101
|
O’Donnell MP, Chao PH, Kammenga JE, Sengupta P. Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans. PLoS Genet 2018; 14:e1007213. [PMID: 29415022 PMCID: PMC5819832 DOI: 10.1371/journal.pgen.1007213] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/20/2018] [Accepted: 01/22/2018] [Indexed: 01/03/2023] Open
Abstract
Animals integrate external cues with information about internal conditions such as metabolic state to execute the appropriate behavioral and developmental decisions. Information about food quality and quantity is assessed by the intestine and transmitted to modulate neuronal functions via mechanisms that are not fully understood. The conserved Target of Rapamycin complex 2 (TORC2) controls multiple processes in response to cellular stressors and growth factors. Here we show that TORC2 coordinates larval development and adult behaviors in response to environmental cues and feeding state in the bacterivorous nematode C. elegans. During development, pheromone, bacterial food, and temperature regulate expression of the daf-7 TGF-β and daf-28 insulin-like peptide in sensory neurons to promote a binary decision between reproductive growth and entry into the alternate dauer larval stage. We find that TORC2 acts in the intestine to regulate neuronal expression of both daf-7 and daf-28, which together reflect bacterial-diet dependent feeding status, thus providing a mechanism for integration of food signals with external cues in the regulation of neuroendocrine gene expression. In the adult, TORC2 similarly acts in the intestine to modulate food-regulated foraging behaviors via a PDF-2/PDFR-1 neuropeptide signaling-dependent pathway. We also demonstrate that genetic variation affects food-dependent larval and adult phenotypes, and identify quantitative trait loci (QTL) associated with these traits. Together, these results suggest that TORC2 acts as a hub for communication of feeding state information from the gut to the brain, thereby contributing to modulation of neuronal function by internal state. Decision-making in all animals, including humans, involves weighing available information about the external environment as well as the animals’ internal conditions. Information about the environment is obtained via the sensory nervous system, whereas internal state can be assessed via cues such as levels of hormones or nutrients. How multiple external and internal inputs are processed in the nervous system to drive behavior or development is not fully understood. In this study, we examine how the nematode C. elegans integrates dietary information received by the gut with environmental signals to alter nervous system function. We have found that a signaling complex, called TORC2, acts in the gut to relay nutrition signals to alter hormonal signaling by the nervous system in C. elegans. Altered neuronal signaling in turn affects a food-dependent binary developmental decision in larvae, as well as food-dependent foraging behaviors in adults. Our results provide a mechanism by which animals prioritize specific signals such as feeding status to appropriately alter their development and/or behavior.
Collapse
Affiliation(s)
- Michael P. O’Donnell
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
- * E-mail: (MPO); (PS)
| | - Pin-Hao Chao
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University and Research, Wageningen, The Netherlands
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
- * E-mail: (MPO); (PS)
| |
Collapse
|
102
|
Alqadah A, Hsieh YW, Xiong R, Chuang CF. Stochastic left-right neuronal asymmetry in Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0407. [PMID: 27821536 DOI: 10.1098/rstb.2015.0407] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2016] [Indexed: 12/28/2022] Open
Abstract
Left-right asymmetry in the nervous system is observed across species. Defects in left-right cerebral asymmetry are linked to several neurological diseases, but the molecular mechanisms underlying brain asymmetry in vertebrates are still not very well understood. The Caenorhabditis elegans left and right amphid wing 'C' (AWC) olfactory neurons communicate through intercellular calcium signalling in a transient embryonic gap junction neural network to specify two asymmetric subtypes, AWCOFF (default) and AWCON (induced), in a stochastic manner. Here, we highlight the molecular mechanisms that establish and maintain stochastic AWC asymmetry. As the components of the AWC asymmetry pathway are highly conserved, insights from the model organism C. elegans may provide a window onto how brain asymmetry develops in humans.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Amel Alqadah
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Rui Xiong
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| |
Collapse
|
103
|
Monsivais D, Matzuk MM, Pangas SA. The TGF-β Family in the Reproductive Tract. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022251. [PMID: 28193725 DOI: 10.1101/cshperspect.a022251] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The transforming growth factor β (TGF-β) family has a profound impact on the reproductive function of various organisms. In this review, we discuss how highly conserved members of the TGF-β family influence the reproductive function across several species. We briefly discuss how TGF-β-related proteins balance germ-cell proliferation and differentiation as well as dauer entry and exit in Caenorhabditis elegans. In Drosophila melanogaster, TGF-β-related proteins maintain germ stem-cell identity and eggshell patterning. We then provide an in-depth analysis of landmark studies performed using transgenic mouse models and discuss how these data have uncovered basic developmental aspects of male and female reproductive development. In particular, we discuss the roles of the various TGF-β family ligands and receptors in primordial germ-cell development, sexual differentiation, and gonadal cell development. We also discuss how mutant mouse studies showed the contribution of TGF-β family signaling to embryonic and postnatal testis and ovarian development. We conclude the review by describing data obtained from human studies, which highlight the importance of the TGF-β family in normal female reproductive function during pregnancy and in various gynecologic pathologies.
Collapse
Affiliation(s)
- Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030.,Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030
| | - Stephanie A Pangas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030
| |
Collapse
|
104
|
Pekar O, Ow MC, Hui KY, Noyes MB, Hall SE, Hubbard EJA. Linking the environment, DAF-7/TGFβ signaling and LAG-2/DSL ligand expression in the germline stem cell niche. Development 2017; 144:2896-2906. [PMID: 28811311 DOI: 10.1242/dev.147660] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/01/2017] [Indexed: 02/04/2023]
Abstract
The developmental accumulation of proliferative germ cells in the C. elegans hermaphrodite is sensitive to the organismal environment. Previously, we found that the TGFβ signaling pathway links the environment and proliferative germ cell accumulation. Neuronal DAF-7/TGFβ causes a DAF-1/TGFβR signaling cascade in the gonadal distal tip cell (DTC), the germline stem cell niche, where it negatively regulates a DAF-3 SMAD and DAF-5 Sno-Ski. LAG-2, a founding DSL ligand family member, is produced in the DTC and activates the GLP-1/Notch receptor on adjacent germ cells to maintain germline stem cell fate. Here, we show that DAF-7/TGFβ signaling promotes expression of lag-2 in the DTC in a daf-3-dependent manner. Using ChIP and one-hybrid assays, we find evidence for direct interaction between DAF-3 and the lag-2 promoter. We further identify a 25 bp DAF-3 binding element required for the DTC lag-2 reporter response to the environment and to DAF-7/TGFβ signaling. Our results implicate DAF-3 repressor complex activity as a key molecular mechanism whereby the environment influences DSL ligand expression in the niche to modulate developmental expansion of the germline stem cell pool.
Collapse
Affiliation(s)
- Olga Pekar
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Maria C Ow
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Kailyn Y Hui
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Marcus B Noyes
- Institute for Systems Genetics, NYU School of Medicine, New York, NY 10016, USA
| | - Sarah E Hall
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - E Jane Albert Hubbard
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
105
|
Aprison EZ, Ruvinsky I. Counteracting Ascarosides Act through Distinct Neurons to Determine the Sexual Identity of C. elegans Pheromones. Curr Biol 2017; 27:2589-2599.e3. [DOI: 10.1016/j.cub.2017.07.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/26/2017] [Accepted: 07/13/2017] [Indexed: 01/12/2023]
|
106
|
Androwski RJ, Flatt KM, Schroeder NE. Phenotypic plasticity and remodeling in the stress-induced Caenorhabditis elegans dauer. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2017; 6:10.1002/wdev.278. [PMID: 28544390 PMCID: PMC5626018 DOI: 10.1002/wdev.278] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/23/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
Organisms are often capable of modifying their development to better suit their environment. Under adverse conditions, the nematode Caenorhabditis elegans develops into a stress-resistant alternative larval stage called dauer. The dauer stage is the primary survival stage for C. elegans in nature. Large-scale tissue remodeling during dauer conveys resistance to harsh environments. The environmental and genetic regulation of the decision to enter dauer has been extensively studied. However, less is known about the mechanisms regulating tissue remodeling. Changes to the cuticle and suppression of feeding in dauers lead to an increased resistance to external stressors. Meanwhile reproductive development arrests during dauer while preserving the ability to reproduce once favorable environmental conditions return. Dramatic remodeling of neurons, glia, and muscles during dauer likely facilitate dauer-specific behaviors. Dauer-specific pulsation of the excretory duct likely mediates a response to osmotic stress. The power of C. elegans genetics has uncovered some of the molecular pathways regulating dauer tissue remodeling. In addition to genes that regulate single remodeling events, several mutants result in pleiotropic defects in dauer remodeling. This review details the individual aspects of morphological changes that occur during dauer formation and discusses molecular mechanisms regulating these processes. The dauer stage provides us with an excellent model for understanding phenotypic plasticity and remodeling from the individual cell to an entire animal. WIREs Dev Biol 2017, 6:e278. doi: 10.1002/wdev.278 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rebecca J Androwski
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Kristen M Flatt
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Nathan E Schroeder
- Neuroscience Program and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
107
|
Projecto-Garcia J, Biddle JF, Ragsdale EJ. Decoding the architecture and origins of mechanisms for developmental polyphenism. Curr Opin Genet Dev 2017; 47:1-8. [PMID: 28810163 DOI: 10.1016/j.gde.2017.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 01/09/2023]
Abstract
Developmental polyphenism affords a single genotype multiple solutions to match an organism to its environment. Because polyphenism is the extreme example of how development deviates from a linear genetic blueprint, it demands a genetic explanation for how environmental cues shunt development to hypothetically alternative modules. We highlight several recent advances that have begun to illuminate genetic mechanisms for polyphenism and how this recurring developmental novelty may arise. An emerging genetic knowledge of polyphenism is providing precise targets for testing hypotheses of how switch mechanisms are built-out of olfactory, nutrient-sensing, hormone-reception, and developmental and genetic buffering systems-to accommodate plasticity. Moreover, classic and new model systems are testing the genetic basis of polyphenism's proposed causal roles in evolutionary change.
Collapse
Affiliation(s)
- Joana Projecto-Garcia
- Department of Biology, Indiana University, 915 E. 3rd St., Bloomington, IN 47405, United States
| | - Joseph F Biddle
- Department of Biology, Indiana University, 915 E. 3rd St., Bloomington, IN 47405, United States
| | - Erik J Ragsdale
- Department of Biology, Indiana University, 915 E. 3rd St., Bloomington, IN 47405, United States.
| |
Collapse
|
108
|
Vohra M, Lemieux GA, Lin L, Ashrafi K. The beneficial effects of dietary restriction on learning are distinct from its effects on longevity and mediated by depletion of a neuroinhibitory metabolite. PLoS Biol 2017; 15:e2002032. [PMID: 28763436 PMCID: PMC5538637 DOI: 10.1371/journal.pbio.2002032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/27/2017] [Indexed: 12/27/2022] Open
Abstract
In species ranging from humans to Caenorhabditis elegans, dietary restriction (DR) grants numerous benefits, including enhanced learning. The precise mechanisms by which DR engenders benefits on processes related to learning remain poorly understood. As a result, it is unclear whether the learning benefits of DR are due to myriad improvements in mechanisms that collectively confer improved cellular health and extension of organismal lifespan or due to specific neural mechanisms. Using an associative learning paradigm in C. elegans, we investigated the effects of DR as well as manipulations of insulin, mechanistic target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), and autophagy pathways-processes implicated in longevity-on learning. Despite their effects on a vast number of molecular effectors, we found that the beneficial effects on learning elicited by each of these manipulations are fully dependent on depletion of kynurenic acid (KYNA), a neuroinhibitory metabolite. KYNA depletion then leads, in an N-methyl D-aspartate receptor (NMDAR)-dependent manner, to activation of a specific pair of interneurons with a critical role in learning. Thus, fluctuations in KYNA levels emerge as a previously unidentified molecular mechanism linking longevity and metabolic pathways to neural mechanisms of learning. Importantly, KYNA levels did not alter lifespan in any of the conditions tested. As such, the beneficial effects of DR on learning can be attributed to changes in a nutritionally sensitive metabolite with neuromodulatory activity rather than indirect or secondary consequences of improved health and extended longevity.
Collapse
Affiliation(s)
- Mihir Vohra
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - George A Lemieux
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Lin Lin
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Kaveh Ashrafi
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
109
|
Hoang HD, Miller MA. Chemosensory and hyperoxia circuits in C. elegans males influence sperm navigational capacity. PLoS Biol 2017; 15:e2002047. [PMID: 28662030 PMCID: PMC5490939 DOI: 10.1371/journal.pbio.2002047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/25/2017] [Indexed: 11/23/2022] Open
Abstract
The sperm’s crucial function is to locate and fuse with a mature oocyte. Under laboratory conditions, Caenorhabditis elegans sperm are very efficient at navigating the hermaphrodite reproductive tract and locating oocytes. Here, we identify chemosensory and oxygen-sensing circuits that affect the sperm’s navigational capacity. Multiple Serpentine Receptor B (SRB) chemosensory receptors regulate Gα pathways in gustatory sensory neurons that extend cilia through the male nose. SRB signaling is necessary and sufficient in these sensory neurons to influence sperm motility parameters. The neuropeptide Y pathway acts together with SRB-13 to antagonize negative effects of the GCY-35 hyperoxia sensor on spermatogenesis. SRB chemoreceptors are not essential for sperm navigation under low oxygen conditions that C. elegans prefers. In ambient oxygen environments, SRB-13 signaling impacts gene expression during spermatogenesis and the sperm’s mitochondria, thereby increasing migration velocity and inhibiting reversals within the hermaphrodite uterus. The SRB-13 transcriptome is highly enriched in genes implicated in pathogen defense, many of which are expressed in diverse tissues. We show that the critical time period for SRB-13 signaling is prior to spermatocyte differentiation. Our results support the model that young C. elegans males sense external environment and oxygen tension, triggering long-lasting downstream signaling events with effects on the sperm’s mitochondria and navigational capacity. Environmental exposures early in male life may alter sperm function and fertility. Habitat loss, disease, climate change, and pollution are thought to negatively affect animal fertility. Sperm are a potential target, but the molecular mechanisms are not understood. The nematode C. elegans is a powerful genetic model to investigate the relationship between environment and male fertility. The hermaphrodite’s transparent epidermis permits the direct visualization of migrating male sperm and fertilization. In this study, we identified multiple serpentine receptor B (SRB) chemosensory receptors that are expressed in amphid sensory neurons, which extend cilia through the male nose. These SRB chemoreceptors are necessary to produce sperm that are efficient at navigating the hermaphrodite reproductive tract to the fertilization site. We show that SRB-13 signaling counteracts the negative effect of GCY-35 O2 sensor activity, thereby maintaining sperm mitochondrial function and navigational capacity in hyperoxic conditions. Of particular interest, SRB-13 acts in early larval stage males prior to testis maturation. We propose that young males respond to specific stressful environments by altering SRB neural circuits, which in turn impact sperm mitochondrial function and motility. This chemosensory mechanism may be part of a systemic response in C. elegans males to external environment and oxygen levels.
Collapse
Affiliation(s)
- Hieu D. Hoang
- Department of Cell, Developmental and Integrative Biology, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
| | - Michael A. Miller
- Department of Cell, Developmental and Integrative Biology, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
110
|
Abstract
Transforming growth factor β (TGF-β) and related ligands have potent effects on an enormous diversity of biological functions in all animals examined. Because of the strong conservation of TGF-β family ligand functions and signaling mechanisms, studies from multiple animal systems have yielded complementary and synergistic insights. In the nematode Caenorhabditis elegans, early studies were instrumental in the elucidation of TGF-β family signaling mechanisms. Current studies in C. elegans continue to identify new functions for the TGF-β family in this organism as well as new conserved mechanisms of regulation.
Collapse
Affiliation(s)
- Cathy Savage-Dunn
- Department of Biology, Queens College, and the Graduate Center, New York, New York 11367
| | - Richard W Padgett
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, New Jersey 08854-8020
| |
Collapse
|
111
|
Phosphorylated glycosphingolipids essential for cholesterol mobilization in Caenorhabditis elegans. Nat Chem Biol 2017; 13:647-654. [PMID: 28369040 DOI: 10.1038/nchembio.2347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 01/12/2017] [Indexed: 11/08/2022]
Abstract
The nematode Caenorhabditis elegans requires exogenous cholesterol to survive and its depletion leads to early developmental arrest. Thus, tight regulation of cholesterol storage and distribution within the organism is indispensable. Here, we present a novel class of C. elegans phosphorylated glycosphingolipids, phosphoethanolamine glucosylceramides (PEGCs), capable of rescuing larval arrest induced by sterol starvation. We describe the total synthesis of a major PEGC species and demonstrate that the PEGC synthetic counterpart suppresses the dauer-constitutive phenotype of Niemann-Pick C1 (NPC1) and DAF-7/TGF-β mutant worms caused by impaired intracellular sterol trafficking. PEGC biosynthesis depends on functional NPC1 and TGF-β, indicating that these proteins control larval development at least partly through PEGC. Furthermore, glucosylceramide deficiency dramatically reduced PEGC amounts. However, the resulting developmental arrest could be rescued by oversaturation of food with cholesterol. Taken together, these data show that PEGC is essential for C. elegans development through its regulation of sterol mobilization.
Collapse
|
112
|
Bharadwaj PS, Hall SE. Endogenous RNAi Pathways Are Required in Neurons for Dauer Formation in Caenorhabditis elegans. Genetics 2017; 205:1503-1516. [PMID: 28122825 PMCID: PMC5378109 DOI: 10.1534/genetics.116.195438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/21/2017] [Indexed: 12/16/2022] Open
Abstract
Animals can adapt to unfavorable environments through changes in physiology or behavior. In the nematode, Caenorhabditis elegans, environmental conditions perceived early in development determine whether the animal enters either the reproductive cycle, or enters into an alternative diapause stage named dauer. Here, we show that endogenous RNAi pathways play a role in dauer formation in crowding (high pheromone), starvation, and high temperature conditions. Disruption of the Mutator proteins or the nuclear Argonaute CSR-1 result in differential dauer-deficient phenotypes that are dependent upon the experienced environmental stress. We provide evidence that the RNAi pathways function in chemosensory neurons for dauer formation, upstream of the TGF-β and insulin signaling pathways. In addition, we show that Mutator MUT-16 expression in a subset of individual pheromone-sensing neurons is sufficient for dauer formation in high pheromone conditions, but not in starvation or high temperature conditions. Furthermore, we also show that MUT-16 and CSR-1 are required for expression of a subset of G proteins with functions in the detection of pheromone components. Together, our data suggest a model where Mutator-amplified siRNAs that associate with the CSR-1 pathway promote expression of genes required for the detection and signaling of environmental conditions to regulate development and behavior in C. elegans This study highlights a mechanism whereby RNAi pathways mediate the link between environmental stress and adaptive phenotypic plasticity in animals.
Collapse
Affiliation(s)
| | - Sarah E Hall
- Department of Biology, Syracuse University, New York 13244
| |
Collapse
|
113
|
Regulation of a hitchhiking behavior by neuronal insulin and TGF-β signaling in the nematode Caenorhabditis elegans. Biochem Biophys Res Commun 2017; 484:323-330. [DOI: 10.1016/j.bbrc.2017.01.113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/21/2017] [Indexed: 12/11/2022]
|
114
|
Delaney CE, Chen AT, Graniel JV, Dumas KJ, Hu PJ. A histone H4 lysine 20 methyltransferase couples environmental cues to sensory neuron control of developmental plasticity. Development 2017; 144:1273-1282. [PMID: 28209779 PMCID: PMC5399626 DOI: 10.1242/dev.145722] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/02/2017] [Indexed: 01/23/2023]
Abstract
Animals change developmental fates in response to external cues. In the nematode Caenorhabditis elegans, unfavorable environmental conditions induce a state of diapause known as dauer by inhibiting the conserved DAF-2 insulin-like signaling (ILS) pathway through incompletely understood mechanisms. We have previously established a role for the C. elegans dosage compensation protein DPY-21 in the control of dauer arrest and DAF-2 ILS. Here, we show that the histone H4 lysine 20 methyltransferase SET-4, which also influences dosage compensation, promotes dauer arrest in part by repressing the X-linked ins-9 gene, which encodes a new agonist insulin-like peptide (ILP) expressed specifically in the paired ASI sensory neurons that are required for dauer bypass. ins-9 repression in dauer-constitutive mutants requires DPY-21, SET-4 and the FoxO transcription factor DAF-16, which is the main target of DAF-2 ILS. By contrast, autosomal genes encoding major agonist ILPs that promote reproductive development are not repressed by DPY-21, SET-4 or DAF-16/FoxO. Our results implicate SET-4 as a sensory rheostat that reinforces developmental fates in response to environmental cues by modulating autocrine and paracrine DAF-2 ILS.
Collapse
Affiliation(s)
- Colin E Delaney
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Albert T Chen
- Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jacqueline V Graniel
- Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kathleen J Dumas
- Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Patrick J Hu
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA .,Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Institute of Gerontology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
115
|
Palamiuc L, Noble T, Witham E, Ratanpal H, Vaughan M, Srinivasan S. A tachykinin-like neuroendocrine signalling axis couples central serotonin action and nutrient sensing with peripheral lipid metabolism. Nat Commun 2017; 8:14237. [PMID: 28128367 PMCID: PMC5290170 DOI: 10.1038/ncomms14237] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 12/09/2016] [Indexed: 01/13/2023] Open
Abstract
Serotonin, a central neuromodulator with ancient ties to feeding and metabolism, is a major driver of body fat loss. However, mechanisms by which central serotonin action leads to fat loss remain unknown. Here, we report that the FLP-7 neuropeptide and its cognate receptor, NPR-22, function as the ligand-receptor pair that defines the neuroendocrine axis of serotonergic body fat loss in Caenorhabditis elegans. FLP-7 is secreted as a neuroendocrine peptide in proportion to fluctuations in neural serotonin circuit functions, and its release is regulated from secretory neurons via the nutrient sensor AMPK. FLP-7 acts via the NPR-22/Tachykinin2 receptor in the intestine and drives fat loss via the adipocyte triglyceride lipase ATGL-1. Importantly, this ligand-receptor pair does not alter other serotonin-dependent behaviours including food intake. For global modulators such as serotonin, the use of distinct neuroendocrine peptides for each output may be one means to achieve phenotypic selectivity.
Collapse
Affiliation(s)
- Lavinia Palamiuc
- Department of Chemical Physiology and The Dorris Neuroscience Center, 1 Barnard Drive, Oceanside, California 92056, USA
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Tallie Noble
- Mira Costa College, 1 Barnard Drive, Oceanside, California 92056, USA
| | - Emily Witham
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Harkaranveer Ratanpal
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Megan Vaughan
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
- Kellogg School of Science and Technology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| | - Supriya Srinivasan
- Department of Chemical Physiology and The Dorris Neuroscience Center, 1 Barnard Drive, Oceanside, California 92056, USA
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA
| |
Collapse
|
116
|
Hilbert ZA, Kim DH. Sexually dimorphic control of gene expression in sensory neurons regulates decision-making behavior in C. elegans. eLife 2017; 6. [PMID: 28117661 PMCID: PMC5262377 DOI: 10.7554/elife.21166] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023] Open
Abstract
Animal behavior is directed by the integration of sensory information from internal states and the environment. Neuroendocrine regulation of diverse behaviors of Caenorhabditis elegans is under the control of the DAF-7/TGF-β ligand that is secreted from sensory neurons. Here, we show that C. elegans males exhibit an altered, male-specific expression pattern of daf-7 in the ASJ sensory neuron pair with the onset of reproductive maturity, which functions to promote male-specific mate-searching behavior. Molecular genetic analysis of the switch-like regulation of daf-7 expression in the ASJ neuron pair reveals a hierarchy of regulation among multiple inputs—sex, age, nutritional status, and microbial environment—which function in the modulation of behavior. Our results suggest that regulation of gene expression in sensory neurons can function in the integration of a wide array of sensory information and facilitate decision-making behaviors in C. elegans. DOI:http://dx.doi.org/10.7554/eLife.21166.001 For almost all species of animal, males and females will often behave differently in similar situations. Little is known about how these sex-specific differences are generated or, for example, how different the nervous system of a male is to that of a female. Moreover, it is also poorly understood how these underlying differences based on the biological sex of an animal are integrated with and influenced by its experiences and environment. The roundworm Caenorhabditis elegans has two sexes, hermaphrodites and males. The male worms behave differently to the hermaphrodites in a number of situations. This means that these animals offer the opportunity to explore and understand sex-specific differences in behavior. It is also possible to analyze the underlying factors that contribute to behavior in C. elegans, because it has a relatively simple and well-defined nervous system. Now, Hilbert and Kim show that a signal that influences how C. elegans explores in response to chemicals in its environment is expressed differently in male and hermaphrodite worms. The signal in question is molecule called DAF-7, which is released by several sensory neurons—nerve cells that are used for detecting cues from the environment. The sensory neurons that release DAF-7 are found in both sexes of C. elegans but the specific way that the male worms express this signal encourages them to search for mates. Hermaphrodites, on the other hand, do not need to search for mates because they can fertilize their own eggs. Hilbert and Kim showed that the biological sex in combination with multiple other inputs – including the animal’s past diet and age – regulate how the DAF-7 signal is expressed in C. elegans. These inputs all converge onto a single pair of sensory neurons, which integrate the inputs and enable the worm to assess its current and past experiences and alter its behavior accordingly. Moving forward the next challenge is to understand how information about both external environment and internal states, such as hunger, are communicated to and integrated by these sensory neurons. Decoding the signals behind this process may illuminate how biological sex and internal states influence behavior in other species of animals. DOI:http://dx.doi.org/10.7554/eLife.21166.002
Collapse
Affiliation(s)
- Zoë A Hilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Dennis H Kim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
117
|
Age-Dependent Neuroendocrine Signaling from Sensory Neurons Modulates the Effect of Dietary Restriction on Longevity of Caenorhabditis elegans. PLoS Genet 2017; 13:e1006544. [PMID: 28107363 PMCID: PMC5291536 DOI: 10.1371/journal.pgen.1006544] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/03/2017] [Accepted: 12/16/2016] [Indexed: 02/02/2023] Open
Abstract
Dietary restriction extends lifespan in evolutionarily diverse animals. A role for the sensory nervous system in dietary restriction has been established in Drosophila and Caenorhabditis elegans, but little is known about how neuroendocrine signals influence the effects of dietary restriction on longevity. Here, we show that DAF-7/TGFβ, which is secreted from the C. elegans amphid, promotes lifespan extension in response to dietary restriction in C. elegans. DAF-7 produced by the ASI pair of sensory neurons acts on DAF-1/TGFβ receptors expressed on interneurons to inhibit the co-SMAD DAF-3. We find that increased activity of DAF-3 in the presence of diminished or deleted DAF-7 activity abrogates lifespan extension conferred by dietary restriction. We also observe that DAF-7 expression is dynamic during the lifespan of C. elegans, with a marked decrease in DAF-7 levels as animals age during adulthood. We show that this age-dependent diminished expression contributes to the reduced sensitivity of aging animals to the effects of dietary restriction. DAF-7 signaling is a pivotal regulator of metabolism and food-dependent behavior, and our studies establish a molecular link between the neuroendocrine physiology of C. elegans and the process by which dietary restriction can extend lifespan. Reductions in food intake have long been observed to improve longevity, extending lifespan in many evolutionarily divergent organisms. While great progress has been made in identifying the mechanisms by which nutritional interventions act to delay the aging process, much remains unclear. Particularly, while work in multiple species has found evidence that the sensation of food availability by the nervous system contributes to lifespan extension in response to reduced food levels, little is known about how these contributions are executed. Here, we have characterized how a specific neuroendocrine peptide, expressed in a set of sensory neurons, responds to changes in food conditions to modulate lifespan effects of dietary restriction at the organismal level. We further find that age-related changes in expression of this neuroendocrine signal contribute to the declining efficacy of nutritional interventions as animals get older. This work highlights the importance of neuroendocrine regulation in both the aging process and in treatments aimed at increasing longevity.
Collapse
|
118
|
Laws KM, Drummond-Barbosa D. Control of Germline Stem Cell Lineages by Diet and Physiology. Results Probl Cell Differ 2017; 59:67-99. [PMID: 28247046 DOI: 10.1007/978-3-319-44820-6_3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tight coupling of reproduction to environmental factors and physiological status is key to long-term species survival. In particular, highly conserved pathways modulate germline stem cell lineages according to nutrient availability. This chapter focuses on recent in vivo studies in genetic model organisms that shed light on how diet-dependent signals control the proliferation, maintenance, and survival of adult germline stem cells and their progeny. These signaling pathways can operate intrinsically in the germ line, modulate the niche, or act through intermediate organs to influence stem cells and their differentiating progeny. In addition to illustrating the extent of dietary regulation of reproduction, findings from these studies have implications for fertility during aging or disease states.
Collapse
Affiliation(s)
- Kaitlin M Laws
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA. .,Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
119
|
Abstract
Fertilization, the union of an oocyte and a sperm, is a fundamental process that restores the diploid genome and initiates embryonic development. For the sperm, fertilization is the end of a long journey, one that starts in the male testis before transitioning to the female reproductive tract's convoluted tubule architecture. Historically, motile sperm were thought to complete this journey using luck and numbers. A different picture of sperm has emerged recently as cells that integrate complex sensory information for navigation. Chemical, physical, and thermal cues have been proposed to help guide sperm to the waiting oocyte. Molecular mechanisms are being delineated in animal models and humans, revealing common features, as well as important differences. Exposure to pheromones and nutritional signals can modulate guidance mechanisms, indirectly impacting sperm motility performance and fertility. These studies highlight the importance of sensory information and signal transduction in fertilization.
Collapse
Affiliation(s)
- Hieu D Hoang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Michael A Miller
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
120
|
A Bystander Mechanism Explains the Specific Phenotype of a Broadly Expressed Misfolded Protein. PLoS Genet 2016; 12:e1006450. [PMID: 27926939 PMCID: PMC5142776 DOI: 10.1371/journal.pgen.1006450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/31/2016] [Indexed: 12/18/2022] Open
Abstract
Misfolded proteins in transgenic models of conformational diseases interfere with proteostasis machinery and compromise the function of many structurally and functionally unrelated metastable proteins. This collateral damage to cellular proteins has been termed 'bystander' mechanism. How a single misfolded protein overwhelms the proteostasis, and how broadly-expressed mutant proteins cause cell type-selective phenotypes in disease are open questions. We tested the gain-of-function mechanism of a R37C folding mutation in an endogenous IGF-like C.elegans protein DAF-28. DAF-28(R37C) is broadly expressed, but only causes dysfunction in one specific neuron, ASI, leading to a distinct developmental phenotype. We find that this phenotype is caused by selective disruption of normal biogenesis of an unrelated endogenous protein, DAF-7/TGF-β. The combined deficiency of DAF-28 and DAF-7 biogenesis, but not of DAF-28 alone, explains the gain-of-function phenotype—deficient pro-growth signaling by the ASI neuron. Using functional, fluorescently-tagged protein, we find that, in animals with mutant DAF-28/IGF, the wild-type DAF-7/TGF-β is mislocalized to and accumulates in the proximal axon of the ASI neuron. Activation of two different branches of the unfolded protein response can modulate both the developmental phenotype and DAF-7 mislocalization in DAF-28(R37C) animals, but appear to act through divergent mechanisms. Our finding that bystander targeting of TGF-β explains the phenotype caused by a folding mutation in an IGF-like protein suggests that, in conformational diseases, bystander misfolding may specify the distinct phenotypes caused by different folding mutations. Correct protein folding and localization ensures cellular health. Dedicated proteostasis machinery assists in protein folding and protects against misfolding. Yet, folding mutations cause many conformational diseases, including neurodegenerative diseases and certain types of diabetes and cancer. Misfolded disease-related proteins interfere with proteostasis machinery, causing global misfolding in the cell. How this global mechanism leads to the specific phenotypes in different conformational diseases is unknown. Moreover, mutant misfolded proteins that only damage specific cell-types in disease often lose this cell-selectivity when overexpressed in genetic models. Here we use an endogenous folding mutation in a C. elegans secreted IGF-like protein, DAF-28, that causes dysfunction in one neuron and a specific developmental phenotype, despite expression in many cells. We find that misfolding of mutant DAF-28 causes mislocalization and defective function of another, wild-type growth factor that is expressed in the affected neuron, the TGF-β protein DAF-7. Decrease in DAF-7 function explains the observed developmental phenotype. This targeting of the bystander protein DAF-7 by the misfolded mutant DAF-28 is specific and is not caused by the global stress. Our data suggest that rather than global effects, it is the selective targeting of specific susceptible bystander proteins that defines the specific phenotypes in conformational diseases.
Collapse
|
121
|
Greene JS, Brown M, Dobosiewicz M, Ishida IG, Macosko EZ, Zhang X, Butcher RA, Cline DJ, McGrath PT, Bargmann CI. Balancing selection shapes density-dependent foraging behaviour. Nature 2016; 539:254-258. [PMID: 27799655 PMCID: PMC5161598 DOI: 10.1038/nature19848] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 09/14/2016] [Indexed: 02/04/2023]
Abstract
The optimal foraging strategy in a given environment depends on the number of competing individuals and their behavioural strategies. Little is known about the genes and neural circuits that integrate social information into foraging decisions. Here we show that ascaroside pheromones, small glycolipids that signal population density, suppress exploratory foraging in Caenorhabditis elegans, and that heritable variation in this behaviour generates alternative foraging strategies. We find that natural C. elegans isolates differ in their sensitivity to the potent ascaroside icas#9 (IC-asc-C5). A quantitative trait locus (QTL) regulating icas#9 sensitivity includes srx-43, a G-protein-coupled icas#9 receptor that acts in the ASI class of sensory neurons to suppress exploration. Two ancient haplotypes associated with this QTL confer competitive growth advantages that depend on ascaroside secretion, its detection by srx-43 and the distribution of food. These results suggest that balancing selection at the srx-43 locus generates alternative density-dependent behaviours, fulfilling a prediction of foraging game theory.
Collapse
Affiliation(s)
- Joshua S Greene
- Howard Hughes Medical Institute, Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York 10065, USA
| | - Maximillian Brown
- Howard Hughes Medical Institute, Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York 10065, USA
| | - May Dobosiewicz
- Howard Hughes Medical Institute, Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York 10065, USA
| | - Itzel G Ishida
- Howard Hughes Medical Institute, Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York 10065, USA
| | - Evan Z Macosko
- Howard Hughes Medical Institute, Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York 10065, USA
| | - Xinxing Zhang
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Devin J Cline
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Cornelia I Bargmann
- Howard Hughes Medical Institute, Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
122
|
Meisel JD, Kim DH. Inhibition of Lithium-Sensitive Phosphatase BPNT-1 Causes Selective Neuronal Dysfunction in C. elegans. Curr Biol 2016; 26:1922-8. [PMID: 27397889 DOI: 10.1016/j.cub.2016.05.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/09/2016] [Accepted: 05/19/2016] [Indexed: 11/26/2022]
Abstract
Lithium has been a mainstay for the treatment of bipolar disorder, yet the molecular mechanisms underlying its action remain enigmatic. Bisphosphate 3'-nucleotidase (BPNT-1) is a lithium-sensitive phosphatase that catalyzes the breakdown of cytosolic 3'-phosphoadenosine 5'-phosphate (PAP), a byproduct of sulfation reactions utilizing the universal sulfate group donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) [1-3]. Loss of BPNT-1 leads to the toxic accumulation of PAP in yeast and non-neuronal cell types in mice [4, 5]. Intriguingly, BPNT-1 is expressed throughout the mammalian brain [4], and it has been hypothesized that inhibition of BPNT-1 could contribute to the effects of lithium on behavior [5]. Here, we show that loss of BPNT-1 in Caenorhabditis elegans results in the selective dysfunction of two neurons, the bilaterally symmetric pair of ASJ chemosensory neurons. As a result, BPNT-1 mutants are defective in behaviors dependent on the ASJ neurons, such as dauer exit and pathogen avoidance. Acute treatment with lithium also causes dysfunction of the ASJ neurons, and we show that this effect is reversible and mediated specifically through inhibition of BPNT-1. Finally, we show that the selective effect of lithium on the nervous system is due in part to the limited expression of the cytosolic sulfotransferase SSU-1 in the ASJ neuron pair. Our data suggest that lithium, through inhibition of BPNT-1 in the nervous system, can cause selective toxicity to specific neurons, resulting in corresponding effects on behavior of C. elegans.
Collapse
Affiliation(s)
- Joshua D Meisel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Dennis H Kim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
| |
Collapse
|
123
|
Fluorescent Beads Are a Versatile Tool for Staging Caenorhabditis elegans in Different Life Histories. G3-GENES GENOMES GENETICS 2016; 6:1923-33. [PMID: 27172224 PMCID: PMC4938646 DOI: 10.1534/g3.116.030163] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Precise staging of Caenorhabditis elegans is essential for developmental studies in different environmental conditions. In favorable conditions, larvae develop continuously through four larval stages separated by molting periods. Distinguishing molting from intermolt larvae has been achieved using transgenes with molting reporters, therefore requiring strain constructions, or careful observation of individuals for pharyngeal pumping or behavioral quiescence. In unfavorable conditions, larvae can enter the stress-resistant and developmentally arrested dauer larva stage. Identifying dauer larvae has been based on their ability to withstand detergent selection, precluding identification of recovering animals or of mutants with defects in dauer morphogenesis. Here, we describe a simple method to distinguish molting larvae or dauer larvae from intermolt larvae that bypasses the limitations of current methods. Fluorescent latex beads are mixed with the bacterial food source and ingested by intermolt larvae and adults. Molting and dauer larvae do not feed, and therefore lack beads in their digestive tract. The presence of beads can be determined using a dissecting microscope at magnifications as low as 100 ×, or by using a wormsorter for high-throughput experiments. We find that continuously developing bead-lacking larvae display hallmarks of molting, including expression of the mlt-10::gfp molting marker and a lack of pharyngeal pumping. Furthermore, wild-type and mutant dauer larvae produced by any of three common methods are accurately identified by a lack of beads. Importantly, this method is effective in SDS-sensitive mutant backgrounds and can identify recovering dauer larvae, a stage for which there is no other method of positive selection.
Collapse
|
124
|
Sims JR, Ow MC, Nishiguchi MA, Kim K, Sengupta P, Hall SE. Developmental programming modulates olfactory behavior in C. elegans via endogenous RNAi pathways. eLife 2016; 5. [PMID: 27351255 PMCID: PMC4924998 DOI: 10.7554/elife.11642] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/09/2016] [Indexed: 02/01/2023] Open
Abstract
Environmental stress during early development can impact adult phenotypes via programmed changes in gene expression. C. elegans larvae respond to environmental stress by entering the stress-resistant dauer diapause pathway and resume development once conditions improve (postdauers). Here we show that the osm-9 TRPV channel gene is a target of developmental programming and is down-regulated specifically in the ADL chemosensory neurons of postdauer adults, resulting in a corresponding altered olfactory behavior that is mediated by ADL in an OSM-9-dependent manner. We identify a cis-acting motif bound by the DAF-3 SMAD and ZFP-1 (AF10) proteins that is necessary for the differential regulation of osm-9, and demonstrate that both chromatin remodeling and endo-siRNA pathways are major contributors to the transcriptional silencing of the osm-9 locus. This work describes an elegant mechanism by which developmental experience influences adult phenotypes by establishing and maintaining transcriptional changes via RNAi and chromatin remodeling pathways. DOI:http://dx.doi.org/10.7554/eLife.11642.001 Increasing evidence suggests that experiencing stressful environments early on in life can have profound effects on the health and behavior of adults. For example, stressful conditions in the womb have been linked to adult depression and metabolic disorders. These effects are thought to be the result of changes in the way that genes in specific tissues are regulated in the individuals that have experienced the stress. However, it is not clear how a particular stress can cause long-term changes in gene activity in specific tissues. A microscopic worm called Caenorhabditis elegans is often used as a simple animal model to study how animals develop and behave. Previous studies have shown that adult worms that experienced stress early in life show differences in behavior and gene activity compared to genetically identical worms that did not experience the stress. Here, Sims, Ow et al. asked what signals are required for these changes to happen. The experiments show that a gene called osm-9 – which plays a role in the nervous system – is less active in sensory nerve cells in worms that experienced stress early on in life. This loss of activity resulted in the worms being unable to respond to a particular odor. Two proteins called DAF-3 and ZFP-1 are able to bind to a section of DNA in the osm-9 gene to decrease its activity in response to stress. These proteins are similar to human proteins that are important for development and are associated with some types of leukemia. Further experiments show that small molecules of ribonucleic acid in the “RNA interference” pathway also help to decrease the activity of osm-9 after stress. Together, Sims, Ow et al.’s findings suggest that environmental conditions in early life regulate the osm-9 gene through the coordinated effort of DAF-3, ZFP-1 and the RNA interference pathway. The next steps are to investigate how these molecules are able to target osm-9 and to identify other proteins that regulate gene activity in response to stress in early life. DOI:http://dx.doi.org/10.7554/eLife.11642.002
Collapse
Affiliation(s)
- Jennie R Sims
- Department of Biology, Syracuse University, Syracuse, United States
| | - Maria C Ow
- Department of Biology, Syracuse University, Syracuse, United States
| | | | - Kyuhyung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Piali Sengupta
- National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, United States
| | - Sarah E Hall
- Department of Biology, Syracuse University, Syracuse, United States
| |
Collapse
|
125
|
Developmental and Cell Cycle Quiescence Is Mediated by the Nuclear Hormone Receptor Coregulator DIN-1S in the Caenorhabditis elegans Dauer Larva. Genetics 2016; 203:1763-76. [PMID: 27260305 DOI: 10.1534/genetics.116.191858] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/25/2016] [Indexed: 11/18/2022] Open
Abstract
When faced with suboptimal growth conditions, Caenorhabditis elegans larvae can enter a diapause-like stage called "dauer" that is specialized for dispersal and survival. The decision to form a dauer larva is controlled by three parallel signaling pathways, whereby a compromise of TGFβ, cyclic guanosine monophosphate, or insulin/IGF-like signaling (ILS) results in dauer formation. Signals from these pathways converge on DAF-12, a nuclear hormone receptor that triggers the changes required to initiate dauer formation. DAF-12 is related to the vitamin D, liver-X, and androstane receptors, and like these human receptors, it responds to lipophilic hormone ligands. When bound to its ligand, DAF-12 acquires transcriptional activity that directs reproductive development, while unliganded DAF-12 forms a dauer-specifying complex with its interacting protein DIN-1S to regulate the transcription of genes required for dauer development. We report here that din-1S is required in parallel to par-4/LKB1 signaling within the gonad to establish cell cycle quiescence during the onset of the dauer stage. We show that din-1S is important for postdauer reproduction when ILS is impaired and is necessary for long-term dauer survival in response to reduced ILS. Our work uncovers several previously uncharacterized functions of DIN-1S in executing and maintaining many of the cellular and physiological processes required for appropriate dauer arrest, while also shedding light on the coordination of nuclear hormone signaling, the LKB1/AMPK signaling cascade, and ILS/TGFβ in the control of cell cycle quiescence and tissue growth: a key feature that is often misregulated in a number of hormone-dependent cancers.
Collapse
|
126
|
Hand SC, Denlinger DL, Podrabsky JE, Roy R. Mechanisms of animal diapause: recent developments from nematodes, crustaceans, insects, and fish. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1193-211. [PMID: 27053646 PMCID: PMC4935499 DOI: 10.1152/ajpregu.00250.2015] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 03/11/2016] [Indexed: 01/22/2023]
Abstract
Life cycle delays are beneficial for opportunistic species encountering suboptimal environments. Many animals display a programmed arrest of development (diapause) at some stage(s) of their development, and the diapause state may or may not be associated with some degree of metabolic depression. In this review, we will evaluate current advancements in our understanding of the mechanisms responsible for the remarkable phenotype, as well as environmental cues that signal entry and termination of the state. The developmental stage at which diapause occurs dictates and constrains the mechanisms governing diapause. Considerable progress has been made in clarifying proximal mechanisms of metabolic arrest and the signaling pathways like insulin/Foxo that control gene expression patterns. Overlapping themes are also seen in mechanisms that control cell cycle arrest. Evidence is emerging for epigenetic contributions to diapause regulation via small RNAs in nematodes, crustaceans, insects, and fish. Knockdown of circadian clock genes in selected insect species supports the importance of clock genes in the photoperiodic response that cues diapause. A large suite of chaperone-like proteins, expressed during diapause, protects biological structures during long periods of energy-limited stasis. More information is needed to paint a complete picture of how environmental cues are coupled to the signal transduction that initiates the complex diapause phenotype, as well as molecular explanations for how the state is terminated. Excellent examples of molecular memory in post-dauer animals have been documented in Caenorhabditis elegans It is clear that a single suite of mechanisms does not regulate diapause across all species and developmental stages.
Collapse
Affiliation(s)
- Steven C Hand
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana;
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, Ohio
| | - Jason E Podrabsky
- Department of Biology, Portland State University, Portland, Oregon; and
| | - Richard Roy
- Department of Biology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
127
|
Reis Rodrigues P, Kaul TK, Ho JH, Lucanic M, Burkewitz K, Mair WB, Held JM, Bohn LM, Gill MS. Synthetic Ligands of Cannabinoid Receptors Affect Dauer Formation in the Nematode Caenorhabditis elegans. G3 (BETHESDA, MD.) 2016; 6:1695-705. [PMID: 27172180 PMCID: PMC4889665 DOI: 10.1534/g3.116.026997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/04/2016] [Indexed: 01/20/2023]
Abstract
Under adverse environmental conditions the nematode Caenorhabditis elegans can enter an alternate developmental stage called the dauer larva. To identify lipophilic signaling molecules that influence this process, we screened a library of bioactive lipids and found that AM251, an antagonist of the human cannabinoid (CB) receptor, suppresses dauer entry in daf-2 insulin receptor mutants. AM251 acted synergistically with glucose supplementation indicating that the metabolic status of the animal influenced the activity of this compound. Similarly, loss of function mutations in the energy-sensing AMP-activated kinase subunit, aak-2, enhanced the dauer-suppressing effects of AM251, while constitutive activation of aak-2 in neurons was sufficient to inhibit AM251 activity. Chemical epistasis experiments indicated that AM251 acts via G-protein signaling and requires the TGF-β ligand DAF-7, the insulin peptides DAF-28 and INS-6, and a functional ASI neuron to promote reproductive growth. AM251 also required the presence of the SER-5 serotonin receptor, but in vitro experiments suggest that this may not be via a direct interaction. Interestingly, we found that other antagonists of mammalian CB receptors also suppress dauer entry, while the nonselective CB receptor agonist, O-2545, not only inhibited the activity of AM251, but also was able to promote dauer entry when administered alone. Since worms do not have obvious orthologs of CB receptors, the effects of synthetic CBs on neuroendocrine signaling in C. elegans are likely to be mediated via another, as yet unknown, receptor mechanism. However, we cannot exclude the existence of a noncanonical CB receptor in C. elegans.
Collapse
Affiliation(s)
- Pedro Reis Rodrigues
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida 33458
| | - Tiffany K Kaul
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida 33458
| | - Jo-Hao Ho
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458
| | - Mark Lucanic
- The Buck Institute for Research on Aging, Novato, California 94945
| | - Kristopher Burkewitz
- Department of Genetics and Complex Diseases, School of Public Health, Harvard University, Boston, Massachusetts 02115
| | - William B Mair
- Department of Genetics and Complex Diseases, School of Public Health, Harvard University, Boston, Massachusetts 02115
| | - Jason M Held
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Laura M Bohn
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458
| | - Matthew S Gill
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida 33458
| |
Collapse
|
128
|
Neal SJ, Park J, DiTirro D, Yoon J, Shibuya M, Choi W, Schroeder FC, Butcher RA, Kim K, Sengupta P. A Forward Genetic Screen for Molecules Involved in Pheromone-Induced Dauer Formation in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2016; 6:1475-87. [PMID: 26976437 PMCID: PMC4856098 DOI: 10.1534/g3.115.026450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/07/2016] [Indexed: 01/09/2023]
Abstract
Animals must constantly assess their surroundings and integrate sensory cues to make appropriate behavioral and developmental decisions. Pheromones produced by conspecific individuals provide critical information regarding environmental conditions. Ascaroside pheromone concentration and composition are instructive in the decision of Caenorhabditis elegans to either develop into a reproductive adult or enter into the stress-resistant alternate dauer developmental stage. Pheromones are sensed by a small set of sensory neurons, and integrated with additional environmental cues, to regulate neuroendocrine signaling and dauer formation. To identify molecules required for pheromone-induced dauer formation, we performed an unbiased forward genetic screen and identified phd (pheromone response-defective dauer) mutants. Here, we describe new roles in dauer formation for previously identified neuronal molecules such as the WD40 domain protein QUI-1 and MACO-1 Macoilin, report new roles for nociceptive neurons in modulating pheromone-induced dauer formation, and identify tau tubulin kinases as new genes involved in dauer formation. Thus, phd mutants define loci required for the detection, transmission, or integration of pheromone signals in the regulation of dauer formation.
Collapse
Affiliation(s)
- Scott J Neal
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454 National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454
| | - JiSoo Park
- Department of Brain and Cognitive Sciences, DGIST, Daegu 711-873, Republic of Korea
| | - Danielle DiTirro
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454 National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454
| | - Jason Yoon
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454 National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454
| | - Mayumi Shibuya
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454 National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454
| | - Woochan Choi
- Department of Brain and Cognitive Sciences, DGIST, Daegu 711-873, Republic of Korea
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853 Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, Florida 32611
| | - Kyuhyung Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu 711-873, Republic of Korea
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454 National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454
| |
Collapse
|
129
|
Abstract
Strongyloides spp. are common parasites of vertebrates and two species, S. ratti and S. venezuelensis, parasitize rats; there are no known species that naturally infect mice. Strongyloides ratti and S. venezuelensis overlap in their geographical range and in these regions co-infections appear to be common. These species have been widely used as tractable laboratory systems in rats as well as mice. The core biology of these two species is similar, but there are clear differences in aspects of their within-host biology as well as in their free-living generation. Phylogenetic evidence suggests that S. ratti and S. venezuelensis are the result of two independent evolutionary transitions to parasitism of rats, which therefore presents an ideal opportunity to begin to investigate the basis of host specificity in Strongyloides spp.
Collapse
|
130
|
Yen CA, Curran SP. Gene-diet interactions and aging in C. elegans. Exp Gerontol 2016; 86:106-112. [PMID: 26924670 DOI: 10.1016/j.exger.2016.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/16/2016] [Accepted: 02/24/2016] [Indexed: 02/06/2023]
Abstract
Diet is the most variable aspect of life history, as most individuals have a large diversity of food choices, varying in the type and amount that they ingest. In the short-term, diet can affect metabolism and energy levels. However, in the long run, the net deficiency or excess of calories from diet can influence the progression and severity of age-related diseases. An old and yet still debated question is: how do specific dietary choices impact health- and lifespan? It is clear that genetics can play a critical role - perhaps just as important as diet choices. For example, poor diet in combination with genetic susceptibility can lead to metabolic disorders, such as obesity and type 2 diabetes. Recent work in Caenorhabditis elegans has identified the existence of diet-gene pairs, where the consequence of mutating a specific gene is only realized on specific diets. Many core metabolic pathways are conserved from worm to human. Although only a handful of these diet-gene pairs has been characterized, there are potentially hundreds, if not thousands, of such interactions, which may explain the variability in the rates of aging in humans and the incidence and severity of age-related diseases.
Collapse
Affiliation(s)
- Chia An Yen
- University of Southern California, Dornsife College of Letters, Arts, and Science, Department of Molecular and Computational Biology, United States
| | - Sean P Curran
- University of Southern California, Dornsife College of Letters, Arts, and Science, Department of Molecular and Computational Biology, United States; University of Southern California, Davis School of Gerontology, United States.
| |
Collapse
|
131
|
Abstract
Autophagy is a dynamic and catabolic process that results in the breakdown and recycling of cellular components through the autophagosomal-lysosomal pathway. Many autophagy genes identified in yeasts and mammals have orthologs in the nematode Caenorhabditis elegans. In recent years, gene inactivation by RNA interference (RNAi) and chromosomal mutations has been useful to probe the functions of autophagy in C. elegans, and a role for autophagy has been shown to contribute to multiple processes, such as the adaptation to stress, longevity, cell death, cell growth control, clearance of aggregation-prone proteins, degradation of P granules during embryogenesis, and apoptotic cell clearance. Here, we discuss some of these roles and describe methods that can be used to study autophagy in C. elegans. Specifically, we summarize how to visualize autophagy in embryos, larva, or adults, how to detect the lipidation of the ubiquitin-like modifier LGG-1 by western blot, and how to inactivate autophagy genes by RNAi.
Collapse
Affiliation(s)
- Nicholas J. Palmisano
- Queens College-CUNY, Department of Biology Flushing New York 11657
- The Gradate Center of the City University of New York, The City University of New York, New York USA 10016
| | - Alicia Meléndez
- Queens College-CUNY, Department of Biology Flushing New York 11657
- The Gradate Center of the City University of New York, The City University of New York, New York USA 10016
| |
Collapse
|
132
|
Palmisano NJ, Meléndez A. Detection of Autophagy in Caenorhabditis elegans Using GFP::LGG-1 as an Autophagy Marker. Cold Spring Harb Protoc 2016; 2016:pdb.prot086496. [PMID: 26729905 PMCID: PMC5292878 DOI: 10.1101/pdb.prot086496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In yeast and mammalian cells, the autophagy protein Atg8/LC3 (microtubule-associated proteins 1A/1B light chain 3B encoded by MAP1LC3B) has been the marker of choice to detect double-membraned autophagosomes that are produced during the process of autophagy. A lipid-conjugated form of Atg8/LC3B is localized to the inner and outer membrane of the early-forming structure known as the phagophore. During maturation of autophagosomes, Atg8/LC3 bound to the inner autophagosome membrane remains in situ as the autophagosomes fuse with lysosomes. The nematode Caenorhabditis elegans is thought to conduct a similar process, meaning that tagging the nematode ortholog of Atg8/LC3-known as LGG-1-with a fluorophore has become a widely accepted method to visualize autophagosomes. Under normal growth conditions, GFP-modified LGG-1 displays a diffuse expression pattern throughout a variety of tissues, whereas, when under conditions that induce autophagy, the GFP::LGG-1 tag labels positive punctate structures, and its overall level of expression increases. Here, we present a protocol for using fluorescent reporters of LGG-1 coupled to GFP to monitor autophagosomes in vivo. We also discuss the use of alternative fluorescent markers and the possible utility of the LGG-1 paralog LGG-2.
Collapse
Affiliation(s)
- Nicholas J. Palmisano
- Queens College-CUNY, Department of Biology, Flushing, NY, USA
- The Graduate Center, The City University of New York, New York, USA
| | - Alicia Meléndez
- Queens College-CUNY, Department of Biology, Flushing, NY, USA
- The Graduate Center, The City University of New York, New York, USA
| |
Collapse
|
133
|
Maruyama IN. Receptor Guanylyl Cyclases in Sensory Processing. Front Endocrinol (Lausanne) 2016; 7:173. [PMID: 28123378 PMCID: PMC5225109 DOI: 10.3389/fendo.2016.00173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 12/28/2016] [Indexed: 11/18/2022] Open
Abstract
Invertebrate models have generated many new insights into transmembrane signaling by cell-surface receptors. This review focuses on receptor guanylyl cyclases (rGCs) and describes recent advances in understanding their roles in sensory processing in the nematode, Caenorhabditis elegans. A complete analysis of the C. elegans genome elucidated 27 rGCs, an unusually large number compared with mammalian genomes, which encode 7 rGCs. Most C. elegans rGCs are expressed in sensory neurons and play roles in sensory processing, including gustation, thermosensation, olfaction, and phototransduction, among others. Recent studies have found that by producing a second messenger, guanosine 3',5'-cyclic monophosphate, some rGCs act as direct sensor molecules for ions and temperatures, while others relay signals from G protein-coupled receptors. Interestingly, genetic and biochemical analyses of rGCs provide the first example of an obligate heterodimeric rGC. Based on recent structural studies of rGCs in mammals and other organisms, molecular mechanisms underlying activation of rGCs are also discussed in this review.
Collapse
Affiliation(s)
- Ichiro N. Maruyama
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- *Correspondence: Ichiro N. Maruyama,
| |
Collapse
|
134
|
Aprison EZ, Ruvinsky I. Sex Pheromones of C. elegans Males Prime the Female Reproductive System and Ameliorate the Effects of Heat Stress. PLoS Genet 2015; 11:e1005729. [PMID: 26645097 PMCID: PMC4672928 DOI: 10.1371/journal.pgen.1005729] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/16/2015] [Indexed: 12/26/2022] Open
Abstract
Pheromones are secreted molecules that mediate animal communications. These olfactory signals can have substantial effects on physiology and likely play important roles in organismal survival in natural habitats. Here we show that a blend of two ascaroside pheromones produced by C. elegans males primes the female reproductive system in part by improving sperm guidance toward oocytes. Worms have different physiological responses to different ratios of the same two molecules, revealing an efficient mechanism for increasing coding potential of a limited repertoire of molecular signals. The endogenous function of the male sex pheromones has an important side benefit. It substantially ameliorates the detrimental effects of prolonged heat stress on hermaphrodite reproduction because it increases the effectiveness with which surviving gametes are used following stress. Hermaphroditic species are expected to lose female-specific traits in the course of evolution. Our results suggest that some of these traits could have serendipitous utility due to their ability to counter the effects of stress. We propose that this is a general mechanism by which some mating-related functions could be retained in hermaphroditic species, despite their expected decay. The Caenorhabditis elegans metabolome contains over a hundred ascaroside molecules. Most of them have no known function, or no function at all, but some act as pheromones. Two of these molecules, ascr#10 and ascr#3, are produced in different proportions by males and hermaphrodites. We report that when a hermaphrodite senses a male-specific mixture of these molecules, it changes several aspects of its reproductive physiology, including signaling that guides sperm toward oocytes. During evolution from an ancestor that had both males and females, C. elegans hermaphrodites lost several female-specific traits, but their reproductive system retained the ability to respond to male pheromones. This greatly aids them during recovery from heat stress. We suggest that serendipitous side benefits of female-specific traits could be a general cause of their retention during evolution.
Collapse
Affiliation(s)
- Erin Z. Aprison
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Ilya Ruvinsky
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
135
|
Johnston CJC, Smyth DJ, Dresser DW, Maizels RM. TGF-β in tolerance, development and regulation of immunity. Cell Immunol 2015; 299:14-22. [PMID: 26617281 PMCID: PMC4711336 DOI: 10.1016/j.cellimm.2015.10.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022]
Abstract
The broader superfamily of TGF-β-like proteins is reviewed, and signaling pathways summarised. The role of TGF-β in the immune tolerance and control of infectious disease is discussed. The superfamily member AMH is involved in embryonic sexual differentiation. Helminth parasites appear to exploit the TGF-β pathway to suppress host immunity. TGF-β homologues and mimics from parasites offer a new route for therapeutic tolerance induction.
The TGF-β superfamily is an ancient metazoan protein class which cuts across cell and tissue differentiation, developmental biology and immunology. Its many members are regulated at multiple levels from intricate control of gene transcription, post-translational processing and activation, and signaling through overlapping receptor structures and downstream intracellular messengers. We have been interested in TGF-β homologues firstly as key players in the induction of immunological tolerance, the topic so closely associated with Ray Owen. Secondly, our interests in how parasites may manipulate the immune system of their host has also brought us to study the TGF-β pathway in infections with longlived, essentially tolerogenic, helminth parasites. Finally, within the spectrum of mammalian TGF-β proteins is an exquisitely tightly-regulated gene, anti-Müllerian hormone (AMH), whose role in sex determination underpins the phenotype of freemartin calves that formed the focus of Ray’s seminal work on immunological tolerance.
Collapse
Affiliation(s)
- Chris J C Johnston
- Institute of Immunology and Infection Research, University of Edinburgh, UK
| | - Danielle J Smyth
- Institute of Immunology and Infection Research, University of Edinburgh, UK
| | - David W Dresser
- Institute of Immunology and Infection Research, University of Edinburgh, UK
| | - Rick M Maizels
- Institute of Immunology and Infection Research, University of Edinburgh, UK.
| |
Collapse
|
136
|
de Lucas MP, Sáez AG, Lozano E. miR-58 family and TGF-β pathways regulate each other in Caenorhabditis elegans. Nucleic Acids Res 2015; 43:9978-93. [PMID: 26400166 PMCID: PMC4783514 DOI: 10.1093/nar/gkv923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 08/14/2015] [Accepted: 09/07/2015] [Indexed: 12/19/2022] Open
Abstract
Despite the fact that microRNAs (miRNAs) modulate the expression of around 60% of protein-coding genes, it is often hard to elucidate their precise role and target genes. Studying miRNA families as opposed to single miRNAs alone increases our chances of observing not only mutant phenotypes but also changes in the expression of target genes. Here we ask whether the TGF-β signalling pathways, which control many animal processes, might be modulated by miRNAs in Caenorhabditis elegans. Using a mutant for four members of the mir-58 family, we show that both TGF-β Sma/Mab (controlling body size) and TGF-β Dauer (regulating dauer, a stress-resistant larval stage) are upregulated. Thus, mir-58 family directly inhibits the expression of dbl-1 (ligand), daf-1, daf-4 and sma-6 (receptors) of TGF-β pathways. Epistasis experiments reveal that whereas the small body phenotype of the mir-58 family mutant must invoke unknown targets independent from TGF-β Sma/Mab, its dauer defectiveness can be rescued by DAF-1 depletion. Additionally, we found a negative feedback loop between TGF-β Sma/Mab and mir-58 and the related mir-80. Our results suggest that the interaction between mir-58 family and TGF-β genes is key on decisions about animal growth and stress resistance in C. elegans and perhaps other organisms.
Collapse
Affiliation(s)
- María Pilar de Lucas
- Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Alberto G Sáez
- Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Encarnación Lozano
- Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| |
Collapse
|
137
|
Abstract
Food availability determines developmental rate, behavior, and survival of animals. Animals that enter diapause or hibernate in response to lack of food have a double advantage: they are able to adapt to environmental and cellular challenges and survive to these challenges for a prolonged time. The metabolic and physiological adaptations that make possible diapause and hibernation also provide a favorable cellular environment for tissue protection. This review highlights the benefits of dormancy on neuronal protection in the model organism Caenorhabditis elegans and small mammals such as squirrels. Additionally, I discuss the link between metabolic restructuring occurring in diapause and changes in gene expression with the increased capacity of diapausing animals to protect neurons from degeneration and potentially foster their regeneration.
Collapse
Affiliation(s)
- Andrea Calixto
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile.
| |
Collapse
|
138
|
Abstract
The compact nervous system of Caenorhabditis elegans and its genetic tractability are features that make this organism highly suitable for investigating energy balance in an animal system. Here, we focus on molecular components and organizational principles emerging from the investigation of pathways that largely originate in the nervous system and regulate feeding behavior but also peripheral fat regulation through neuroendocrine signaling. We provide an overview of studies aimed at understanding how C. elegans integrate internal and external cues in feeding behavior. We highlight some of the similarities and differences in energy balance between C. elegans and mammals. We also provide our perspective on unresolved issues, both conceptual and technical, that we believe have hampered critical evaluation of findings relevant to fat regulation in C. elegans.
Collapse
Affiliation(s)
- George A Lemieux
- Department of Physiology, University of California, San Francisco, California 94158;
| | - Kaveh Ashrafi
- Department of Physiology, University of California, San Francisco, California 94158;
| |
Collapse
|
139
|
Neal SJ, Takeishi A, O'Donnell MP, Park J, Hong M, Butcher RA, Kim K, Sengupta P. Feeding state-dependent regulation of developmental plasticity via CaMKI and neuroendocrine signaling. eLife 2015; 4. [PMID: 26335407 PMCID: PMC4558564 DOI: 10.7554/elife.10110] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 07/31/2015] [Indexed: 01/03/2023] Open
Abstract
Information about nutrient availability is assessed via largely unknown mechanisms to drive developmental decisions, including the choice of Caenorhabditis elegans larvae to enter into the reproductive cycle or the dauer stage. In this study, we show that CMK-1 CaMKI regulates the dauer decision as a function of feeding state. CMK-1 acts cell-autonomously in the ASI, and non cell-autonomously in the AWC, sensory neurons to regulate expression of the growth promoting daf-7 TGF-β and daf-28 insulin-like peptide (ILP) genes, respectively. Feeding state regulates dynamic subcellular localization of CMK-1, and CMK-1-dependent expression of anti-dauer ILP genes, in AWC. A food-regulated balance between anti-dauer ILP signals from AWC and pro-dauer signals regulates neuroendocrine signaling and dauer entry; disruption of this balance in cmk-1 mutants drives inappropriate dauer formation under well-fed conditions. These results identify mechanisms by which nutrient information is integrated in a small neuronal network to modulate neuroendocrine signaling and developmental plasticity. DOI:http://dx.doi.org/10.7554/eLife.10110.001 Living organisms have the remarkable ability to adapt to changes in their external environment. For example, when conditions are favorable, the larvae of the tiny roundworm C. elegans rapidly mature into adults and reproduce. However, when faced with starvation, over-crowding or other adverse conditions, they can stop growing and enter a type of stasis called the dauer stage, which enables them to survive in harsh conditions for extended periods of time. The worms enter the dauer stage if they detect high levels of a pheromone mixture that is produced by other worms—which indicates that the local population is over-crowded. However, temperature, food availability, and other environmental cues also influence this decision. A protein called TGF-β and other proteins called insulin-like peptides are produced by a group of sensory neurons in the worm's head. These proteins usually promote the growth of the worms by increasing the production of particular steroid hormones. However, high levels of the pheromone mixture, an inadequate supply of food and other adverse conditions decrease the expression of the genes that encode these proteins, which allows the worm to enter the dauer state. It is not clear how the worm senses food, nor how this is integrated with the information provided by the pheromones to influence this decision. To address these questions, Neal et al. studied a variety of mutant worms that lacked proteins involved in different aspects of food sensing. The experiments show that worms missing a protein called CaMKI enter the dauer state even under conditions in which food is plentiful and normal worms continue to grow. CaMKI inhibits entry into the dauer stage by increasing the expression of the genes that encode TGF-β and the insulin-like peptides in sensory neurons in response to food. Neal et al.'s findings reveal how CaMKI enables information about food availability to be integrated with other environmental cues to influence whether young worms enter the dauer state. Understanding how food sensing is linked to changes in hormone levels will help us appreciate why and how the availability of food has complex effects on animal biology and behavior. DOI:http://dx.doi.org/10.7554/eLife.10110.002
Collapse
Affiliation(s)
- Scott J Neal
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Asuka Takeishi
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Michael P O'Donnell
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - JiSoo Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Myeongjin Hong
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, United States
| | - Kyuhyung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Piali Sengupta
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| |
Collapse
|
140
|
Integration of carbohydrate metabolism and redox state controls dauer larva formation in Caenorhabditis elegans. Nat Commun 2015; 6:8060. [PMID: 26290173 DOI: 10.1038/ncomms9060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/14/2015] [Indexed: 11/09/2022] Open
Abstract
Under adverse conditions, Caenorhabditis elegans enters a diapause stage called the dauer larva. External cues signal the nuclear hormone receptor DAF-12, the activity of which is regulated by its ligands: dafachronic acids (DAs). DAs are synthesized from cholesterol, with the last synthesis step requiring NADPH, and their absence stimulates dauer formation. Here we show that NADPH levels determine dauer formation in a regulatory mechanism involving key carbohydrate and redox metabolic enzymes. Elevated trehalose biosynthesis diverts glucose-6-phosphate from the pentose phosphate pathway, which is the major source of cellular NADPH. This enhances dauer formation due to the decrease in the DA level. Moreover, DAF-12, in cooperation with DAF-16/FoxO, induces negative feedback of DA synthesis via activation of the trehalose-producing enzymes TPS-1/2 and inhibition of the NADPH-producing enzyme IDH-1. Thus, the dauer developmental decision is controlled by integration of the metabolic flux of carbohydrates and cellular redox potential.
Collapse
|
141
|
McGehee AM, Moss BJ, Juo P. The DAF-7/TGF-β signaling pathway regulates abundance of the Caenorhabditis elegans glutamate receptor GLR-1. Mol Cell Neurosci 2015; 67:66-74. [PMID: 26054666 DOI: 10.1016/j.mcn.2015.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/03/2015] [Indexed: 11/24/2022] Open
Abstract
Transforming growth factor-β (TGF-β) family signaling pathways have roles in both neuronal development and the regulation of synaptic function. Here we identify a novel role for the Caenorhabditis elegans DAF-7/TGF-β signaling pathway in the regulation of the AMPA-type glutamate receptor GLR-1. We found that the abundance of GLR-1 increases at synapses in the ventral nerve cord (VNC) of animals with loss-of-function mutations in multiple DAF-7/TGF-β pathway components including the TGF-β ligand DAF-7, the type I receptor DAF-1, and the Smads DAF-8 and DAF-14. The GLR-1 defect can be rescued by expression of daf-8 specifically in glr-1-expressing interneurons. The effect on GLR-1 was specific for the DAF-7 pathway because mutations in the DBL-1/TGF-β family pathway did not increase GLR-1 levels in the VNC. Immunoblot analysis indicates that total levels of GLR-1 protein are increased in neurons of DAF-7/TGF-β pathway mutants. The increased abundance of GLR-1 in the VNC of daf-7 pathway mutants is dependent on the transcriptional regulator DAF-3/Smad suggesting that DAF-3-dependent transcription controls GLR-1 levels. Furthermore, we found that glr-1 transcription is increased in daf-7 mutants based on a glr-1 transcriptional reporter. Together these results suggest that the DAF-7/TGF-β signaling pathway functions in neurons and negatively regulates the abundance of GLR-1, in part, by controlling transcription of the receptor itself. Finally, DAF-7/TGF-β pathway mutants exhibit changes in spontaneous locomotion that are dependent on endogenous GLR-1 and consistent with increased glutamatergic signaling. These results reveal a novel mechanism by which TGF-β signaling functions in the nervous system to regulate behavior.
Collapse
Affiliation(s)
- Annette M McGehee
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Department of Biology, Suffolk University, Boston, MA 02114, USA.
| | - Benjamin J Moss
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA; Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Peter Juo
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
142
|
Entchev EV, Patel DS, Zhan M, Steele AJ, Lu H, Ch'ng Q. A gene-expression-based neural code for food abundance that modulates lifespan. eLife 2015; 4:e06259. [PMID: 25962853 PMCID: PMC4417936 DOI: 10.7554/elife.06259] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/03/2015] [Indexed: 12/18/2022] Open
Abstract
How the nervous system internally represents environmental food availability is poorly understood. Here, we show that quantitative information about food abundance is encoded by combinatorial neuron-specific gene-expression of conserved TGFβ and serotonin pathway components in Caenorhabditis elegans. Crosstalk and auto-regulation between these pathways alters the shape, dynamic range, and population variance of the gene-expression responses of daf-7 (TGFβ) and tph-1 (tryptophan hydroxylase) to food availability. These intricate regulatory features provide distinct mechanisms for TGFβ and serotonin signaling to tune the accuracy of this multi-neuron code: daf-7 primarily regulates gene-expression variability, while tph-1 primarily regulates the dynamic range of gene-expression responses. This code is functional because daf-7 and tph-1 mutations bidirectionally attenuate food level-dependent changes in lifespan. Our results reveal a neural code for food abundance and demonstrate that gene expression serves as an additional layer of information processing in the nervous system to control long-term physiology. DOI:http://dx.doi.org/10.7554/eLife.06259.001 To maximize their chances of survival, animals need to be able to sense changes in the abundance of food in their environment and respond in an appropriate manner. The nervous system is able to sense cues from the environment and coordinate responses in the whole organism, but it is not clear how this leads to long-term changes in the organism's biology. In nematode worms, two genes called daf-7 and tph-1 appear to be involved in connecting the sensing of food availability with changes in the biology of the organism. The daf-7 gene encodes a hormone, while tph-1 encodes an enzyme that makes a neurochemical called serotonin. Here, Entchev, Patel, Zhan et al. found that daf-7 and tph-1 genes are active in three pairs of neurons in nematode worms. The experiments show that these neurons collectively form a circuit that carries information about the abundance of food, which leads to changes in how long the worms live. When this circuit was disrupted by removing these genes, the worms' ability to adjust their lifespan in response to changes in the availability of food was weakened, likely because they were unable to sense food. The experiments also show that the circuit regulates itself, largely because daf-7 and tph-1 are able to control each-other's activity. Together, these results suggest that changing the activity of certain genes in neurons enables nematode worms to alter their biology in response to changes in the availability of food. Neurons in the brain use electrical activity to communicate and process information and Entchev, Patel, Zhan et al.'s findings imply that gene activity can also perform a similar role. DOI:http://dx.doi.org/10.7554/eLife.06259.002
Collapse
Affiliation(s)
- Eugeni V Entchev
- MRC Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Dhaval S Patel
- MRC Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Mei Zhan
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, United States
| | - Andrew J Steele
- MRC Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Hang Lu
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, United States
| | - QueeLim Ch'ng
- MRC Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| |
Collapse
|
143
|
Meisel JD, Panda O, Mahanti P, Schroeder FC, Kim DH. Chemosensation of bacterial secondary metabolites modulates neuroendocrine signaling and behavior of C. elegans. Cell 2015; 159:267-80. [PMID: 25303524 DOI: 10.1016/j.cell.2014.09.011] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/03/2014] [Accepted: 09/03/2014] [Indexed: 11/30/2022]
Abstract
Discrimination between pathogenic and beneficial microbes is essential for host organism immunity and homeostasis. Here, we show that chemosensory detection of two secondary metabolites produced by Pseudomonas aeruginosa modulates a neuroendocrine signaling pathway that promotes avoidance behavior in the simple animal host Caenorhabditis elegans. Secondary metabolites phenazine-1-carboxamide and pyochelin activate a G-protein-signaling pathway in the ASJ chemosensory neuron pair that induces expression of the neuromodulator DAF-7/TGF-β. DAF-7, in turn, activates a canonical TGF-β signaling pathway in adjacent interneurons to modulate aerotaxis behavior and promote avoidance of pathogenic P. aeruginosa. Our data provide a chemical, genetic, and neuronal basis for how the behavior and physiology of a simple animal host can be modified by the microbial environment and suggest that secondary metabolites produced by microbes may provide environmental cues that contribute to pathogen recognition and host survival.
Collapse
Affiliation(s)
- Joshua D Meisel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Oishika Panda
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Parag Mahanti
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Dennis H Kim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
144
|
Pan W, Shen Y, Han X, Wang Y, Liu H, Jiang Y, Zhang Y, Wang Y, Xu Y, Cao J. Transcriptome profiles of the protoscoleces of Echinococcus granulosus reveal that excretory-secretory products are essential to metabolic adaptation. PLoS Negl Trop Dis 2014; 8:e3392. [PMID: 25500817 PMCID: PMC4263413 DOI: 10.1371/journal.pntd.0003392] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/03/2014] [Indexed: 12/31/2022] Open
Abstract
Background Cystic hydatid disease (CHD) is caused by the larval stages of the cestode and affects humans and domestic animals worldwide. Protoscoleces (PSCs) are one component of the larval stages that can interact with both definitive and intermediate hosts. Previous genomic and transcriptomic data have provided an overall snapshot of the genomics of the growth and development of this parasite. However, our understanding of how PSCs subvert the immune response of hosts and maintains metabolic adaptation remains unclear. In this study, we used Roche 454 sequencing technology and in silico secretome analysis to explore the transcriptome profiles of the PSCs from E. granulosus and elucidate the potential functions of the excretory-secretory proteins (ESPs) released by the parasite. Methodology/Principal Findings A large number of nonredundant sequences as unigenes were generated (26,514), of which 22,910 (86.4%) were mapped to the newly published E. granulosus genome and 17,705 (66.8%) were distributed within the coding sequence (CDS) regions. Of the 2,280 ESPs predicted from the transcriptome, 138 ESPs were inferred to be involved in the metabolism of carbohydrates, while 124 ESPs were inferred to be involved in the metabolism of protein. Eleven ESPs were identified as intracellular enzymes that regulate glycolysis/gluconeogenesis (GL/GN) pathways, while a further 44 antigenic proteins, 25 molecular chaperones and four proteases were highly represented. Many proteins were also found to be significantly enriched in development-related signaling pathways, such as the TGF-β receptor pathways and insulin pathways. Conclusions/Significance This study provides valuable information on the metabolic adaptation of parasites to their hosts that can be used to aid the development of novel intervention targets for hydatid treatment and control. The successful infection establishment of parasites depends on their ability to combat their host's immune system while maintaining metabolic adaptation to their hosts. The mechanisms of these processes are not well understood. We used the protoscoleces (PSCs) of E. granulosus as a model system to study this complex host-parasite interaction by investigating the role of excretory-secretory proteins (ESPs) in the physiological adaptation of the parasite. Using Roche 454 sequencing technology and in silico secretome analysis, we predicted 2280 ESPs and analyzed their biological functions. Our analysis of the bioinformatic data suggested that ESPs are integral to the metabolism of carbohydrates and proteins within the parasite and/or hosts. We also found that ESPs are involved in mediating the immune responses of hosts and function within key development-related signaling pathways. We found 11 intracellular enzymes, 25 molecular chaperones and four proteases that were highly represented in the ESPs, in addition to 44 antigenic proteins that showed promise as candidates for vaccine or serodiagnostic development purposes. These findings provide valuable information on the mechanisms of metabolic adaptation in parasites that will aid the development of novel hydatid treatment and control targets.
Collapse
Affiliation(s)
- Wei Pan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
- * E-mail: (YS); (JC)
| | - Xiuming Han
- Department of Parasitic Diseases, Qinghai Institute for Endemic Disease Prevention and Control, Zong Zhai, Xining, Qinghai, People's Republic of China
| | - Ying Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Hua Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Yanyan Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Yumei Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Yanjuan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Yuxin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
- * E-mail: (YS); (JC)
| |
Collapse
|
145
|
Abstract
Over the past decade, studies conducted in Caenorhabditis elegans have helped to uncover the ancient and complex origins of body fat regulation. This review highlights the powerful combination of genetics, pharmacology, and biochemistry used to study energy balance and the regulation of cellular fat metabolism in C. elegans. The complete wiring diagram of the C. elegans nervous system has been exploited to understand how the sensory nervous system regulates body fat and how food perception is coupled with the production of energy via fat metabolism. As a model organism, C. elegans also offers a unique opportunity to discover neuroendocrine factors that mediate direct communication between the nervous system and the metabolic tissues. The coming years are expected to reveal a wealth of information on the neuroendocrine control of body fat in C. elegans.
Collapse
Affiliation(s)
- Supriya Srinivasan
- Department of Chemical Physiology and Dorris Neuroscience Center, The Scripps Research Institute (TSRI), La Jolla, California 92037;
| |
Collapse
|
146
|
daf-31 encodes the catalytic subunit of N alpha-acetyltransferase that regulates Caenorhabditis elegans development, metabolism and adult lifespan. PLoS Genet 2014; 10:e1004699. [PMID: 25330189 PMCID: PMC4199510 DOI: 10.1371/journal.pgen.1004699] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 08/22/2014] [Indexed: 11/19/2022] Open
Abstract
The Caenorhabditis elegans dauer larva is a facultative state of diapause. Mutations affecting dauer signal transduction and morphogenesis have been reported. Of these, most that result in constitutive formation of dauer larvae are temperature-sensitive (ts). The daf-31 mutant was isolated in genetic screens looking for novel and underrepresented classes of mutants that form dauer and dauer-like larvae non-conditionally. Dauer-like larvae are arrested in development and have some, but not all, of the normal dauer characteristics. We show here that daf-31 mutants form dauer-like larvae under starvation conditions but are sensitive to SDS treatment. Moreover, metabolism is shifted to fat accumulation in daf-31 mutants. We cloned the daf-31 gene and it encodes an ortholog of the arrest-defective-1 protein (ARD1) that is the catalytic subunit of the major N alpha-acetyltransferase (NatA). A daf-31 promoter::GFP reporter gene indicates daf-31 is expressed in multiple tissues including neurons, pharynx, intestine and hypodermal cells. Interestingly, overexpression of daf-31 enhances the longevity phenotype of daf-2 mutants, which is dependent on the forkhead transcription factor (FOXO) DAF-16. We demonstrate that overexpression of daf-31 stimulates the transcriptional activity of DAF-16 without influencing its subcellular localization. These data reveal an essential role of NatA in controlling C. elegans life history and also a novel interaction between ARD1 and FOXO transcription factors, which may contribute to understanding the function of ARD1 in mammals. The development of a living organism is influenced by the environmental conditions such as nutrient availability. Under starvation conditions, the C. elegans larvae will enter a special developmental stage called dauer larva. An insulin-like signaling pathway controls dauer formation as well as adult lifespan by inhibiting the activity of FOXO transcription factor DAF-16 that regulates expression of stress-resistant genes. Here we isolate a new gene called daf-31; this gene encodes a protein that regulates C. elegans larval development, metabolism and adult lifespan. This protein has been found in other species to be part of an enzyme that functions to modify other proteins. We show that overexpression of our newly discovered protein stimulates the transcriptional activity of DAF-16. Interestingly, abnormal regulation of human proteins similar to DAF-31 results in tumor formation. It is known that human FOXO proteins prevent tumorigenesis. Therefore, it is possible that abnormal DAF-31 activity may lead to tumor growth by reducing DAF-16 activity. Thus, the present study may not only contribute to understanding the role of a universal enzyme in controlling development, metabolism and lifespan in other organisms besides worms but may also shed light on the mechanisms of tumorigenesis in humans.
Collapse
|
147
|
Levi-Ferber M, Salzberg Y, Safra M, Haviv-Chesner A, Bülow HE, Henis-Korenblit S. It's all in your mind: determining germ cell fate by neuronal IRE-1 in C. elegans. PLoS Genet 2014; 10:e1004747. [PMID: 25340700 PMCID: PMC4207656 DOI: 10.1371/journal.pgen.1004747] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/11/2014] [Indexed: 01/26/2023] Open
Abstract
The C. elegans germline is pluripotent and mitotic, similar to self-renewing mammalian tissues. Apoptosis is triggered as part of the normal oogenesis program, and is increased in response to various stresses. Here, we examined the effect of endoplasmic reticulum (ER) stress on apoptosis in the C. elegans germline. We demonstrate that pharmacological or genetic induction of ER stress enhances germline apoptosis. This process is mediated by the ER stress response sensor IRE-1, but is independent of its canonical downstream target XBP-1. We further demonstrate that ire-1-dependent apoptosis in the germline requires both CEP-1/p53 and the same canonical apoptotic genes as DNA damage-induced germline apoptosis. Strikingly, we find that activation of ire-1, specifically in the ASI neurons, but not in germ cells, is sufficient to induce apoptosis in the germline. This implies that ER stress related germline apoptosis can be determined at the organism level, and is a result of active IRE-1 signaling in neurons. Altogether, our findings uncover ire-1 as a novel cell non-autonomous regulator of germ cell apoptosis, linking ER homeostasis in sensory neurons and germ cell fate.
Collapse
Affiliation(s)
- Mor Levi-Ferber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Yehuda Salzberg
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, New York, United States of America
| | - Modi Safra
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Anat Haviv-Chesner
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Hannes E. Bülow
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, New York, United States of America
| | - Sivan Henis-Korenblit
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
148
|
PKG and NHR-49 signalling co-ordinately regulate short-term fasting-induced lysosomal lipid accumulation in C. elegans. Biochem J 2014; 461:509-20. [PMID: 24854345 DOI: 10.1042/bj20140191] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lysosomes act as terminal degradation organelles to hydrolyse macromolecules derived from both the extracellular space and the cytoplasm. In Caenorhabditis elegans fasting induces the lysosomal compartment to expand. However, the molecular and cellular mechanisms for this stress response remain largely unclear. In the present study, we find that short-term fasting leads to increased accumulation of polar lipids in lysosomes. The fasting response is co-ordinately regulated by EGL-4, the C. elegans PKG (protein kinase G) orthologue, and nuclear hormone receptor NHR-49. Further results demonstrate that EGL-4 acts in sensory neurons to enhance lysosomal lipid accumulation through inhibiting the DAF-3/SMAD pathway, whereas NHR-49 acts in intestine to inhibit lipids accumulation via activation of IPLA-2 (intracellular membrane-associated calcium-independent phospholipase A2) in cytoplasm and other hydrolases in lysosomes. Remarkably, the lysosomal lipid accumulation is independent of autophagy and RAB-7-mediated endocytosis. Taken together, our results reveal a new mechanism for lysosomal lipid metabolism during the stress response, which may provide new clues for investigations of lysosome function in energy homoeostasis.
Collapse
|
149
|
Yan B, Guo X, Zhou Q, Yang Y, Chen X, Sun W, Du A. Hc-fau, a novel gene regulating diapause in the nematode parasite Haemonchus contortus. Int J Parasitol 2014; 44:775-86. [PMID: 25058511 DOI: 10.1016/j.ijpara.2014.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 01/05/2023]
Abstract
Diapause induced in the early fourth stage of Haemonchus contortus is a strategy to adapt this nematode to hostile environmental conditions. In this study, we identified a new gene, Hc-fau, a homologue of human fau and Caenorhabditis elegans Ce-rps30. Hc-fau encodes two proteins through alternative RNA splicing, Hc-FAUA and Hc-FAUB, consisting of 130 and 107 amino acids, respectively. Hc-FAU possesses a diverged ubiquitin-like (UBiL) protein domain and a conserved ribosome protein S30 domain. The protein is ubiquitously expressed, except in the gonad. However Hc-fau transcripts decrease significantly in diapausing L4s of H. contortus. In C. elegans, knockdown of Ce-rps30 confers an extended lifespan, increased lipid storage in the intestine and shortened body length. These morphological characteristics are comparable with dauer larvae of C. elegans, in which the gonad is condensed considerably. In contrast, a shortened lifespan is observed in C. elegans over-expressing Hc-faua, and especially Hc-faub, with hatching failure detected. The genes of insulin/IGF-1 signalling (IIS), TGF-β, cGMP, dafachronic acid (DA), apoptosis (AP) and fatty acids (FA) metabolism are all down-regulated in Ce-rps30RNAi (RNA interference) worms, except for akt-1 and daf-16. However, daf-16 up-regulation is inconsistent with its target gene down-regulation and the result from a heat stress assay in these worms. Daf-16 RNAi conducted in Ce-rps30 (tm6034/nt1) mutants failed to rescue the worms. The S30 domain stays in the nucleus, while UBiL accumulates in the cytoplasm. Compared with Hc-FAUA, results of UBiL domain and S30 domain over-expression indicate synergism between UBiL and S30 in regulating lifespan and reproduction. These results suggest the potential functions of Hc-fau in regulating larval diapause in H.contortus.
Collapse
Affiliation(s)
- Baolong Yan
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiaolu Guo
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qianjin Zhou
- School of Marine Science, Ningbo University, Ningbo 315211, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Sun
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Aifang Du
- Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
150
|
Allen E, Ren J, Zhang Y, Alcedo J. Sensory systems: their impact on C. elegans survival. Neuroscience 2014; 296:15-25. [PMID: 24997267 DOI: 10.1016/j.neuroscience.2014.06.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/21/2014] [Accepted: 06/24/2014] [Indexed: 12/24/2022]
Abstract
An animal's survival strongly depends on a nervous system that can rapidly process and integrate the changing quality of its environment and promote the most appropriate physiological responses. This is amply demonstrated in the nematode worm Caenorhabditis elegans, where its sensory system has been shown to impact multiple physiological traits that range from behavior and developmental plasticity to longevity. Because of the accessibility of its nervous system and the number of tools available to study and manipulate its neural circuitry, C. elegans has thus become an important model organism in dissecting the mechanisms through which the nervous system promotes survival. Here we review our current understanding of how the C. elegans sensory system affects diverse physiological traits, whose coordination would be essential for survival under fluctuating environments. The knowledge we derive from the C. elegans studies should provide testable hypotheses in discovering similar mechanisms in higher animals.
Collapse
Affiliation(s)
- Erika Allen
- Department of Biological Sciences, Wayne State University, Detroit, MI 48334, USA
| | - Jing Ren
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Joy Alcedo
- Department of Biological Sciences, Wayne State University, Detroit, MI 48334, USA
| |
Collapse
|