101
|
Platelet factor-4 and its p17-70 peptide inhibit myeloma proliferation and angiogenesis in vivo. BMC Cancer 2011; 11:261. [PMID: 21693026 PMCID: PMC3130706 DOI: 10.1186/1471-2407-11-261] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 06/21/2011] [Indexed: 01/23/2023] Open
Abstract
Background Angiogenesis plays an important role in the development of multiple myeloma (MM). The interaction between MM cells and the bone marrow microenvironment stimulates the proliferation and migration of endothelial progenitor cells (EPCs). Vascular endothelial growth factor (VEGF) contributes to the formation of new blood vessels by actively recruiting circulating EPCs. The production of proangiogenic and antiangiogenic factors is also dysregulated in MM. Platelet factor 4 (PF4) is a potent angiostatic cytokine that inhibits angiogenesis and tumor growth in several animal models. Methods In this study, we stably transfected human myeloma cell lines with the PF4 gene or the sequence encoding its more potent p17-70 peptide and investigated the effects of PF4 and p17-70 on angiogenesis and tumor growth in vitro and in a SCID-rab myeloma model. Results PF4 and p17-70 significantly attenuated VEGF production, both in vitro and in vivo. In a migration study using a Transwell system, PF4 or p17-70 markedly suppressed the migration of co-cultured human endothelial progenitor cells. PF4 or p17-70 also caused a significant reduction in microvessel densities in myeloma xenografts and markedly reduced the tumor volume in the SCID mice. Kaplan-Meier analysis demonstrated that PF4 and p17-70 significantly extended the overall survival of SCID mice bearing human myeloma xenografts. Conclusions Our findings indicate that PF4 or p17-70 could be valuable in combating multiple myeloma by disrupting tumor angiogenesis.
Collapse
|
102
|
Shi G, Morrell CN. Platelets as initiators and mediators of inflammation at the vessel wall. Thromb Res 2011; 127:387-90. [PMID: 21094986 PMCID: PMC3068230 DOI: 10.1016/j.thromres.2010.10.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 10/15/2010] [Accepted: 10/17/2010] [Indexed: 01/16/2023]
Abstract
Platelets are dynamic cells with activities that extend beyond thrombosis including an important role in initiating and sustaining vascular inflammation. A role for platelets has been described in many physiologic and pathophysiologic processes such as atherosclerosis, stem cell trafficking, tumor metastasis, and arthritis. Platelet activation at sites of an intact inflamed endothelium contributes to vascular inflammation and vascular wall remodeling. Platelets secrete a wide array of preformed and synthesized inflammatory mediators upon activation that can exert significant local and systemic effects. This review will focus on the role of platelet derived mediators in vascular inflammation and vascular wall remodeling.
Collapse
Affiliation(s)
- Guanfang Shi
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, New York 14642
| | - Craig N. Morrell
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, New York 14642
| |
Collapse
|
103
|
Ohyama K, Ueki Y, Kawakami A, Kishikawa N, Tamai M, Osaki M, Kamihira S, Nakashima K, Kuroda N. Immune complexome analysis of serum and its application in screening for immune complex antigens in rheumatoid arthritis. Clin Chem 2011; 57:905-9. [PMID: 21482748 DOI: 10.1373/clinchem.2010.157776] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Analysis of circulating immune complexes (CICs) produced during an immune response may be useful in elucidating some aspects of this process. Identification of antigens incorporated into CICs provides information that may be helpful in developing diagnostic and treatment strategies for autoimmune diseases, infection, cancer, and transplantation therapy, and such information might be more relevant than information on free antigens. Because CICs may contain many antigens, comprehensive identification and profiling of such antigens is more effective than immunoblotting detection. METHODS We developed a novel proteomic strategy (immune complexome analysis) in which immune complexes (ICs) are separated from serum, digested directly with trypsin, and then subjected to nano-liquid chromatography-tandem mass spectrometry for identifying and profiling antigens in CICs. We applied this strategy to the analysis of CICs in 21 rheumatoid arthritis (RA) patients. Serum samples from 13 healthy donors and 8 osteoarthritis patients were used as controls. RESULTS CICs containing thrombospondin-1 (TSP-1) and platelet factor 4 (PF4) were found in the serum of 81% and 52% of RA patients, respectively, and in none of the controls. CONCLUSIONS The ICs in the serum of a majority of the RA patients contained TSP-1 or PF4, and these ICs may have potential as alternative biomarkers. Our technique for immune complexome analysis uses routine clinical samples, simple protocols, and widely available equipment. This method may be generally applicable to the study of the relationship between CICs and certain diseases associated with the immune response in animals and humans.
Collapse
Affiliation(s)
- Kaname Ohyama
- Department of Environmental and Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Han N, Jin K, He K, Cao J, Teng L. Protease-activated receptors in cancer: A systematic review. Oncol Lett 2011; 2:599-608. [PMID: 22848234 DOI: 10.3892/ol.2011.291] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 04/06/2011] [Indexed: 12/16/2022] Open
Abstract
The traditional view of the role of proteases in tumor growth, progression and metastasis has significantly changed. Apart from their contribution to cancer progression, it is evident that a subclass of proteases, such as thrombin, serves as signal molecules controlling cell functions through the protease-activated receptors (PARs). Among the four types of PAR (PAR1-4; cloned and named in order of their discovery), PAR1, PAR3 and PAR4 are activated by thrombin, unlike PAR2, which is activated by trypsin-like serine proteases. Thrombin has been proven to be a significant factor in both the behavior of cancer in its involvement in hemostasis and blood coagulation. Thrombin is a key supporter of various cellular effects relevant to tumor growth and metastasis, as well as a potent activator of angiogenesis, which is essential for the growth and development of all solid tumor types. This review presents an overview of the role of PAR-mediated thrombin in angiogenesis and cancer, focusing on the ability of PAR1- and PAR4-mediated thrombin to affect tumorigenesis and angiogenesis.
Collapse
Affiliation(s)
- Na Han
- Sir Run Run Shaw Institute of Clinical Medicine, Zhejiang University: Key Laboratory of Biotherapy of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310016
| | | | | | | | | |
Collapse
|
105
|
Shay E, He H, Sakurai S, Tseng SCG. Inhibition of angiogenesis by HC·HA, a complex of hyaluronan and the heavy chain of inter-α-inhibitor, purified from human amniotic membrane. Invest Ophthalmol Vis Sci 2011; 52:2669-78. [PMID: 21228375 DOI: 10.1167/iovs.10-5888] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To determine whether antiangiogenic action of the amniotic membrane (AM) can be mediated by HC·HA, a covalent complex of hyaluronan (HA) and the heavy chain (HC) of inter-α-inhibitor, purified from AM soluble extract. METHODS HC·HA action on viability, proliferation, attachment, death, migration, and differentiation of human umbilical vein endothelial cells (HUVECs) and neovascularization in chicken chorioallantoic membrane (CAM) was examined by MTT assay, BrdU labeling, cell proliferation assay, cell death detection ELISA, transwell assay, tube formation assay, and CAM assay. RESULTS HC·HA suppressed HUVEC viability more significantly than HA and AM stromal extract, and such suppression was not mediated by CD44. HC·HA also caused HUVECs to become small and rounded, with a decrease in spreading and filamentous actin. Without promoting cell detachment or death, HC·HA dose dependently inhibited proliferation (IC(50), 2.3 μg/mL) and was 100-fold more potent than HA. Migration triggered by VEGF and tube formation was also significantly inhibited by HC·HA. Purified HC·HA did not contain PEDF and TSP-1 but did contain IGFBP-1 and platelet factor 4 while significantly suppressing neovascularization in CAM. CONCLUSIONS The antiangiogenic activity of HC·HA might explain why AM is developmentally avascular and how AM might exert an antiangiogenic action when transplanted to the ocular surface, and it might indicate a potential therapeutic effect of HC·HA in diseases manifesting pathogenic angiogenesis. Roles of IGFBP-1 and platelet factor 4 in HC·HA antiangiogenic action warrant further investigation.
Collapse
|
106
|
Keeley EC, Mehrad B, Strieter RM. Chemokines as mediators of tumor angiogenesis and neovascularization. Exp Cell Res 2011; 317:685-90. [PMID: 21040721 PMCID: PMC3073599 DOI: 10.1016/j.yexcr.2010.10.020] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 10/25/2010] [Indexed: 12/11/2022]
Abstract
Chemokines are a superfamily of structurally homologous heparin-binding proteins that influence tumor growth and metastasis. Several members of the CXC and CC chemokine families are potent inducers of neovascularization, whereas a subset of the CXC chemokines are potent inhibitors. In this paper, we review the current literature regarding the role of chemokines as mediators of tumor angiogenesis and neovascularization.
Collapse
Affiliation(s)
- Ellen C. Keeley
- Department of Medicine, Division of Cardiology, University of Virginia, Charlottesville, Virginia
| | - Borna Mehrad
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - Robert M. Strieter
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
107
|
Differential effects of tumor–platelet interaction in vitro and in vivo in glioblastoma. J Neurooncol 2011; 105:45-56. [DOI: 10.1007/s11060-011-0560-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
|
108
|
Kasper B, Petersen F. Molecular pathways of platelet factor 4/CXCL4 signaling. Eur J Cell Biol 2011; 90:521-6. [PMID: 21295372 DOI: 10.1016/j.ejcb.2010.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 10/25/2022] Open
Abstract
The platelet-derived chemokine CXCL4 takes a specific and unique position within the family of chemotactic cytokines. Today, much attention is directed to CXCL4's capacity to inhibit angiogenesis and to promote innate immune responses, which makes this chemokine an interesting tool and target for potential intervention in tumor growth and inflammation. However, such attempts demand a comprehensive knowledge on the molecular mechanisms and pathways underlying the corresponding cellular functions. At least two structurally different receptors, CXCR3-B and a chondroitin sulfate proteoglycan, are capable of binding CXCL4 and to induce a specific intracellular signaling machinery. While signaling mediated by CXCR3-B involves Gs proteins, elevated cAMP levels, and p38 MAP kinase, signaling via proteoglycans appears to be more complicated and varies strongly between the cell types analyzed. In CXCL4-activated neutrophils and monocytes, tyrosine kinases of the Src family and Syk as well as monomeric GTPases and members of the MAP kinase family have been identified as essential intracellular signals. Most intriguingly, signaling does not proceed in a linear sequence of events but in a repeated activation of certain transducing elements like Rac2 or sphingosine kinase 1. Depending on the downstream targets, such biphasic kinetics either leads to a redundant and prolonged activation of a single pathway or to a timely separated initiation of disparate signals and functions. Results of the studies reviewed here help to understand the molecular basis of CXCL4's functional diversity and provide insights into integrated signaling processes in general.
Collapse
Affiliation(s)
- Brigitte Kasper
- Department of Immunology and Cell Biology, Research Center Borstel, Parkallee 1-40, D-23845 Borstel, Germany
| | | |
Collapse
|
109
|
Aneja K, Jalagadugula G, Mao G, Singh A, Rao AK. Mechanism of platelet factor 4 (PF4) deficiency with RUNX1 haplodeficiency: RUNX1 is a transcriptional regulator of PF4. J Thromb Haemost 2011; 9:383-91. [PMID: 21129147 PMCID: PMC3030649 DOI: 10.1111/j.1538-7836.2010.04154.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Platelet factor 4 (PF4) is an abundant protein stored in platelet α-granules. Several patients have been described with platelet PF4 deficiency, including the gray platelet syndrome, characterized by a deficiency of α-granule proteins. Defective granule formation and protein targeting are considered to be the predominant mechanisms. We have reported on a patient with thrombocytopenia and impaired platelet aggregation, secretion, and protein phosphorylation, associated with a mutation in the transcription factor RUNX1. Platelet expression profiling showed decreased transcript expression of PF4 and its non-allelic variant PF4V1. OBJECTIVES To understand the mechanism leading to PF4 deficiency associated with RUNX1 haplodeficiency, we addressed the hypothesis that PF4 is a transcriptional target of RUNX1. METHODS/RESULTS Chromatin immunoprecipitation and gel-shift assays with phorbol 12-myristate 13-acetate-treated human erythroleukemia (HEL) cells revealed RUNX1 binding to RUNX1 consensus sites at -1774/-1769 and -157/-152 on the PF4 promoter. In luciferase reporter studies in HEL cells, mutation of each site markedly reduced activity. PF4 promoter activity and PF4 protein level were decreased by small interfering RNA RUNX1 knockdown and increased by RUNX1 overexpression. CONCLUSIONS Our results provide the first evidence that PF4 is regulated by RUNX1 and that impaired transcriptional regulation leads to the PF4 deficiency associated with RUNX1 haplodeficiency. Because our patient had decreased platelet albumin and IgG (not synthesized by megakaryocytes) levels, we postulate additional defects in RUNX1-regulated genes involved in vesicular trafficking. These studies advance our understanding of the mechanisms in α-granule deficiency.
Collapse
Affiliation(s)
- Kawalpreet Aneja
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Gauthami Jalagadugula
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Guangfen Mao
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Anamika Singh
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - A. Koneti Rao
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA
- Department of Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
110
|
Sarabi A, Kramp BK, Drechsler M, Hackeng TM, Soehnlein O, Weber C, Koenen RR, Von Hundelshausen P. CXCL4L1 inhibits angiogenesis and induces undirected endothelial cell migration without affecting endothelial cell proliferation and monocyte recruitment. J Thromb Haemost 2011; 9:209-19. [PMID: 20961394 DOI: 10.1111/j.1538-7836.2010.04119.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND OBJECTIVES The non-allelic variant of CXCL4/PF4, CXCL4L1/PF4alt, differs from CXCL4 in three amino acids of the C-terminal α-helix and has been characterized as a potent anti-angiogenic regulator. Although CXCL4 structurally belongs to the chemokine family, it does not behave like a 'classical' chemokine, lacking significant chemotactic properties. Specific hallmarks are its angiostatic, anti-proliferative activities, and proinflammatory functions, which can be conferred by heteromer-formation with CCL5/RANTES enhancing monocyte recruitment. METHODS AND RESULTS Here we show that tube formation of endothelial cells was inhibited by CXCL4L1 and CXCL4, while only CXCL4L1 triggered chemokinesis of endothelial cells. The chemotactic response towards VEGF and bFGF was attenuated by both variants and CXCL4L1-induced chemokinesis was blocked by bFGF or VEGF. Endothelial cell proliferation was inhibited by CXCL4 (IC(50) 6.9 μg mL(-1)) but not by CXCL4L1, while both chemokines bound directly to VEGF and bFGF. Moreover, CXCL4 enhanced CCL5-induced monocyte arrest in flow adhesion experiments and monocyte recruitment into the mouse peritoneal cavity in vivo, whereas CXCL4L1 had no effect. CXCL4L1 revealed lower affinity to CCL5 than CXCL4, as quantified by isothermal fluorescence titration. As evidenced by the reduction of the activated partial thromboplastin time, CXCL4L1 showed a tendency towards less heparin-neutralizing activity than CXCL4 (IC(50) 2.45 vs 0.98 μg mL(-1)). CONCLUSIONS CXCL4L1 may act angiostatically by causing random endothelial cell locomotion, disturbing directed migration towards angiogenic chemokines, serving as a homeostatic chemokine with a moderate structural distinction yet different functional profile from CXCL4.
Collapse
Affiliation(s)
- A Sarabi
- Institute for Cardiovascular Molecular Research, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Sabrkhany S, Griffioen AW, Oude Egbrink MGA. The role of blood platelets in tumor angiogenesis. Biochim Biophys Acta Rev Cancer 2010; 1815:189-96. [PMID: 21167916 DOI: 10.1016/j.bbcan.2010.12.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 12/03/2010] [Accepted: 12/04/2010] [Indexed: 01/20/2023]
Abstract
Coagulation abnormalities occur frequently in cancer patients. It is becoming evident that blood platelets have an important function in this process. However, understanding of the underlying mechanisms is still very modest. In this review, we discuss the role of platelets in tumor angiogenesis and growth and suggest their potential significance in malignancies. Platelets contain various pro-and antiangiogenic molecules, which seem to be endocytosed and sequestered in different populations of α-granules. Furthermore, tumor endothelial cells are phenotypically and functionally different from endothelial cells in healthy tissue, stimulating local platelet adhesion and subsequent activation. As a consequence, platelets are able to secrete their angiogenic and angiostatic content, most likely in a regulated manner. The overall effect of these platelet-endothelium interactions appears to be proangiogenic, stimulating tumor angiogenesis. We favor the view that local adhesion and activation of blood platelets and dysregulation of coagulation represent underestimated pathways in the progression of cancer.
Collapse
Affiliation(s)
- Siamack Sabrkhany
- Laboratory for Microcirculation, Cardiovascular Research Institute Maastricht (CARIM), Dept. of Physiology, Maastricht, The Netherlands
| | | | | |
Collapse
|
112
|
Abstract
Chemokines are a family of small heparin-binding proteins, mostly known for their role in inflammation and immune surveillance, which have emerged as important regulators of angiogenesis. Chemokines influence angiogenesis either through recruitment of pro-angiogenic immune cells and endothelial progenitors to the neo-vascular niche or via direct regulation of endothelial function downstream of activation of G-protein coupled chemokine receptors. The dual function of chemokines in regulating immune response and angiogenesis confers a central role in modulating the tissue microenvironment. Therefore, chemokines may constitute attractive targets for therapeutic intervention in several pathological disorders. This review will summarize the current understanding of the role of chemokines in angiogenesis, and give an overview of angiostatic and angiogenic chemokines and their crosstalk with other angiogenic factors.
Collapse
Affiliation(s)
- Anna Dimberg
- Department of Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 75185 Uppsala, Sweden.
| |
Collapse
|
113
|
The role of the CXC chemokines platelet factor-4 (CXCL4/PF-4) and its variant (CXCL4L1/PF-4var) in inflammation, angiogenesis and cancer. Cytokine Growth Factor Rev 2010; 22:1-18. [PMID: 21111666 DOI: 10.1016/j.cytogfr.2010.10.011] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 10/28/2010] [Indexed: 02/07/2023]
Abstract
Chemokines are chemotactic cytokines which recruit leukocytes to inflammatory sites. They also affect tumor development and metastasis by acting as growth factor, by attracting pro- or anti-tumoral leukocytes or by influencing angiogenesis. Platelet factor-4 (CXCL4/PF-4) was the first chemokine shown to inhibit angiogenesis. CXCL4L1/PF-4var, recently isolated from thrombin-stimulated platelets, differing from authentic CXCL4/PF-4 in three carboxy-terminally located amino acids, was found to be more potent than CXCL4/PF-4 in inhibiting angiogenesis and tumor growth. Both glycosaminoglycans (GAG) and CXCR3 are implicated in the activities of the PF-4 variants. This report reviews the current knowledge on the role of CXCL4/PF-4 and CXCL4L1/PF-4var in physiological and pathological processes. In particular, the role of CXCL4/PF-4 in cancer, heparin-induced thrombocytopenia and atherosclerosis is described.
Collapse
|
114
|
Das A, Lauffenburger D, Asada H, Kamm R. Determining Cell Fate Transition Probabilities to VEGF/Ang 1 Levels: Relating Computational Modeling to Microfluidic Angiogenesis Studies. Cell Mol Bioeng 2010. [DOI: 10.1007/s12195-010-0146-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
115
|
Angiostatic and chemotactic activities of the CXC chemokine CXCL4L1 (platelet factor-4 variant) are mediated by CXCR3. Blood 2010; 117:480-8. [PMID: 20980681 DOI: 10.1182/blood-2009-11-253591] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We investigated possible cellular receptors for the human CXC chemokine platelet factor-4 variant/CXCL4L1, a potent inhibitor of angiogenesis. We found that CXCL4L1 has lower affinity for heparin and chondroitin sulfate-E than platelet factor-4 (CXCL4) and showed that CXCL10 and CXCL4L1 could displace each other on microvascular endothelial cells. Labeled CXCL4L1 also bound to CXCR3A- and CXCR3B-transfectants and was displaced by CXCL4L1, CXCL4, and CXCL10. The CXCL4L1 anti-angiogenic activity was blocked by anti-CXCR3 antibodies (Abs) in the Matrigel and cornea micropocket assays. CXCL4L1 application in CXCR3(-/-) or in wild-type mice treated with neutralizing anti-CXCR3 Abs, resulted in reduced inhibitory activity of CXCL4L1 on tumor growth and vascularization of Lewis lung carcinoma. Furthermore, CXCL4L1 and CXCL4 chemoattracted activated T cells, human natural killer cells, and human immature dendritic cells (DCs). Migration of DCs toward CXCL4 and CXCL4L1 was desensitized by preincubation with CXCL10 and CXCL11, inhibited by pertussis toxin, and neutralized by anti-CXCR3 Abs. Chemotaxis of T cells, natural killer cells, and DCs is likely to contribute to the antitumoral action. However, the in vivo data indicate that the angiostatic property of CXCL4L1 is equally important in retarding tumor growth. Thus, both CXCR3A and CXCR3B are implicated in the chemotactic and vascular effects of CXCL4L1.
Collapse
|
116
|
Fens MHAM, Storm G, Schiffelers RM. Tumor vasculature as target for therapeutic intervention. Expert Opin Investig Drugs 2010; 19:1321-38. [DOI: 10.1517/13543784.2010.524204] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
117
|
Gilert A, Machluf M. Nano to micro delivery systems: targeting angiogenesis in brain tumors. JOURNAL OF ANGIOGENESIS RESEARCH 2010; 2:20. [PMID: 20932320 PMCID: PMC2964525 DOI: 10.1186/2040-2384-2-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/08/2010] [Indexed: 01/09/2023]
Abstract
Treating brain tumors using inhibitors of angiogenesis is extensively researched and tested in clinical trials. Although anti-angiogenic treatment holds a great potential for treating primary and secondary brain tumors, no clinical treatment is currently approved for brain tumor patients. One of the main hurdles in treating brain tumors is the blood brain barrier - a protective barrier of the brain, which prevents drugs from entering the brain parenchyma. As most therapeutics are excluded from the brain there is an urgent need to develop delivery platforms which will bypass such hurdles and enable the delivery of anti-angiogenic drugs into the tumor bed. Such delivery systems should be able to control release the drug or a combination of drugs at a therapeutic level for the desired time. In this mini-review we will discuss the latest improvements in nano and micro drug delivery platforms that were designed to deliver inhibitors of angiogenesis to the brain.
Collapse
Affiliation(s)
- Ariel Gilert
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
118
|
Bertozzi CC, Schmaier AA, Mericko P, Hess PR, Zou Z, Chen M, Chen CY, Xu B, Lu MM, Zhou D, Sebzda E, Santore MT, Merianos DJ, Stadtfeld M, Flake AW, Graf T, Skoda R, Maltzman JS, Koretzky GA, Kahn ML. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 2010; 116:661-70. [PMID: 20363774 PMCID: PMC3324297 DOI: 10.1182/blood-2010-02-270876] [Citation(s) in RCA: 335] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 03/24/2010] [Indexed: 12/24/2022] Open
Abstract
Although platelets appear by embryonic day 10.5 in the developing mouse, an embryonic role for these cells has not been identified. The SYK-SLP-76 signaling pathway is required in blood cells to regulate embryonic blood-lymphatic vascular separation, but the cell type and molecular mechanism underlying this regulatory pathway are not known. In the present study we demonstrate that platelets regulate lymphatic vascular development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2 (CLEC-2) receptors. PODOPLANIN (PDPN), a transmembrane protein expressed on the surface of lymphatic endothelial cells, is required in nonhematopoietic cells for blood-lymphatic separation. Genetic loss of the PDPN receptor CLEC-2 ablates PDPN binding by platelets and confers embryonic lymphatic vascular defects like those seen in animals lacking PDPN or SLP-76. Platelet factor 4-Cre-mediated deletion of Slp-76 is sufficient to confer lymphatic vascular defects, identifying platelets as the cell type in which SLP-76 signaling is required to regulate lymphatic vascular development. Consistent with these genetic findings, we observe SLP-76-dependent platelet aggregate formation on the surface of lymphatic endothelial cells in vivo and ex vivo. These studies identify a nonhemostatic pathway in which platelet CLEC-2 receptors bind lymphatic endothelial PDPN and activate SLP-76 signaling to regulate embryonic vascular development.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Blood Platelets/metabolism
- Blood Platelets/physiology
- Blood Vessels/metabolism
- Cells, Cultured
- Embryo, Mammalian
- Endothelial Cells/metabolism
- Endothelial Cells/physiology
- Endothelium, Lymphatic/embryology
- Endothelium, Lymphatic/metabolism
- Endothelium, Vascular/embryology
- Endothelium, Vascular/metabolism
- Humans
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/physiology
- Lymphatic Vessels/embryology
- Lymphatic Vessels/metabolism
- Lymphatic Vessels/physiology
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Phosphoproteins/physiology
- Protein Binding
- Signal Transduction/genetics
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Cara C Bertozzi
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Flad HD, Brandt E. Platelet-derived chemokines: pathophysiology and therapeutic aspects. Cell Mol Life Sci 2010; 67:2363-86. [PMID: 20213276 PMCID: PMC11115602 DOI: 10.1007/s00018-010-0306-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 01/28/2010] [Accepted: 02/05/2010] [Indexed: 02/05/2023]
Abstract
The identification of chemokines in blood platelets has strengthened our view of these cells as participants in immune host defense. Platelet chemokines representing prestored and rapidly releasable proteins may play a major role as first-line inflammatory mediators. This is evident from their capability to recruit early inflammatory cells such as neutrophil granulocytes and monocytes and even to exhibit direct antimicrobial activity. However, insight is growing that platelet chemokines may be also long-term regulators, e.g., by activating T lymphocytes, by modulating the formation of endothelium and even thrombocytopoiesis itself. This review deals with the individual and cooperative functionality of platelet chemokines, as well as their potential as a basis for therapeutic intervention in the pathology of inflammation, infection, allergy and tumors. Within this context, therapeutic strategies based on the use of antibodies, modified chemokines, chemokine-binding proteins and chemokine receptor antagonists as well as first clinical studies will be addressed.
Collapse
Affiliation(s)
- Hans-Dieter Flad
- Department of Immunology and Cell Biology, Research Center Borstel, Borstel, Germany.
| | | |
Collapse
|
120
|
Schwartzkopff F, Grimm TA, Lankford CSR, Fields K, Wang J, Brandt E, Clouse KA. Platelet factor 4 (CXCL4) facilitates human macrophage infection with HIV-1 and potentiates virus replication. Innate Immun 2010; 15:368-79. [PMID: 19773294 DOI: 10.1177/1753425909106171] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Platelet factor 4 (CXCL4), a member of the CXC chemokine subfamily released in high amounts by activated platelets, has been identified as a monocyte survival factor that induces monocyte differentiation into macrophages. Although CXCL4 has been shown to have biological effects unique to chemokines, nothing is known about the role of CXCL4-derived human macrophages or CXCL4 in human immunodeficiency virus (HIV) disease. In this study, CXCL4-derived macrophages are compared with macrophage-colony stimulating factor (M-CSF)-derived macrophages for their ability to support HIV-1 replication. We show that CXCL4-derived macrophages can be infected with macrophage-tropic HIV-1 that uses either CC-chemokine receptor 5 (CCR5) or CXC-chemokine receptor 4 (CXCR4) as a co-receptor for viral entry. We also find that M-CSF and the chemokines, monocyte chemoattractant protein 1 (MCP-1; CCL2) and macrophage-inflammatory-protein-1-alpha (MIP-1alpha; CCL3) are produced upon R5- and X4-tropic HIV-1 replication in both M-CSF- and CXCL4-derived human macrophages. In addition, CXCL4 added to M-CSF-derived macrophages after virus adsorption and maintained throughout the infection enhances HIV-1 replication. We thus propose a novel role for CXCL4 in HIV disease.
Collapse
|
121
|
Semaphorin 3E initiates antiangiogenic signaling through plexin D1 by regulating Arf6 and R-Ras. Mol Cell Biol 2010; 30:3086-98. [PMID: 20385769 DOI: 10.1128/mcb.01652-09] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies revealed that a class III semaphorin, semaphorin 3E (Sema3E), acts through a single-pass transmembrane receptor, plexin D1, to provide a repulsive cue for plexin D1-expressing endothelial cells, thus providing a highly conserved and developmentally regulated signaling system guiding the growth of blood vessels. We show here that Sema3E acts as a potent inhibitor of adult and tumor-induced angiogenesis. Activation of plexin D1 by Sema3E causes the rapid disassembly of integrin-mediated adhesive structures, thereby inhibiting endothelial cell adhesion to the extracellular matrix (ECM) and causing the retraction of filopodia in endothelial tip cells. Sema3E acts on plexin D1 to initiate a two-pronged mechanism involving R-Ras inactivation and Arf6 stimulation, which affect the status of activation of integrins and their intracellular trafficking, respectively. Ultimately, our present study provides a molecular framework for antiangiogenesis signaling, thus impinging on a myriad of pathological conditions that are characterized by aberrant increase in neovessel formation, including cancer.
Collapse
|
122
|
Albini A, Indraccolo S, Noonan DM, Pfeffer U. Functional genomics of endothelial cells treated with anti-angiogenic or angiopreventive drugs. Clin Exp Metastasis 2010; 27:419-39. [PMID: 20383568 DOI: 10.1007/s10585-010-9312-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 02/16/2010] [Indexed: 01/28/2023]
Abstract
Angiogenesis is a highly regulated physiological process that has been studied in considerable detail given its importance in several chronic pathologies. Many endogenous factors and hormones intervene in the regulation of angiogensis and classical as well as targeted drugs have been developed for its control. Angiogenesis inhibition has come off the bench and entered into clinical application for cancer therapy, particularly for metastatic disease. While the clinical benefit is currently in terms of months, preclinical data suggest that novel drugs and drug combinations could lead to substantial improvement. The many targets of endogenous angiogenesis inhibitors reflect the complexity of the process; in contrast, current clinical therapies mainly target the vascular endothelial growth factor system. Cancer chemopreventive compounds can retard tumor insurgence and delay or prevent metastasis and many of these molecules hinder angiogenesis, a mechanism that we termed angioprevention. Angiopreventive drugs appear to prevalently act through the inhibition of the pro-inflammatory and anti-apoptotic player NFkappaB, thus contrasting inflammation dependent angiogenesis. Relatively little is known concerning the effects of these angiogenesis inhibitors on gene expression of endothelial cells, the main target of many of these molecules. Here we provide an exhaustive list of anti-angiogenic molecules, and summarize their effects, where known, on the transcriptome and functional genomics of endothelial cells. The regulation of specific genes can be crucial to preventive or therapeutic intervention. Further, novel targets might help to circumvent resistance to anti-angiogenic therapy. The studies we review are relevant not only to cancer but also to other chronic degenerative diseases involving endothelial cells, such as cardiovascular disorders, diabetes, rheumatoid arthritis and retinopaties, as well as vessel aging.
Collapse
Affiliation(s)
- Adriana Albini
- MultiMedica Castellanza (VA) and Oncology Research, IRCCS MultiMedica, 20138 Milan, Italy.
| | | | | | | |
Collapse
|
123
|
Vandercappellen J, Liekens S, Bronckaers A, Noppen S, Ronsse I, Dillen C, Belleri M, Mitola S, Proost P, Presta M, Struyf S, Van Damme J. The COOH-terminal peptide of platelet factor-4 variant (CXCL4L1/PF-4var47-70) strongly inhibits angiogenesis and suppresses B16 melanoma growth in vivo. Mol Cancer Res 2010; 8:322-34. [PMID: 20215425 DOI: 10.1158/1541-7786.mcr-09-0176] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemokines influence tumor growth directly or indirectly via both angiogenesis and tumor-leukocyte interactions. Platelet factor-4 (CXCL4/PF-4), which is released from alpha-granules of activated platelets, is the first described angiostatic chemokine. Recently, it was found that the variant of CXCL4/PF-4 (CXCL4L1/PF-4var) could exert a more pronounced angiostatic and antitumoral effect than CXCL4/PF-4. However, the molecular mechanisms of the angiostatic activities of the PF-4 forms remain partially elusive. Here, we studied the biological properties of the chemically synthesized COOH-terminal peptides of CXCL4/PF-4 (CXCL4/PF-4(47-70)) and CXCL4L1/PF-4var (CXCL4L1/PF-4var(47-70)). Both PF-4 peptides lacked monocyte and lymphocyte chemotactic activity but equally well inhibited (25 nmol/L) endothelial cell motility and proliferation in the presence of a single stimulus (i.e., exogenous recombinant fibroblast growth factor-2). In contrast, when assayed in more complex angiogenesis test systems characterized by the presence of multiple mediators, including in vitro wound-healing (2.5 nmol/L versus 12.5 nmol/L), Matrigel (60 nmol/L versus 300 nmol/L), and chorioallantoic membrane assays, CXCL4L1/PF-4var(47-70) was found to be significantly (5-fold) more angiostatic than CXCL4/PF-4(47-70). In addition, low (7 microg total) doses of intratumoral CXCL4L1/PF-4var(47-70) inhibited B16 melanoma growth in mice more extensively than CXCL4/PF-4(47-70). This antitumoral activity was predominantly mediated through inhibition of angiogenesis (without affecting blood vessel stability) and induction of apoptosis, as evidenced by immunohistochemical and fluorescent staining of B16 tumor tissue. In conclusion, CXCL4L1/PF-4var(47-70) is a potent antitumoral and antiangiogenic peptide. These results may represent the basis for the design of CXCL4L1/PF-4var COOH-terminal-derived peptidomimetic anticancer drugs.
Collapse
Affiliation(s)
- Jo Vandercappellen
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
The Chick Embryo Chorioallantoic Membrane as an In Vivo Assay to Study Antiangiogenesis. Pharmaceuticals (Basel) 2010; 3:482-513. [PMID: 27713265 PMCID: PMC4033966 DOI: 10.3390/ph3030482] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 01/29/2010] [Accepted: 03/02/2010] [Indexed: 12/15/2022] Open
Abstract
Antiangiogenesis, e.g., inhibition of blood vessel growth, is being investigated as a way to prevent the growth of tumors and other angiogenesis-dependent diseases. Pharmacological inhibition interferes with the angiogenic cascade or the immature neovasculature with synthetic or semi-synthetic substances, endogenous inhibitors or biological antagonists.The chick embryo chorioallantoic membrane (CAM) is an extraembryonic membrane, which serves as a gas exchange surface and its function is supported by a dense capillary network. Because its extensive vascularization and easy accessibility, CAM has been used to study morphofunctional aspects of the angiogenesis process in vivo and to study the efficacy and mechanism of action of pro- and anti-angiogenic molecules. The fields of application of CAM in the study of antiangiogenesis, including our personal experience, are illustrated in this review article.
Collapse
|
125
|
Differential changes in platelet VEGF, Tsp, CXCL12, and CXCL4 in patients with metastatic cancer. Clin Exp Metastasis 2010; 27:141-9. [DOI: 10.1007/s10585-010-9311-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 02/11/2010] [Indexed: 01/21/2023]
|
126
|
Abstract
The tumor microenvironment is extremely complex that depends on tumor cell interaction with the responding host cells. Angiogenesis, or new blood vessel growth from preexisting vasculature, is a preeminent feature of successful tumor growth of all solid tumors. While a number of factors produced by both the tumor cells and host responding cells have been discovered that regulate angiogenesis, increasing evidence is growing to support the important role of CXC chemokines in this process. As a family of cytokines, the CXC chemokines are pleiotropic in their ability to regulate tumor-associated angiogenesis, as well as cancer cell metastases. In this chapter, we will discuss the disparate activity that CXC chemokines play in regulating cancer-associated angiogenesis and metastases.
Collapse
Affiliation(s)
- Ellen C Keeley
- Division of Cardiology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | | | | |
Collapse
|
127
|
Abstract
Gene expression profiling of peripheral blood cells can provide dynamic information regarding the host response to immune-mediated disorders. AlloMap molecular expression testing from XDx monitors the expression of 20 genes in peripheral blood mononuclear cells (PBMC) to discriminate cardiac allograft recipients of 15 years or greater who are at low risk for acute cellular rejection (ACR). The AlloMap test classifier is based on the expression level of 11 genes, encoding proteins with diverse functions, which are differentially expressed in stable patients with moderate to severe ACR compared to patients without ACR. The nine other test genes are used for normalizing gene expression levels and assuring sample quality. In this work we review the development processes leading to the selection of the 11 informative genes and the derivation of the AlloMap test classifier, and discuss the relationship of peripheral blood gene expression with diverse pathways associated with ACR, including T-cell priming, platelet activation, systemic responses to allograft inflammation, and the overall state of immunosuppression.
Collapse
|
128
|
Thulin A, Ringvall M, Dimberg A, Kårehed K, Väisänen T, Väisänen MR, Hamad O, Wang J, Bjerkvig R, Nilsson B, Pihlajaniemi T, Akerud H, Pietras K, Jahnen-Dechent W, Siegbahn A, Olsson AK. Activated platelets provide a functional microenvironment for the antiangiogenic fragment of histidine-rich glycoprotein. Mol Cancer Res 2009; 7:1792-802. [PMID: 19903770 DOI: 10.1158/1541-7786.mcr-09-0094] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The angiogenesis inhibitor histidine-rich glycoprotein (HRG) constitutes one of several examples of molecules regulating both angiogenesis and hemostasis. The antiangiogenic properties of HRG are mediated via its proteolytically released histidine- and proline-rich (His/Pro-rich) domain. Using a combination of immunohistochemistry and mass spectrometry, we here provide biochemical evidence for the presence of a proteolytic peptide, corresponding to the antiangiogenic domain of HRG, in vivo in human tissue. This finding supports a role for HRG as an endogenous regulator of angiogenesis. Interestingly, the His/Pro-rich peptide bound to the vessel wall in tissue from cancer patients but not to the vasculature in tissue from healthy persons. Moreover, the His/Pro-rich peptide was found in close association with platelets. Relesate from in vitro-activated platelets promoted binding of the His/Pro-rich domain of HRG to endothelial cells, an effect mediated by Zn(2+). Previous studies have shown that zinc-dependent binding of the His/Pro-rich domain of HRG to heparan sulfate on endothelial cells is required for inhibition of angiogenesis. We describe a novel mechanism to increase the local concentration and activity of an angiogenesis inhibitor, which may reflect a host response to counteract angiogenesis during pathologic conditions. Our finding that tumor angiogenesis is elevated in HRG-deficient mice supports this conclusion.
Collapse
Affiliation(s)
- Asa Thulin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala Biomedical Center, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Serum protein signature may improve detection of ductal carcinoma in situ of the breast. Oncogene 2009; 29:550-60. [PMID: 19855429 DOI: 10.1038/onc.2009.341] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ductal carcinoma in situ (DCIS) of the breast is part of a spectrum of preinvasive lesions that originate within normal breast tissue and progress to invasive breast cancer. The detection of DCIS is important for the reduction of mortality from breast cancer, but the diagnosis of preinvasive breast tumors is hampered by the lack of an adequate detection method. To identify the changes in protein expression during the initial stage of tumorigenesis and to identify the presence of new DCIS markers, we analysed serum from 60 patients with breast cancer and 60 normal controls using mass spectrometry. A 23-protein index was generated that correctly distinguishes the DCIS and control groups with sensitivities and specificities in excess of 80% in two independent cohorts. Two candidate peptides were purified and identified as platelet factor 4 (PF-4) and complement C3a(desArg) anaphylatoxin (C3a(desArg)) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In an independent serum set of 165 patients, PF-4 and C3a(desArg) were significantly upregulated in DCIS compared with non-cancerous controls, as validated using western blot and enzyme-linked immunosorbent assay. We conclude that our serum protein-based test, used in conjunction with image-based screening practices, could improve the sensitivity and specificity of breast cancer detection.
Collapse
|
130
|
Abstract
Angiogenesis is regulated by a local balance between the levels of endogenous stimulators and inhibitors of angiogenesis. Understanding of the mechanism of angiogenesis has advanced significantly since the discovery of two members of the family of angiogenesis stimulators, i.e., vascular endothelial growth factor family proteins and angiopoietins. These factors act on endothelial cells to stimulate angiogenesis. In contrast, most of angiogenesis inhibitors do not seem to have such characteristics. Very few genes encoding molecules that selectively inhibit angiogenesis have been discovered. This review will focus on our current understanding of endogenous inhibitors of angiogenesis.
Collapse
Affiliation(s)
- Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan.
| |
Collapse
|
131
|
Wang H, Zhang W, Tang R, Hebbel RP, Kowalska MA, Zhang C, Marth JD, Fukuda M, Zhu C, Huo Y. Core2 1-6-N-glucosaminyltransferase-I deficiency protects injured arteries from neointima formation in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 2009; 29:1053-9. [PMID: 19372458 PMCID: PMC2735567 DOI: 10.1161/atvbaha.109.187716] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Core2 1 to 6-N-glucosaminyltransferase-I (C2GlcNAcT-I) plays an important role in optimizing the binding functions of several selectin ligands, including P-selectin glycoprotein ligand. We used apolipoprotein E (ApoE)-deficient atherosclerotic mice to investigate the role of C2GlcNAcT-I in platelet and leukocyte interactions with injured arterial walls, in endothelial regeneration at injured sites, and in the formation of arterial neointima. METHODS AND RESULTS Arterial neointima induced by wire injury was smaller in C2GlcNAcT-I-deficient apoE(-/-) mice than in control apoE(-/-) mice (a 79% reduction in size). Compared to controls, apoE(-/-) mice deficient in C2GlcNAcT-I also demonstrated less leukocyte adhesion on activated platelets in microflow chambers (a 75% reduction), and accumulation of leukocytes at injured areas of mouse carotid arteries was eliminated. Additionally, endothelial regeneration in injured lumenal areas was substantially faster in C2GlcNAcT-I-deficient apoE(-/-) mice than in control apoE(-/-) mice. Endothelial regeneration was associated with reduced accumulation of platelet factor 4 (PF4) at injured sites. PF4 deficiency accelerated endothelial regeneration and protected mice from neointima formation after arterial injury. CONCLUSIONS C2GlcNAcT-I deficiency suppresses injury-induced arterial neointima formation, and this effect is attributable to decreased leukocyte recruitment to injured vascular walls and increased endothelial regeneration. Both C2GlcNAcT-I and PF4 are promising targets for the treatment of arterial restenosis.
Collapse
Affiliation(s)
- Huan Wang
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Weiyu Zhang
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Rong Tang
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Robert P. Hebbel
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - M. Anna Kowalska
- Department of Hematology, Children's Hospital of Philadelphia, PA
| | - Chunxiang Zhang
- Department of Anesthesiology, New Jersey Medical School, University of Medicine & Dentistry of New Jersey, Newark, NJ
| | - Jamey D. Marth
- Department of Cellular and Molecular Medicine and the Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA
| | - Minoru Fukuda
- Glycobiology/Carbohydrate Chemistry Program, Burnham Institute for Medical Research, La Jolla, California
| | - Chuhong Zhu
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Yuqing Huo
- Department of Medicine, University of Minnesota, Minneapolis, MN
| |
Collapse
|
132
|
Pearce WJ. Multifunctional angiogenic factors: add GnRH to the list. Focus on "Gonadotropin-releasing hormone-regulated chemokine expression in human placentation". Am J Physiol Cell Physiol 2009; 297:C4-5. [PMID: 19439527 DOI: 10.1152/ajpcell.00209.2009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
133
|
Ribatti D. Endogenous inhibitors of angiogenesis. Leuk Res 2009; 33:638-44. [DOI: 10.1016/j.leukres.2008.11.019] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 11/18/2008] [Accepted: 11/19/2008] [Indexed: 11/25/2022]
|
134
|
Ragona L, Tomaselli S, Quemener C, Zetta L, Bikfalvi A. New insights into the molecular interaction of the C-terminal sequence of CXCL4 with fibroblast growth factor-2. Biochem Biophys Res Commun 2009; 382:26-9. [PMID: 19245795 DOI: 10.1016/j.bbrc.2009.02.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 12/01/2022]
Abstract
Full-length CXCL4 chemokine and a peptide derived from its carboxyl-terminal domain exhibits significant antiangiogenic and anti-tumor activity in vivo and in vitro by interacting with fibroblast growth factor (FGF). In this study we used NMR spectroscopy to characterize at a molecular level the interactions between CXCL4 (47-70) and FGF-2 identifying the peptide residues mainly involved in the contact area with the growth factor. Altogether NMR data point to a major role of the hydrophobic contributions of the C-terminal region of CXCL4 (47-70) peptide in addition to specific contacts established by the N-terminal region through cysteine side chain. The proposed recognition mode constitutes a rationale for the observed effects of CXCL4 (47-70) on FGF-2 biological activity and lays the basis for developing novel inhibitors of angiogenesis.
Collapse
Affiliation(s)
- Laura Ragona
- Istituto per lo Studio delle Macromolecole, Consiglio Nazionale delle Ricerche, Via Bassini 15, 20133 Milan, Italy
| | | | | | | | | |
Collapse
|
135
|
Affiliation(s)
- Gurinder Sidhu
- Memorial Sloan-Kettering Cancer Center, 1275 York Ave., Howard-802, New York, NY 10065, USA
| | | |
Collapse
|
136
|
Lee YC, Yoon TJ, Choi GJ, Kim DH. Effect of Triamcinolone on Angiogenesis-related Factors of Cultured Retinal Pigment Epithelial Cells. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2009. [DOI: 10.3341/jkos.2009.50.4.594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Young Chang Lee
- Department of Ophthalmology, College of Medicine, Chosun University, Gwangju, Korea
| | | | - Gwang Ju Choi
- Department of Ophthalmology, College of Medicine, Chosun University, Gwangju, Korea
| | - Dae Hyun Kim
- Department of Ophthalmology, College of Medicine, Chosun University, Gwangju, Korea
| |
Collapse
|
137
|
Krieg C, Boyman O. The role of chemokines in cancer immune surveillance by the adaptive immune system. Semin Cancer Biol 2008; 19:76-83. [PMID: 19038343 DOI: 10.1016/j.semcancer.2008.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 10/02/2008] [Accepted: 10/31/2008] [Indexed: 01/13/2023]
Abstract
Chemokines are key molecules involved in the migration and homeostasis of immune cells. However, also tumor cells use chemokine signals for different processes such as tumor progression and metastasis. It is thus unclear whether chemokines, through their immunostimulatory roles, contribute to the repression of tumor cells by tumor immunosurveillance or whether chemokines act primarily as growth factors and chemoattractants for primary and metastatizing tumors, respectively. Research of recent years, using gene knockout mice, recombinant chemokines, and agents able to block chemokine actions, has provided further insight into the diverse functions of chemokines. Here, we review the current knowledge on the complex actions of chemokines at the interface of the immune system and the tumor.
Collapse
Affiliation(s)
- Carsten Krieg
- Division of Immunology and Allergy, University Hospital of Lausanne (CHUV), Rue du Bugnon 46, CH-1011 Lausanne, Switzerland.
| | | |
Collapse
|
138
|
Abstract
Chemokines are a superfamily of homologous heparin-binding proteins, first described for their role in recruiting leukocytes to sites of inflammation. Chemokines have since been recognized as key factors mediating both physiological and pathological neovascularization in such diverse clinical settings as malignancy, wound repair, chronic fibroproliferative disorders, myocardial ischemia, and atherosclerosis. Members of the CXC chemokine family, structurally defined as containing the ELR amino acid motif, are potent inducers of angiogenesis, whereas another subset of the CXC chemokines inhibits angiogenesis. In addition, CCL2, a CC chemokine ligand, has been implicated in arteriogenesis. In this article, we review the current literature on the role of chemokines as mediators of neovascularization.
Collapse
Affiliation(s)
- Ellen C. Keeley
- Department of Medicine, Divisions of Cardiology University of Virginia, Charlottesville, Virginia
| | - Borna Mehrad
- Department of Medicine, Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - Robert M. Strieter
- Department of Medicine, Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
139
|
Chen T, Wu S, Zhou G, Zhu Y, He F. Renewal and preliminary study of expressed sequence tags database on human fetal liver aged 22 wk of gestation. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
140
|
Ho-Tin-Noé B, Goerge T, Cifuni SM, Duerschmied D, Wagner DD. Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res 2008; 68:6851-8. [PMID: 18701510 PMCID: PMC2547489 DOI: 10.1158/0008-5472.can-08-0718] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer is associated with a prothrombogenic state capable of platelet activation. Platelets, on the other hand, can support angiogenesis, a process involved in the progression of tumor growth and metastasis. However, it is unclear whether platelet/tumor interactions substantially contribute to tumor physiology. We investigated whether platelets stabilize tumor vessels and studied the underlying mechanisms. We induced severe acute thrombocytopenia in mice bearing s.c. Lewis lung carcinoma or B16F10 melanoma. Intravital microscopy revealed that platelet depletion led to a rapid destabilization of tumor vessels with intratumor hemorrhage starting as soon as 30 min after induction of thrombocytopenia. Using an inhibitor of glycoprotein Ibalpha (GPIbalpha) and genetically engineered mice with platelet adhesion defects, we investigated the role of platelet adhesion receptors in stabilizing tumor vessels. We found that a single defect in either GPIbalpha, von Willebrand factor, P-selectin, or platelet integrin activation did not lead to intratumor hemorrhage. We then compared the ability of transfused resting and degranulated platelets to prevent intratumor hemorrhage. Whereas resting platelets prevented thrombocytopenia-induced tumor bleeding, circulating degranulated platelets did not. This suggests that the prevention of intratumor hemorrhage by platelets relies on the secretion of the content of platelet granules. Supporting this hypothesis, we further found that thrombocytopenia dramatically impairs the balance between propermeability and antipermeability factors in tumor-bearing animals, in particular depleting blood of angiopoietin-1 and serotonin. Our results show a crucial contribution of platelets to tumor homeostasis through continuous prevention of severe intratumor hemorrhage and consequent cell death. The study also suggests platelet function as a reasonable target for specific destabilization of tumor vessels.
Collapse
Affiliation(s)
- Benoit Ho-Tin-Noé
- Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
141
|
The CXC-chemokine CXCL4 interacts with integrins implicated in angiogenesis. PLoS One 2008; 3:e2657. [PMID: 18648521 PMCID: PMC2481302 DOI: 10.1371/journal.pone.0002657] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Accepted: 06/10/2008] [Indexed: 11/19/2022] Open
Abstract
The human CXC-chemokine CXCL4 is a potent inhibitor of tumor-induced angiogenesis. Considering that CXCL4 is sequestered in platelet alpha-granules and released following platelet activation in the vicinity of vessel wall injury, we tested the hypothesis that CXCL4 might function as a ligand for integrins. Integrins are a family of adhesion receptors that play a crucial role in angiogenesis by regulating early angiogenic processes, such as endothelial cell adhesion and migration. Here, we show that CXCL4 interacts with alphavbeta3 on the surface of alphavbeta3-CHO. More importantly, human umbilical vein endothelial cells adhere to immobilized CXCL4 through alphavbeta3 integrin, and also through other integrins, such as alphavbeta5 and alpha5beta1. We further demonstrate that CXCL4-integrin interaction is of functional significance in vitro, since immobilized CXCL4 supported endothelial cell spreading and migration in an integrin-dependent manner. Soluble CXCL4, in turn, inhibits integrin-dependent endothelial cell adhesion and migration. As a whole, our study identifies integrins as novel receptors for CXCL4 that may contribute to its antiangiogenic effect.
Collapse
|
142
|
Vandercappellen J, Van Damme J, Struyf S. The role of CXC chemokines and their receptors in cancer. Cancer Lett 2008; 267:226-44. [PMID: 18579287 DOI: 10.1016/j.canlet.2008.04.050] [Citation(s) in RCA: 498] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/28/2008] [Accepted: 04/29/2008] [Indexed: 12/16/2022]
Abstract
Chemokines, or chemotactic cytokines, and their receptors have been discovered as essential and selective mediators in leukocyte migration to inflammatory sites and to secondary lymphoid organs. Besides their functions in the immune system, they also play a critical role in tumor initiation, promotion and progression. There are four subgroups of chemokines: CXC, CC, CX(3)C, and C chemokine ligands. The CXC or alpha subgroup is further subdivided in the ELR(+) and ELR(-) chemokines. Members that contain the ELR motif bind to CXC chemokine receptor 2 (CXCR2) and are angiogenic. In contrast, most of the CXC chemokines without ELR motif bind to CXCR3 and are angiostatic. An exception is the angiogenic ELR(-)CXC chemokine stromal cell-derived factor-1 (CXCL12/SDF-1), which binds to CXCR4 and CXCR7 and is implicated in tumor metastasis. This review is focusing on the role of CXC chemokines and their receptors in tumorigenesis, including angiogenesis, attraction of leukocytes to tumor sites and induction of tumor cell migration and homing in metastatic sites. Finally, their therapeutic use in cancer treatment is discussed.
Collapse
Affiliation(s)
- Jo Vandercappellen
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
143
|
Huang J, Chen K, Gong W, Dunlop NM, Wang JM. G-protein coupled chemoattractant receptors and cancer. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:3352-63. [PMID: 18508437 PMCID: PMC7422331 DOI: 10.2741/2930] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemoattractant receptors are a group of seven transmembrane, G protein coupled receptors (GPCRs). They were initially identified mainly on leukocytes to mediate cell migration in response to pathogen or host-derived chemotactic factors. During the past decade, chemoattractant GPCRs have been discovered not only to mediate leukocyte chemotaxis thus promoting innate and adaptive host immune responses, but also to play essential roles in development, homeostasis, HIV infection, angiogenesis and wound healing. A growing body of evidence further indicates that chemoattractant GPCRs contribute to tumor growth, invasion, angiogenesis/angiostasis and metastasis. The diverse properties of GPCRs in the progression of malignant tumors have attracted intense interest in their potential as novel anti-tumor pharmacological targets.
Collapse
Affiliation(s)
- Jian Huang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
- Department of Pathophysiology, Third Military Medical University, Chongqing, P. R. China
| | - Keqiang Chen
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Wanghua Gong
- Basic Research Program, SAIC-Frederick, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Nancy M Dunlop
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
144
|
Raghuwanshi SK, Nasser MW, Chen X, Strieter RM, Richardson RM. Depletion of beta-arrestin-2 promotes tumor growth and angiogenesis in a murine model of lung cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:5699-5706. [PMID: 18390755 DOI: 10.4049/jimmunol.180.8.5699] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Arrestins are adaptor/scaffold proteins that complex with activated and phosphorylated G protein-coupled receptor to terminate G protein activation and signal transduction. These complexes also mediate downstream signaling, independently of G protein activation. We have previously shown that beta-arrestin-2 (betaarr2) depletion promotes CXCR2-mediated cellular signaling, including angiogenesis and excisional wound closure. This study was designed to investigate the role of betaarr2 in tumorigenesis using a murine model of lung cancer. To that end, heterotopic murine Lewis lung cancer and tail vein metastasis tumor model systems in betaarr2-deficient mice (betaarr2(-/-)) and control littermates (betaarr2(+/+)) were used. betaarr2(-/-) mice exhibited a significant increase in Lewis lung cancer tumor growth and metastasis relative to betaarr2(+/+) mice. This correlated with decreased number of tumor-infiltrating lymphocytes but with elevated levels of the ELR(+) chemokines (CXCL1/keratinocyte-derived chemokine and CXCL2/MIP-2), vascular endothelial growth factor, and microvessel density. NF-kappaB activity was also enhanced in betaarr2(-/-) mice, whereas hypoxia-inducible factor-1alpha expression was decreased. Inhibition of CXCR2 or NF-kappaB reduced tumor growth in both betaarr2(-/-) and betaarr2(+/+) mice. NF-kappaB inhibition also decreased ELR(+) chemokines and vascular endothelial growth factor expression. Altogether, the data suggest that betaarr2 modulates tumorigenesis by regulating inflammation and angiogenesis through activation of CXCR2 and NF-kappaB.
Collapse
Affiliation(s)
- Sandeep K Raghuwanshi
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biology, North Carolina Central University, Durham, NC 27707, USA
| | | | | | | | | |
Collapse
|
145
|
Nolte I, Przibylla H, Bostel T, Groden C, Brockmann MA. Tumor–platelet interactions: Glioblastoma growth is accompanied by increasing platelet counts. Clin Neurol Neurosurg 2008; 110:339-42. [DOI: 10.1016/j.clineuro.2007.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 12/04/2007] [Accepted: 12/04/2007] [Indexed: 11/27/2022]
|
146
|
Herblin WF, Brem S, Fan TP, Gross JL. Overview Oncologic, Endocrine & Metabolic: Recent advances in angiogenesis inhibitors. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.4.6.641] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
147
|
Weiss JB, McLaughlin B. Section Review Oncologic, Endocrine & Metabolic: Recent developments in the treatment of angiogenesis. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.6.7.619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
148
|
Ribatti D. Judah Folkman, a pioneer in the study of angiogenesis. Angiogenesis 2008; 11:3-10. [PMID: 18247146 PMCID: PMC2268723 DOI: 10.1007/s10456-008-9092-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 01/13/2008] [Indexed: 11/24/2022]
Abstract
More than 30 years ago, Judah Folkman found a revolutionary new way to think about cancer. He postulated that in order to survive and grow, tumors require blood vessels, and that by cutting off that blood supply, a cancer could be starved into remission. What began as a revolutionary approach to cancer has evolved into one of the most exciting areas of scientific inquiry today. Over the years, Folkman and a growing team of researchers have isolated the proteins and unraveled the processes that regulate angiogenesis. Meanwhile, a new generation of angiogenesis research has emerged as well, widening the field into new areas of human disease and deepening it to examine the underlying biological processes responsible for those diseases.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, University of Bari Medical School, Piazza G. Cesare, 11, Policlinico, 70124, Bari, Italy.
| |
Collapse
|
149
|
Platelets may serve up biomarkers. Blood 2008. [DOI: 10.1182/blood-2007-10-118059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
150
|
Petrai I, Rombouts K, Lasagni L, Annunziato F, Cosmi L, Romanelli RG, Sagrinati C, Mazzinghi B, Pinzani M, Romagnani S, Romagnani P, Marra F. Activation of p38(MAPK) mediates the angiostatic effect of the chemokine receptor CXCR3-B. Int J Biochem Cell Biol 2008; 40:1764-74. [PMID: 18291705 DOI: 10.1016/j.biocel.2008.01.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 01/03/2008] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
Abstract
Chemokines binding the CXCR3 receptor have been shown to inhibit angiogenesis via the CXCR3-B isoform, but the underlying molecular mechanisms are unknown. Aim of this study was to elucidate the effects of CXCR3-B on activation of members of the mitogen-activated protein kinase family, and to explore the relevance of defined signaling pathways to the angiostatic effects of CXCR3-B ligands. Human embryonic kidney (HEK) 293 cells were transfected with expression vectors encoding for CXCR3-A or CXCR3-B. In cells expressing CXCR3-A, CXCL10 (IP-10) at nanomolar concentrations induced activation of ERK, Akt, and Src, as previously described in human vascular pericytes. In HEK-293 cells expressing CXCR3-B, exposure to CXCL10 in the micromolar concentration range led to activation of the p38(MAPK) pathway, as indicated by phosphorylation of p38(MAPK) itself, and of MKK3/6 and MAPKAPK-2, that lie upstream and downstream of p38(MAPK), respectively. Similar results were obtained in cells stimulated with CXCL4 (PF4), a specific ligand of CXCR3-B. In contrast, CXCL4 was unable to activate p38(MAPK) in mock-transfected HEK-293 cells. Only a modest induction of ERK or JNK was observed upon CXCR3-B activation. In human microvascular endothelial cells, which selectively express CXCR3-B, in a cell cycle-dependent fashion, CXCL10 and CXCL4 increased the enzymatic activity of p38(MAPK). Pharmacologic inhibition of p38(MAPK) by SB302580 resulted in a significant increase in DNA synthesis and in reversal of the inhibitory action of CXCL10. In conclusion, the p38(MAPK) pathway is a downstream effector of CXCR3-B implicated in the angiostatic action of this chemokine receptor.
Collapse
Affiliation(s)
- Ilaria Petrai
- Dipartimento di Medicina Interna, University of Florence, Viale Morgagni 85, I-50134 Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|