through filamin abrogation promotes ectopic periventricular neurogenesis. eLife 2016; 5. [PMID: 27664421 PMCID: PMC5050022 DOI: 10.7554/elife.17823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/23/2016] [Indexed: 02/02/2023] Open
Abstract
Neuronal fate-restricted intermediate progenitors (IPs) are derived from the multipotent radial glia (RGs) and serve as the direct precursors for cerebral cortical neurons, but factors that control their neurogenic plasticity remain elusive. Here we report that IPs’ neuron production is enhanced by abrogating filamin function, leading to the generation of periventricular neurons independent of normal neocortical neurogenesis and neuronal migration. Loss of Flna in neural progenitor cells (NPCs) led RGs to undergo changes resembling epithelial-mesenchymal transition (EMT) along with exuberant angiogenesis that together changed the microenvironment and increased neurogenesis of IPs. We show that by collaborating with β-arrestin, Flna maintains the homeostatic signaling between the vasculature and NPCs, and loss of this function results in escalated Vegfa and Igf2 signaling, which exacerbates both EMT and angiogenesis to further potentiate IPs’ neurogenesis. These results suggest that the neurogenic potential of IPs may be boosted in vivo by manipulating Flna-mediated neurovascular communication. DOI:http://dx.doi.org/10.7554/eLife.17823.001
Collapse
Affiliation(s)
- Shauna L Houlihan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, United States.,Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States.,Driskill Graduate Program, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Alison A Lanctot
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, United States.,Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States.,Driskill Graduate Program, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Yan Guo
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, United States.,Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Yuanyi Feng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, United States.,Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States
| |
Collapse
|
148
|
Kaplan S, Deniz OG, Önger ME, Türkmen AP, Yurt KK, Aydın I, Altunkaynak BZ, Davis D. Electromagnetic field and brain development. J Chem Neuroanat 2016; 75:52-61. [DOI: 10.1016/j.jchemneu.2015.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
|
149
|
Karten HJ. Vertebrate brains and evolutionary connectomics: on the origins of the mammalian 'neocortex'. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0060. [PMID: 26554047 DOI: 10.1098/rstb.2015.0060] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The organization of the non-mammalian forebrain had long puzzled neurobiologists. Unlike typical mammalian brains, the telencephalon is not organized in a laminated 'cortical' manner, with distinct cortical areas dedicated to individual sensory modalities or motor functions. The two major regions of the telencephalon, the basal ventricular ridge (BVR) and the dorsal ventricular ridge (DVR), were loosely referred to as being akin to the mammalian basal ganglia. The telencephalon of non-mammalian vertebrates appears to consist of multiple 'subcortical' groups of cells. Analysis of the nuclear organization of the avian brain, its connections, molecular properties and physiology, and organization of its pattern of circuitry and function relative to that of mammals, collectively referred to as 'evolutionary connectomics', revealed that only a restricted portion of the BVR is homologous to the basal ganglia of mammals. The remaining dorsal regions of the DVR, wulst and arcopallium of the avian brain contain telencephalic inputs and outputs remarkably similar to those of the individual layers of the mammalian 'neocortex', hippocampus and amygdala, with instances of internuclear connections strikingly similar to those found between cortical layers and within radial 'columns' in the mammalian sensory and motor cortices. The molecular properties of these 'nuclei' in birds and reptiles are similar to those of the corresponding layers of the mammalian neocortex. The fundamental pathways and cell groups of the auditory, visual and somatosensory systems of the thalamus and telencephalon are homologous at the cellular, circuit, network and gene levels, and are of great antiquity. A proposed altered migration of these homologous neurons and circuits during development is offered as a mechanism that may account for the altered configuration of mammalian telencephalae.
Collapse
Affiliation(s)
- Harvey J Karten
- Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
150
|
Chen X, Wang L, Chen B, Yue J, Zhu G, Zhang C, Liu S, Yang H. Down-Regulated Expression of Liver X Receptor beta in Cortical Lesions of Patients with Focal Cortical Dysplasia. J Mol Neurosci 2016; 60:223-31. [PMID: 27437943 DOI: 10.1007/s12031-016-0795-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
Abstract
Focal cortical dysplasia (FCD) is strongly associated with medically intractable epilepsy. Studies suggest that liver X receptor beta (LXRβ) may participate in the pathogenesis of FCD. The present study investigated the expression pattern of LXRβ in FCD and the distribution of LXRβ in different neural precursor cells. Twenty-five surgical specimens from FCD patients and 11 age-matched control samples from autopsies were included in our study. Protein levels and distribution were detected by western blot, immunohistochemistry, and immunofluorescence staining. We found that (1) the level of LXRβ protein was markedly reduced in FCD. (2) LXRβ staining was weaker in the dysplastic cortices of FCD and was mainly observed in neuronal microcolumns, and malformed cells. (3) LXRβ was co-localized with radial glial cells (RGCs) markers and oligodendrocyte precursor cells (OPCs) markers in malformed cells. (4) RGCs marker and OPCs marker were down-regulated while LXRβ downstream factors were up-regulated in FCD specimens. Taken together, our results indicate that LXRβ may interact with β-catenin to regulate the generation of OPCs and the transformation of RGCs. LXRβ therefore potentially contributes to the pathogenesis of FCD.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Lukang Wang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Bing Chen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Jiong Yue
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Gang Zhu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Chunqing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Shiyong Liu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China
| | - Hui Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing, 400037, China.
| |
Collapse
|