101
|
Xu B, Gillard BK, Gotto AM, Rosales C, Pownall HJ. ABCA1-Derived Nascent High-Density Lipoprotein-Apolipoprotein AI and Lipids Metabolically Segregate. Arterioscler Thromb Vasc Biol 2017; 37:2260-2270. [PMID: 29074589 DOI: 10.1161/atvbaha.117.310290] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Reverse cholesterol transport comprises cholesterol efflux from ABCA1-expressing macrophages to apolipoprotein (apo) AI, giving nascent high-density lipoprotein (nHDL), esterification of nHDL-free cholesterol (FC), selective hepatic extraction of HDL lipids, and hepatic conversion of HDL cholesterol to bile salts, which are excreted. We tested this model by identifying the fates of nHDL-[3H]FC, [14C] phospholipid (PL), and [125I]apo AI in serum in vitro and in vivo. APPROACH AND RESULTS During in vitro incubation of human serum, nHDL-[3H]FC and [14C]PL rapidly transfer to HDL and low-density lipoproteins (t1/2=2-7 minutes), whereas nHDL-[125I]apo AI transfers solely to HDL (t1/2<10 minutes) and to the lipid-free form (t1/2>480 minutes). After injection into mice, nHDL-[3H]FC and [14C]PL rapidly transfer to liver (t1/2=≈2-3 minutes), whereas apo AI clears with t1/2=≈460 minutes. The plasma nHDL-[3H]FC esterification rate is slow (0.46%/h) compared with hepatic uptake. PL transfer protein enhances nHDL-[14C]PL but not nHDL-[3H]FC transfer to cultured Huh7 hepatocytes. CONCLUSIONS nHDL-FC, PL, and apo AI enter different pathways in vivo. Most nHDL-[3H]FC and [14C]PL are rapidly extracted by the liver via SR-B1 (scavenger receptor class B member 1) and spontaneous transfer; hepatic PL uptake is promoted by PL transfer protein. nHDL-[125I]apo AI transfers to HDL and to the lipid-free form that can be recycled to nHDL formation. Cholesterol esterification by lecithin:cholesterol acyltransferase is a minor process in nHDL metabolism. These findings could guide the design of therapies that better mobilize peripheral tissue-FC to hepatic disposal.
Collapse
Affiliation(s)
- Bingqing Xu
- From the Center for Bioenergetics and Department of Medicine, Houston Methodist Research Institute, TX (B.X., B.K.G., A.M.G., C.R., H.J.P.); and Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China (B.X.)
| | - Baiba K Gillard
- From the Center for Bioenergetics and Department of Medicine, Houston Methodist Research Institute, TX (B.X., B.K.G., A.M.G., C.R., H.J.P.); and Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China (B.X.)
| | - Antonio M Gotto
- From the Center for Bioenergetics and Department of Medicine, Houston Methodist Research Institute, TX (B.X., B.K.G., A.M.G., C.R., H.J.P.); and Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China (B.X.)
| | - Corina Rosales
- From the Center for Bioenergetics and Department of Medicine, Houston Methodist Research Institute, TX (B.X., B.K.G., A.M.G., C.R., H.J.P.); and Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China (B.X.)
| | - Henry J Pownall
- From the Center for Bioenergetics and Department of Medicine, Houston Methodist Research Institute, TX (B.X., B.K.G., A.M.G., C.R., H.J.P.); and Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China (B.X.).
| |
Collapse
|
102
|
Zheng Y, Li Y, Liu G, Qi X, Cao X. MicroRNA-24 inhibits the proliferation and migration of endothelial cells in patients with atherosclerosis by targeting importin-α3 and regulating inflammatory responses. Exp Ther Med 2017; 15:338-344. [PMID: 29250154 DOI: 10.3892/etm.2017.5355] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 05/19/2017] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to measure the level of microRNA (miRNA or miR)-24 in the serum of patients with atherosclerosis and to investigate the effect of miR-24 on the expression of importin-α3 and tumor necrosis factor (TNF)-α, as well as the proliferation and migration of vascular endothelial cells. A total of 30 patients with atherosclerosis admitted to hospital between January and June 2016 were enrolled in the present study; 30 healthy subjects with a similar age range were enrolled as controls. Peripheral blood (10 ml) was collected from all participants. Human umbilical vein endothelial cells (HUVECs) were transfected with miR-24 mimic using Lipofectamine 2000. TargetScan was used to elucidate whether importin-α3 (KPNA4) was a target gene of miR-24. Expression levels of miR-24 and mRNAs were measured using reverse transcription-quantitative polymerase chain reaction, and protein expression was determined using western blotting. Cell Counting Kit 8 assay was used to assess the proliferation of HUVECs, and a Transwell assay was performed to detect the migration of HUVECs. Expression of miR-24 in peripheral blood from patients with atherosclerosis was significantly lower when compared with healthy subjects (P<0.05). Overexpression of miR-24 was demonstrated to significantly inhibit the transcription and translation of the importin-α3 gene (P<0.05) and negatively regulate the expression of endothelial inflammatory factor TNF-α (P<0.05). Furthermore, overexpression of miR-24 significantly inhibited the proliferation and migration of HUVECs (P<0.05), and miR-24 knockdown significantly promoted these processes (P<0.05). The results of the present study suggest that miR-24 exerts its effect in atherosclerosis by blocking the nuclear factor-κB signaling pathway, regulating inflammation in endothelial cells, and inhibiting the proliferation and migration of vascular endothelial cells.
Collapse
Affiliation(s)
- Ye Zheng
- Graduate School of Tianjin Medical University, Tianjin 300070, P.R. China.,Department of Cardiovascular Medicine, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Yongxing Li
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Gang Liu
- Department of Cardiovascular Medicine, First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiangqian Qi
- Department of Cardiovascular Medicine, Tianjin TEDA International Cardiovascular Hospital, Tianjin 300000, P.R. China
| | - Xufen Cao
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
103
|
Nakamura Y, Shimizu Y, Horibata Y, Tei R, Koike R, Masawa M, Watanabe T, Shiobara T, Arai R, Chibana K, Takemasa A, Sugimoto H, Ishii Y. Changes of plasmalogen phospholipid levels during differentiation of induced pluripotent stem cells 409B2 to endothelial phenotype cells. Sci Rep 2017; 7:9377. [PMID: 28839272 PMCID: PMC5571164 DOI: 10.1038/s41598-017-09980-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/02/2017] [Indexed: 01/07/2023] Open
Abstract
Endothelial cells (EC) are involved in regulating several aspects of lipid metabolism, with recent research revealing the clinicopathological significance of interactions between EC and lipids. Induced pluripotent stem cells (iPSC) have various possible medical uses, so understanding the metabolism of these cells is important. In this study, endothelial phenotype cells generated from human iPSC formed cell networks in co-culture with fibroblasts. Changes of plasmalogen lipids and sphingomyelins in endothelial phenotype cells generated from human iPSC were investigated by reverse-phase ultra-high-pressure liquid chromatography mass spectrometry (UHPLC-MS/MS) analysis. The levels of plasmalogen phosphatidylethanolamines (38:5) and (38:4) increased during differentiation of EC, while sphingomyelin levels decreased transiently. These changes of plasmalogen lipids and sphingomyelins may have physiological significance for EC and could be used as markers of differentiation.
Collapse
Affiliation(s)
- Yusuke Nakamura
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan.
| | - Yasuhiro Horibata
- Department of Biochemistry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Rinna Tei
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Ryosuke Koike
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Meitetsu Masawa
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Taiji Watanabe
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Taichi Shiobara
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Ryo Arai
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Kazuyuki Chibana
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Akihiro Takemasa
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Yoshiki Ishii
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| |
Collapse
|
104
|
Rusanov SE. The affection of the disturbance of the hydrodynamics of blood in case of stress on pathological increase of level of low density lipoproteins in blood. The formation of cylindrical plaques, and their participation in the development of acute ischemic disorders of heart and brain. Med Hypotheses 2017; 106:61-70. [PMID: 28818274 DOI: 10.1016/j.mehy.2017.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 10/19/2022]
Abstract
In this article is given the new insight about the affection of stress on the increase of level of low density lipoproteins (LDL) in the blood, which is connected with the disturbance of hydrodynamics in the bloodstream, the attention was paid to the cylindrical cholesterol plaque, and it's classification. The disturbance of hydrodynamics of blood under the stress leads to the formation of a cylindrical cholesterol plaque, which repeats the contour of the vessel, and leads to the ischemic disorders of the heart and brain. The cylindrical cholesterol plaque goes through several stages of development: friable, yielding, dense, old. In the case of destruction of friable, fresh cholesterol plaque, releases a big quantity of low-density lipoproteins. This leads to the pathological increase of level of LDL in the blood. In the case of long disturbance of hydrodynamics, occurs the formation of strong links between low-density lipoproteins. Yielding cholesterol plaque is formed. Further maturation of cylindrical cholesterol plaque, leads to it's densifying and damage. We may emphasize, that short periods of strong contraction and expansion of vessels lead to the increase of level of LDL in the blood. Self-dependent restoration of normal level of LDL in blood occurs in the case of restoration of pressure in the limits of numbers, which are specific for particular person, and which don't exceed the physiological standard. Among patients with long duration of stress, the duration of vasospasm increases. LDL, without having a possibility to crumble, begin to stick together and form the yielding cylindrical plaque. It is characterized by having of not so strong connection with the vascular wall, and maintains only at the expanse of iteration of the vascular wall, it has cylindrical shape, is elastic and yellow. The thickness and length of walls depends on the degree of cross-clamping during the time of formation of yielding cylindrical plaque. In the case of stopping of spasm, yielding cylindrical plaque can resolve slowly. Among hypotensive and individuals, which have normal pressure, the increase of level of LDL isn't noted. There aren't such investigations, where such link was noted. The increasing of level of LDL among these people (especially under the stress) can say about cases of short-term increase of pressure, which could be unnoticed. These patients require pressure monitoring and, accordingly, the adjustment of the state of stress and anger.
Collapse
|
105
|
Gao H, Liu S. Role of uremic toxin indoxyl sulfate in the progression of cardiovascular disease. Life Sci 2017; 185:23-29. [PMID: 28754616 DOI: 10.1016/j.lfs.2017.07.027] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/07/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022]
Abstract
The prevalence of cardiovascular disease (CVD) among patients with chronic kidney disease (CKD) is relatively high. Deterioration of renal function in CKD leads to accumulation of indoxyl sulfate, a tryptophan metabolite produced by gut microbiota. It is acknowledged that indoxyl sulfate is capable to stimulate oxidative stress, which in turn contributes to the progression of vascular disorders and its resultant coronary artery disease. Recent research have demonstrated the adverse effects of indoxyl sulfate on the heart, together with the acceleration of vascular dysfunction, suggesting that indoxyl sulfate might contribute to high prevalence of CVD in CKD. The present mini review has focused on the potential mechanisms by which indoxyl sulfate exerts this pro-oxidant effects on the cardiovascular system. The action of indoxyl sulfate are related to multiple NADPH oxidase-mediated redox signaling pathways, which have been implicated in the pathophysiology of different forms of CVD, including chronic heart failure, arrhythmia, atherosclerotic vascular disease and coronary calcification. Future therapeutic options are discussed, including modulating gut microbial flora and blocking responsible pathophysiologic pathways.
Collapse
Affiliation(s)
- Huichang Gao
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Shan Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
106
|
Malerba M, Nardin M, Radaeli A, Montuschi P, Carpagnano GE, Clini E. The potential role of endothelial dysfunction and platelet activation in the development of thrombotic risk in COPD patients. Expert Rev Hematol 2017; 10:821-832. [PMID: 28693343 DOI: 10.1080/17474086.2017.1353416] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Despite lack of knowledge in the field, several studies have underlined the role of endothelium dysfunction and platelet activation as significant players in the development and progression of chronic obstructive pulmonary disease (COPD). Indeed, endothelium plays a crucial role in vascular homeostasis and impairment, due to the inflammation process enhanced by smoking. Chronic inflammation and endothelial dysfunction have been proved to drive platelet activity. Consequently, thrombotic risk is enhanced in COPD, and might explain the higher percentage of cardiovascular death in such patients. Areas covered: This review aims to clarify the role of endothelium function and platelet hyper-activity as the pathophysiological mechanisms of the increased thrombotic risk in COPD. Expert commentary: In COPD patients, chronic inflammation does not impact only on lung parenchyma, but potentially involves all systems, including the endothelium of blood vessels. Impaired endothelium has several consequences, such as reduced vasodilatation capacity, enhanced blood coagulation, and increased platelet activation resulting in higher risk of thrombosis in COPD patients. Endothelium dysfunction and platelet activation are potential targets of therapy in patients with COPD aiming to reduce their risk of cardiovascular events.
Collapse
Affiliation(s)
- Mario Malerba
- a Department of Internal Medicine , University of Brescia and ASST Spedali Civili , Brescia , Italy
| | - Matteo Nardin
- a Department of Internal Medicine , University of Brescia and ASST Spedali Civili , Brescia , Italy
| | | | - Paolo Montuschi
- c Department of Pharmacology, Faculty of Medicine , University Hospital Agostino Gemelli Catholic University of the Sacred Heart, Pharmacology , Rome , Italy
| | - Giovanna E Carpagnano
- d Department of Medical and Surgical Sciences , Institute of Respiratory Diseases, University of Foggia , Foggia , Italy
| | - Enrico Clini
- e Department of Medical and Surgical Sciences , University of Modena-Reggio Emilia , Modena , Italy
| |
Collapse
|
107
|
Abstract
Inflammation furnishes a series of pathogenic pathways that couple the risk factors for atherosclerosis with altered behavior of the intrinsic cells of the arterial wall, endothelium, and smooth muscle and promote the disease and its complications. Myeloid cells participate critically in all phases of atherosclerosis from initiation through progression, and ultimately the thrombotic consequences of this disease. Foam cells, lipid-laden macrophages, constitute the hallmark of atheromata. Much of the recent expansion in knowledge of the roles of myeloid cells in atherosclerosis revolves around the functional contributions of subsets of monocytes, precursors of macrophages, the most abundant myeloid cells in the atheroma. Proinflammatory monocytes preferentially accumulate in nascent atherosclerotic plaques. The most dramatic manifestations of atherosclerosis result from blood clot formation. Myocardial infarction, ischemic stroke, and abrupt limb ischemia all arise primarily from thrombi that complicate atherosclerotic plaques. Myeloid cells contribute pivotally to triggering thrombosis, for example, by elaborating enzymes that degrade the plaque's protective extracellular matrix, rendering it fragile, and by producing the potent procoagulant tissue factor. While most attention has focused on mononuclear phagocytes, the participation of polymorphonuclear leukocytes may aggravate local thrombus formation. Existing therapies such as statins may exert some of their protective effects by altering the functions of myeloid cells. The pathways of innate immunity that involve myeloid cells provide a myriad of potential targets for modifying atherosclerosis and its complications, and provide a fertile field for future attempts to address the residual burden of this disease, whose global prevalence is on the rise.
Collapse
|
108
|
Marei H, Malliri A. Rac1 in human diseases: The therapeutic potential of targeting Rac1 signaling regulatory mechanisms. Small GTPases 2017; 8:139-163. [PMID: 27442895 PMCID: PMC5584733 DOI: 10.1080/21541248.2016.1211398] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022] Open
Abstract
Abnormal Rac1 signaling is linked to a number of debilitating human diseases, including cancer, cardiovascular diseases and neurodegenerative disorders. As such, Rac1 represents an attractive therapeutic target, yet the search for effective Rac1 inhibitors is still underway. Given the adverse effects associated with Rac1 signaling perturbation, cells have evolved several mechanisms to ensure the tight regulation of Rac1 signaling. Thus, characterizing these mechanisms can provide invaluable information regarding major cellular events that lead to aberrant Rac1 signaling. Importantly, this information can be utilized to further facilitate the development of effective pharmacological modulators that can restore normal Rac1 signaling. In this review, we focus on the pathological role of Rac1 signaling, highlighting the benefits and potential drawbacks of targeting Rac1 in a clinical setting. Additionally, we provide an overview of available compounds that target key Rac1 regulatory mechanisms and discuss future therapeutic avenues arising from our understanding of these mechanisms.
Collapse
Affiliation(s)
- Hadir Marei
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Angeliki Malliri
- Cell Signaling Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| |
Collapse
|
109
|
RNAseq based transcriptomics study of SMCs from carotid atherosclerotic plaque: BMP2 and IDs proteins are crucial regulators of plaque stability. Sci Rep 2017; 7:3470. [PMID: 28615715 PMCID: PMC5471186 DOI: 10.1038/s41598-017-03687-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/04/2017] [Indexed: 01/10/2023] Open
Abstract
Carotid artery atherosclerosis is a risk factor to develop cerebrovascular disease. Atheroma plaque can become instable and provoke a cerebrovascular event or else remain stable as asymptomatic type. The exact mechanism involved in plaque destabilization is not known but includes among other events smooth muscle cell (SMC) differentiation. The goal of this study was to perform thorough analysis of gene expression differences in SMCs isolated from carotid symptomatic versus asymptomatic plaques. Comparative transcriptomics analysis of SMCs based on RNAseq technology identified 67 significant differentially expressed genes and 143 significant differentially expressed isoforms in symptomatic SMCs compared with asymptomatic. 37 of top-scoring genes were further validated by digital PCR. Enrichment and network analysis shows that the gene expression pattern of SMCs from stable asymptomatic plaques is suggestive for an osteogenic phenotype, while that of SMCs from unstable symptomatic plaque correlates with a senescence-like phenotype. Osteogenic-like phenotype SMCs may positively affect carotid atheroma plaque through participation in plaque stabilization via bone formation processes. On the other hand, plaques containing senescence-like phenotype SMCs may be more prone to rupture. Our results substantiate an important role of SMCs in carotid atheroma plaque disruption.
Collapse
|
110
|
Roles of Cells from the Arterial Vessel Wall in Atherosclerosis. Mediators Inflamm 2017; 2017:8135934. [PMID: 28680196 PMCID: PMC5478858 DOI: 10.1155/2017/8135934] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis has been identified as a chronic inflammatory disease of the arterial vessel wall. Accumulating evidence indicates that different cells from the tunica intima, media, adventitia, and perivascular adipose tissue not only comprise the intact and normal arterial vessel wall but also participate all in the inflammatory response of atherosclerosis via multiple intricate pathways. For instance, endothelial dysfunction has historically been considered to be the initiator of the development of atherosclerosis. The migration and proliferation of smooth muscle cells also play a pivotal role in the progression of atherosclerosis. Additionally, the fibroblasts from the adventitia and adipocytes from perivascular adipose tissue have received considerable attention given their special functions that contribute to atherosclerosis. In addition, numerous types of cytokines produced by different cells from the arterial vessel wall, including endothelium-derived relaxing factors, endothelium-derived contracting factors, tumor necrosis factors, interleukin, adhesion molecules, interferon, and adventitium-derived relaxing factors, have been implicated in atherosclerosis. Herein, we summarize the possible roles of different cells from the entire arterial vessel wall in the pathogenesis of atherosclerosis.
Collapse
|
111
|
Leithe E, Mesnil M, Aasen T. The connexin 43 C-terminus: A tail of many tales. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:48-64. [PMID: 28526583 DOI: 10.1016/j.bbamem.2017.05.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
Connexins are chordate gap junction channel proteins that, by enabling direct communication between the cytosols of adjacent cells, create a unique cell signalling network. Gap junctional intercellular communication (GJIC) has important roles in controlling cell growth and differentiation and in tissue development and homeostasis. Moreover, several non-canonical connexin functions unrelated to GJIC have been discovered. Of the 21 members of the human connexin family, connexin 43 (Cx43) is the most widely expressed and studied. The long cytosolic C-terminus (CT) of Cx43 is subject to extensive post-translational modifications that modulate its intracellular trafficking and gap junction channel gating. Moreover, the Cx43 CT contains multiple domains involved in protein interactions that permit crosstalk between Cx43 and cytoskeletal and regulatory proteins. These domains endow Cx43 with the capacity to affect cell growth and differentiation independently of GJIC. Here, we review the current understanding of the regulation and unique functions of the Cx43 CT, both as an essential component of full-length Cx43 and as an independent signalling hub. We highlight the complex regulatory and signalling networks controlled by the Cx43 CT, including the extensive protein interactome that underlies both gap junction channel-dependent and -independent functions. We discuss these data in relation to the recent discovery of the direct translation of specific truncated forms of Cx43. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, University of Oslo, NO-0424 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0424 Oslo, Norway
| | - Marc Mesnil
- STIM Laboratory ERL 7368 CNRS - Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers 86073, France
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| |
Collapse
|
112
|
Lu YW, Lowery AM, Sun LY, Singer HA, Dai G, Adam AP, Vincent PA, Schwarz JJ. Endothelial Myocyte Enhancer Factor 2c Inhibits Migration of Smooth Muscle Cells Through Fenestrations in the Internal Elastic Lamina. Arterioscler Thromb Vasc Biol 2017; 37:1380-1390. [PMID: 28473437 DOI: 10.1161/atvbaha.117.309180] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/25/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Laminar flow activates myocyte enhancer factor 2 (MEF2) transcription factors in vitro to induce expression of atheroprotective genes in the endothelium. Here we sought to establish the role of Mef2c in the vascular endothelium in vivo. APPROACH AND RESULTS To study endothelial Mef2c, we generated endothelial-specific deletion of Mef2c using Tie2-Cre or Cdh5-Cre-ERT2 and examined aortas and carotid arteries by en face immunofluorescence. We observed enhanced actin stress fiber formation in the Mef2c-deleted thoracic aortic endothelium (laminar flow region), similar to those observed in normal aortic inner curvature (disturbed flow region). Furthermore, Mef2c deletion resulted in the de novo formation of subendothelial intimal cells expressing markers of differentiated smooth muscle in the thoracic aortas and carotids. Lineage tracing showed that these cells were not of endothelial origin. To define early events in intimal development, we induced endothelial deletion of Mef2c and examined aortas at 4 and 12 weeks postinduction. The number of intimal cell clusters increased from 4 to 12 weeks, but the number of cells within a cluster peaked at 2 cells in both cases, suggesting ongoing migration but minimal proliferation. Moreover, we identified cells extending from the media through fenestrations in the internal elastic lamina into the intima, indicating transfenestral smooth muscle migration. Similar transfenestral migration was observed in wild-type carotid arteries ligated to induce neointimal formation. CONCLUSIONS These results indicate that endothelial Mef2c regulates the endothelial actin cytoskeleton and inhibits smooth muscle cell migration into the intima.
Collapse
Affiliation(s)
- Yao Wei Lu
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.)
| | - Anthony M Lowery
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.)
| | - Li-Yan Sun
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.)
| | - Harold A Singer
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.)
| | - Guohao Dai
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.)
| | - Alejandro P Adam
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.)
| | - Peter A Vincent
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.)
| | - John J Schwarz
- From the Department of Molecular and Cellular Physiology (Y.W.L., A.M.L., L.-Y.S., H.A.S., A.P.A., P.A.V., J.J.S.), and Department of Ophthalmology (A.P.A.), Albany Medical College, NY; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY (G.D.); and Department of Bioengineering, Northeastern University, Boston, MA (G.D.).
| |
Collapse
|
113
|
Tune JD, Goodwill AG, Sassoon DJ, Mather KJ. Cardiovascular consequences of metabolic syndrome. Transl Res 2017; 183:57-70. [PMID: 28130064 PMCID: PMC5393930 DOI: 10.1016/j.trsl.2017.01.001] [Citation(s) in RCA: 341] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 01/18/2023]
Abstract
The metabolic syndrome (MetS) is defined as the concurrence of obesity-associated cardiovascular risk factors including abdominal obesity, impaired glucose tolerance, hypertriglyceridemia, decreased HDL cholesterol, and/or hypertension. Earlier conceptualizations of the MetS focused on insulin resistance as a core feature, and it is clearly coincident with the above list of features. Each component of the MetS is an independent risk factor for cardiovascular disease and the combination of these risk factors elevates rates and severity of cardiovascular disease, related to a spectrum of cardiovascular conditions including microvascular dysfunction, coronary atherosclerosis and calcification, cardiac dysfunction, myocardial infarction, and heart failure. While advances in understanding the etiology and consequences of this complex disorder have been made, the underlying pathophysiological mechanisms remain incompletely understood, and it is unclear how these concurrent risk factors conspire to produce the variety of obesity-associated adverse cardiovascular diseases. In this review, we highlight current knowledge regarding the pathophysiological consequences of obesity and the MetS on cardiovascular function and disease, including considerations of potential physiological and molecular mechanisms that may contribute to these adverse outcomes.
Collapse
Affiliation(s)
- Johnathan D Tune
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind.
| | - Adam G Goodwill
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind
| | - Daniel J Sassoon
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind
| | - Kieren J Mather
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind; Department of Medicine, Indiana University School of Medicine, Indianapolis, Ind
| |
Collapse
|
114
|
Zhang LC, Jin X, Huang Z, Yan ZN, Li PB, Duan RF, Feng H, Jiang JH, Peng H, Liu W. Protective effects of choline against hypoxia-induced injuries of vessels and endothelial cells. Exp Ther Med 2017; 13:2316-2324. [PMID: 28565844 PMCID: PMC5443310 DOI: 10.3892/etm.2017.4276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
The current study aimed to lay a theoretical foundation for further development of choline as an anti-hypoxia damage drug. Wild-type, 3- to 5-month-old male Sprague-Dawley rats, weighing 180-220 g, were used in this study. The rats were randomly divided into a normoxic control group (n=16) and a chronic intermittent hypoxia (CIH) group (n=16). The effects of CIH on acetylcholine (ACh)-mediated endothelium-dependent vasodilatation in the rat cerebral basilar arterioles and mesenteric arterioles, as well as the protective effects of choline on the arterioles damaged by hypoxia were observed. Moreover, the effects of choline on endothelial cell proliferation during hypoxia were observed, and choline's functional mechanism further explored. The ACh-mediated vasodilatation of rat cerebral basilar and mesenteric arterioles significantly reduced during hypoxia (P<0.01). Choline significantly increased dilation in the rat cerebral basilar (P<0.01) and mesenteric arterioles (P<0.05) damaged by CIH compared with those in the control group. In addition, under hypoxic conditions, choline significantly promoted the proliferation of rat aortic endothelial cells (P<0.05) and significantly reduced lactate dehydrogenase activity in the cell culture supernatant in vitro (P<0.05). Furthermore, the effect of choline could be related to its ability to significantly increase the secretion of vascular endothelial growth factor (P<0.01) and activation of α7 non-neuronal nicotinic acetylcholine receptors under hypoxia (P<0.01). This study demonstrated that choline could have protective effects against hypoxic injuries.
Collapse
Affiliation(s)
- Lian-Cheng Zhang
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Xin Jin
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Zhao Huang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 300381, P.R. China
| | - Zhen-Nan Yan
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 300381, P.R. China
| | - Pei-Bing Li
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Rui-Feng Duan
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Hong Feng
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 300381, P.R. China
| | - Jian-Hua Jiang
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Hui Peng
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Wei Liu
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| |
Collapse
|
115
|
Abstract
The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017.
Collapse
Affiliation(s)
- Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Gregory M Dick
- California Medical Innovations Institute, 872 Towne Center Drive, Pomona, CA
| | - Alexander M Kiel
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, Lafayette, IN
| | - Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
116
|
Zhao J, Wu W, Zhang W, Lu YW, Tou E, Ye J, Gao P, Jourd'heuil D, Singer HA, Wu M, Long X. Selective expression of TSPAN2 in vascular smooth muscle is independently regulated by TGF-β1/SMAD and myocardin/serum response factor. FASEB J 2017; 31:2576-2591. [PMID: 28258189 DOI: 10.1096/fj.201601021r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/13/2017] [Indexed: 01/07/2023]
Abstract
Tetraspanins (TSPANs) comprise a large family of 4-transmembrane domain proteins. The importance of TSPANs in vascular smooth muscle cells (VSMCs) is unexplored. Given that TGF-β1 and myocardin (MYOCD) are potent activators for VSMC differentiation, we screened for TGF-β1 and MYOCD/serum response factor (SRF)-regulated TSPANs in VSMC by using RNA-seq analyses and RNA-arrays. TSPAN2 was found to be the only TSPAN family gene induced by TGF-β1 and MYOCD, and reduced by SRF deficiency in VSMCs. We also found that TSPAN2 is highly expressed in smooth muscle-enriched tissues and down-regulated in in vitro models of VSMC phenotypic modulation. TSPAN2 expression is attenuated in mouse carotid arteries after ligation injury and in failed human arteriovenous fistula samples after occlusion by dedifferentiated neointimal VSMC. In vitro functional studies showed that TSPAN2 suppresses VSMC proliferation and migration. Luciferase reporter and chromatin immunoprecipitation assays demonstrated that TSPAN2 is regulated by 2 parallel pathways, MYOCD/SRF and TGF-β1/SMAD, via distinct binding elements within the proximal promoter. Thus, we identified the first VSMC-enriched and MYOCD/SRF and TGF-β1/SMAD-dependent TSPAN family member, whose expression is intimately associated with VSMC differentiation and negatively correlated with vascular disease. Our results suggest that TSPAN2 may play important roles in vascular disease.-Zhao, J., Wu, W., Zhang, W., Lu, Y. W., Tou, E., Ye, J., Gao, P., Jourd'heuil, D., Singer, H. A., Wu, M., Long, X. Selective expression of TSPAN2 in vascular smooth muscle is independently regulated by TGF-β1/SMAD and myocardin/serum response factor.
Collapse
Affiliation(s)
- Jinjing Zhao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Wen Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Wei Zhang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Yao Wei Lu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Emiley Tou
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Jiemei Ye
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Ping Gao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - David Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Mingfu Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Xiaochun Long
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
117
|
Brown RA, Shantsila E, Varma C, Lip GYH. Current Understanding of Atherogenesis. Am J Med 2017; 130:268-282. [PMID: 27888053 DOI: 10.1016/j.amjmed.2016.10.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022]
Abstract
Scientific understanding of atherogenesis is constantly developing. From Virchow's observations 160 years ago we now recognize the endothelial response to injury as inflammatory, involved in all stages of atherosclerosis. Endothelial activation may cause reversible injury or dysfunction, or lead to irreparable damage. Indeed, early atherosclerosis is reversible. The introduction of genome-wide association testing has furthered the identification of potentially important genetic variants that help explain the heritability of coronary artery disease as well as spontaneous cases of severe coronary artery disease in patients with otherwise minimal risk factors. However, the mechanisms by which many of the newer variants exert their influence remain unknown.
Collapse
Affiliation(s)
- Richard A Brown
- Department of Medicine, University of Birmingham Institute of Cardiovascular Sciences, City Hospital, United Kingdom
| | - Eduard Shantsila
- Department of Medicine, University of Birmingham Institute of Cardiovascular Sciences, City Hospital, United Kingdom; Cardiology Department at Sandwell and West Birmingham Hospitals NHS Trust, City Hospital and Sandwell Hospital, West Bromwich, United Kingdom
| | - Chetan Varma
- Cardiology Department at Sandwell and West Birmingham Hospitals NHS Trust, City Hospital and Sandwell Hospital, West Bromwich, United Kingdom
| | - Gregory Y H Lip
- Department of Medicine, University of Birmingham Institute of Cardiovascular Sciences, City Hospital, United Kingdom; Cardiology Department at Sandwell and West Birmingham Hospitals NHS Trust, City Hospital and Sandwell Hospital, West Bromwich, United Kingdom.
| |
Collapse
|
118
|
Mierke J, Christoph M, Pfluecke C, Jellinghaus S, Wunderlich C, Strasser RH, Ibrahim K, Poitz DM. Atheroprotective role of Caveolin-1 and eNOS in an innovative transplantation model is mainly mediated by local effects. Biochim Biophys Acta Mol Basis Dis 2017; 1863:529-536. [DOI: 10.1016/j.bbadis.2016.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/03/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022]
|
119
|
Alkhalil M, Chai JT, Choudhury RP. Plaque imaging to refine indications for emerging lipid-lowering drugs. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2017; 3:58-67. [PMID: 27816944 PMCID: PMC5841877 DOI: 10.1093/ehjcvp/pvw034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/27/2016] [Accepted: 10/27/2016] [Indexed: 12/13/2022]
Abstract
Statins have been effective in reducing adverse cardiovascular events. Their benefits have been proportional to the level of plasma LDL-cholesterol reduction and seem to extend to patients with 'normal' levels of cholesterol at outset. Statins are also inexpensive and have a favourable side-effect profile. As a result, they are used widely (almost indiscriminately) in patients with atherosclerotic vascular disease, and in those at risk of disease. Next generation lipid-modifying drugs seem unlikely to offer the same simplicity of application. The recent trials of new classes of lipid modifying drugs underline the need for a risk stratification tool which is not based on patients' category of diagnosis (for example, post-myocardial infarction) but based on the characterization of disease in that individual patient. Mechanistic staging, a process that matches the target of the drug action with an identifiable disease characteristic, may offer an opportunity to achieve more precise intervention. The upshots of this targeted approach will be greater efficacy, requiring smaller clinical trials to demonstrate effectiveness; a reduced number needed to treat to yield benefits and more cost-effective prescribing. This will be important, as purchasers require ever more rigorous demonstration of both efficacy and cost-effectiveness. In this context, we will discuss available pharmacological strategies of lipid reduction in anti-atherosclerotic treatment and how plaque imaging techniques may provide an ideal method in stratifying patients for new lipid-modifying drugs.
Collapse
Affiliation(s)
- Mohammad Alkhalil
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Joshua T Chai
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Oxford Acute Vascular Imaging Centre (AVIC), Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
120
|
Hussain MS, Qureshi AI, Kirmani JF, Divani AA, Hopkins LN. Development of Vascular Biology over the past 10 Years: Heme Oxygenase-1 in Cardiovascular Homeostasis. J Endovasc Ther 2016; 11 Suppl 2:II32-42. [PMID: 15760262 DOI: 10.1177/15266028040110s616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The study of vascular biology has provided strong evidence for the role that free radical attack plays in the pathogenesis of cardiovascular diseases. The endothelial cell (EC) dysfunction that results from exposure to oxidative stresses, such as oxidized LDL, influences vascular cell gene expression, promoting smooth muscle cell (SMC) mitogenesis and apoptosis. These factors also play an important role in atherogenesis, which is attenuated by antioxidants. Thus, antioxidants are important to understanding the pathophysiology of cardiovascular diseases and to constructing an effective treatment strategy for these patients. Over the last decade, there has been a tremendous interest in the biology of heme oxygenase-1 (HO-1), which exhibits antioxidant effects in various forms of tissue injury. Moreover, the reaction is also the major source of carbon dioxide (CO) in the body, which is a physiologically important gaseous vasodilator that inhibits SMC proliferation. Thus, HO-1–derived products provide various mechanisms to maintain cardiovascular homeostasis. We review recent work on the cellular and molecular biological aspects of the HO/CO system in vascular pathophysiology.
Collapse
Affiliation(s)
- M Shazam Hussain
- Zeenat Qureshi Stroke Research Center, Department of Neurology and Neurosciences, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07101, USA
| | | | | | | | | |
Collapse
|
121
|
Bennett M. Replacing Magic Bullets With Beneficial Pleiotropy in Atherosclerosis. Circ Res 2016; 119:1167-1169. [PMID: 28051782 DOI: 10.1161/circresaha.116.309934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Martin Bennett
- From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom.
| |
Collapse
|
122
|
Jin E, Han S, Son M, Kim SW. Cordyceps bassiana inhibits smooth muscle cell proliferation via the ERK1/2 MAPK signaling pathway. Cell Mol Biol Lett 2016; 21:24. [PMID: 28536626 PMCID: PMC5415766 DOI: 10.1186/s11658-016-0023-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/15/2016] [Indexed: 11/10/2022] Open
Abstract
Cordyceps belongs to a genus of acormycete fungi and is known to exhibit various pharmacological effects. The aim of this study was to investigate the effect of Cordyceps species on the proliferation of vascular smooth muscle cells (VSMC) and their underlying molecular mechanism. A cell proliferation assay showed that Cordyceps bassiana ethanol extract (CBEE) significantly inhibited VSMC proliferation. In addition, neointimal formation was significantly reduced by treatment with CBEE in the carotid artery of balloon-injured rats. We also investigated the effects of CBEE on the extracellular signal-regulated kinase (ERK) signal pathway. Western blot analysis revealed increased ERK 1/2 phosphorylation in VSMCs treated with CBEE. Pretreatment with U0126 completely abrogated CBEE-induced ERK 1/2 phosphorylation. In conclusion, CBEE exhibited anti-proliferative properties that affected VSMCs through the ERK1/2 MAPK signaling pathway. Our data may elucidate the inhibitory mechanism of this natural product.
Collapse
Affiliation(s)
- Enze Jin
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Seongho Han
- Department of Family Medicine, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Mina Son
- Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Sung-Whan Kim
- Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea.,International St. Mary's Hospital, 25, Simgok-ro 100beon-gil, Seo-gu, Incheon, 404-190 Republic of Korea
| |
Collapse
|
123
|
Subbotin VM. Excessive intimal hyperplasia in human coronary arteries before intimal lipid depositions is the initiation of coronary atherosclerosis and constitutes a therapeutic target. Drug Discov Today 2016; 21:1578-1595. [PMID: 27265770 DOI: 10.1016/j.drudis.2016.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/29/2016] [Accepted: 05/25/2016] [Indexed: 12/19/2022]
|
124
|
Zhang Y, Liao B, Li M, Cheng M, Fu Y, Liu Q, Chen Q, Liu H, Fang Y, Zhang G, Yu F. Shear stress regulates endothelial cell function through SRB1-eNOS signaling pathway. Cardiovasc Ther 2016; 34:308-13. [PMID: 27225585 DOI: 10.1111/1755-5922.12199] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ying Zhang
- Department of Anesthesiology; Traditional Chinese Medicine Hospital of Luzhou Medical College; Luzhou Sichuan Province China
| | - Bin Liao
- The Affiliated Hospital of Luzhou Medical College; Cardiothoracic Surgery; Luzhou Sichuan Province China
- Institute of Cardiovascular Research; Luzhou Medical College; Luzhou Sichuan Province China
| | - Miaoling Li
- Institute of Cardiovascular Research; Luzhou Medical College; Luzhou Sichuan Province China
- Key Laboratory of Medical Electrophysiology; Ministry of Education of China; Luzhou Sichuan Province China
| | - Min Cheng
- Medicine Research Center; Weifang Medical University; Weifang Shandong China
| | - Yong Fu
- The Affiliated Hospital of Luzhou Medical College; Cardiothoracic Surgery; Luzhou Sichuan Province China
| | - Qing Liu
- Department of Anesthesiology; Traditional Chinese Medicine Hospital of Luzhou Medical College; Luzhou Sichuan Province China
| | - Qi Chen
- Department of Anesthesiology; Traditional Chinese Medicine Hospital of Luzhou Medical College; Luzhou Sichuan Province China
| | - Hongduan Liu
- The Affiliated Hospital of Luzhou Medical College; Cardiothoracic Surgery; Luzhou Sichuan Province China
| | - Yibing Fang
- The Affiliated Hospital of Luzhou Medical College; Cardiothoracic Surgery; Luzhou Sichuan Province China
| | - Gen Zhang
- The Affiliated Hospital of Luzhou Medical College; Cardiothoracic Surgery; Luzhou Sichuan Province China
| | - Fengxu Yu
- The Affiliated Hospital of Luzhou Medical College; Cardiothoracic Surgery; Luzhou Sichuan Province China
- Institute of Cardiovascular Research; Luzhou Medical College; Luzhou Sichuan Province China
| |
Collapse
|
125
|
Affiliation(s)
- Joseph R. Williamson
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri
| | - Charles Kilo
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
126
|
Connelly MA, Shalaurova I, Otvos JD. High-density lipoprotein and inflammation in cardiovascular disease. Transl Res 2016; 173:7-18. [PMID: 26850902 DOI: 10.1016/j.trsl.2016.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022]
Abstract
Great advances are being made at the mechanistic level in the understanding of the structural and functional diversity of high-density lipoprotein (HDL). HDL particle subspecies of different sizes are now known to differ in the protein and lipid cargo they transport, conferring on them the ability to perform different functions that in aggregate would be expected to provide protection against the development of atherosclerosis and its downstream clinical consequences. Exacerbating what is already a very complex system is the finding that inflammation, via alteration of the proteomic and lipidomic composition of HDL subspecies, can modulate at least some of their functional activities. In contrast to the progress being made at the mechanistic level, HDL epidemiologic research has lagged behind, largely because the simple HDL biomarkers used (mainly just HDL cholesterol) lack the needed complexity. To address this deficiency, analyses will need to use multiple HDL subspecies and be conducted in such a way as to eliminate potential sources of confounding. To help account for the modulating influence of inflammation, effective use must also be made of inflammatory biomarkers including searching systematically for HDL-inflammation interactions. Using nuclear magnetic resonance (NMR)-measured HDL subclass data and a novel NMR-derived inflammatory biomarker, GlycA, we offer a case study example of the type of analytic approach considered necessary to advance HDL epidemiologic understanding.
Collapse
Affiliation(s)
| | - Irina Shalaurova
- LipoScience, Laboratory Corporation of America Holdings, Raleigh, NC
| | - James D Otvos
- LipoScience, Laboratory Corporation of America Holdings, Raleigh, NC.
| |
Collapse
|
127
|
Abstract
Dysfunction of the endothelial lining of lesion-prone areas of the arterial vasculature is an important contributor to the pathobiology of atherosclerotic cardiovascular disease. Endothelial cell dysfunction, in its broadest sense, encompasses a constellation of various nonadaptive alterations in functional phenotype, which have important implications for the regulation of hemostasis and thrombosis, local vascular tone and redox balance, and the orchestration of acute and chronic inflammatory reactions within the arterial wall. In this review, we trace the evolution of the concept of endothelial cell dysfunction, focusing on recent insights into the cellular and molecular mechanisms that underlie its pivotal roles in atherosclerotic lesion initiation and progression; explore its relationship to classic, as well as more recently defined, clinical risk factors for atherosclerotic cardiovascular disease; consider current approaches to the clinical assessment of endothelial cell dysfunction; and outline some promising new directions for its early detection and treatment.
Collapse
Affiliation(s)
- Michael A Gimbrone
- From the Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
| | - Guillermo García-Cardeña
- From the Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
128
|
Chan IH, Van Hoof D, Abramova M, Bilardello M, Mar E, Jorgensen B, McCauley S, Bal H, Oft M, Van Vlasselaer P, Mumm JB. PEGylated IL-10 Activates Kupffer Cells to Control Hypercholesterolemia. PLoS One 2016; 11:e0156229. [PMID: 27299860 PMCID: PMC4907428 DOI: 10.1371/journal.pone.0156229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/11/2016] [Indexed: 01/29/2023] Open
Abstract
Interleukin-10 (IL-10) is a multifunctional cytokine that exerts potent context specific immunostimulatory and immunosuppressive effects. We have investigated the mechanism by which PEGylated rIL-10 regulates plasma cholesterol in mice and humans. In agreement with previous work on rIL-10, we report that PEGylated rIL-10 harnesses the myeloid immune system to control total plasma cholesterol levels. We have discovered that PEG-rMuIL-10’s dramatic lowering of plasma cholesterol is dependent on phagocytotic cells. In particular, PEG-rHuIL-10 enhances cholesterol uptake by Kupffer cells. In addition, removal of phagocytotic cells dramatically increases plasma cholesterol levels, suggesting for the first time that immunological cells are implicitly involved in regulating total cholesterol levels. These data suggest that treatment with PEG-rIL-10 potentiates endogenous cholesterol regulating cell populations not currently targeted by standard of care therapeutics. Furthermore, we show that IL-10’s increase of Kupffer cell cholesterol phagocytosis is concomitant with decreases in liver cholesterol and triglycerides. This leads to the reversal of early periportal liver fibrosis and facilitates the restoration of liver health. These data recommend PEG-rIL-10 for evaluation in the treatment of fatty liver disease and preventing its progression to non-alcoholic steatohepatitis. In direct confirmation of our in vivo findings in the treatment of hypercholesterolemic mice with PEG-rMuIL-10, we report that treatment of hypercholesterolemic cancer patients with PEG-rHuIL-10 lowers total plasma cholesterol by up to 50%. Taken together these data suggest that PEG-rIL-10’s cholesterol regulating biology is consistent between mice and humans.
Collapse
Affiliation(s)
- Ivan H. Chan
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
| | - Dennis Van Hoof
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
| | - Marina Abramova
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
| | - Melissa Bilardello
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
| | - Elliot Mar
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
| | - Brett Jorgensen
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
| | - Scott McCauley
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
| | - Harminder Bal
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
| | - Martin Oft
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
| | - Peter Van Vlasselaer
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
| | - John B. Mumm
- ARMO BioSciences, Inc., 575 Chesapeake Drive, Redwood City, CA, 94063, United States of America
- * E-mail:
| |
Collapse
|
129
|
Soluble guanylyl cyclase-activated cyclic GMP-dependent protein kinase inhibits arterial smooth muscle cell migration independent of VASP-serine 239 phosphorylation. Cell Signal 2016; 28:1364-1379. [PMID: 27302407 DOI: 10.1016/j.cellsig.2016.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/10/2016] [Indexed: 12/20/2022]
Abstract
Coronary artery disease (CAD) accounts for over half of all cardiovascular disease-related deaths. Uncontrolled arterial smooth muscle (ASM) cell migration is a major component of CAD pathogenesis and efforts aimed at attenuating its progression are clinically essential. Cyclic nucleotide signaling has long been studied for its growth-mitigating properties in the setting of CAD and other vascular disorders. Heme-containing soluble guanylyl cyclase (sGC) synthesizes cyclic guanosine monophosphate (cGMP) and maintains vascular homeostasis predominantly through cGMP-dependent protein kinase (PKG) signaling. Considering that reactive oxygen species (ROS) can interfere with appropriate sGC signaling by oxidizing the cyclase heme moiety and so are associated with several CVD pathologies, the current study was designed to test the hypothesis that heme-independent sGC activation by BAY 60-2770 (BAY60) maintains cGMP levels despite heme oxidation and inhibits ASM cell migration through phosphorylation of the PKG target and actin-binding vasodilator-stimulated phosphoprotein (VASP). First, using the heme oxidant ODQ, cGMP content was potentiated in the presence of BAY60. Using a rat model of arterial growth, BAY60 significantly reduced neointima formation and luminal narrowing compared to vehicle (VEH)-treated controls. In rat ASM cells BAY60 significantly attenuated cell migration, reduced G:F actin, and increased PKG activity and VASP Ser239 phosphorylation (pVASP·S239) compared to VEH controls. Site-directed mutagenesis was then used to generate overexpressing full-length wild type VASP (FL-VASP/WT), VASP Ser239 phosphorylation-mimetic (FL-VASP/239D) and VASP Ser239 phosphorylation-resistant (FL-VASP/239A) ASM cell mutants. Surprisingly, FL-VASP/239D negated the inhibitory effects of FL-VASP/WT and FL-VASP/239A cells on migration. Furthermore, when FL-VASP mutants were treated with BAY60, only the FL-VASP/239D group showed reduced migration compared to its VEH controls. Intriguingly, FL-VASP/239D abrogated the stimulatory effects of FL-VASP/WT and FL-VASP/239A cells on PKG activity. In turn, pharmacologic blockade of PKG in the presence of BAY60 reversed the inhibitory effect of BAY60 on naïve ASM cell migration. Taken together, we demonstrate for the first time that BAY60 inhibits ASM cell migration through cGMP/PKG/VASP signaling yet through mechanisms independent of pVASP·S239 and that FL-VASP overexpression regulates PKG activity in rat ASM cells. These findings implicate BAY60 as a potential pharmacotherapeutic agent against aberrant ASM growth disorders such as CAD and also establish a unique mechanism through which VASP controls PKG activity.
Collapse
|
130
|
Haase CM, Holley SR, Bloch L, Verstaen A, Levenson RW. Interpersonal emotional behaviors and physical health: A 20-year longitudinal study of long-term married couples. ACTA ACUST UNITED AC 2016; 16:965-77. [PMID: 27213730 DOI: 10.1037/a0040239] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Objectively coded interpersonal emotional behaviors that emerged during a 15-min marital conflict interaction predicted the development of physical symptoms in a 20-year longitudinal study of long-term marriages. Dyadic latent growth curve modeling showed that anger behavior predicted increases in cardiovascular symptoms and stonewalling behavior predicted increases in musculoskeletal symptoms. Both associations were found for husbands (although cross-lagged path models also showed some support for wives) and were controlled for sociodemographic characteristics (age, education) and behaviors (i.e., exercise, smoking, alcohol consumption, caffeine consumption) known to influence health. Both associations did not exist at the start of the study, but only emerged over the ensuing 20 years. There was some support for the specificity of these relationships (i.e., stonewalling behavior did not predict cardiovascular symptoms; anger behavior did not predict musculoskeletal symptoms; neither symptom was predicted by fear nor sadness behavior), with the anger-cardiovascular relationship emerging as most robust. Using cross-lagged path models to probe directionality of these associations, emotional behaviors predicted physical health symptoms over time (with some reverse associations found as well). These findings illuminate longstanding theoretical and applied issues concerning the association between interpersonal emotional behaviors and physical health and suggest opportunities for preventive interventions focused on specific emotions to help address major public health problems. (PsycINFO Database Record
Collapse
Affiliation(s)
- Claudia M Haase
- School of Education and Social Policy, Northwestern University
| | - Sarah R Holley
- Department of Psychology, San Francisco State University
| | | | - Alice Verstaen
- Department of Psychology and Institute of Personality and Social Research, University of California, Berkeley
| | - Robert W Levenson
- Department of Psychology and Institute of Personality and Social Research, University of California, Berkeley
| |
Collapse
|
131
|
A Novel Protective Function of 5-Methoxytryptophan in Vascular Injury. Sci Rep 2016; 6:25374. [PMID: 27146795 PMCID: PMC4857180 DOI: 10.1038/srep25374] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/18/2016] [Indexed: 12/22/2022] Open
Abstract
5-Methoxytryptophan (5-MTP), a 5-methoxyindole metabolite of tryptophan metabolism, was recently shown to suppress inflammatory mediator-induced cancer cell proliferation and migration. However, the role of 5-MTP in vascular disease is unknown. In this study, we investigated whether 5-MTP protects against vascular remodeling following arterial injury. Measurements of serum 5-MTP levels in healthy subjects and patients with coronary artery disease (CAD) showed that serum 5-MTP concentrations were inversely correlated with CAD. To test the role of 5-MTP in occlusive vascular disease, we subjected mice to a carotid artery ligation model of neointima formation and treated mice with vehicle or 5-MTP. Compared with vehicle-treated mice, 5-MTP significantly reduced intimal thickening by 40% 4 weeks after ligation. BrdU incorporation assays revealed that 5-MTP significantly reduced VSMC proliferation both in vivo and in vitro. Furthermore, 5-MTP reduced endothelial loss and detachment, ICAM-1 and VCAM-1 expressions, and inflammatory cell infiltration in the ligated arterial wall, suggesting attenuation of endothelial dysfunction. Signaling pathway analysis indicated that 5-MTP mediated its effects predominantly via suppressing p38 MAPK signaling in endothelial and VSMCs. Our data demonstrate a novel vascular protective function of 5-MTP against arterial injury-induced intimal hyperplasia. 5-MTP might be a therapeutic target for preventing and/or treating vascular remodeling.
Collapse
|
132
|
Tan X, Gao J, Shi Z, Tai S, Chan LL, Yang Y, Peng DQ, Liao DF, Jiang ZS, Chang YZ, Gui Y, Zheng XL. MG132 Induces Expression of Monocyte Chemotactic Protein-Induced Protein 1 in Vascular Smooth Muscle Cells. J Cell Physiol 2016; 232:122-8. [PMID: 27035356 DOI: 10.1002/jcp.25396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/29/2016] [Indexed: 11/07/2022]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) has been reported to induce the expression of monocyte chemotactic protein-induced protein 1 (MCPIP1), which undergoes ubiquitination degradation. Therefore, we predict that in vascular smooth muscle (VSMCs), MCPIP1 may be induced by MCP-1 and undergo degradation, which can be inhibited by the proteasome inhibitor, MG132. Our results showed that treatment of human VSMCs with MCP-1 did not increase the expression of MCPIP1. Treatment with MG132, however, elevated MCPIP1 protein levels through stimulation of the gene transcription, but not through increasing protein stability. MCPIP1 expression induced by MG132 was inhibited by α-amanitin inhibition of gene transcription or cycloheximide inhibition of protein synthesis. Our further studies showed that MCPIP1 expression induced by MG132 was inhibited by the inhibitors of AKT and p38 kinase, suggesting a role of the AKT-p38 pathway in MG132 effects. We also found that treatment with MG132 induces apoptosis, but overexpression of MCPIP1 inhibited bromodeoxyuridine (BrdU) incorporation of human VSMCs without induction of significant apoptosis. In summary, MCPIP1 expression is induced by MG132 likely through activation of the AKT-p38 pathway. MCPIP1 inhibits SMC proliferation without induction of apoptosis. J. Cell. Physiol. 232: 122-128, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xi Tan
- Department of Biochemistry and Molecular Biology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jie Gao
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Zhan Shi
- Department of Biochemistry and Molecular Biology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shi Tai
- Department of Biochemistry and Molecular Biology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Leona Loretta Chan
- Department of Biochemistry and Molecular Biology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yang Yang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dao-Quan Peng
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhi-Sheng Jiang
- Department of Biochemistry and Molecular Biology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerogy of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Ying-Zi Chang
- Department of Pharmacology, A. T. Still University, Kirksville College of Osteopathic Medicine, Kirksville, Missouri
| | - Yu Gui
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
133
|
Abstract
Atherosclerosis has been regarded as a form of chronic vascular inflammation. Numerous biomarkers associated with inflammation have been identified as novel targets to monitor atherosclerosis and cardiovascular risk. C-reactive protein (CRP) is one of the most actively studied and established inflammatory biomarkers for cardiovascular events. However, CRP response is triggered by many disorders unrelated to cardiovascular disease, which interferes with the clinical application. This review describes established and traditional inflammatory biomarkers including CRP as well as novel inflammatory biomarkers reflective of local atherosclerotic inflammation. In addition, we focus on the potential usefulness of inflammatory biomarkers in developing anti-atherosclerotic therapeutic approaches.
Collapse
Affiliation(s)
- Takeshi Soeki
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School
| | | |
Collapse
|
134
|
Barton M, Husmann M, Meyer MR. Accelerated Vascular Aging as a Paradigm for Hypertensive Vascular Disease: Prevention and Therapy. Can J Cardiol 2016; 32:680-686.e4. [PMID: 27118295 DOI: 10.1016/j.cjca.2016.02.062] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/21/2022] Open
Abstract
Aging is considered the most important nonmodifiable risk factor for cardiovascular disease and death after age 28 years. Because of demographic changes the world population is expected to increase to 9 billion by the year 2050 and up to 12 billion by 2100, with several-fold increases among those 65 years of age and older. Healthy aging and prevention of aging-related diseases and associated health costs have become part of political agendas of governments around the world. Atherosclerotic vascular burden increases with age; accordingly, patients with progeria (premature aging) syndromes die from myocardial infarctions or stroke as teenagers or young adults. The incidence and prevalence of arterial hypertension also increases with age. Arterial hypertension-like diabetes and chronic renal failure-shares numerous pathologies and underlying mechanisms with the vascular aging process. In this article, we review how arterial hypertension resembles premature vascular aging, including the mechanisms by which arterial hypertension (as well as other risk factors such as diabetes mellitus, dyslipidemia, or chronic renal failure) accelerates the vascular aging process. We will also address the importance of cardiovascular risk factor control-including antihypertensive therapy-as a powerful intervention to interfere with premature vascular aging to reduce the age-associated prevalence of diseases such as myocardial infarction, heart failure, hypertensive nephropathy, and vascular dementia due to cerebrovascular disease. Finally, we will discuss the implementation of endothelial therapy, which aims at active patient participation to improve primary and secondary prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland.
| | - Marc Husmann
- Division of Angiology, University Hospital Zürich, Zürich, Switzerland
| | | |
Collapse
|
135
|
Wang J, Uryga AK, Reinhold J, Figg N, Baker L, Finigan A, Gray K, Kumar S, Clarke M, Bennett M. Vascular Smooth Muscle Cell Senescence Promotes Atherosclerosis and Features of Plaque Vulnerability. Circulation 2015; 132:1909-19. [DOI: 10.1161/circulationaha.115.016457] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/17/2015] [Indexed: 12/28/2022]
Abstract
Background—
Although vascular smooth muscle cell (VSMC) proliferation is implicated in atherogenesis, VSMCs in advanced plaques and cultured from plaques show evidence of VSMC senescence and DNA damage. In particular, plaque VSMCs show shortening of telomeres, which can directly induce senescence. Senescence can have multiple effects on plaque development and morphology; however, the consequences of VSMC senescence or the mechanisms underlying VSMC senescence in atherosclerosis are mostly unknown.
Methods and Results—
We examined the expression of proteins that protect telomeres in VSMCs derived from human plaques and normal vessels. Plaque VSMCs showed reduced expression and telomere binding of telomeric repeat-binding factor-2 (TRF2), associated with increased DNA damage. TRF2 expression was regulated by p53-dependent degradation of the TRF2 protein. To examine the functional consequences of loss of TRF2, we expressed TRF2 or a TRF2 functional mutant (T188A) as either gain- or loss-of-function studies in vitro and in apolipoprotein E
–/–
mice. TRF2 overexpression bypassed senescence, reduced DNA damage, and accelerated DNA repair, whereas TRF2
188A
showed opposite effects. Transgenic mice expressing VSMC-specific TRF2
T188A
showed increased atherosclerosis and necrotic core formation in vivo, whereas VSMC-specific TRF2 increased the relative fibrous cap and decreased necrotic core areas. TRF2 protected against atherosclerosis independent of secretion of senescence-associated cytokines.
Conclusions—
We conclude that plaque VSMC senescence in atherosclerosis is associated with loss of TRF2. VSMC senes cence promotes both atherosclerosis and features of plaque vulnerability, identifying prevention of senescence as a potential target for intervention.
Collapse
Affiliation(s)
- Julie Wang
- From Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Anna K. Uryga
- From Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Johannes Reinhold
- From Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Nichola Figg
- From Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Lauren Baker
- From Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Alison Finigan
- From Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Kelly Gray
- From Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Sheetal Kumar
- From Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Murray Clarke
- From Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Martin Bennett
- From Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
136
|
Chatrou MLL, Cleutjens JP, van der Vusse GJ, Roijers RB, Mutsaers PHA, Schurgers LJ. Intra-Section Analysis of Human Coronary Arteries Reveals a Potential Role for Micro-Calcifications in Macrophage Recruitment in the Early Stage of Atherosclerosis. PLoS One 2015; 10:e0142335. [PMID: 26555788 PMCID: PMC4640818 DOI: 10.1371/journal.pone.0142335] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/19/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Vascular calcification is associated with poor cardiovascular outcome. Histochemical analysis of calcification and the expression of proteins involved in mineralization are usually based on whole section analysis, thereby often ignoring regional differences in atherosclerotic lesions. At present, limited information is available about factors involved in the initiation and progression of atherosclerosis. AIM OF THIS STUDY This study investigates the intra-section association of micro-calcifications with markers for atherosclerosis in randomly chosen section areas of human coronary arteries. Moreover, the possible causal relationship between calcifying vascular smooth muscle cells and inflammation was explored in vitro. TECHNICAL APPROACH To gain insights into the pathogenesis of atherosclerosis, we performed analysis of the distribution of micro-calcifications using a 3-MeV proton microbeam. Additionally, we performed systematic analyses of 30 to 40 regions of 12 coronary sections obtained from 6 patients including histology and immuno-histochemistry. Section areas were classified according to CD68 positivity. In vitro experiments using human vascular smooth muscle cells (hVSMCs) were performed to evaluate causal relationships between calcification and inflammation. RESULTS From each section multiple areas were randomly chosen and subsequently analyzed. Depositions of calcium crystals at the micrometer scale were already observed in areas with early pre-atheroma type I lesions. Micro-calcifications were initiated at the elastica interna concomitantly with upregulation of the uncarboxylated form of matrix Gla-protein (ucMGP). Both the amount of calcium crystals and ucMGP staining increased from type I to IV atherosclerotic lesions. Osteochondrogenic markers BMP-2 and osteocalcin were only significantly increased in type IV atheroma lesions, and at this stage correlated with the degree of calcification. From atheroma area type III onwards a considerable number of CD68 positive cells were observed in combination with calcification, suggesting a pro-inflammatory effect of micro-calcifications. In vitro, invasion assays revealed chemoattractant properties of cell-culture medium of calcifying vascular smooth muscle cells towards THP-1 cells, which implies pro-inflammatory effect of calcium deposits. Additionally, calcifying hVSMCs revealed a pro-inflammatory profile as compared to non-calcifying hVSMCs. CONCLUSION Our data indicate that calcification of VSMCs is one of the earliest events in the genesis of atherosclerosis, which strongly correlates with ucMGP staining. Our findings suggest that loss of calcification inhibitors and/or failure of inhibitory capacity is causative for the early precipitation of calcium, with concomitant increased inflammation followed by osteochondrogenic transdifferentiation of VSMCs.
Collapse
Affiliation(s)
- Martijn L. L. Chatrou
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Jack P. Cleutjens
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Ger J. van der Vusse
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Ruben B. Roijers
- Cyclotron Laboratory, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Peter H. A. Mutsaers
- Cyclotron Laboratory, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Leon J. Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
- * E-mail:
| |
Collapse
|
137
|
miRNA-34a reduces neointima formation through inhibiting smooth muscle cell proliferation and migration. J Mol Cell Cardiol 2015; 89:75-86. [PMID: 26493107 DOI: 10.1016/j.yjmcc.2015.10.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 01/07/2023]
Abstract
AIMS We have recently reported that microRNA-34a (miR-34a) regulates vascular smooth muscle cell (VSMC) differentiation from stem cells in vitro and in vivo. However, little is known about the functional involvements of miR-34a in VSMC functions and vessel injury-induced neointima formation. In the current study, we aimed to establish the causal role of miR-34a and its target genes in VSMC proliferation, migration and neointima lesion formation. METHODS AND RESULTS Various pathological stimuli regulate miR-34a expression in VSMCs through a transcriptional mechanism, and the P53 binding site is required for miR-34a gene regulation by these stimuli. miR-34a over-expression in serum-starved VSMCs significantly inhibited VSMC proliferation and migration, while knockdown of miR-34a dramatically promoted VSMC proliferation and migration, respectively. Notch homolog 1 (Notch1), a well-reported regulator in VSMC functions and arterial remodeling, was predicted as one of the top targets of miR-34a by using several computational miRNA target prediction tools, and was negatively regulated by miR-34a in VSMCs. Luciferase assay showed miR-34a substantially repressed wild type Notch1-3'-UTR-luciferase activity in VSMCs, but not mutant Notch1-3'-UTR-luciferease reporter, confirming the Notch1 is the functional target of miR-34a in VSMCs. Data from co-transfection experiments also revealed that miR-34a inhibited VSMC proliferation and migration through modulating Notch gene expression levels. Importantly, the expression level of miR-34a was significantly down-regulated in injured arteries, and miR-34a perivascular over-expression significantly reduced Notch1 expression levels, decreased VSMC proliferation, and inhibited neointima formation in wire-injured femoral arteries. CONCLUSION Our data have demonstrated that miR-34a is an important regulator in VSMC functions and neointima hyperplasia, suggesting its potential therapeutic application for vascular diseases.
Collapse
|
138
|
Srivastava R, Zhang J, Go GW, Narayanan A, Nottoli TP, Mani A. Impaired LRP6-TCF7L2 Activity Enhances Smooth Muscle Cell Plasticity and Causes Coronary Artery Disease. Cell Rep 2015; 13:746-759. [PMID: 26489464 DOI: 10.1016/j.celrep.2015.09.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/19/2015] [Accepted: 09/10/2015] [Indexed: 01/02/2023] Open
Abstract
Mutations in Wnt-signaling coreceptor LRP6 have been linked to coronary artery disease (CAD) by unknown mechanisms. Here, we show that reduced LRP6 activity in LRP6(R611C) mice promotes loss of vascular smooth muscle cell (VSMC) differentiation, leading to aortic medial hyperplasia. Carotid injury augmented these effects and led to partial to total vascular obstruction. LRP6(R611C) mice on high-fat diet displayed dramatic obstructive CAD and exhibited an accelerated atherosclerotic burden on LDLR knockout background. Mechanistically, impaired LRP6 activity leads to enhanced non-canonical Wnt signaling, culminating in diminished TCF7L2 and increased Sp1-dependent activation of PDGF signaling. Wnt3a administration to LRP6(R611C) mice improved LRP6 activity, led to TCF7L2-dependent VSMC differentiation, and rescued post-carotid-injury neointima formation. These findings demonstrate the critical role of intact Wnt signaling in the vessel wall, establish a causal link between impaired LRP6/TCF7L2 activities and arterial disease, and identify Wnt signaling as a therapeutic target against CAD.
Collapse
Affiliation(s)
- Roshni Srivastava
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jiasheng Zhang
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gwang-Woong Go
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Anand Narayanan
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Timothy P Nottoli
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Arya Mani
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
139
|
Borja MS, Ng KF, Irwin A, Hong J, Wu X, Isquith D, Zhao XQ, Prazen B, Gildengorin V, Oda MN, Vaisar T. HDL-apolipoprotein A-I exchange is independently associated with cholesterol efflux capacity. J Lipid Res 2015; 56:2002-9. [PMID: 26254308 DOI: 10.1194/jlr.m059865] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Indexed: 12/18/2022] Open
Abstract
HDL is the primary mediator of cholesterol mobilization from the periphery to the liver via reverse cholesterol transport (RCT). A critical first step in this process is the uptake of cholesterol from lipid-loaded macrophages by HDL, a function of HDL inversely associated with prevalent and incident cardiovascular disease. We hypothesized that the dynamic ability of HDL to undergo remodeling and exchange of apoA-I is an important and potentially rate-limiting aspect of RCT. In this study, we investigated the relationship between HDL-apoA-I exchange (HAE) and serum HDL cholesterol (HDL-C) efflux capacity. We compared HAE to the total and ABCA1-specific cholesterol efflux capacity of 77 subjects. We found that HAE was highly correlated with both total (r = 0.69, P < 0.0001) and ABCA1-specific (r = 0.47, P < 0.0001) efflux, and this relationship remained significant after adjustment for HDL-C or apoA-I. Multivariate models of sterol efflux capacity indicated that HAE accounted for approximately 25% of the model variance for both total and ABCA1-specific efflux. We conclude that the ability of HDL to exchange apoA-I and remodel, as measured by HAE, is a significant contributor to serum HDL efflux capacity, independent of HDL-C and apoA-I, indicating that HDL dynamics are an important factor in cholesterol efflux capacity and likely RCT.
Collapse
Affiliation(s)
| | - Kit F Ng
- Children's Hospital Oakland, Oakland, CA 94609
| | - Angela Irwin
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA 98109
| | - Jaekyoung Hong
- Division of Cardiology, Harborview Medical Center, University of Washington, Seattle, WA 98104
| | - Xing Wu
- Division of Cardiology, Harborview Medical Center, University of Washington, Seattle, WA 98104
| | - Daniel Isquith
- Division of Cardiology, Harborview Medical Center, University of Washington, Seattle, WA 98104
| | - Xue-Qiao Zhao
- Division of Cardiology, Harborview Medical Center, University of Washington, Seattle, WA 98104
| | | | | | | | - Tomáš Vaisar
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA 98109
| |
Collapse
|
140
|
PDGFRβ signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis. Nat Commun 2015; 6:7770. [PMID: 26183159 PMCID: PMC4507293 DOI: 10.1038/ncomms8770] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 06/05/2015] [Indexed: 02/07/2023] Open
Abstract
Platelet-derived growth factor (PDGF) is a mitogen and chemoattractant for vascular smooth muscle cells (VSMCs). However, the direct effects of PDGF receptor β (PDGFRβ) activation on VSMCs have not been studied in the context of atherosclerosis. Here, we present a new mouse model of atherosclerosis with an activating mutation in PDGFRβ. Increased PDGFRβ signaling induces chemokine secretion and leads to leukocyte accumulation in the adventitia and media of the aorta. Furthermore, PDGFRβD849V amplifies and accelerates atherosclerosis in hypercholesterolemic ApoE−/− or Ldlr−/− mice. Intriguingly, increased PDGFRβ signaling promotes advanced plaque formation at novel sites in the thoracic aorta and coronary arteries. However, deletion of the PDGFRβ-activated transcription factor STAT1 in VSMCs alleviates inflammation of the arterial wall and reduces plaque burden. These results demonstrate that PDGFRβ pathway activation has a profound effect on vascular disease and support the conclusion that inflammation in the outer arterial layers is a driving process for atherosclerosis.
Collapse
|
141
|
Molecular Events Linking Oxidative Stress and Inflammation to Insulin Resistance and β-Cell Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:181643. [PMID: 26257839 PMCID: PMC4516838 DOI: 10.1155/2015/181643] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/10/2015] [Indexed: 02/06/2023]
Abstract
The prevalence of diabetes mellitus (DM) is increasing worldwide, a consequence of the alarming rise in obesity and metabolic syndrome (MetS). Oxidative stress and inflammation are key physiological and pathological events linking obesity, insulin resistance, and the progression of type 2 DM (T2DM). Unresolved inflammation alongside a “glucolipotoxic” environment of the pancreatic islets, in insulin resistant pathologies, enhances the infiltration of immune cells which through secretory activity cause dysfunction of insulin-secreting β-cells and ultimately cell death. Recent molecular investigations have revealed that mechanisms responsible for insulin resistance associated with T2DM are detected in conditions such as obesity and MetS, including impaired insulin receptor (IR) signalling in insulin responsive tissues, oxidative stress, and endoplasmic reticulum (ER) stress. The aim of the present review is to describe the evidence linking oxidative stress and inflammation with impairment of insulin secretion and action, which result in the progression of T2DM and other conditions associated with metabolic dysregulation.
Collapse
|
142
|
Moonen JRA, Lee ES, Schmidt M, Maleszewska M, Koerts JA, Brouwer LA, van Kooten TG, van Luyn MJ, Zeebregts CJ, Krenning G, Harmsen MC. Endothelial-to-mesenchymal transition contributes to fibro-proliferative vascular disease and is modulated by fluid shear stress. Cardiovasc Res 2015; 108:377-86. [DOI: 10.1093/cvr/cvv175] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 06/12/2015] [Indexed: 01/09/2023] Open
|
143
|
Wang G, Jacquet L, Karamariti E, Xu Q. Origin and differentiation of vascular smooth muscle cells. J Physiol 2015; 593:3013-30. [PMID: 25952975 PMCID: PMC4532522 DOI: 10.1113/jp270033] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/19/2015] [Indexed: 12/18/2022] Open
Abstract
Vascular smooth muscle cells (SMCs), a major structural component of the vessel wall, not only play a key role in maintaining vascular structure but also perform various functions. During embryogenesis, SMC recruitment from their progenitors is an important step in the formation of the embryonic vascular system. SMCs in the arterial wall are mostly quiescent but can display a contractile phenotype in adults. Under pathophysiological conditions, i.e. vascular remodelling after endothelial dysfunction or damage, contractile SMCs found in the media switch to a secretory type, which will facilitate their ability to migrate to the intima and proliferate to contribute to neointimal lesions. However, recent evidence suggests that the mobilization and recruitment of abundant stem/progenitor cells present in the vessel wall are largely responsible for SMC accumulation in the intima during vascular remodelling such as neointimal hyperplasia and arteriosclerosis. Therefore, understanding the regulatory mechanisms that control SMC differentiation from vascular progenitors is essential for exploring therapeutic targets for potential clinical applications. In this article, we review the origin and differentiation of SMCs from stem/progenitor cells during cardiovascular development and in the adult, highlighting the environmental cues and signalling pathways that control phenotypic modulation within the vasculature.
![]()
Collapse
Affiliation(s)
- Gang Wang
- Department of Emergency Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Laureen Jacquet
- Cardiovascular Division, King's College London BHF Centre, London, UK
| | - Eirini Karamariti
- Cardiovascular Division, King's College London BHF Centre, London, UK
| | - Qingbo Xu
- Cardiovascular Division, King's College London BHF Centre, London, UK
| |
Collapse
|
144
|
Abstract
PURPOSE OF REVIEW We provide a historical perspective of how high-density lipoprotein (HDL) cholesterol became a clinical standard, the evidence in favor of HDL function as a more appropriate indication of HDL's antiatherogenic nature, and the options ahead. RECENT FINDINGS Recent studies have demonstrated a strong relationship between the cholesterol efflux capacity of plasma and prevalent cardiovascular disease (CVD) and CVD event risk, indicating the utility of HDL function as a diagnostic/prognostic of CVD. SUMMARY We will present how HDL cholesterol came to be the standard proxy of HDL function, the key observations that drew its clinical relevance into question, and the pros and cons of commercially available approaches to measuring HDL function.
Collapse
Affiliation(s)
- Michael N Oda
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| |
Collapse
|
145
|
Kohn JC, Lampi MC, Reinhart-King CA. Age-related vascular stiffening: causes and consequences. Front Genet 2015; 6:112. [PMID: 25926844 PMCID: PMC4396535 DOI: 10.3389/fgene.2015.00112] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/03/2015] [Indexed: 01/18/2023] Open
Abstract
Arterial stiffening occurs with age and is closely associated with the progression of cardiovascular disease. Stiffening is most often studied at the level of the whole vessel because increased stiffness of the large arteries can impose increased strain on the heart leading to heart failure. Interestingly, however, recent evidence suggests that the impact of increased vessel stiffening extends beyond the tissue scale and can also have deleterious microscale effects on cellular function. Altered extracellular matrix (ECM) architecture has been recognized as a key component of the pre-atherogenic state. Here, the underlying causes of age-related vessel stiffening are discussed, focusing on age-related crosslinking of the ECM proteins as well as through increased matrix deposition. Methods to measure vessel stiffening at both the macro- and microscale are described, spanning from the pulse wave velocity measurements performed clinically to microscale measurements performed largely in research laboratories. Additionally, recent work investigating how arterial stiffness and the changes in the ECM associated with stiffening contributed to endothelial dysfunction will be reviewed. We will highlight how changes in ECM protein composition contribute to atherosclerosis in the vessel wall. Lastly, we will discuss very recent work that demonstrates endothelial cells (ECs) are mechano-sensitive to arterial stiffening, where changes in stiffness can directly impact EC health. Overall, recent studies suggest that stiffening is an important clinical target not only because of potential deleterious effects on the heart but also because it promotes cellular level dysfunction in the vessel wall, contributing to a pathological atherosclerotic state.
Collapse
Affiliation(s)
- Julie C Kohn
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | - Marsha C Lampi
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | | |
Collapse
|
146
|
Sano E, Tashiro S, Tsumoto K, Ueda T. Differential Effects of IFN-β on the Survival and Growth of Human Vascular Smooth Muscle and Endothelial Cells. Biores Open Access 2015; 4:1-15. [PMID: 26309778 PMCID: PMC4497630 DOI: 10.1089/biores.2014.0052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It has been documented that interferon (IFN)-β is effective against the genesis of atherosclerosis or hyperplastic arterial disease in animal model. The main mechanism of the efficacy was antiproliferative action on the growth of vascular smooth muscle cells (SMC). To understand more about the mechanisms that are responsible for the efficacy, we examined minutely the effects of IFN-β on the apoptosis and growth of vascular SMC and endothelial cells (EC). IFN-β enhanced SMC apoptosis in serum starved medium. Conversely, EC apoptosis induced by serum and growth factor deprivation was inhibited by IFN-β. The induction of SMC apoptosis and anti-apoptotic effect on EC linked to the expression of pro-apoptotic bax mRNA and caspase-3 activities. Anti-apoptotic bcl-2 mRNA was also up-regulated in EC. IFN-β inhibited SMC growth in a dose dependent manner. However, the growth of EC was rather enhanced by a low dose of IFNs. The antiproliferative effect on SMC associated with the activation of p21 and increase of G0/G1 arrested cells. The growth stimulation on EC was considered to link with increase of S and G2/M phase cells. SMC produced IFN-β in response to various stimulants. However, IFN-β was not induced in EC. These suggested that endogenous IFN-β from SMC may act on EC and affect to EC functions. In this study, it was clarified that IFN-β enhances SMC apoptosis and inhibits the EC apoptosis, and stimulates the EC growth. These effects were considered to contribute to a cure against hyperplastic arterial diseases as the mechanisms in the efficacy of IFN-β.
Collapse
Affiliation(s)
- Emiko Sano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo , Chiba, Japan
| | - Shinya Tashiro
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo , Chiba, Japan . ; Department of Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo , Tokyo, Japan
| | - Kouhei Tsumoto
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo , Chiba, Japan . ; Department of Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo , Tokyo, Japan . ; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo , Tokyo, Japan
| | - Takuya Ueda
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo , Chiba, Japan
| |
Collapse
|
147
|
Barton M, Grüntzig J, Husmann M, Rösch J. Balloon Angioplasty - The Legacy of Andreas Grüntzig, M.D. (1939-1985). Front Cardiovasc Med 2014; 1:15. [PMID: 26664865 PMCID: PMC4671350 DOI: 10.3389/fcvm.2014.00015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/14/2014] [Indexed: 11/13/2022] Open
Abstract
In 1974, at the Medical Policlinic of the University of Zürich, German-born physician-scientist Andreas Grüntzig (1939-1985) for the first time applied a balloon-tipped catheter to re-open a severely stenosed femoral artery, a procedure, which he initially called "percutaneous transluminal dilatation". Balloon angioplasty as a therapy of atherosclerotic vascular disease, for which Grüntzig and Charles T. Dotter (1920-1985) received a nomination for the Nobel Prize in Physiology or Medicine in 1978, became one of the most successful examples of translational medicine in the twentieth century. Known today as percutaneous transluminal angioplasty (PTA) in peripheral arteries or percutaneous transluminal coronary angioplasty (PTCA) or percutaneous coronary intervention (PCI) in coronary arteries, balloon angioplasty has become the method of choice to treat patients with acute myocardial infarction or occluded leg arteries. On the occasion of the 40(th) anniversary of balloon angioplasty, we summarize Grüntzig's life and career in Germany, Switzerland, and the United States and also review the developments in vascular medicine from the 1890s to the 1980s, including Dotter's first accidental angioplasty in 1963. The work of pioneers of catheterization, including Pedro L. Fariñas in Cuba, André F. Cournand in France, Werner Forssmann, Werner Porstmann and Eberhard Zeitler in Germany, António Egas Moniz and Reynaldo dos Santos in Portugal, Sven-Ivar Seldinger in Sweden, and Barney Brooks, Thomas J. Fogarty, Melvin P. Judkins, Richard K. Myler, Dickinson W. Richards, and F. Mason Sones in the United States, is discussed. We also present quotes by Grüntzig and excerpts from his unfinished autobiography, statements of Grüntzig's former colleagues and contemporary witnesses, and have included hitherto unpublished historic photographs and links to archive recordings and historic materials. This year, on June 25, 2014, Andreas Grüntzig would have celebrated his 75(th) birthday. This article is dedicated to his memory.
Collapse
Affiliation(s)
| | | | | | - Josef Rösch
- Dotter Interventional Institute, OHSU, Portland, OR, USA
| |
Collapse
|
148
|
Le NA. Lipoprotein-associated oxidative stress: a new twist to the postprandial hypothesis. Int J Mol Sci 2014; 16:401-19. [PMID: 25548897 PMCID: PMC4307253 DOI: 10.3390/ijms16010401] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/16/2014] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress is recognized as one of the primary processes underlying the initiation and progression of atherosclerotic vascular disease. Under physiological conditions, the balance between reactive oxygen species (ROS) generation and ROS scavenging is tightly controlled. As part of normal cellular metabolism, regulated oxidative stress is responsible for a variety of cellular responses. Excess generation of ROS that could not be compensated by antioxidant system has been suggested to be responsible for a number of pathological conditions. Due to their short biological half-lives, direct measurement of ROS is not available and surrogate measures are commonly used. Plasma lipoproteins, by virtue of their close interactions with endothelial cells in the vasculature and the susceptibility of their surface lipids to oxidative modification, are perfect biological sensors of oxidative stress in the arterial wall. In particular, with each consumed meal, triglyceride-rich lipoproteins, secreted by the intestine into the circulation, are responsible for the delivery of 20–40 grams of fat to the peripheral tissues. This flux of dietary lipids is accompanied by concomitant increases in glucose, insulin and other meal-associated metabolites. The contribution of postprandial lipemia to the pathogenesis of atherosclerosis has been previously suggested by several lines of investigation. We have extended this hypothesis by demonstrating the acute generation of oxidative epitopes on plasma lipoproteins as well as transient changes in the oxidative susceptibility of plasma lipoproteins.
Collapse
|
149
|
|
150
|
Génot E, Gligorijevic B. Invadosomes in their natural habitat. Eur J Cell Biol 2014; 93:367-79. [PMID: 25457677 DOI: 10.1016/j.ejcb.2014.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/15/2014] [Accepted: 10/14/2014] [Indexed: 01/01/2023] Open
Abstract
Podosomes and invadopodia (collectively known as invadosomes) are small, F-actin-rich protrusions that are located at points of cell-ECM contacts and endow cells with invasive capabilities. So far, they have been identified in human or murine immune (myelomonocytic), vascular and cancer cells. The overarching reason for studying invadosomes is their connection to human disease. For example, macrophages and osteoclasts lacking Wiskott-Aldrich syndrome protein (WASp) are not able to form podosomes, and this leads to altered macrophage chemotaxis and defective bone resorption by osteoclasts. In contrast, the ability of cancer cells to form invadopodia is associated with high invasive and metastatic potentials. While invadosome composition, dynamics and signaling cascades leading to their assembly can be followed easily in in vitro assays, studying their contribution to pathophysiological processes in situ remains challenging. A number of recent papers have started to address this issue and describe invadosomes in situ in mouse models of cancer, cardiovascular disease and angiogenesis. In addition, in vivo invadosome homologs have been reported in developmental model systems such as C. elegans, zebrafish and sea squirt. Comparative analyses among different invasion mechanisms as they happen in their natural habitats, i.e., in situ, may provide an outline of the invadosome evolutionary history, and guide our understanding of the roles of the invasion process in pathophysiology versus development.
Collapse
Affiliation(s)
- Elisabeth Génot
- Université de Bordeaux, F-33000 Bordeaux, France; INSERM U1045, F-33000 Bordeaux, France; European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33 600 Pessac, France.
| | - Bojana Gligorijevic
- Department of Systems & Computational Biology and Albert Einstein College of Medicine, Price Center, 1301 Morris Park Avenue, 10461 Bronx, NY, USA.
| |
Collapse
|