101
|
Kostmann A, Kratochvíl L, Rovatsos M. Poorly differentiated XX/XY sex chromosomes are widely shared across skink radiation. Proc Biol Sci 2021; 288:20202139. [PMID: 33468012 PMCID: PMC7893288 DOI: 10.1098/rspb.2020.2139] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/23/2020] [Indexed: 11/12/2022] Open
Abstract
Differentiated sex chromosomes are believed to be evolutionarily stable, while poorly differentiated sex chromosomes are considered to be prone to turnovers. With around 1700 currently known species forming ca 15% of reptile species diversity, skinks (family Scincidae) are a very diverse group of squamates known for their large ecological and morphological variability. Skinks generally have poorly differentiated and cytogenetically indistinguishable sex chromosomes, and their sex determination was suggested to be highly variable. Here, we determined X-linked genes in the common sandfish (Scincus scincus) and demonstrate that skinks have shared the same homologous XX/XY sex chromosomes across their wide phylogenetic spectrum for at least 85 million years, approaching the age of the highly differentiated ZZ/ZW sex chromosomes of birds and advanced snakes. Skinks thus demonstrate that even poorly differentiated sex chromosomes can be evolutionarily stable. The conservation of sex chromosomes across skinks allows us to introduce the first molecular sexing method widely applicable in this group.
Collapse
Affiliation(s)
| | | | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
102
|
Leite Montalvão AP, Kersten B, Fladung M, Müller NA. The Diversity and Dynamics of Sex Determination in Dioecious Plants. FRONTIERS IN PLANT SCIENCE 2021; 11:580488. [PMID: 33519840 PMCID: PMC7843427 DOI: 10.3389/fpls.2020.580488] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/23/2020] [Indexed: 05/03/2023]
Abstract
The diversity of inflorescences among flowering plants is captivating. Such charm is not only due to the variety of sizes, shapes, colors, and flowers displayed, but also to the range of reproductive systems. For instance, hermaphrodites occur abundantly throughout the plant kingdom with both stamens and carpels within the same flower. Nevertheless, 10% of flowering plants have separate unisexual flowers, either in different locations of the same individual (monoecy) or on different individuals (dioecy). Despite their rarity, dioecious plants provide an excellent opportunity to investigate the mechanisms involved in sex expression and the evolution of sex-determining regions (SDRs) and sex chromosomes. The SDRs and the evolution of dioecy have been studied in many species ranging from Ginkgo to important fruit crops. Some of these studies, for example in asparagus or kiwifruit, identified two sex-determining genes within the non-recombining SDR and may thus be consistent with the classical model for the evolution of dioecy from hermaphroditism via gynodioecy, that predicts two successive mutations, the first one affecting male and the second one female function, becoming linked in a region of suppressed recombination. On the other hand, aided by genome sequencing and gene editing, single factor sex determination has emerged in other species, such as persimmon or poplar. Despite the diversity of sex-determining mechanisms, a tentative comparative analysis of the known sex-determining genes and candidates in different species suggests that similar genes and pathways may be employed repeatedly for the evolution of dioecy. The cytokinin signaling pathway appears important for sex determination in several species regardless of the underlying genetic system. Additionally, tapetum-related genes often seem to act as male-promoting factors when sex is determined via two genes. We present a unified model that synthesizes the genetic networks of sex determination in monoecious and dioecious plants and will support the generation of hypothesis regarding candidate sex determinants in future studies.
Collapse
Affiliation(s)
| | - Birgit Kersten
- Thünen Institute of Forest Genetics, Großhansdorf, Germany
| | | | | |
Collapse
|
103
|
Li J, Zhang J, Liu J, Zhou Y, Cai C, Xu L, Dai X, Feng S, Guo C, Rao J, Wei K, Jarvis ED, Jiang Y, Zhou Z, Zhang G, Zhou Q. A new duck genome reveals conserved and convergently evolved chromosome architectures of birds and mammals. Gigascience 2021; 10:giaa142. [PMID: 33406261 PMCID: PMC7787181 DOI: 10.1093/gigascience/giaa142] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Ducks have a typical avian karyotype that consists of macro- and microchromosomes, but a pair of much less differentiated ZW sex chromosomes compared to chickens. To elucidate the evolution of chromosome architectures between ducks and chickens, and between birds and mammals, we produced a nearly complete chromosomal assembly of a female Pekin duck by combining long-read sequencing and multiplatform scaffolding techniques. RESULTS A major improvement of genome assembly and annotation quality resulted from the successful resolution of lineage-specific propagated repeats that fragmented the previous Illumina-based assembly. We found that the duck topologically associated domains (TAD) are demarcated by putative binding sites of the insulator protein CTCF, housekeeping genes, or transitions of active/inactive chromatin compartments, indicating conserved mechanisms of spatial chromosome folding with mammals. There are extensive overlaps of TAD boundaries between duck and chicken, and also between the TAD boundaries and chromosome inversion breakpoints. This suggests strong natural selection pressure on maintaining regulatory domain integrity, or vulnerability of TAD boundaries to DNA double-strand breaks. The duck W chromosome retains 2.5-fold more genes relative to chicken. Similar to the independently evolved human Y chromosome, the duck W evolved massive dispersed palindromic structures, and a pattern of sequence divergence with the Z chromosome that reflects stepwise suppression of homologous recombination. CONCLUSIONS Our results provide novel insights into the conserved and convergently evolved chromosome features of birds and mammals, and also importantly add to the genomic resources for poultry studies.
Collapse
Affiliation(s)
- Jing Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jilin Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 5 Nobels väg, Stockholm 17177, Sweden
| | - Jing Liu
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, 1 Universitätsring, Vienna 1090, Austria
| | - Yang Zhou
- BGI-Shenzhen, 146 Beishan Industrial Zone, Shenzhen 518083, China
| | - Cheng Cai
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Luohao Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, 1 Universitätsring, Vienna 1090, Austria
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Shaohong Feng
- BGI-Shenzhen, 146 Beishan Industrial Zone, Shenzhen 518083, China
| | - Chunxue Guo
- BGI-Shenzhen, 146 Beishan Industrial Zone, Shenzhen 518083, China
| | - Jinpeng Rao
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310052, China
| | - Kai Wei
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310052, China
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, 1230 York Ave, NY 10065, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Zhengkui Zhou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, 12 Zhong Guan Cun Da Jie, Beijing, China
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming 650223, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 10 Nørregade, DK-2100 Copenhagen, Denmark
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming 650223, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, 1 Universitätsring, Vienna 1090, Austria
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310052, China
| |
Collapse
|
104
|
Peona V, Blom MPK, Xu L, Burri R, Sullivan S, Bunikis I, Liachko I, Haryoko T, Jønsson KA, Zhou Q, Irestedt M, Suh A. Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird-of-paradise. Mol Ecol Resour 2021; 21:263-286. [PMID: 32937018 PMCID: PMC7757076 DOI: 10.1111/1755-0998.13252] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 01/09/2023]
Abstract
Genome assemblies are currently being produced at an impressive rate by consortia and individual laboratories. The low costs and increasing efficiency of sequencing technologies now enable assembling genomes at unprecedented quality and contiguity. However, the difficulty in assembling repeat-rich and GC-rich regions (genomic "dark matter") limits insights into the evolution of genome structure and regulatory networks. Here, we compare the efficiency of currently available sequencing technologies (short/linked/long reads and proximity ligation maps) and combinations thereof in assembling genomic dark matter. By adopting different de novo assembly strategies, we compare individual draft assemblies to a curated multiplatform reference assembly and identify the genomic features that cause gaps within each assembly. We show that a multiplatform assembly implementing long-read, linked-read and proximity sequencing technologies performs best at recovering transposable elements, multicopy MHC genes, GC-rich microchromosomes and the repeat-rich W chromosome. Telomere-to-telomere assemblies are not a reality yet for most organisms, but by leveraging technology choice it is now possible to minimize genome assembly gaps for downstream analysis. We provide a roadmap to tailor sequencing projects for optimized completeness of both the coding and noncoding parts of nonmodel genomes.
Collapse
Affiliation(s)
- Valentina Peona
- Department of Ecology and Genetics—Evolutionary BiologyScience for Life LaboratoriesUppsala UniversityUppsalaSweden
- Department of Organismal Biology—Systematic BiologyScience for Life LaboratoriesUppsala UniversityUppsalaSweden
| | - Mozes P. K. Blom
- Department of Bioinformatics and GeneticsSwedish Museum of Natural HistoryStockholmSweden
- Museum für NaturkundeLeibniz Institut für Evolutions‐ und BiodiversitätsforschungBerlinGermany
| | - Luohao Xu
- Department of Neurosciences and Developmental BiologyUniversity of ViennaViennaAustria
| | - Reto Burri
- Department of Population EcologyInstitute of Ecology and EvolutionFriedrich‐Schiller‐University JenaJenaGermany
| | | | - Ignas Bunikis
- Department of Immunology, Genetics and PathologyScience for Life LaboratoryUppsala Genome CenterUppsala UniversityUppsalaSweden
| | | | - Tri Haryoko
- Research Centre for BiologyMuseum Zoologicum BogorienseIndonesian Institute of Sciences (LIPI)CibinongIndonesia
| | - Knud A. Jønsson
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| | - Qi Zhou
- Department of Neurosciences and Developmental BiologyUniversity of ViennaViennaAustria
- MOE Laboratory of Biosystems Homeostasis & ProtectionLife Sciences InstituteZhejiang UniversityHangzhouChina
- Center for Reproductive MedicineThe 2nd Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Martin Irestedt
- Department of Bioinformatics and GeneticsSwedish Museum of Natural HistoryStockholmSweden
| | - Alexander Suh
- Department of Ecology and Genetics—Evolutionary BiologyScience for Life LaboratoriesUppsala UniversityUppsalaSweden
- Department of Organismal Biology—Systematic BiologyScience for Life LaboratoriesUppsala UniversityUppsalaSweden
- School of Biological Sciences—Organisms and the EnvironmentUniversity of East AngliaNorwichUK
| |
Collapse
|
105
|
Neves CJ, Matzrafi M, Thiele M, Lorant A, Mesgaran MB, Stetter MG. Male Linked Genomic Region Determines Sex in Dioecious Amaranthus palmeri. J Hered 2020; 111:606-612. [PMID: 33340320 PMCID: PMC7846199 DOI: 10.1093/jhered/esaa047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/15/2020] [Indexed: 12/27/2022] Open
Abstract
Dioecy, the separation of reproductive organs on different individuals, has evolved repeatedly in different plant families. Several evolutionary paths to dioecy have been suggested, but the mechanisms behind sex determination is not well understood. The diploid dioecious Amaranthus palmeri represents a well-suited model system to study sex determination in plants. Despite the agricultural importance of the species, the genetic control and evolutionary state of dioecy in A. palmeri is currently unknown. Early cytogenetic experiments did not identify heteromorphic chromosomes. Here, we used whole-genome sequencing of male and female pools from 2 independent populations to elucidate the genetic control of dioecy in A. palmeri. Read alignment to a close monoecious relative and allele frequency comparisons between male and female pools did not reveal significant sex-linked genes. Consequently, we employed an alignment-free k-mer comparison which enabled us to identify a large number of male-specific k-mers. We assembled male-specific contigs comprising a total of almost 2 Mb sequence, proposing a XY sex-determination system in the species. We were able to identify the potential Y chromosome in the A. palmeri draft genome sequence as 90% of our male-specific sequence aligned to a single scaffold. Based on our findings, we suggest an intermediate evolutionary state of dioecy with a young Y chromosome in A. palmeri. Our findings give insight into the evolution of sex chromosomes in plants and may help to develop sustainable strategies for weed management.
Collapse
Affiliation(s)
- Cátia José Neves
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Maor Matzrafi
- Department of Plant Sciences, University of California, Davis, Davis, CA.,Department of Plant Pathology and Weed Research, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Meik Thiele
- Institute for Plant Sciences, University of Cologne, Cologne, Germany.,Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Anne Lorant
- Department of Plant Sciences, University of California, Davis, Davis, CA
| | - Mohsen B Mesgaran
- Department of Plant Sciences, University of California, Davis, Davis, CA
| | - Markus G Stetter
- Institute for Plant Sciences, University of Cologne, Cologne, Germany.,Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
106
|
Tao W, Conte MA, Wang D, Kocher TD. Network architecture and sex chromosome turnovers: Do epistatic interactions shape patterns of sex chromosome replacement? Bioessays 2020; 43:e2000161. [PMID: 33283342 DOI: 10.1002/bies.202000161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/11/2022]
Abstract
Recent studies have revealed an astonishing diversity of sex chromosomes in many vertebrate lineages, prompting questions about the mechanisms of sex chromosome turnover. While there is considerable population genetic theory about the evolutionary forces promoting sex chromosome replacement, this theory has not yet been integrated with our understanding of the molecular and developmental genetics of sex determination. Here, we review recent data to examine four questions about how the structure of gene networks influences the evolution of sex determination. We argue that patterns of epistasis, arising from the structure of genetic networks, may play an important role in regulating the rates and patterns of sex chromosome replacement.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Matthew A Conte
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
107
|
Shearn R, Wright AE, Mousset S, Régis C, Penel S, Lemaitre JF, Douay G, Crouau-Roy B, Lecompte E, Marais GA. Evolutionary stasis of the pseudoautosomal boundary in strepsirrhine primates. eLife 2020; 9:63650. [PMID: 33205751 PMCID: PMC7717902 DOI: 10.7554/elife.63650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Sex chromosomes are typically comprised of a non-recombining region and a recombining pseudoautosomal region. Accurately quantifying the relative size of these regions is critical for sex-chromosome biology both from a functional and evolutionary perspective. The evolution of the pseudoautosomal boundary (PAB) is well documented in haplorrhines (apes and monkeys) but not in strepsirrhines (lemurs and lorises). Here, we studied the PAB of seven species representing the main strepsirrhine lineages by sequencing a male and a female genome in each species and using sex differences in coverage to identify the PAB. We found that during primate evolution, the PAB has remained unchanged in strepsirrhines whereas several recombination suppression events moved the PAB and shortened the pseudoautosomal region in haplorrhines. Strepsirrhines are well known to have much lower sexual dimorphism than haplorrhines. We suggest that mutations with antagonistic effects between males and females have driven recombination suppression and PAB evolution in haplorrhines.
Collapse
Affiliation(s)
- Rylan Shearn
- Laboratoire Biométrie et Biologie Evolutive, CNRS / Univ. Lyon 1, Villeurbanne, France
| | - Alison E Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Sylvain Mousset
- Laboratoire Biométrie et Biologie Evolutive, CNRS / Univ. Lyon 1, Villeurbanne, France.,Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - Corinne Régis
- Laboratoire Biométrie et Biologie Evolutive, CNRS / Univ. Lyon 1, Villeurbanne, France
| | - Simon Penel
- Laboratoire Biométrie et Biologie Evolutive, CNRS / Univ. Lyon 1, Villeurbanne, France
| | | | | | - Brigitte Crouau-Roy
- Laboratoire Evolution et Diversité Biologique, CNRS / Univ. Toulouse, Toulouse, France
| | - Emilie Lecompte
- Laboratoire Evolution et Diversité Biologique, CNRS / Univ. Toulouse, Toulouse, France
| | - Gabriel Ab Marais
- Laboratoire Biométrie et Biologie Evolutive, CNRS / Univ. Lyon 1, Villeurbanne, France.,LEAF-Linking Landscape, Environment, Agriculture and Food Dept, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
108
|
Furman BLS, Cauret CMS, Knytl M, Song XY, Premachandra T, Ofori-Boateng C, Jordan DC, Horb ME, Evans BJ. A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome. PLoS Genet 2020; 16:e1009121. [PMID: 33166278 PMCID: PMC7652241 DOI: 10.1371/journal.pgen.1009121] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/16/2020] [Indexed: 11/18/2022] Open
Abstract
In many species, sexual differentiation is a vital prelude to reproduction, and disruption of this process can have severe fitness effects, including sterility. It is thus interesting that genetic systems governing sexual differentiation vary among-and even within-species. To understand these systems more, we investigated a rare example of a frog with three sex chromosomes: the Western clawed frog, Xenopus tropicalis. We demonstrate that natural populations from the western and eastern edges of Ghana have a young Y chromosome, and that a male-determining factor on this Y chromosome is in a very similar genomic location as a previously known female-determining factor on the W chromosome. Nucleotide polymorphism of expressed transcripts suggests genetic degeneration on the W chromosome, emergence of a new Y chromosome from an ancestral Z chromosome, and natural co-mingling of the W, Z, and Y chromosomes in the same population. Compared to the rest of the genome, a small sex-associated portion of the sex chromosomes has a 50-fold enrichment of transcripts with male-biased expression during early gonadal differentiation. Additionally, X. tropicalis has sex-differences in the rates and genomic locations of recombination events during gametogenesis that are similar to at least two other Xenopus species, which suggests that sex differences in recombination are genus-wide. These findings are consistent with theoretical expectations associated with recombination suppression on sex chromosomes, demonstrate that several characteristics of old and established sex chromosomes (e.g., nucleotide divergence, sex biased expression) can arise well before sex chromosomes become cytogenetically distinguished, and show how these characteristics can have lingering consequences that are carried forward through sex chromosome turnovers.
Collapse
Affiliation(s)
- Benjamin L. S. Furman
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Department of Zoology, University of British Columbia, 6270 University Blvd Vancouver, British Columbia, V6T 1Z4 Canada
| | - Caroline M. S. Cauret
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Martin Knytl
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
- Department of Cell Biology, Charles University, 7 Vinicna Street, Prague, 12843, Czech Republic
| | - Xue-Ying Song
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Tharindu Premachandra
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | | | - Danielle C. Jordan
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, 7 MBL St, Woods Hole, MA 02543 USA
| | - Marko E. Horb
- Eugene Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, 7 MBL St, Woods Hole, MA 02543 USA
| | - Ben J. Evans
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
109
|
Singchat W, Ahmad SF, Laopichienpong N, Suntronpong A, Panthum T, Griffin DK, Srikulnath K. Snake W Sex Chromosome: The Shadow of Ancestral Amniote Super-Sex Chromosome. Cells 2020; 9:cells9112386. [PMID: 33142713 PMCID: PMC7692289 DOI: 10.3390/cells9112386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
: Heteromorphic sex chromosomes, particularly the ZZ/ZW sex chromosome system of birds and some reptiles, undergo evolutionary dynamics distinct from those of autosomes. The W sex chromosome is a unique karyological member of this heteromorphic pair, which has been extensively studied in snakes to explore the origin, evolution, and genetic diversity of amniote sex chromosomes. The snake W sex chromosome offers a fascinating model system to elucidate ancestral trajectories that have resulted in genetic divergence of amniote sex chromosomes. Although the principal mechanism driving evolution of the amniote sex chromosome remains obscure, an emerging hypothesis, supported by studies of W sex chromosomes of squamate reptiles and snakes, suggests that sex chromosomes share varied genomic blocks across several amniote lineages. This implies the possible split of an ancestral super-sex chromosome via chromosomal rearrangements. We review the major findings pertaining to sex chromosomal profiles in amniotes and discuss the evolution of an ancestral super-sex chromosome by collating recent evidence sourced mainly from the snake W sex chromosome analysis. We highlight the role of repeat-mediated sex chromosome conformation and present a genomic landscape of snake Z and W chromosomes, which reveals the relative abundance of major repeats, and identifies the expansion of certain transposable elements. The latest revolution in chromosomics, i.e., complete telomere-to-telomere assembly, offers mechanistic insights into the evolutionary origin of sex chromosomes.
Collapse
Affiliation(s)
- Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Nararat Laopichienpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Aorarat Suntronpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | | | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, (CASTNAR, NRU-KU, Thailand), Bangkok 10900, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
- Correspondence: ; Tel.: +66-2562-5644
| |
Collapse
|
110
|
Xu L, Irestedt M, Zhou Q. Sequence Transpositions Restore Genes on the Highly Degenerated W Chromosomes of Songbirds. Genes (Basel) 2020; 11:E1267. [PMID: 33126459 PMCID: PMC7692361 DOI: 10.3390/genes11111267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
The female-specific W chromosomes of most Neognathae birds are highly degenerated and gene-poor. Previous studies have demonstrated that the gene repertoires of the Neognathae bird W chromosomes, despite being in small numbers, are conserved across bird species, likely due to purifying selection maintaining the regulatory and dosage-sensitive genes. Here we report the discovery of DNA-based sequence duplications from the Z to the W chromosome in birds-of-paradise (Paradisaeidae, Passeriformes), through sequence transposition. The original transposition involved nine genes, but only two of them (ANXA1 and ALDH1A1) survived on the W chromosomes. Both ANXA1 and ALDH1A1 are predicted to be dosage-sensitive, and the expression of ANXA1 is restricted to ovaries in all the investigated birds. These analyses suggest the newly transposed gene onto the W chromosomes can be favored for their role in restoring dosage imbalance or through female-specific selection. After examining seven additional songbird genomes, we further identified five other transposed genes on the W chromosomes of Darwin's finches and one in the great tit, expanding the observation of the Z-to-W transpositions to a larger range of bird species, but not all transposed genes exhibit dosage-sensitivity or ovary-biased expression We demonstrate a new mechanism by which the highly degenerated W chromosomes of songbirds can acquire genes from the homologous Z chromosomes, but further functional investigations are needed to validate the evolutionary forces underlying the transpositions.
Collapse
Affiliation(s)
- Luohao Xu
- Department of Neurosciences and Developmental Biology, University of Vienna, 1090 Vienna, Austria;
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 104 05 Stockholm, Sweden;
| | - Qi Zhou
- Department of Neurosciences and Developmental Biology, University of Vienna, 1090 Vienna, Austria;
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310012, China
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310012, China
| |
Collapse
|
111
|
Charlesworth D, Bergero R, Graham C, Gardner J, Yong L. Locating the Sex Determining Region of Linkage Group 12 of Guppy ( Poecilia reticulata). G3 (BETHESDA, MD.) 2020; 10:3639-3649. [PMID: 32753367 PMCID: PMC7534449 DOI: 10.1534/g3.120.401573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/29/2020] [Indexed: 01/04/2023]
Abstract
Despite over 100 years of study, the location of the fully sex-linked region of the guppy (Poecilia reticulata) carrying the male-determining locus, and the regions where the XY pair recombine, remain unclear. Previous population genomics studies to determine these regions used small samples from recently bottlenecked captive populations, which increase the false positive rate of associations between individuals' sexes and SNPs. Using new data from multiple natural populations, we show that a recently proposed candidate for this species' male-determining gene is probably not completely sex-linked, leaving the maleness factor still unidentified. Variants in the chromosome 12 region carrying the candidate gene sometimes show linkage disequilibrium with the sex-determining factor, but no consistently male-specific variant has yet been found. Our genetic mapping with molecular markers spread across chromosome 12 confirms that this is the guppy XY pair. We describe two families with recombinants between the X and Y chromosomes, which confirm that the male-determining locus is in the region identified by all previous studies, near the terminal pseudo-autosomal region (PAR), which crosses over at a very high rate in males. We correct the PAR marker order, and assign two unplaced scaffolds to the PAR. We also detect a duplication, with one copy in the male-determining region, explaining signals of sex linkage in a more proximal region.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, EH9 3LF, UK
| | - Roberta Bergero
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, EH9 3LF, UK
| | - Chay Graham
- University of Cambridge, Department of Biochemistry, Sanger Building, 80 Tennis Ct Rd, Cambridge CB2 1GA, UK
| | - Jim Gardner
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, EH9 3LF, UK
| | - Lengxob Yong
- Centre for Ecology and Conservation, University of Exeter, Penryn, Falmouth, Cornwall, TR10 9FE, UK
| |
Collapse
|
112
|
Yazdi HP, Silva WTAF, Suh A. Why Do Some Sex Chromosomes Degenerate More Slowly Than Others? The Odd Case of Ratite Sex Chromosomes. Genes (Basel) 2020; 11:E1153. [PMID: 33007827 PMCID: PMC7601716 DOI: 10.3390/genes11101153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/10/2023] Open
Abstract
The hallmark of sex chromosome evolution is the progressive suppression of recombination which leads to subsequent degeneration of the non-recombining chromosome. In birds, species belonging to the two major clades, Palaeognathae (including tinamous and flightless ratites) and Neognathae (all remaining birds), show distinctive patterns of sex chromosome degeneration. Birds are female heterogametic, in which females have a Z and a W chromosome. In Neognathae, the highly-degenerated W chromosome seems to have followed the expected trajectory of sex chromosome evolution. In contrast, among Palaeognathae, sex chromosomes of ratite birds are largely recombining. The underlying reason for maintenance of recombination between sex chromosomes in ratites is not clear. Degeneration of the W chromosome might have halted or slowed down due to a multitude of reasons ranging from selective processes, such as a less pronounced effect of sexually antagonistic selection, to neutral processes, such as a slower rate of molecular evolution in ratites. The production of genome assemblies and gene expression data for species of Palaeognathae has made it possible, during recent years, to have a closer look at their sex chromosome evolution. Here, we critically evaluate the understanding of the maintenance of recombination in ratites in light of the current data. We conclude by highlighting certain aspects of sex chromosome evolution in ratites that require further research and can potentially increase power for the inference of the unique history of sex chromosome evolution in this lineage of birds.
Collapse
Affiliation(s)
| | | | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK;
- Department of Organismal Biology—Systematic Biology, Uppsala University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
113
|
Laopichienpong N, Kraichak E, Singchat W, Sillapaprayoon S, Muangmai N, Suntrarachun S, Baicharoen S, Peyachoknagul S, Chanhome L, Ezaz T, Srikulnath K. Genome-wide SNP analysis of Siamese cobra (Naja kaouthia) reveals the molecular basis of transitions between Z and W sex chromosomes and supports the presence of an ancestral super-sex chromosome in amniotes. Genomics 2020; 113:624-636. [PMID: 33002626 DOI: 10.1016/j.ygeno.2020.09.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
Elucidation of the process of sex chromosome differentiation is necessary to understand the dynamics of evolutionary mechanisms in organisms. The W sex chromosome of the Siamese cobra (Naja kaouthia) contains a large number of repeats and shares amniote sex chromosomal linkages. Diversity Arrays Technology provides an effective approach to identify sex-specific loci that are epoch-making, to understand the dynamics of molecular transitions between the Z and W sex chromosomes in a snake lineage. From a total of 543 sex-specific loci, 90 showed partial homology with sex chromosomes of several amniotes and 89 loci were homologous to transposable elements. Two loci were confirmed as W-specific nucleotides after PCR amplification. These loci might result from a sex chromosome differentiation process and involve putative sex-determination regions in the Siamese cobra. Sex-specific loci shared linkage homologies among amniote sex chromosomes, supporting an ancestral super-sex chromosome.
Collapse
Affiliation(s)
- Nararat Laopichienpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand.
| | - Ekaphan Kraichak
- Department of Botany, Kasetsart University, Bangkok 10900, Thailand.
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand.
| | - Siwapech Sillapaprayoon
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand.
| | - Narongrit Muangmai
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Sunutcha Suntrarachun
- Snake Farm, Queen Saovabha Memorial Institute, the Thai Red Cross Society, Bangkok 10330, Thailand
| | - Sudarath Baicharoen
- Bureau of Conservation and Research, Zoological Park Organization under the Royal Patronage of His Majesty the King, Bangkok 10300, Thailand
| | - Surin Peyachoknagul
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand.
| | - Lawan Chanhome
- Snake Farm, Queen Saovabha Memorial Institute, the Thai Red Cross Society, Bangkok 10330, Thailand
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, 2617, Australia.
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok 10900, Thailand, (CASTNAR, NRU-KU, Thailand); Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand; Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan.
| |
Collapse
|
114
|
The Female-Specific W Chromosomes of Birds Have Conserved Gene Contents but Are Not Feminized. Genes (Basel) 2020; 11:genes11101126. [PMID: 32992746 PMCID: PMC7599627 DOI: 10.3390/genes11101126] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/19/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Sex chromosomes are unique genomic regions with sex-specific or sex-biased inherent patterns and are expected to be more frequently subject to sex-specific selection. Substantial knowledge on the evolutionary patterns of sex-linked genes have been gained from the studies on the male heterogametic systems (XY male, XX female), but the understanding of the role of sex-specific selection in the evolution of female-heterogametic sex chromosomes (ZW female, ZZ male) is limited. Here we collect the W-linked genes of 27 birds, covering the three major avian clades: Neoaves (songbirds), Galloanserae (chicken), and Palaeognathae (ratites and tinamous). We find that the avian W chromosomes exhibit very conserved gene content despite their independent evolution of recombination suppression. The retained W-linked genes have higher dosage-sensitive and higher expression level than the lost genes, suggesting the role of purifying selection in their retention. Moreover, they are not enriched in ancestrally female-biased genes, and have not acquired new ovary-biased expression patterns after becoming W-linked. They are broadly expressed across female tissues, and the expression profile of the W-linked genes in females is not deviated from that of the homologous Z-linked genes. Together, our new analyses suggest that female-specific positive selection on the avian W chromosomes is limited, and the gene content of the W chromosomes is mainly shaped by purifying selection.
Collapse
|
115
|
Keating SE, Griffing AH, Nielsen SV, Scantlebury DP, Gamble T. Conserved ZZ/ZW sex chromosomes in Caribbean croaking geckos (
Aristelliger
: Sphaerodactylidae). J Evol Biol 2020; 33:1316-1326. [DOI: 10.1111/jeb.13682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 01/04/2023]
Affiliation(s)
| | - Aaron H. Griffing
- Department of Biological Sciences Marquette University Milwaukee WI USA
| | - Stuart V. Nielsen
- Department of Biological Sciences Marquette University Milwaukee WI USA
- Florida Museum of Natural HistoryUniversity of Florida Gainesville FL USA
| | | | - Tony Gamble
- Department of Biological Sciences Marquette University Milwaukee WI USA
- Milwaukee Public Museum Milwaukee WI USA
- Bell Museum of Natural HistoryUniversity of Minnesota Saint Paul MN USA
| |
Collapse
|
116
|
Peichel CL, McCann SR, Ross JA, Naftaly AFS, Urton JR, Cech JN, Grimwood J, Schmutz J, Myers RM, Kingsley DM, White MA. Assembly of the threespine stickleback Y chromosome reveals convergent signatures of sex chromosome evolution. Genome Biol 2020; 21:177. [PMID: 32684159 PMCID: PMC7368989 DOI: 10.1186/s13059-020-02097-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/08/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Heteromorphic sex chromosomes have evolved repeatedly across diverse species. Suppression of recombination between X and Y chromosomes leads to degeneration of the Y chromosome. The progression of degeneration is not well understood, as complete sequence assemblies of heteromorphic Y chromosomes have only been generated across a handful of taxa with highly degenerate sex chromosomes. Here, we describe the assembly of the threespine stickleback (Gasterosteus aculeatus) Y chromosome, which is less than 26 million years old and at an intermediate stage of degeneration. Our previous work identified that the non-recombining region between the X and the Y spans approximately 17.5 Mb on the X chromosome. RESULTS We combine long-read sequencing with a Hi-C-based proximity guided assembly to generate a 15.87 Mb assembly of the Y chromosome. Our assembly is concordant with cytogenetic maps and Sanger sequences of over 90 Y chromosome BAC clones. We find three evolutionary strata on the Y chromosome, consistent with the three inversions identified by our previous cytogenetic analyses. The threespine stickleback Y shows convergence with more degenerate sex chromosomes in the retention of haploinsufficient genes and the accumulation of genes with testis-biased expression, many of which are recent duplicates. However, we find no evidence for large amplicons identified in other sex chromosome systems. We also report an excellent candidate for the master sex-determination gene: a translocated copy of Amh (Amhy). CONCLUSIONS Together, our work shows that the evolutionary forces shaping sex chromosomes can cause relatively rapid changes in the overall genetic architecture of Y chromosomes.
Collapse
Affiliation(s)
- Catherine L. Peichel
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Shaugnessy R. McCann
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Joseph A. Ross
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | | | - James R. Urton
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | - Jennifer N. Cech
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - Richard M. Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - David M. Kingsley
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael A. White
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
117
|
The Location of the Pseudoautosomal Boundary in Silene latifolia. Genes (Basel) 2020; 11:genes11060610. [PMID: 32486434 PMCID: PMC7348893 DOI: 10.3390/genes11060610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Y-chromosomes contain a non-recombining region (NRY), and in many organisms it was shown that the NRY expanded over time. How and why the NRY expands remains unclear. Young sex chromosomes, where NRY expansion occurred recently or is on-going, offer an opportunity to study the causes of this process. Here, we used the plant Silene latifolia, where sex chromosomes evolved ~11 million years ago, to study the location of the boundary between the NRY and the recombining pseudoautosomal region (PAR). The previous work devoted to the NRY/PAR boundary in S. latifolia was based on a handful of genes with locations approximately known from the genetic map. Here, we report the analysis of 86 pseudoautosomal and sex-linked genes adjacent to the S. latifolia NRY/PAR boundary to establish the location of the boundary more precisely. We take advantage of the dense genetic map and polymorphism data from wild populations to identify 20 partially sex-linked genes located in the “fuzzy boundary”, that rarely recombines in male meiosis. Genes proximal to this fuzzy boundary show no evidence of recombination in males, while the genes distal to this partially-sex-linked region are actively recombining in males. Our results provide a more accurate location for the PAR boundary in S. latifolia, which will help to elucidate the causes of PAR boundary shifts leading to NRY expansion over time.
Collapse
|
118
|
Evolutionary Variability of W-Linked Repetitive Content in Lacertid Lizards. Genes (Basel) 2020; 11:genes11050531. [PMID: 32403257 PMCID: PMC7290949 DOI: 10.3390/genes11050531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Lacertid lizards are a widely radiated group of squamate reptiles with long-term stable ZZ/ZW sex chromosomes. Despite their family-wide homology of Z-specific gene content, previous cytogenetic studies revealed significant variability in the size, morphology, and heterochromatin distribution of their W chromosome. However, there is little evidence about the accumulation and distribution of repetitive content on lacertid chromosomes, especially on their W chromosome. In order to expand our knowledge of the evolution of sex chromosome repetitive content, we examined the topology of telomeric and microsatellite motifs that tend to often accumulate on the sex chromosomes of reptiles in the karyotypes of 15 species of lacertids by fluorescence in situ hybridization (FISH). The topology of the above-mentioned motifs was compared to the pattern of heterochromatin distribution, as revealed by C-banding. Our results show that the topologies of the examined motifs on the W chromosome do not seem to follow a strong phylogenetic signal, indicating independent and species-specific accumulations. In addition, the degeneration of the W chromosome can also affect the Z chromosome and potentially also other parts of the genome. Our study provides solid evidence that the repetitive content of the degenerated sex chromosomes is one of the most evolutionary dynamic parts of the genome.
Collapse
|
119
|
Exposito-Alonso M, Drost HG, Burbano HA, Weigel D. The Earth BioGenome project: opportunities and challenges for plant genomics and conservation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:222-229. [PMID: 31788877 DOI: 10.1111/tpj.14631] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 05/28/2023]
Abstract
Sequencing them all. That is the ambitious goal of the recently launched Earth BioGenome project (Proceedings of the National Academy of Sciences of the United States of America, 115, 4325-4333), which aims to produce reference genomes for all eukaryotic species within the next decade. In this perspective, we discuss the opportunities of this project with a plant focus, but highlight also potential limitations. This includes the question of how to best capture all plant diversity, as the green taxon is one of the most complex clades in the tree of life, with over 300 000 species. For this, we highlight four key points: (i) the unique biological insights that could be gained from studying plants, (ii) their apparent underrepresentation in sequencing efforts given the number of threatened species, (iii) the necessity of phylogenomic methods that are aware of differences in genome complexity and quality, and (iv) the accounting for within-species genetic diversity and the historical aspect of conservation genetics.
Collapse
Affiliation(s)
| | - Hajk-Georg Drost
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, CB2 1LR, Cambridge, UK
| | - Hernán A Burbano
- Centre for Life's Origins and Evolution, Department of Genetics Evolution and Environment, University College London, London, WC1H 0AG, UK
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| |
Collapse
|
120
|
Sigeman H, Ponnikas S, Hansson B. Whole-genome analysis across 10 songbird families within Sylvioidea reveals a novel autosome-sex chromosome fusion. Biol Lett 2020; 16:20200082. [PMID: 32315592 PMCID: PMC7211462 DOI: 10.1098/rsbl.2020.0082] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/23/2020] [Indexed: 12/25/2022] Open
Abstract
Sex chromosomes in birds have long been considered to be extremely stable. However, this notion has lately been challenged by findings of independent autosome-sex chromosome fusions within songbirds, several of which occur within a single clade, the superfamily Sylvioidea. To understand what ecological and evolutionary processes drive changes in sex chromosome systems, we need complete descriptions of sex chromosome diversity across taxonomic groups. Here, we characterize the sex chromosome systems across Sylvioidea using whole-genome data of species representatives of 10 different families, including two published and eight new genomes. We describe a novel fusion in the family Cisticolidae (represented by Cisticola juncidis) involving a part of chromosome 4. We also confirm the previously identified fusion between chromosome Z and a part of chromosome 4A in all 10 families and show that fusions involving parts of chromosomes 3 and 5 are not found outside the families where they were first discovered (Alaudidae and Panuridae). These findings add to the complexity of the sex chromosome system in Sylvioidea, where four independent autosome-sex chromosome fusions have now been identified.
Collapse
Affiliation(s)
- Hanna Sigeman
- Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| | | | - Bengt Hansson
- Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| |
Collapse
|
121
|
Acosta A, Suárez-Varón G, Rodríguez-Miranda LA, Lira-Noriega A, Aguilar-Gómez D, Gutiérrez-Mariscal M, Hernández-Gallegos O, Méndez-de-la-Cruz F, Cortez D. Corytophanids Replaced the Pleurodont XY System with a New Pair of XY Chromosomes. Genome Biol Evol 2020; 11:2666-2677. [PMID: 31557287 PMCID: PMC6761961 DOI: 10.1093/gbe/evz196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Almost all lizard families in the pleurodont clade share the same XY system. This system was meticulously studied in Anolis carolinensis, where it shows a highly degenerated Y chromosome and a male-specific X chromosome dosage compensation mechanism. Corytophanids (casque-headed lizards) have been proposed as the only family in the pleurodont clade to lack the XY system. In this study, we worked with extensive genomic and transcriptomic data from Basiliscus vittatus, a member of the Corytophanidae family that inhabits the tropical rainforests of Mexico. We confirmed that B. vittatus underwent a sex chromosome system turnover, which consisted in the loss of the pleurodont XY system and the gain of a new pair of XY chromosomes that are orthologous to chicken chromosome 17. We estimated the origin of the sex chromosome system to have occurred ∼63 Ma in the ancestor of corytophanids. Moreover, we identified 12 XY gametologues with particular attributes, such as functions related to the membrane and intracellular trafficking, very low expression levels, blood specificity, and incomplete dosage compensation in males.
Collapse
Affiliation(s)
| | - Gabriel Suárez-Varón
- Laboratorio de Herpetología, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Mexico
| | | | - Andrés Lira-Noriega
- CONACYT Research Fellow, Red de Estudios Moleculares Avanzados, Instituto de Ecología, Xalapa, México
| | | | | | - Oswaldo Hernández-Gallegos
- Laboratorio de Herpetología, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Mexico
| | | | - Diego Cortez
- Center for Genome Sciences, UNAM, Cuernavaca, Mexico
| |
Collapse
|
122
|
Xu L, Wa Sin SY, Grayson P, Edwards SV, Sackton TB. Evolutionary Dynamics of Sex Chromosomes of Paleognathous Birds. Genome Biol Evol 2020; 11:2376-2390. [PMID: 31329234 PMCID: PMC6735826 DOI: 10.1093/gbe/evz154] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Standard models of sex chromosome evolution propose that recombination suppression leads to the degeneration of the heterogametic chromosome, as is seen for the Y chromosome in mammals and the W chromosome in most birds. Unlike other birds, paleognaths (ratites and tinamous) possess large nondegenerate regions on their sex chromosomes (PARs or pseudoautosomal regions). It remains unclear why these large PARs are retained over >100 Myr, and how this retention impacts the evolution of sex chromosomes within this system. To address this puzzle, we analyzed Z chromosome evolution and gene expression across 12 paleognaths, several of whose genomes have recently been sequenced. We confirm at the genomic level that most paleognaths retain large PARs. As in other birds, we find that all paleognaths have incomplete dosage compensation on the regions of the Z chromosome homologous to degenerated portions of the W (differentiated regions), but we find no evidence for enrichments of male-biased genes in PARs. We find limited evidence for increased evolutionary rates (faster-Z) either across the chromosome or in differentiated regions for most paleognaths with large PARs, but do recover signals of faster-Z evolution in tinamou species with mostly degenerated W chromosomes, similar to the pattern seen in neognaths. Unexpectedly, in some species, PAR-linked genes evolve faster on average than genes on autosomes, suggested by diverse genomic features to be due to reduced efficacy of selection in paleognath PARs. Our analysis shows that paleognath Z chromosomes are atypical at the genomic level, but the evolutionary forces maintaining largely homomorphic sex chromosomes in these species remain elusive.
Collapse
Affiliation(s)
- Luohao Xu
- Department of Molecular Evolution and Development, University of Vienna, Austria
| | - Simon Yung Wa Sin
- Department of Organismic and Evolutionary Biology, Harvard University
- Museum of Comparative Zoology, Harvard University
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Phil Grayson
- Department of Organismic and Evolutionary Biology, Harvard University
- Museum of Comparative Zoology, Harvard University
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University
- Museum of Comparative Zoology, Harvard University
| | - Timothy B Sackton
- Informatics Group, Division of Science, Harvard University
- Corresponding author: E-mail:
| |
Collapse
|
123
|
Faux P, Oliveira JC, Campos DP, Dantas GP, Maia TA, Dergan CG, Cassemiro PM, Hajdu GL, Santos-Júnior JE, Santos FR. Fast genomic analysis of aquatic bird populations from short single-end reads considering sex-related pitfalls. ECOL INFORM 2020. [DOI: 10.1016/j.ecoinf.2020.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
124
|
D’Urban Jackson J, Bruford MW, Székely T, DaCosta JM, Sorenson MD, Russo IRM, Maher KH, Cruz-López M, Galindo-Espinosa D, Palacios E, De Sucre-Medrano AE, Cavitt J, Pruner R, Morales AL, Gonzalez O, Burke T, Küpper C. Population differentiation and historical demography of the threatened snowy plover Charadrius nivosus (Cassin, 1858). CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01256-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractDelineating conservation units is a complex and often controversial process that is particularly challenging for highly vagile species. Here, we reassess population genetic structure and identify those populations of highest conservation value in the threatened snowy plover (Charadrius nivosus, Cassin, 1858), a partial migrant shorebird endemic to the Americas. We use four categories of genetic data—mitochondrial DNA (mtDNA), microsatellites, Z-linked and autosomal single nucleotide polymorphisms (SNPs)—to: (1) assess subspecies delineation and examine population structure (2) compare the sensitivity of the different types of genetic data to detect spatial genetic patterns, and (3) reconstruct demographic history of the populations analysed. Delineation of two traditionally recognised subspecies was broadly supported by all data. In addition, microsatellite and SNPs but not mtDNA supported the recognition of Caribbean snowy plovers (C. n. tenuirostris) and Floridian populations (eastern C. n. nivosus) as distinct genetic lineage and deme, respectively. Low migration rates estimated from autosomal SNPs (m < 0.03) reflect a general paucity of exchange between genetic lineages. In contrast, we detected strong unidirectional migration (m = 0.26) from the western into the eastern nivosus deme. Within western nivosus, we found no genetic differentiation between coastal Pacific and inland populations. The correlation between geographic and genetic distances was weak but significant for all genetic data sets. All demes showed signatures of bottlenecks occurring during the past 1000 years. We conclude that at least four snowy plover conservation units are warranted: in addition to subspecies nivosus and occidentalis, a third unit comprises the Caribbean tenuirostris lineage and a fourth unit the distinct eastern nivosus deme.
Collapse
|
125
|
Abstract
Supergenes are multiple linked genes that regulate complex, polymorphic traits, but little is known about their evolution. A new study of an ancient supergene in several ant species suggests that rare recombination events shape supergene evolution in surprising ways.
Collapse
Affiliation(s)
- Brendan G Hunt
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA.
| |
Collapse
|
126
|
McCarthy FM, Pendarvis K, Cooksey AM, Gresham CR, Bomhoff M, Davey S, Lyons E, Sonstegard TS, Bridges SM, Burgess SC. Chickspress: a resource for chicken gene expression. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5512474. [PMID: 31210271 PMCID: PMC6556980 DOI: 10.1093/database/baz058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/07/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
High-throughput sequencing and proteomics technologies are markedly increasing the amount of RNA and peptide data that are available to researchers, which are typically made publicly available via data repositories such as the NCBI Sequence Read Archive and proteome archives, respectively. These data sets contain valuable information about when and where gene products are expressed, but this information is not readily obtainable from archived data sets. Here we report Chickspress (http://geneatlas.arl.arizona.edu), the first publicly available gene expression resource for chicken tissues. Since there is no single source of chicken gene models, Chickspress incorporates both NCBI and Ensembl gene models and links these gene sets with experimental gene expression data and QTL information. By linking gene models from both NCBI and Ensembl gene prediction pipelines, researchers can, for the first time, easily compare gene models from each of these prediction workflows to available experimental data for these products. We use Chickspress data to show the differences between these gene annotation pipelines. Chickspress also provides rapid search, visualization and download capacity for chicken gene sets based upon tissue type, developmental stage and experiment type. This first Chickspress release contains 161 gene expression data sets, including expression of mRNAs, miRNAs, proteins and peptides. We provide several examples demonstrating how researchers may use this resource.
Collapse
Affiliation(s)
- Fiona M McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ, USA
| | - Ken Pendarvis
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ, USA
| | - Amanda M Cooksey
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ, USA
| | - Cathy R Gresham
- Institute of Genomics, Biocomputing & Biotechnology, Mississippi State University, Starkville MS, USA
| | - Matt Bomhoff
- School of Plant Sciences, CyVerse, University of Arizona, Tucson AZ , USA
| | - Sean Davey
- School of Plant Sciences, CyVerse, University of Arizona, Tucson AZ , USA
| | - Eric Lyons
- School of Plant Sciences, CyVerse, University of Arizona, Tucson AZ , USA
| | - Tad S Sonstegard
- United States Department of Agriculture Agricultural Research Service Beltsville Agricultural Research Center, Beltsville MD, USA
| | - Susan M Bridges
- Department of Computer Science and Engineering, Mississippi State University, Starkville MS, USA
| | - Shane C Burgess
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ, USA
| |
Collapse
|
127
|
An Ancient and Eroded Social Supergene Is Widespread across Formica Ants. Curr Biol 2020; 30:304-311.e4. [PMID: 31902719 DOI: 10.1016/j.cub.2019.11.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/10/2019] [Accepted: 11/11/2019] [Indexed: 12/25/2022]
Abstract
Supergenes, clusters of tightly linked genes, play a key role in the evolution of complex adaptive variation [1, 2]. Although supergenes have been identified in many species, we lack an understanding of their origin, evolution, and persistence [3]. Here, we uncover 20-40 Ma of evolutionary history of a supergene associated with polymorphic social organization in Formica ants [4]. We show that five Formica species exhibit homologous divergent haplotypes spanning 11 Mbp on chromosome 3. Despite the supergene's size, only 142 single nucleotide polymorphisms (SNPs) consistently distinguish alternative supergene haplotypes across all five species. These conserved trans-species SNPs are localized in a small number of disjunct clusters distributed across the supergene. This unexpected pattern of divergence indicates that the Formica supergene does not follow standard models of sex chromosome evolution, in which distinct evolutionary strata reflect an expanding region of suppressed recombination [5]. We propose an alternative "eroded strata model" in which clusters of conserved trans-species SNPs represent functionally important areas maintained by selection in the face of rare recombination between ancestral haplotypes. The comparison of whole-genome sequences across 10 additional Formica species reveals that the most conserved region of the supergene contains a transcription factor essential for motor neuron development in Drosophila [6]. The discovery that a very small portion of this large and ancient supergene harbors conserved trans-species SNPs linked to colony social organization suggests that the ancestral haplotypes have been eroded by recombination, with selection preserving differentiation at one or a few genes generating alternative social organization.
Collapse
|
128
|
Sigeman H, Ponnikas S, Chauhan P, Dierickx E, Brooke MDL, Hansson B. Repeated sex chromosome evolution in vertebrates supported by expanded avian sex chromosomes. Proc Biol Sci 2019; 286:20192051. [PMID: 31771477 PMCID: PMC6939255 DOI: 10.1098/rspb.2019.2051] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/01/2019] [Indexed: 12/28/2022] Open
Abstract
Sex chromosomes have evolved from the same autosomes multiple times across vertebrates, suggesting that selection for recombination suppression has acted repeatedly and independently on certain genetic backgrounds. Here, we perform comparative genomics of a bird clade (larks and their sister lineage; Alaudidae and Panuridae) where multiple autosome-sex chromosome fusions appear to have formed expanded sex chromosomes. We detected the largest known avian sex chromosome (195.3 Mbp) and show that it originates from fusions between parts of four avian chromosomes: Z, 3, 4A and 5. Within these four chromosomes, we found evidence of five evolutionary strata where recombination had been suppressed at different time points, and show that stratum age explained the divergence rate of Z-W gametologs. Next, we analysed chromosome content and found that chromosome 3 was significantly enriched for genes with predicted sex-related functions. Finally, we demonstrate extensive homology to sex chromosomes in other vertebrate lineages: chromosomes Z, 3, 4A and 5 have independently evolved into sex chromosomes in fish (Z), turtles (Z, 5), lizards (Z, 4A), mammals (Z, 4A) and frogs (Z, 3, 4A, 5). Our results provide insights into and support for repeated evolution of sex chromosomes in vertebrates.
Collapse
Affiliation(s)
- Hanna Sigeman
- Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Suvi Ponnikas
- Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Pallavi Chauhan
- Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| | - Elisa Dierickx
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB23EJ, UK
| | - M. de L. Brooke
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB23EJ, UK
| | - Bengt Hansson
- Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| |
Collapse
|
129
|
|
130
|
Kinsella CM, Ruiz-Ruano FJ, Dion-Côté AM, Charles AJ, Gossmann TI, Cabrero J, Kappei D, Hemmings N, Simons MJP, Camacho JPM, Forstmeier W, Suh A. Programmed DNA elimination of germline development genes in songbirds. Nat Commun 2019; 10:5468. [PMID: 31784533 PMCID: PMC6884545 DOI: 10.1038/s41467-019-13427-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/08/2019] [Indexed: 02/08/2023] Open
Abstract
In some eukaryotes, germline and somatic genomes differ dramatically in their composition. Here we characterise a major germline–soma dissimilarity caused by a germline-restricted chromosome (GRC) in songbirds. We show that the zebra finch GRC contains >115 genes paralogous to single-copy genes on 18 autosomes and the Z chromosome, and is enriched in genes involved in female gonad development. Many genes are likely functional, evidenced by expression in testes and ovaries at the RNA and protein level. Using comparative genomics, we show that genes have been added to the GRC over millions of years of evolution, with embryonic development genes bicc1 and trim71 dating to the ancestor of songbirds and dozens of other genes added very recently. The somatic elimination of this evolutionarily dynamic chromosome in songbirds implies a unique mechanism to minimise genetic conflict between germline and soma, relevant to antagonistic pleiotropy, an evolutionary process underlying ageing and sexual traits. Songbirds have extensive germline–soma genome differences due to developmental elimination of a germline-specific chromosome (GRC). Here, the authors show that the GRC contains dozens of expressed developmental genes, some of which have been on the GRC since the ancestor of all songbirds.
Collapse
Affiliation(s)
- Cormac M Kinsella
- Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, SE-752 36, Uppsala, Sweden.,Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Francisco J Ruiz-Ruano
- Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, SE-752 36, Uppsala, Sweden. .,Department of Genetics, University of Granada, E-18071, Granada, Spain. .,Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, SE-752 36, Uppsala, Sweden.
| | - Anne-Marie Dion-Côté
- Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, SE-752 36, Uppsala, Sweden.,Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, 14853, USA.,Département de Biologie, Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | - Alexander J Charles
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, Sheffield, UK
| | - Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, Sheffield, UK.,Department of Animal Behaviour, Bielefeld University, D-33501, Bielefeld, Germany
| | - Josefa Cabrero
- Department of Genetics, University of Granada, E-18071, Granada, Spain
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore, Singapore
| | - Nicola Hemmings
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, Sheffield, UK
| | - Mirre J P Simons
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, Sheffield, UK
| | | | | | - Alexander Suh
- Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, SE-752 36, Uppsala, Sweden. .,Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, SE-752 36, Uppsala, Sweden.
| |
Collapse
|
131
|
Molecular and evolutionary dynamics of animal sex-chromosome turnover. Nat Ecol Evol 2019; 3:1632-1641. [DOI: 10.1038/s41559-019-1050-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/24/2019] [Indexed: 11/08/2022]
|
132
|
Ancestral male recombination in Drosophila albomicans produced geographically restricted neo-Y chromosome haplotypes varying in age and onset of decay. PLoS Genet 2019; 15:e1008502. [PMID: 31738748 PMCID: PMC6897423 DOI: 10.1371/journal.pgen.1008502] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/06/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022] Open
Abstract
Male Drosophila typically have achiasmatic meiosis, and fusions between autosomes and the Y chromosome have repeatedly created non-recombining neo-Y chromosomes that degenerate. Intriguingly, Drosophila nasuta males recombine, but their close relative D. albomicans reverted back to achiasmy after evolving neo-sex chromosomes. Here we use genome-wide polymorphism data to reconstruct the complex evolutionary history of neo-sex chromosomes in D. albomicans and examine the effect of recombination and its cessation on the initiation of neo-Y decay. Population and phylogenomic analyses reveal three distinct neo-Y types that are geographically restricted. Due to ancestral recombination with the neo-X, overall nucleotide diversity on the neo-Y is similar to the neo-X but severely reduced within neo-Y types. Consistently, the neo-Y chromosomes fail to form a monophyletic clade in sliding window trees outside of the region proximal to the fusion. Based on tree topology changes, we inferred the recombination breakpoints that produced haplotypes specific to each neo-Y type. We show that recombination became suppressed at different time points for the different neo-Y haplotypes. Haplotype age correlates with onset of neo-Y decay, and older neo-Y haplotypes show more fixed gene disruption via frameshift indels and down-regulation of neo-Y alleles. Genes are downregulated independently on the different neo-Ys, but are depleted of testes-expressed genes across all haplotypes. This indicates that genes important for male function are initially shielded from degeneration. Our results offer a time course of the early progression of Y chromosome evolution, showing how the suppression of recombination, through the reversal to achiasmy in D. albomicans males, initiates the process of degeneration.
Collapse
|
133
|
Palmer DH, Rogers TF, Dean R, Wright AE. How to identify sex chromosomes and their turnover. Mol Ecol 2019; 28:4709-4724. [PMID: 31538682 PMCID: PMC6900093 DOI: 10.1111/mec.15245] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
Although sex is a fundamental component of eukaryotic reproduction, the genetic systems that control sex determination are highly variable. In many organisms the presence of sex chromosomes is associated with female or male development. Although certain groups possess stable and conserved sex chromosomes, others exhibit rapid sex chromosome evolution, including transitions between male and female heterogamety, and turnover in the chromosome pair recruited to determine sex. These turnover events have important consequences for multiple facets of evolution, as sex chromosomes are predicted to play a central role in adaptation, sexual dimorphism, and speciation. However, our understanding of the processes driving the formation and turnover of sex chromosome systems is limited, in part because we lack a complete understanding of interspecific variation in the mechanisms by which sex is determined. New bioinformatic methods are making it possible to identify and characterize sex chromosomes in a diverse array of non-model species, rapidly filling in the numerous gaps in our knowledge of sex chromosome systems across the tree of life. In turn, this growing data set is facilitating and fueling efforts to address many of the unanswered questions in sex chromosome evolution. Here, we synthesize the available bioinformatic approaches to produce a guide for characterizing sex chromosome system and identity simultaneously across clades of organisms. Furthermore, we survey our current understanding of the processes driving sex chromosome turnover, and highlight important avenues for future research.
Collapse
Affiliation(s)
- Daniela H. Palmer
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Thea F. Rogers
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Rebecca Dean
- Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Alison E. Wright
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
134
|
Sun D, Maney DL, Layman TS, Chatterjee P, Yi SV. Regional epigenetic differentiation of the Z Chromosome between sexes in a female heterogametic system. Genome Res 2019; 29:1673-1684. [PMID: 31548356 PMCID: PMC6771406 DOI: 10.1101/gr.248641.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 08/07/2019] [Indexed: 01/26/2023]
Abstract
In male heterogametic systems, the X Chromosome is epigenetically differentiated between males and females, to facilitate dosage compensation. For example, the X Chromosome in female mammals is largely inactivated. Relative to well-studied male heterogametic systems, the extent of epigenetic differentiation between male and female Z Chromosomes in female heterogametic species, which often lack complete dosage compensation, is poorly understood. Here, we examined the chromosomal DNA methylation landscapes of male and female Z Chromosomes in two distantly related avian species, namely chicken and white-throated sparrow. We show that, in contrast to the pattern in mammals, male and female Z Chromosomes in these species exhibit highly similar patterns of DNA methylation, which is consistent with weak or absent dosage compensation. We further demonstrate that the epigenetic differences between male and female chicken Z Chromosomes are localized to a few regions, including a previously identified male hypermethylated region 1 (MHM1; CGNC: 80601). We discovered a novel region with elevated male-to-female methylation ratios on the chicken Z Chromosome (male hypermethylated region 2 [MHM2]; CGNC: 80602). The MHM1 and MHM2, despite little sequence similarity between them, bear similar molecular features that are likely associated with their functions. We present evidence consistent with female hypomethylation of MHMs and up-regulation of nearby genes. Therefore, despite little methylation differentiation between sexes, extremely localized DNA methylation differences between male and female chicken Z Chromosomes have evolved and affect expression of nearby regions. Our findings offer new insights into epigenetic regulation of gene expression between sexes in female heterogametic systems.
Collapse
Affiliation(s)
- Dan Sun
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Donna L Maney
- Department of Psychology, Emory University, Atlanta, Georgia 30322, USA
| | - Thomas S Layman
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Paramita Chatterjee
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Soojin V Yi
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
135
|
Pan Q, Feron R, Yano A, Guyomard R, Jouanno E, Vigouroux E, Wen M, Busnel JM, Bobe J, Concordet JP, Parrinello H, Journot L, Klopp C, Lluch J, Roques C, Postlethwait J, Schartl M, Herpin A, Guiguen Y. Identification of the master sex determining gene in Northern pike (Esox lucius) reveals restricted sex chromosome differentiation. PLoS Genet 2019; 15:e1008013. [PMID: 31437150 PMCID: PMC6726246 DOI: 10.1371/journal.pgen.1008013] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 09/04/2019] [Accepted: 07/26/2019] [Indexed: 01/17/2023] Open
Abstract
Teleost fishes, thanks to their rapid evolution of sex determination mechanisms, provide remarkable opportunities to study the formation of sex chromosomes and the mechanisms driving the birth of new master sex determining (MSD) genes. However, the evolutionary interplay between the sex chromosomes and the MSD genes they harbor is rather unexplored. We characterized a male-specific duplicate of the anti-Müllerian hormone (amh) as the MSD gene in Northern Pike (Esox lucius), using genomic and expression evidence as well as by loss-of-function and gain-of-function experiments. Using RAD-Sequencing from a family panel, we identified Linkage Group (LG) 24 as the sex chromosome and positioned the sex locus in its sub-telomeric region. Furthermore, we demonstrated that this MSD originated from an ancient duplication of the autosomal amh gene, which was subsequently translocated to LG24. Using sex-specific pooled genome sequencing and a new male genome sequence assembled using Nanopore long reads, we also characterized the differentiation of the X and Y chromosomes, revealing a small male-specific insertion containing the MSD gene and a limited region with reduced recombination. Our study reveals an unexpectedly low level of differentiation between a pair of sex chromosomes harboring an old MSD gene in a wild teleost fish population, and highlights both the pivotal role of genes from the amh pathway in sex determination, as well as the importance of gene duplication as a mechanism driving the turnover of sex chromosomes in this clade. In stark contrast to mammals and birds, a high proportion of teleosts have homomorphic sex chromosomes and display a high diversity of sex determining genes. Yet, population level knowledge of both the sex chromosome and the master sex determining gene is only available for the Japanese medaka, a model species. Here we identified and provided functional proofs of an old duplicate of anti-Müllerian hormone (Amh), a member of the Tgf- β family, as the male master sex determining gene in the Northern pike, Esox lucius. We found that this duplicate, named amhby (Y-chromosome-specific anti-Müllerian hormone paralog b), was translocated to the sub-telomeric region of the new sex chromosome, and now amhby shows strong sequence divergence as well as substantial expression pattern differences from its autosomal paralog, amha. We assembled a male genome sequence using Nanopore long reads and identified a restricted region of differentiation within the sex chromosome pair in a wild population. Our results provide insight on the conserved players in sex determination pathways, the mechanisms of sex chromosome turnover, and the diversity of levels of differentiation between homomorphic sex chromosomes in teleosts.
Collapse
Affiliation(s)
- Qiaowei Pan
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France
- Department of Ecology and Evolution, University of Lausanne,1015, Lausanne, Switzerland
| | - Romain Feron
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France
- Department of Ecology and Evolution, University of Lausanne,1015, Lausanne, Switzerland
| | - Ayaka Yano
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France
| | - René Guyomard
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | - Ming Wen
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France
| | - Jean-Mickaël Busnel
- Fédération d’Ille-et-Vilaine pour la pêche et la protection du milieu aquatique (FDPPMA35), CS 26713, Rennes, France
| | - Julien Bobe
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR7196, MNHN, Muséum National d'Histoire Naturelle, France
| | - Hugues Parrinello
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Laurent Journot
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Christophe Klopp
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRA, Castanet Tolosan, France
- SIGENAE, GenPhySE, Université de Toulouse, INRA, ENVT, Castanet Tolosan, France
| | - Jérôme Lluch
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Céline Roques
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Manfred Schartl
- University of Wuerzburg, Physiological Chemistry, Biocenter, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital, Würzburg, Germany
- Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Amaury Herpin
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France
| | - Yann Guiguen
- INRA, UR1037 LPGP, Campus de Beaulieu, Rennes, France
- * E-mail:
| |
Collapse
|
136
|
Iannucci A, Altmanová M, Ciofi C, Ferguson-Smith M, Milan M, Pereira JC, Pether J, Rehák I, Rovatsos M, Stanyon R, Velenský P, Ráb P, Kratochvíl L, Johnson Pokorná M. Conserved sex chromosomes and karyotype evolution in monitor lizards (Varanidae). Heredity (Edinb) 2019; 123:215-227. [PMID: 30670841 PMCID: PMC6781170 DOI: 10.1038/s41437-018-0179-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 11/08/2022] Open
Abstract
Despite their long history with the basal split dating back to the Eocene, all species of monitor lizards (family Varanidae) studied so far share the same chromosome number of 2n = 40. However, there are differences in the morphology of the macrochromosome pairs 5-8. Further, sex determination, which revealed ZZ/ZW sex microchromosomes, was studied only in a few varanid species and only with techniques that did not test their homology. The aim of this study was to (i) test if cryptic interchromosomal rearrangements of larger chromosomal blocks occurred during the karyotype evolution of this group, (ii) contribute to the reconstruction of the varanid ancestral karyotype, and (iii) test homology of sex chromosomes among varanids. We investigated these issues by hybridizing flow sorted chromosome paints from Varanus komodoensis to metaphases of nine species of monitor lizards. The results show that differences in the morphology of the chromosome pairs 5-8 can be attributed to intrachromosomal rearrangements, which led to transitions between acrocentric and metacentric chromosomes in both directions. We also documented the first case of spontaneous triploidy among varanids in Varanus albigularis. The triploid individual was fully grown, which demonstrates that polyploidization is compatible with life in this lineage. We found that the W chromosome differs between species in size and heterochromatin content. The varanid Z chromosome is clearly conserved in all the analyzed species. Varanids, in addition to iguanas, caenophidian snakes, and lacertid lizards, are another squamate group with highly conserved sex chromosomes over a long evolutionary time.
Collapse
Affiliation(s)
- Alessio Iannucci
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Marie Altmanová
- Department of Ecology, Charles University, Viničná 7, 128 00, Prague, Czech Republic
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Claudio Ciofi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Malcolm Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Jorge Claudio Pereira
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, United Kingdom
| | - James Pether
- Reptilandia Park, Galdar, 35460, Gran Canaria, Spain
| | - Ivan Rehák
- Prague Zoological Garden, U Trojského zámku 120/3, 171 00, Prague, Czech Republic
| | - Michail Rovatsos
- Department of Ecology, Charles University, Viničná 7, 128 00, Prague, Czech Republic
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Roscoe Stanyon
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Petr Velenský
- Prague Zoological Garden, U Trojského zámku 120/3, 171 00, Prague, Czech Republic
| | - Petr Ráb
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Lukáš Kratochvíl
- Department of Ecology, Charles University, Viničná 7, 128 00, Prague, Czech Republic.
| | - Martina Johnson Pokorná
- Department of Ecology, Charles University, Viničná 7, 128 00, Prague, Czech Republic
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| |
Collapse
|
137
|
Comparative Phylogenomics, a Stepping Stone for Bird Biodiversity Studies. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11070115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Birds are a group with immense availability of genomic resources, and hundreds of forthcoming genomes at the doorstep. We review recent developments in whole genome sequencing, phylogenomics, and comparative genomics of birds. Short read based genome assemblies are common, largely due to efforts of the Bird 10K genome project (B10K). Chromosome-level assemblies are expected to increase due to improved long-read sequencing. The available genomic data has enabled the reconstruction of the bird tree of life with increasing confidence and resolution, but challenges remain in the early splits of Neoaves due to their explosive diversification after the Cretaceous-Paleogene (K-Pg) event. Continued genomic sampling of the bird tree of life will not just better reflect their evolutionary history but also shine new light onto the organization of phylogenetic signal and conflict across the genome. The comparatively simple architecture of avian genomes makes them a powerful system to study the molecular foundation of bird specific traits. Birds are on the verge of becoming an extremely resourceful system to study biodiversity from the nucleotide up.
Collapse
|
138
|
Huylmans AK, Toups MA, Macon A, Gammerdinger WJ, Vicoso B. Sex-Biased Gene Expression and Dosage Compensation on the Artemia franciscana Z-Chromosome. Genome Biol Evol 2019; 11:1033-1044. [PMID: 30865260 PMCID: PMC6456005 DOI: 10.1093/gbe/evz053] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2019] [Indexed: 12/25/2022] Open
Abstract
Males and females of Artemia franciscana, a crustacean commonly used in the aquarium trade, are highly dimorphic. Sex is determined by a pair of ZW chromosomes, but the nature and extent of differentiation of these chromosomes is unknown. Here, we characterize the Z chromosome by detecting genomic regions that show lower genomic coverage in female than in male samples, and regions that harbor an excess of female-specific SNPs. We detect many Z-specific genes, which no longer have homologs on the W, but also Z-linked genes that appear to have diverged very recently from their existing W-linked homolog. We assess patterns of male and female expression in two tissues with extensive morphological dimorphism, gonads, and heads. In agreement with their morphology, sex-biased expression is common in both tissues. Interestingly, the Z chromosome is not enriched for sex-biased genes, and seems to in fact have a mechanism of dosage compensation that leads to equal expression in males and in females. Both of these patterns are contrary to most ZW systems studied so far, making A. franciscana an excellent model for investigating the interplay between the evolution of sexual dimorphism and dosage compensation, as well as Z chromosome evolution in general.
Collapse
Affiliation(s)
| | - Melissa A Toups
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Ariana Macon
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Beatriz Vicoso
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
139
|
Krasovec M, Kazama Y, Ishii K, Abe T, Filatov DA. Immediate Dosage Compensation Is Triggered by the Deletion of Y-Linked Genes in Silene latifolia. Curr Biol 2019; 29:2214-2221.e4. [PMID: 31231053 PMCID: PMC6616318 DOI: 10.1016/j.cub.2019.05.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/27/2019] [Accepted: 05/24/2019] [Indexed: 11/28/2022]
Abstract
The loss of functional genes from non-recombining sex-specific chromosomes [1, 2], such as the Y chromosomes in mammals [3] or W chromosomes in birds [4], should result in an imbalance of gene products for sex-linked genes [5]. Different chromosome-wide systems that rebalance gene expression are known to operate in organisms with relatively old sex chromosomes [6]; e.g., Drosophila overexpress X-linked genes in males [7], while mammals shut down one of the X chromosomes in females [8]. It is not known how long it takes for a chromosome-wide dosage compensation system to evolve. To shed light on the early evolution of dosage compensation, we constructed a high-density Y-deletion map and used deletion mutants to manipulate gene dose and analyze gene expression in white campion (Silene latifolia), which evolved dioecy and sex chromosomes only 11 million years ago [9]. We demonstrate that immediate dosage compensation can be triggered by deletions in a large portion of the p arm of the Y chromosome. Our results indicate that dosage compensation in S. latifolia does not have to evolve gene by gene because a system to upregulate gene expression is already operating on part of the X chromosome, which likely represents an intermediate step in the evolution of a chromosome-wide dosage compensation system in this species.
Collapse
Affiliation(s)
- Marc Krasovec
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Yusuke Kazama
- RIKEN Nishina Center for Accelerator-Based Sciences, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kotaro Ishii
- RIKEN Nishina Center for Accelerator-Based Sciences, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tomoko Abe
- RIKEN Nishina Center for Accelerator-Based Sciences, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK.
| |
Collapse
|
140
|
Rovatsos M, Farkačová K, Altmanová M, Johnson Pokorná M, Kratochvíl L. The rise and fall of differentiated sex chromosomes in geckos. Mol Ecol 2019; 28:3042-3052. [DOI: 10.1111/mec.15126] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Michail Rovatsos
- Department of Ecology, Faculty of Science Charles University Prague Czech Republic
| | - Klára Farkačová
- Department of Ecology, Faculty of Science Charles University Prague Czech Republic
| | - Marie Altmanová
- Department of Ecology, Faculty of Science Charles University Prague Czech Republic
- Institute of Animal Physiology and Genetics The Czech Academy of Sciences Liběchov Czech Republic
| | - Martina Johnson Pokorná
- Department of Ecology, Faculty of Science Charles University Prague Czech Republic
- Institute of Animal Physiology and Genetics The Czech Academy of Sciences Liběchov Czech Republic
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science Charles University Prague Czech Republic
| |
Collapse
|
141
|
Little evidence for switches to environmental sex determination and turnover of sex chromosomes in lacertid lizards. Sci Rep 2019; 9:7832. [PMID: 31127134 PMCID: PMC6534595 DOI: 10.1038/s41598-019-44192-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022] Open
Abstract
Amniotes possess variability in sex determination, from environmental sex determination (ESD), where no sex chromosomes are present, to genotypic sex determination (GSD) with highly differentiated sex chromosomes. Some evolutionary scenarios postulate high stability of differentiated sex chromosomes and rare transitions from GSD to ESD. However, sex chromosome turnovers and two independent transitions from highly differentiated ZZ/ZW sex chromosomes to ESD were previously reported in the lacertid lizards. Here, we examined the homology of sex chromosomes in the wide phylogenetic spectrum of lacertids and their outgroups by comparing gene copy numbers between sexes in genes previously found to be Z-specific in some lacertids. Our current sampling covers 45 species from 26 genera including lineages supposed to possess a derived sex determining systems. We found that all tested lacertids share homologous differentiated ZZ/ZW sex chromosomes, which were present already in their common ancestor living around 85 million years ago. These differentiated sex chromosomes are not present in amphisbaenians and teiid lizards, the close relatives of lacertids. Our study demonstrates how inaccuracies in data can influence the outcome of phylogenetic reconstructions of evolution of sex determination, in this case they overestimated the number of shifts from GSD to ESD and the rate in turnovers of sex chromosomes.
Collapse
|
142
|
Dynamic evolutionary history and gene content of sex chromosomes across diverse songbirds. Nat Ecol Evol 2019; 3:834-844. [DOI: 10.1038/s41559-019-0850-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/22/2019] [Indexed: 11/09/2022]
|
143
|
Exaggerated heterochiasmy in a fish with sex-linked male coloration polymorphisms. Proc Natl Acad Sci U S A 2019; 116:6924-6931. [PMID: 30894479 DOI: 10.1073/pnas.1818486116] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It is often stated that polymorphisms for mutations affecting fitness of males and females in opposite directions [sexually antagonistic (SA) polymorphisms] are the main selective force for the evolution of recombination suppression between sex chromosomes. However, empirical evidence to discriminate between different hypotheses is difficult to obtain. We report genetic mapping results in laboratory-raised families of the guppy (Poecilia reticulata), a sexually dimorphic fish with SA polymorphisms for male coloration genes, mostly on the sex chromosomes. Comparison of the genetic and physical maps shows that crossovers are distributed very differently in the two sexes (heterochiasmy); in male meiosis, they are restricted to the termini of all four chromosomes studied, including chromosome 12, which carries the sex-determining locus. Genome resequencing of male and female guppies from a population also indicates sex linkage of variants across almost the entire chromosome 12. More than 90% of the chromosome carrying the male-determining locus is therefore transmitted largely through the male lineage. A lack of heterochiasmy in a related fish species suggests that it originated recently in the lineage leading to the guppy. Our findings do not support the hypothesis that suppressed recombination evolved in response to the presence of SA polymorphisms. Instead, a low frequency of recombination on a chromosome that carries a male-determining locus and has not undergone genetic degeneration has probably facilitated the establishment of male-beneficial coloration polymorphisms.
Collapse
|
144
|
Rovatsos M, Rehák I, Velenský P, Kratochvíl L. Shared Ancient Sex Chromosomes in Varanids, Beaded Lizards, and Alligator Lizards. Mol Biol Evol 2019; 36:1113-1120. [DOI: 10.1093/molbev/msz024] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ivan Rehák
- Prague Zoological Garden, Prague, Czech Republic
| | | | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
145
|
Abstract
Levels and patterns of genetic diversity can provide insights into a population’s history. In species with sex chromosomes, differences between genomic regions with unique inheritance patterns can be used to distinguish between different sets of possible demographic and selective events. This review introduces the differences in population history for sex chromosomes and autosomes, provides the expectations for genetic diversity across the genome under different evolutionary scenarios, and gives an introductory description for how deviations in these expectations are calculated and can be interpreted. Predominantly, diversity on the sex chromosomes has been used to explore and address three research areas: 1) Mating patterns and sex-biased variance in reproductive success, 2) signatures of selection, and 3) evidence for modes of speciation and introgression. After introducing the theory, this review catalogs recent studies of genetic diversity on the sex chromosomes across species within the major research areas that sex chromosomes are typically applied to, arguing that there are broad similarities not only between male-heterogametic (XX/XY) and female-heterogametic (ZZ/ZW) sex determination systems but also any mating system with reduced recombination in a sex-determining region. Further, general patterns of reduced diversity in nonrecombining regions are shared across plants and animals. There are unique patterns across populations with vastly different patterns of mating and speciation, but these do not tend to cluster by taxa or sex determination system.
Collapse
Affiliation(s)
- Melissa A Wilson Sayres
- School of Life Sciences, Center for Evolution and Medicine, The Biodesign Institute, Arizona State University
| |
Collapse
|
146
|
Furman BLS, Evans BJ. Divergent Evolutionary Trajectories of Two Young, Homomorphic, and Closely Related Sex Chromosome Systems. Genome Biol Evol 2018; 10:742-755. [PMID: 29608717 PMCID: PMC5841384 DOI: 10.1093/gbe/evy045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 02/02/2023] Open
Abstract
There exists extraordinary variation among species in the degree and nature of sex chromosome divergence. However, much of our knowledge about sex chromosomes is based on comparisons between deeply diverged species with different ancestral sex chromosomes, making it difficult to establish how fast and why sex chromosomes acquire variable levels of divergence. To address this problem, we studied sex chromosome evolution in two species of African clawed frog (Xenopus), both of whom acquired novel systems for sex determination from a recent common ancestor, and both of whom have female (ZW/ZZ) heterogamy. Derived sex chromosomes of one species, X. laevis, have a small region of suppressed recombination that surrounds the sex determining locus, and have remained this way for millions of years. In the other species, X. borealis, a younger sex chromosome system exists on a different pair of chromosomes, but the region of suppressed recombination surrounding an unidentified sex determining gene is vast, spanning almost half of the sex chromosomes. Differences between these sex chromosome systems are also apparent in the extent of nucleotide divergence between the sex chromosomes carried by females. Our analyses also indicate that in autosomes of both of these species, recombination during oogenesis occurs more frequently and in different genomic locations than during spermatogenesis. These results demonstrate that new sex chromosomes can assume radically different evolutionary trajectories, with far-reaching genomic consequences. They also suggest that in some instances the origin of new triggers for sex determination may be coupled with rapid evolution sex chromosomes, including recombination suppression of large genomic regions.
Collapse
Affiliation(s)
| | - Ben J Evans
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
147
|
Pennell MW, Mank JE, Peichel CL. Transitions in sex determination and sex chromosomes across vertebrate species. Mol Ecol 2018; 27:3950-3963. [PMID: 29451715 PMCID: PMC6095824 DOI: 10.1111/mec.14540] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 12/14/2022]
Abstract
Despite the prevalence of sexual reproduction across eukaryotes, there is a remarkable diversity of sex-determination mechanisms. The underlying causes of this diversity remain unclear, and it is unknown whether there are convergent trends in the directionality of turnover in sex-determination mechanisms. We used the recently assembled Tree of Sex database to assess patterns in the evolution of sex-determination systems in the remarkably diverse vertebrate clades of teleost fish, squamate reptiles and amphibians. Contrary to theoretical predictions, we find no evidence that the evolution of separate sexes is irreversible, as transitions from separate sexes to hermaphroditism occur at higher rates than the reverse in fish. We also find that transitions from environmental sex determination to genetic sex determination occur at higher rates than the reverse in both squamates and fish, suggesting that genetic sex determination is more stable. However, our data are not consistent with the hypothesis that heteromorphic sex chromosomes are an "evolutionary trap." Rather, we find similar transition rates between homomorphic and heteromorphic sex chromosomes in both fish and amphibians, and to environmental sex determination from heteromorphic vs. homomorphic sex chromosome systems in fish. Finally, we find that transitions between male and female heterogamety occur at similar rates in amphibians and squamates, while transitions to male heterogamety occur at higher rates in fish. Together, these results provide the most comprehensive view to date of the evolution of vertebrate sex determination in a phylogenetic context, providing new insight into long-standing questions about the evolution of sexual reproduction.
Collapse
Affiliation(s)
- Matthew W. Pennell
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Judith E. Mank
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Department of Organismal Biology, Uppsala University, Sweden
| | | |
Collapse
|
148
|
Semenov GA, Basheva EA, Borodin PM, Torgasheva AA. High rate of meiotic recombination and its implications for intricate speciation patterns in the white wagtail (Motacilla alba). Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Georgy A Semenov
- Ecology and Evolutionary Biology, University of Colorado, Ramaley Hall, Boulder, CO, USA
- Institute of Systematics and Ecology of Animals, Frunze, Novosibirsk, Russian Federation
- Ecology and Evolutionary Biology, University of Colorado, Ramaley Hall, Boulder, CO, USA
| | - Ekaterina A Basheva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentiev Ave., Novosibirsk, Russian Federation
| | - Pavel M Borodin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentiev Ave., Novosibirsk, Russian Federation
- Novosibirsk State Research University, Department of Cytology and Genetics, Pirogova st., Novosibirsk, Russian Federation
| | - Anna A Torgasheva
- Institute of Systematics and Ecology of Animals, Frunze, Novosibirsk, Russian Federation
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentiev Ave., Novosibirsk, Russian Federation
- Novosibirsk State Research University, Department of Cytology and Genetics, Pirogova st., Novosibirsk, Russian Federation
| |
Collapse
|
149
|
Yazdi HP, Ellegren H. A Genetic Map of Ostrich Z Chromosome and the Role of Inversions in Avian Sex Chromosome Evolution. Genome Biol Evol 2018; 10:2049-2060. [PMID: 30099482 PMCID: PMC6105114 DOI: 10.1093/gbe/evy163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2018] [Indexed: 12/11/2022] Open
Abstract
Recombination arrest is a necessary step for the evolution of distinct sex chromosomes. Structural changes, such as inversions, may represent the mechanistic basis for recombination suppression and comparisons of the structural organization of chromosomes as given by chromosome-level assemblies offer the possibility to infer inversions across species at some detail. In birds, deduction of the process of sex chromosome evolution has been hampered by the lack of a validated chromosome-level assembly from a representative of one of the two basal clades of modern birds, Paleognathae. We therefore developed a high-density genetic linkage map of the ostrich Z chromosome and used this to correct an existing assembly, including correction of a large chimeric superscaffold and the order and orientation of other superscaffolds. We identified the pseudoautosomal region as a 52 Mb segment (≈60% of the Z chromosome) where recombination occurred in both sexes. By comparing the order and location of genes on the ostrich Z chromosome with that of six bird species from the other major clade of birds (Neognathae), and of reptilian outgroup species, 25 Z-linked inversions were inferred in the avian lineages. We defined Z chromosome organization in an early avian ancestor and identified inversions spanning the candidate sex-determining DMRT1 gene in this ancestor, which could potentially have triggered the onset of avian sex chromosome evolution. We conclude that avian sex chromosome evolution has been characterized by a complex process of probably both Z-linked and W-linked inversions (and/or other processes). This study illustrates the need for validated chromosome-level assemblies for inference of genome evolution.
Collapse
Affiliation(s)
- Homa Papoli Yazdi
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala, Sweden
| |
Collapse
|
150
|
An intercross population study reveals genes associated with body size and plumage color in ducks. Nat Commun 2018; 9:2648. [PMID: 30018292 PMCID: PMC6050300 DOI: 10.1038/s41467-018-04868-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 05/31/2018] [Indexed: 12/15/2022] Open
Abstract
Comparative population genomics offers an opportunity to discover the signatures of artificial selection during animal domestication, however, their function cannot be directly revealed. We discover the selection signatures using genome-wide comparisons among 40 mallards, 36 indigenous-breed ducks, and 30 Pekin ducks. Then, the phenotypes are fine-mapped based on resequencing of 1026 ducks from an F2 segregating population generated by wild × domestic crosses. Interestingly, the two key economic traits of Pekin duck are associated with two selective sweeps with fixed mutations. A novel intronic insertion most possibly leads to a splicing change in MITF accounted for white duck down feathers. And a putative long-distance regulatory mutation causes continuous expression of the IGF2BP1 gene after birth which increases body size by 15% and feed efficiency by 6%. This study provides new insights into genotype-phenotype associations in animal research and constitutes a promising resource on economically important genes in fowl.
Collapse
|