101
|
Abstract
Proteins destined for secretion, membrane insertion or organellar import contain signal sequences that direct them to the membrane. Once there, transport machines receive and translocate them appropriately across or into the membrane. The related SecY and Sec61 protein translocation complexes are ubiquitous components of machines that are essential for protein transport. They co-operate with various partners such that the substrate polypeptide is pulled or pushed through the membrane by post- or co-translational mechanisms. In bacteria and archaea, the SecY complex (SecYEG/SecYEbeta) is a heterotrimer, which associates with ribosomes so that the polypeptide is threaded through the channel during its synthesis. Bacteria possess an additional pathway, whereby the newly synthesized substrate protein is maintained in an unfolded conformation and is engaged by the ATPase SecA and delivered to the translocon. Recent medium- (cryo-electron microscopy) and high-resolution (X-ray) structures of the Sec complex have dramatically increased our understanding about how proteins pass through membranes, but have posed a number of new questions. The Sec complex is active as an oligomer, but the structure indicates that the protein-conducting channel is formed by a monomer of SecYEG. Structures of the membrane-bound dimer of Escherichia coli SecYEG and the detergent-solubilized monomer of Methanococcus jannaschii SecYEbeta will be described and discussed in the context of the mechanism that underlies protein secretion and membrane insertion.
Collapse
|
102
|
Abstract
In this review I describe the several stages of my research career, all of which were driven by a desire to understand the basic mechanisms responsible for the complex and beautiful organization of the eukaryotic cell. I was originally trained as an electron microscopist in Argentina, and my first major contribution was the introduction of glutaraldehyde as a fixative that preserved the fine structure of cells, which opened the way for cytochemical studies at the EM level. My subsequent work on membrane-bound ribosomes illuminated the process of cotranslational translocation of polypeptides across the ER membrane and led to the formulation, with Gunter Blobel, of the signal hypothesis. My later studies with many talented colleagues contributed to an understanding of ER structure and function and aspects of the mechanisms that generate and maintain the polarity of epithelial cells. For this work my laboratory introduced the now widely adopted Madin-Darby canine kidney (MDCK) cell line, and demonstrated the polarized budding of envelope viruses from those cells, providing a powerful new system that further advanced the field of protein traffic.
Collapse
Affiliation(s)
- David D Sabatini
- New York University School of Medicine, New York, NY 10016-6497, USA.
| |
Collapse
|
103
|
Scheuring J, Braun N, Nothdurft L, Stumpf M, Veenendaal AKJ, Kol S, van der Does C, Driessen AJM, Weinkauf S. The oligomeric distribution of SecYEG is altered by SecA and translocation ligands. J Mol Biol 2005; 354:258-71. [PMID: 16242710 DOI: 10.1016/j.jmb.2005.09.058] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 08/30/2005] [Accepted: 09/20/2005] [Indexed: 11/23/2022]
Abstract
The multimeric membrane protein complex translocase mediates the transport of preproteins across and integration of membrane proteins into the inner membrane of Escherichia coli. The translocase consists of the peripheral membrane-associated ATPase SecA and the heterotrimeric channel-forming complex consisting of SecY, SecE and SecG. We have investigated the quaternary structure of the SecYEG complex in proteoliposomes. Fluorescence resonance energy transfer demonstrates that SecYEG forms oligomers when embedded in the membrane. Freeze-fracture techniques were used to examine the oligomeric composition under non-translocating and translocating conditions. Our data show that membrane-embedded SecYEG exists in a concentration-dependent equilibrium between monomers, dimers and tetramers, and that dynamic exchange of subunits between oligomers can occur. Remarkably, the formation of dimers and tetramers in the lipid environment is stimulated significantly by membrane insertion of SecA and by the interaction with translocation ligands SecA, preprotein and ATP, suggesting that the active translocation channel consists of multiple SecYEG complexes.
Collapse
Affiliation(s)
- Johannes Scheuring
- Department of Chemistry, Technical University Munich, Lichtenbergstr. 4, 85747 Garching, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Zhong X, Malhotra R, Guidotti G. A eukaryotic carboxyl-terminal signal sequence translocating large hydrophilic domains across membranes. FEBS Lett 2005; 579:5643-50. [PMID: 16214140 DOI: 10.1016/j.febslet.2005.09.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 09/11/2005] [Indexed: 11/17/2022]
Abstract
Yeast Golgi ecto-ATPase Ynd1p is an unusual type III membrane protein with the longest translocated N-terminus reported. Sequential deletion analysis reveals that translocation of this 500-residue-long hydrophilic domain across the membranes requires the C-terminal transmembrane domain of Ynd1p and its flanking regions. Additional studies indicate that the topogenic sequence of Ynd1p overrides the effect of a reverse signal-anchor sequence present at the N-terminus of Ynd1p, while it is not affected by a classic signal sequence at the N-terminus. When placed at the C-terminal end, the sequence can translocate large extracellular domains of two membrane proteins across the membranes. The data demonstrate the existence of a true eukaryotic C-terminal signal sequence.
Collapse
Affiliation(s)
- Xiaotian Zhong
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
105
|
Cannon KS, Or E, Clemons WM, Shibata Y, Rapoport TA. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. ACTA ACUST UNITED AC 2005; 169:219-25. [PMID: 15851514 PMCID: PMC2171872 DOI: 10.1083/jcb.200412019] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During their biosynthesis, many proteins pass through the membrane via a hydrophilic channel formed by the heterotrimeric Sec61/SecY complex. Whether this channel forms at the interface of multiple copies of Sec61/SecY or is intrinsic to a monomeric complex, as suggested by the recently solved X-ray structure of the Methanococcus jannaschii SecY complex, is a matter of contention. By introducing a single cysteine at various positions in Escherichia coli SecY and testing its ability to form a disulfide bond with a single cysteine in a translocating chain, we provide evidence that translocating polypeptides pass through the center of the SecY complex. The strongest cross-links were observed with residues that would form a constriction in an hourglass-shaped pore. This suggests that the channel makes only limited contact with a translocating polypeptide, thus minimizing the energy required for translocation.
Collapse
Affiliation(s)
- Kurt S Cannon
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
106
|
Sadlish H, Skach WR. Biogenesis of CFTR and other polytopic membrane proteins: new roles for the ribosome-translocon complex. J Membr Biol 2005; 202:115-26. [PMID: 15798900 DOI: 10.1007/s00232-004-0715-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 09/14/2004] [Indexed: 10/25/2022]
Abstract
Polytopic protein biogenesis represents a critical, yet poorly understood area of modern biology with important implications for human disease. Inherited mutations in a growing array of membrane proteins frequently lead to improper folding and/or trafficking. The cystic fibrosis transmembrane conductance regulator (CFTR) is a primary example in which point mutations disrupt CFTR folding and lead to rapid degradation in the endoplasmic reticulum (ER). It has been difficult, however, to discern the mechanistic principles of such disorders, in part, because membrane protein folding takes place coincident with translation and within a highly specialized environment formed by the ribosome, Sec61 translocon, and the ER membrane. This ribosome-translocon complex (RTC) coordinates the synthesis, folding, orientation and integration of transmembrane segments across and into the ER membrane. At the same time, RTC function is controlled by specific sequence determinants within the nascent polypeptide. Recent studies of CFTR and other native membrane proteins have begun to define novel variations in translocation pathways and to elucidate the specific steps that establish complex topology. This article will attempt to reconcile advances in our understanding of protein biogenesis with emerging models of RTC function. In particular, it will emphasize how information within the nascent polypeptide is interpreted by and in turn controls RTC dynamics to generate the broad structural and functional diversity observed for naturally occurring membrane proteins.
Collapse
Affiliation(s)
- H Sadlish
- Division of Molecular Medicine, Oregon Health and Sciences University, Portland, OR 97239, USA
| | | |
Collapse
|
107
|
Alder NN, Shen Y, Brodsky JL, Hendershot LM, Johnson AE. The molecular mechanisms underlying BiP-mediated gating of the Sec61 translocon of the endoplasmic reticulum. ACTA ACUST UNITED AC 2005; 168:389-99. [PMID: 15684029 PMCID: PMC2171714 DOI: 10.1083/jcb.200409174] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Sec61 translocon of the endoplasmic reticulum membrane forms an aqueous pore that is gated by the lumenal Hsp70 chaperone BiP. We have explored the molecular mechanisms governing BiP-mediated gating activity, including the coupling between gating and the BiP ATPase cycle, and the involvement of the substrate-binding and J domain–binding regions of BiP. Translocon gating was assayed by measuring the collisional quenching of fluorescent probes incorporated into nascent chains of translocation intermediates engaged with microsomes containing various BiP mutants and BiP substrate. Our results indicate that BiP must assume the ADP-bound conformation to seal the translocon, and that the reopening of the pore requires an ATP binding–induced conformational change. Further, pore closure requires functional interactions between both the substrate-binding region and the J domain–binding region of BiP and membrane proteins. The mechanism by which BiP mediates translocon pore closure and opening is therefore similar to that in which Hsp70 chaperones associate with and dissociate from substrates.
Collapse
Affiliation(s)
- Nathan N Alder
- Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
108
|
Ménétret JF, Hegde RS, Heinrich SU, Chandramouli P, Ludtke SJ, Rapoport TA, Akey CW. Architecture of the ribosome-channel complex derived from native membranes. J Mol Biol 2005; 348:445-57. [PMID: 15811380 DOI: 10.1016/j.jmb.2005.02.053] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 02/13/2005] [Accepted: 02/21/2005] [Indexed: 11/21/2022]
Abstract
The mammalian Sec61 complex forms a protein translocation channel whose function depends upon its interaction with the ribosome and with membrane proteins of the endoplasmic reticulum (ER). To study these interactions, we determined structures of "native" ribosome-channel complexes derived from ER membranes. We find that the ribosome is linked to the channel by seven connections, but the junction may still provide a path for domains of nascent membrane proteins to move into the cytoplasm. In addition, the native channel is significantly larger than a channel formed by the Sec61 complex, due to the presence of a second membrane protein. We identified this component as TRAP, the translocon-associated protein complex. TRAP interacts with Sec61 through its transmembrane domain and has a prominent lumenal domain. The presence of TRAP in the native channel indicates that it may play a general role in translocation. Crystal structures of two Sec61 homologues were used to model the channel. This analysis indicates that there are four Sec61 complexes and two TRAP molecules in each native channel. Thus, we suggest that a single Sec61 complex may form a conduit for translocating polypeptides, while three copies of Sec61 play a structural role or recruit accessory factors such as TRAP.
Collapse
Affiliation(s)
- Jean-François Ménétret
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston, MA 02118-2526, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
de Felipe P, Ryan MD. Targeting of proteins derived from self-processing polyproteins containing multiple signal sequences. Traffic 2005; 5:616-26. [PMID: 15260831 DOI: 10.1111/j.1398-9219.2004.00205.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The 18aa 2A self-cleaving oligopeptide from foot-and-mouth disease virus can be used for co-expression of multiple, discrete proteins from a single ORF. 2A mediates a co-translational cleavage at its own C-terminus and is proposed to manipulate the ribosome into skipping the synthesis of a specific peptide bond (producing a discontinuity in the peptide backbone), rather than being involved in proteolysis. To explore the utility of the system to target discrete processing products, self-processing polyproteins comprising fluorescent proteins flanking 2A were constructed, permutating both the type of signal sequence and the location within the polyprotein. A polyprotein comprising a protein bearing an N-terminal signal sequence, 2A, then a protein lacking any signal sequence, was constructed. Interestingly, both proteins were translocated into the endoplasmic reticulum. Despite the discontinuity in the peptide backbone, the mammalian ribosome:translocon complex did not disassemble--the second protein (lacking any signal) 'slipstreamed' through the translocon formed by the first (signal-bearing) protein. These polyprotein systems provide a novel method of targeting proteins to different subcellular sites by transfection with a plasmid encoding a single ORF. The inclusion of a fluorescent reporter enables visualisation of expression levels, whilst inclusion of a selectable marker enables stable cell-lines to be established rapidly.
Collapse
Affiliation(s)
- Pablo de Felipe
- School of Biology, Centre for Biomolecular Sciences, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | | |
Collapse
|
110
|
Cheng Z, Jiang Y, Mandon EC, Gilmore R. Identification of cytoplasmic residues of Sec61p involved in ribosome binding and cotranslational translocation. ACTA ACUST UNITED AC 2005; 168:67-77. [PMID: 15631991 PMCID: PMC2171681 DOI: 10.1083/jcb.200408188] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytoplasmic surface of Sec61p is the binding site for the ribosome and has been proposed to interact with the signal recognition particle receptor during targeting of the ribosome nascent chain complex to the translocation channel. Point mutations in cytoplasmic loops six (L6) and eight (L8) of yeast Sec61p cause reductions in growth rates and defects in the translocation of nascent polypeptides that use the cotranslational translocation pathway. Sec61 heterotrimers isolated from the L8 sec61 mutants have a greatly reduced affinity for 80S ribosomes. Cytoplasmic accumulation of protein precursors demonstrates that the initial contact between the large ribosomal subunit and the Sec61 complex is important for efficient insertion of a nascent polypeptide into the translocation pore. In contrast, point mutations in L6 of Sec61p inhibit cotranslational translocation without significantly reducing the ribosome-binding activity, indicating that the L6 and L8 sec61 mutants affect different steps in the cotranslational translocation pathway.
Collapse
Affiliation(s)
- Zhiliang Cheng
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
111
|
Abstract
The SecY (bacteria) and Sec61 (eukaryotes) translocon complexes, or protein-conducting channels, work in concert with bound ribosomes to insert proteins into membranes during the first step of membrane protein assembly. The crystallographic structure of an archaeal SecY translocon provides dramatic new insights into the mechanism of translocon function. This structure suggests an explanation for how the translocon can aid in establishing membrane protein topology via the positive-inside rule. The folding of membrane proteins may begin in the ribosome exit tunnel, before entering the translocon, according to cryo-electron microscopy and biophysical studies.
Collapse
Affiliation(s)
- Stephen H White
- Department of Physiology and Biophysics, Program in Macromolecular Structure, University of California at Irvine, Irvine, California 92697-4560, USA.
| | | |
Collapse
|
112
|
Hemmler R, Böse G, Wagner R, Peters R. Nanopore unitary permeability measured by electrochemical and optical single transporter recording. Biophys J 2005; 88:4000-7. [PMID: 15749773 PMCID: PMC1305631 DOI: 10.1529/biophysj.104.058255] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For the analysis of membrane transport processes two single molecule methods are available that differ profoundly in data acquisition principle, achievable information, and application range: the widely employed electrical single channel recording and the more recently established optical single transporter recording. In this study dense arrays of microscopic horizontal bilayer membranes between 0.8 microm and 50 microm in diameter were created in transparent foils containing either microholes or microcavities. Prototypic protein nanopores were formed in bilayer membranes by addition of Staphylococcus aureus alpha-hemolysin (alpha-HL). Microhole arrays were used to monitor the formation of bilayer membranes and single alpha-HL pores by confocal microscopy and electrical recording. Microcavity arrays were used to characterize the formation of bilayer membranes and the flux of fluorescent substrates and inorganic ions through single transporters by confocal microscopy. Thus, the unitary permeability of the alpha-HL pore was determined for calcein and Ca(2+) ions. The study paves the way for an amalgamation of electrical and optical single transporter recording. Electro-optical single transporter recording could provide so far unresolved kinetic data of a large number of cellular transporters, leading to an extension of the nanopore sensor approach to the single molecule analysis of peptide transport by translocases.
Collapse
Affiliation(s)
- Roland Hemmler
- Institut für Medizinische Physik und Biophysik, Universität Münster, Germany
| | | | | | | |
Collapse
|
113
|
Wang X, Johnsson N. Protein kinase CK2 phosphorylates Sec63p to stimulate the assembly of the endoplasmic reticulum protein translocation apparatus. J Cell Sci 2005; 118:723-32. [PMID: 15671059 DOI: 10.1242/jcs.01671] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heterotetrameric Sec62/63 complex associates with the heterotrimeric Sec61 complex to form the heptameric Sec complex. This complex is necessary and sufficient for post-translational protein translocation across the membrane of the endoplasmic reticulum. We show that Sec63p is phosphorylated at its C-terminal domain by the protein kinase CK2 and that this phosphorylation strengthens the interaction between the cytosolic domains of Sec63p and Sec62p. Exchanging either threonine 652 or threonine 654 against the nonphosphorylatable alanines in Sec63p impairs the binding to Sec62p and interferes with the efficient translocation of proteins across the membrane of the endoplasmic reticulum. These findings show that phosphorylation of Sec63p is required for tightly recruiting the putative signal-sequence-binding subunit Sec62p to the Sec complex.
Collapse
Affiliation(s)
- Xian Wang
- Institut für Toxikologie und Genetik, Forschungszentrum Karlsruhe, Postfach 3640, 76021 Karlsruhe, Germany
| | | |
Collapse
|
114
|
Abstract
Co-translational targeting of secretory and membrane proteins to the translocation machinery is mediated by the signal recognition particle (SRP) and its membrane-bound receptor (SR) in all three domains of life. Although the overall composition of the SRP system differs, the central ribonucleoprotein core and the general mechanism of GTP-dependent targeting are highly conserved. Recently, structural studies have contributed significantly to our understanding of the molecular organization of SRP. SRP appears as a structurally flexible particle modulated and regulated by its interactions with the ribosome-nascent chain complex, the translocon and the SR. The SRP core (SRP54 with its cognate RNA binding site) plays a central role in these interactions and communicates the different binding states by long-range interdomain communication. Based on recent structures of SRP54, a model for signal peptide binding stimulating the GTP affinity during the first step of the SRP cycle is presented. The model is placed in the context of the recent structures of mammalian SRP bound to a ribosome-nascent chain complex and of a subcomplex of SRP-SR.
Collapse
Affiliation(s)
- Klemens Wild
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
115
|
Yang C, Ng EG, Penczek PA. Unified 3-D structure and projection orientation refinement using quasi-Newton algorithm. J Struct Biol 2005; 149:53-64. [PMID: 15629657 DOI: 10.1016/j.jsb.2004.08.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 08/26/2004] [Indexed: 11/18/2022]
Abstract
We describe an algorithm for simultaneous refinement of a three-dimensional (3-D) density map and of the orientation parameters of two-dimensional (2-D) projections that are used to reconstruct this map. The application is in electron microscopy, where the 3-D structure of a protein has to be determined from a set of 2-D projections collected at random but initially unknown angles. The design of the algorithm is based on the assumption that initial low resolution approximation of the density map and reasonable guesses for orientation parameters are available. Thus, the algorithm is applicable in final stages of the structure refinement, when the quality of the results is of main concern. We define the objective function to be minimized in real space and solve the resulting nonlinear optimization problem using a Quasi-Newton algorithm. We calculate analytical derivatives with respect to density distribution and the finite difference approximations of derivatives with respect to orientation parameters. We demonstrate that calculation of derivatives is robust with respect to noise in the data. This is due to the fact that noise is annihilated by the back-projection operations. Our algorithm is distinguished from other orientation refinement methods (i) by the simultaneous update of the density map and orientation parameters resulting in a highly efficient computational scheme and (ii) by the high quality of the results produced by a direct minimization of the discrepancy between the 2-D data and the projected views of the reconstructed 3-D structure. We demonstrate the speed and accuracy of our method by using simulated data.
Collapse
Affiliation(s)
- Chao Yang
- Lawrence Berkeley National Laboratory, Computational Research Division, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
116
|
Grigoriev SM, Muro C, Dejean LM, Campo ML, Martinez-Caballero S, Kinnally KW. Electrophysiological approaches to the study of protein translocation in mitochondria. ACTA ACUST UNITED AC 2004; 238:227-74. [PMID: 15364200 DOI: 10.1016/s0074-7696(04)38005-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Electrophysiological techniques have been integral to our understanding of protein translocation across various membranes, and, in particular, the mitochondrial inner and outer membranes. Descriptions of various methodologies (for example, patch clamp, planar bilayers, and tip dip, and their past and potential contributions) are detailed within. The activity of protein import channels of native mitochondrial inner and outer membranes can be studied by directly patch clamping mitochondria and mitoplasts (mitochondria stripped of their outer membrane by French pressing) from various genetically manipulated strains of yeast and mammalian tissue cultured cells. The channel activities of TOM, TIM23, and TIM22 complexes are compared with those reconstituted in proteoliposomes and with those of the recombinant proteins Tom40p, Tim23p, and Tim22p, which play major roles in protein translocation. Studies of the mechanism(s) and the role of channels in protein translocation in mitochondria are prototypes, as the same principles are likely followed in all biological membranes including the endoplasmic reticulum and chloroplasts. The ability to apply electrophysiological techniques to these channels is now allowing investigations into the role of mitochondria in diverse fields such as neurotransmitter release, long-term potentiation, and apoptosis.
Collapse
Affiliation(s)
- Sergey M Grigoriev
- College of Dentistry, Department of Basic Sciences, New York University, 345 East 24th Street, New York, New York 10010, USA
| | | | | | | | | | | |
Collapse
|
117
|
. JT, . ML, . WN, . RZ. Calumenin and Reticulocalbin are Associated with the Protein Translocase of the Mammalian Endoplasmic Reticulum. ACTA ACUST UNITED AC 2004. [DOI: 10.3923/jbs.2005.70.75] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
118
|
Guth S, Völzing C, Müller A, Jung M, Zimmermann R. Protein transport into canine pancreatic microsomes: a quantitative approach. ACTA ACUST UNITED AC 2004; 271:3200-7. [PMID: 15265039 DOI: 10.1111/j.1432-1033.2004.04252.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Transport of presecretory proteins into the mammalian rough endoplasmic reticulum involves a protein translocase that comprises the integral membrane proteins Sec61alphap, Sec61betap, and Sec61gammap as core components. Electron microscopic analysis of protein translocase in rough microsomal membranes suggested that between three and four heterotrimeric Sec61p complexes form the central unit of protein translocase. Here we analyzed the stoichiometry of heterotrimeric Sec61p complexes present in cotranslationally active protein translocases of canine pancreatic microsomes and various other lumenal and membrane components believed to be subunits of protein translocase and to be involved in covalent modifications. Based on these numbers, the capacity for cotranslational transport was estimated for the endoplasmic reticulum of the human pancreas.
Collapse
Affiliation(s)
- Silvia Guth
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Homburg, Germany.
| | | | | | | | | |
Collapse
|
119
|
Veenendaal AKJ, van der Does C, Driessen AJM. The protein-conducting channel SecYEG. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:81-95. [PMID: 15546659 DOI: 10.1016/j.bbamcr.2004.02.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 01/30/2004] [Accepted: 02/02/2004] [Indexed: 10/26/2022]
Abstract
In bacteria, the translocase mediates the translocation of proteins into or across the cytosolic membrane. It consists of a membrane embedded protein-conducting channel and a peripherally associated motor domain, the ATPase SecA. The channel is formed by SecYEG, a multimeric protein complex that assembles into oligomeric forms. The structure and subunit composition of this protein-conducting channel is evolutionary conserved and a similar system is found in the endoplasmic reticulum of eukaryotes and the cytoplasmic membrane of archaea. The ribosome and other membrane proteins can associate with the protein-conducting channel complex and affect its activity or functionality.
Collapse
Affiliation(s)
- Andreas K J Veenendaal
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9750 AA Haren, The Netherlands
| | | | | |
Collapse
|
120
|
Rapoport TA, Goder V, Heinrich SU, Matlack KES. Membrane-protein integration and the role of the translocation channel. Trends Cell Biol 2004; 14:568-75. [PMID: 15450979 DOI: 10.1016/j.tcb.2004.09.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Most eukaryotic membrane proteins are integrated into the lipid bilayer during their synthesis at the endoplasmic reticulum (ER). Their integration occurs with the help of a protein-conducting channel formed by the heterotrimeric Sec61 membrane-protein complex. The crystal structure of an archaeal homolog of the complex suggests mechanisms that enable the channel to open across the membrane and to release laterally hydrophobic transmembrane segments of nascent membrane proteins into lipid. Many aspects of membrane-protein integration remain controversial and poorly understood, but new structural data provide testable hypotheses. We propose a model of how the channel recognizes transmembrane segments, orients them properly with respect to the plane of the membrane and releases them into lipid. We also discuss how the channel would prevent small molecules from crossing the lipid bilayer while it is integrating proteins.
Collapse
Affiliation(s)
- Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
121
|
Snapp EL, Reinhart GA, Bogert BA, Lippincott-Schwartz J, Hegde RS. The organization of engaged and quiescent translocons in the endoplasmic reticulum of mammalian cells. ACTA ACUST UNITED AC 2004; 164:997-1007. [PMID: 15051734 PMCID: PMC2172055 DOI: 10.1083/jcb.200312079] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein translocons of the mammalian endoplasmic reticulum are composed of numerous functional components whose organization during different stages of the transport cycle in vivo remains poorly understood. We have developed generally applicable methods based on fluorescence resonance energy transfer (FRET) to probe the relative proximities of endogenously expressed translocon components in cells. Examination of substrate-engaged translocons revealed oligomeric assemblies of the Sec61 complex that were associated to varying degrees with other essential components including the signal recognition particle receptor TRAM and the TRAP complex. Remarkably, these components not only remained assembled but also had a similar, yet distinguishable, organization both during and after nascent chain translocation. The persistence of preassembled and complete translocons between successive rounds of transport may facilitate highly efficient translocation in vivo despite temporal constraints imposed by ongoing translation and a crowded cellular environment.
Collapse
Affiliation(s)
- Erik L Snapp
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, 18 Library Dr., Bldg. 18, Rm. 101, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
122
|
Ferbitz L, Maier T, Patzelt H, Bukau B, Deuerling E, Ban N. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 2004; 431:590-6. [PMID: 15334087 DOI: 10.1038/nature02899] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 07/27/2004] [Indexed: 11/09/2022]
Abstract
During protein biosynthesis, nascent polypeptide chains that emerge from the ribosomal exit tunnel encounter ribosome-associated chaperones, which assist their folding to the native state. Here we present a 2.7 A crystal structure of Escherichia coli trigger factor, the best-characterized chaperone of this type, together with the structure of its ribosome-binding domain in complex with the Haloarcula marismortui large ribosomal subunit. Trigger factor adopts a unique conformation resembling a crouching dragon with separated domains forming the amino-terminal ribosome-binding 'tail', the peptidyl-prolyl isomerase 'head', the carboxy-terminal 'arms' and connecting regions building up the 'back'. From its attachment point on the ribosome, trigger factor projects the extended domains over the exit of the ribosomal tunnel, creating a protected folding space where nascent polypeptides may be shielded from proteases and aggregation. This study sheds new light on our understanding of co-translational protein folding, and suggests an unexpected mechanism of action for ribosome-associated chaperones.
Collapse
Affiliation(s)
- Lars Ferbitz
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg (ETH Zürich), HPK Gebäude, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
123
|
Clemons WM, Ménétret JF, Akey CW, Rapoport TA. Structural insight into the protein translocation channel. Curr Opin Struct Biol 2004; 14:390-6. [PMID: 15313231 DOI: 10.1016/j.sbi.2004.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A structurally conserved protein translocation channel is formed by the heterotrimeric Sec61 complex in eukaryotes, and SecY complex in archaea and bacteria. Electron microscopy studies suggest that the channel may function as an oligomeric assembly of Sec61 or SecY complexes. Remarkably, the recently determined X-ray structure of an archaeal SecY complex indicates that the pore is located at the center of a single molecule of the complex. This structure suggests how the pore opens perpendicular to the plane of the membrane to allow the passage of newly synthesized secretory proteins across the membrane and opens laterally to allow transmembrane segments of nascent membrane proteins to enter the lipid bilayer. The electron microscopy and X-ray results together suggest that only one copy of the SecY or Sec61 complex within an oligomer translocates a polypeptide chain at any given time.
Collapse
Affiliation(s)
- William M Clemons
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
124
|
Van Coppenolle F, Vanden Abeele F, Slomianny C, Flourakis M, Hesketh J, Dewailly E, Prevarskaya N. Ribosome-translocon complex mediates calcium leakage from endoplasmic reticulum stores. J Cell Sci 2004; 117:4135-42. [PMID: 15280427 DOI: 10.1242/jcs.01274] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Under resting conditions, the endoplasmic reticulum (ER) intraluminal free calcium concentration ([Ca(2+)](ER)) reflects a balance between active uptake by Ca(2+)-ATPases and passive efflux via 'leak channels'. Despite their physiological importance and ubiquitous leak pathway mechanism, very little is known about the molecular nature of these channels. As it has been suggested that the open translocon pore complex of the ER is permeable to ions and neutral molecules, we hypothesized that the ribosome-bound translocon would be permeable to calcium after treatment with puromycin, a translation inhibitor that specifically releases polypeptide chains. At this time, the translocon channel is left open. We measured the fluctuations in cytoplasmic and luminal calcium concentrations using fluorescent dyes (fura-2 and magfura-2, respectively). The calcium release induced by thapsigargin (a Ca(2+)-ATPase inhibitor) was lower after puromycin treatment. Puromycin also reduced the [Ca(2+)](ER) level when perfused into the medium, but was ineffective after anisomycin pre-treatment (an inhibitor of the peptidyl transferase). Puromycin had a similar effect in the presence of heparin and ryanodine. This puromycin-evoked [Ca(2+)](ER) decrease was specific to the translocon. We conclude that the translocon complex is a major calcium leak channel. This work reveals a new role for the translocon which is involved in the control of the [Ca(2+)](ER) and could therefore supervise many physiological processes, including gene expression and apoptosis.
Collapse
Affiliation(s)
- Fabien Van Coppenolle
- Laboratoire de Physiologie Cellulaire, INSERM EMI 0228, Université de Lille 1, Bâtiment SN3, 59655 Villeneuve d'Ascq CEDEX, France.
| | | | | | | | | | | | | |
Collapse
|
125
|
Alder NN, Johnson AE. Cotranslational Membrane Protein Biogenesis at the Endoplasmic Reticulum. J Biol Chem 2004; 279:22787-90. [PMID: 15028726 DOI: 10.1074/jbc.r400002200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Nathan N Alder
- Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA
| | | |
Collapse
|
126
|
Ring G, Eichler J. Membrane Binding of Ribosomes Occurs at SecYE-based Sites in the Archaea Haloferax volcanii. J Mol Biol 2004; 336:997-1010. [PMID: 15037064 DOI: 10.1016/j.jmb.2004.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 12/18/2003] [Accepted: 01/09/2004] [Indexed: 11/30/2022]
Abstract
Whereas ribosomes bind to membranes at eukaryal Sec61alphabetagamma and bacterial SecYEG sites, ribosomal membrane binding has yet to be studied in Archaea. Accordingly, functional ribosomes and inverted membrane vesicles were prepared from the halophilic archaea Haloferax volcanii. The ability of the ribosomes to bind to the membranes was determined using a flotation approach. Proteolytic pretreatment of the vesicles, as well as quantitative analyses, revealed the existence of a proteinaceous ribosome receptor, with the affinity of binding being comparable to that found in Eukarya and Bacteria. Inverted membrane vesicles prepared from cells expressing chimeras of SecE or SecY fused to a cytoplasmically oriented cellulose-binding domain displayed reduced ribosome binding due to steric hindrance. Pretreatment with cellulose drastically reduced ribosome binding to chimera-containing but not wild-type vesicles. Thus, as in Eukarya and Bacteria, ribosome binding in Archaea occurs at Sec-based sites. However, unlike the situation in the other domains of Life, ribosome binding in haloarchaea requires molar concentrations of salt. Structural information on ribosome-Sec complexes may provide insight into this high salt-dependent binding.
Collapse
Affiliation(s)
- Gabriela Ring
- Department of Life Sciences, Ben Gurion University, Beersheva 84105, Israel
| | | |
Collapse
|
127
|
Egea PF, Shan SO, Napetschnig J, Savage DF, Walter P, Stroud RM. Substrate twinning activates the signal recognition particle and its receptor. Nature 2004; 427:215-21. [PMID: 14724630 DOI: 10.1038/nature02250] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Accepted: 11/25/2003] [Indexed: 11/08/2022]
Abstract
Signal sequences target proteins for secretion from cells or for integration into cell membranes. As nascent proteins emerge from the ribosome, signal sequences are recognized by the signal recognition particle (SRP), which subsequently associates with its receptor (SR). In this complex, the SRP and SR stimulate each other's GTPase activity, and GTP hydrolysis ensures unidirectional targeting of cargo through a translocation pore in the membrane. To define the mechanism of reciprocal activation, we determined the 1.9 A structure of the complex formed between these two GTPases. The two partners form a quasi-two-fold symmetrical heterodimer. Biochemical analysis supports the importance of the extensive interaction surface. Complex formation aligns the two GTP molecules in a symmetrical, composite active site, and the 3'OH groups are essential for association, reciprocal activation and catalysis. This unique circle of twinned interactions is severed twice on hydrolysis, leading to complex dissociation after cargo delivery.
Collapse
Affiliation(s)
- Pascal F Egea
- Department of Biochemistry and Biophysics, University of California at San Francisco, California 94143-2240, USA.
| | | | | | | | | | | |
Collapse
|
128
|
Pohlschröder M, Dilks K, Hand NJ, Wesley Rose R. Translocation of proteins across archaeal cytoplasmic membranes. FEMS Microbiol Rev 2004; 28:3-24. [PMID: 14975527 DOI: 10.1016/j.femsre.2003.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Revised: 07/03/2003] [Accepted: 07/09/2003] [Indexed: 11/20/2022] Open
Abstract
All cells need to transport proteins across hydrophobic membranes. Several mechanisms have evolved to facilitate this transport, including: (i) the universally-conserved Sec system, which transports proteins in an unfolded conformation and is thought to be the major translocation pathway in most organisms and (ii) the Tat system, which transports proteins that have already obtained some degree of tertiary structure. Here, we present the current understanding of these processes in the domain Archaea, and how they compare to the corresponding pathways in bacteria and eukaryotes.
Collapse
Affiliation(s)
- Mechthild Pohlschröder
- Department of Biology, University of Pennsylvania, 415 University Avenue, 201 Leidy Labs, Philadelphia, PA 19104-6018, USA.
| | | | | | | |
Collapse
|
129
|
Affiliation(s)
- Bernhard Dobberstein
- Zentrum für Molekulare Biologie and I. Sinning is at the Biochemiezentrum, Universität Heidelberg, 69120 Heidelberg, Germany.
| | | |
Collapse
|
130
|
Van den Berg B, Clemons WM, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA. X-ray structure of a protein-conducting channel. Nature 2003; 427:36-44. [PMID: 14661030 DOI: 10.1038/nature02218] [Citation(s) in RCA: 958] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 11/19/2003] [Indexed: 11/09/2022]
Abstract
A conserved heterotrimeric membrane protein complex, the Sec61 or SecY complex, forms a protein-conducting channel, allowing polypeptides to be transferred across or integrated into membranes. We report the crystal structure of the complex from Methanococcus jannaschii at a resolution of 3.2 A. The structure suggests that one copy of the heterotrimer serves as a functional translocation channel. The alpha-subunit has two linked halves, transmembrane segments 1-5 and 6-10, clamped together by the gamma-subunit. A cytoplasmic funnel leading into the channel is plugged by a short helix. Plug displacement can open the channel into an 'hourglass' with a ring of hydrophobic residues at its constriction. This ring may form a seal around the translocating polypeptide, hindering the permeation of other molecules. The structure also suggests mechanisms for signal-sequence recognition and for the lateral exit of transmembrane segments of nascent membrane proteins into lipid, and indicates binding sites for partners that provide the driving force for translocation.
Collapse
Affiliation(s)
- Bert Van den Berg
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
131
|
Abstract
The recently solved X-ray crystal structures of the ribosome have provided opportunities for studying the molecular basis of translation with a variety of methods including cryo-electron microscopy. The recently solved X-ray crystal structures of the ribosome have provided opportunities for studying the molecular basis of translation with a variety of methods including cryo-electron microscopy - where maps give the first glimpses of ribosomal evolution - and fluorescence spectroscopy techniques.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Health Research, Inc, at the Wadsworth Center and Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, NY 12201-0509, USA.
| |
Collapse
|
132
|
Zito CR, Oliver D. Two-stage binding of SecA to the bacterial translocon regulates ribosome-translocon interaction. J Biol Chem 2003; 278:40640-6. [PMID: 12907673 DOI: 10.1074/jbc.m308025200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial translocon interacts with both SecA-bound preproteins and nascent chain-ribosome complexes during Sec and signal recognition particle-dependent protein translocation, respectively. In their inactive state, translocons are saturated with ribosomes and SecA protein, reflecting the inherent affinity of these components for one another. We found that SecA and ribosomes are bound simultaneously and noncompetitively to a common set of inactive translocons. Furthermore, we demonstrate that at a later stage in binding, SecA possesses a ribosome-translocon dissociation activity that is coupled to its ATP-dependent membrane insertion and retraction cycle that drives protein translocation. This novel activity is presumably important in the commitment of the translocon to the Sec-dependent pathway. These results also provide a rationale for the compatibility and regulation of multiple protein translocation pathways that each makes distinct demands on a common translocon core.
Collapse
Affiliation(s)
- Christopher R Zito
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | |
Collapse
|
133
|
Osman AA, Saito M, Makepeace C, Permutt MA, Schlesinger P, Mueckler M. Wolframin expression induces novel ion channel activity in endoplasmic reticulum membranes and increases intracellular calcium. J Biol Chem 2003; 278:52755-62. [PMID: 14527944 DOI: 10.1074/jbc.m310331200] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wolfram syndrome is an autosomal recessive neuro-degenerative disorder associated with juvenile onset non-autoimmune diabetes mellitus and progressive optic atrophy. The disease has been attributed to mutations in the WFS1 gene, which codes for a protein predicted to possess 9-10 transmembrane segments. Little is known concerning the function of the WFS1 protein (wolframin). Endoglycosidase H digestion, immunocytochemistry, and subcellular fractionation studies all indicated that wolframin is localized to the endoplasmic reticulum in rat brain hippocampus and rat pancreatic islet beta-cells, and after ectopic expression in Xenopus oocytes. Reconstitution of wolframin from oocyte membranes into planar lipid bilayers demonstrated that the protein induced a large cation-selective ion channel that was blocked by Mg2+ or Ca2+. Inositol triphosphate was capable of activating channels in the fused bilayers that were similar to channel components induced by wolframin expression. Expression of wolframin also increased cytosolic calcium levels in oocytes. Wolframin thus appears to be important in the regulation of intracellular Ca2+ homeostasis. Disruption of this function may place cells at risk to suffer inappropriate death decisions, thus accounting for the progressive beta-cell loss and neuronal degeneration associated with the disease.
Collapse
Affiliation(s)
- Abdullah A Osman
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
134
|
Wirth A, Jung M, Bies C, Frien M, Tyedmers J, Zimmermann R, Wagner R. The Sec61p complex is a dynamic precursor activated channel. Mol Cell 2003; 12:261-8. [PMID: 12887911 DOI: 10.1016/s1097-2765(03)00283-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Previous studies have shown that the rough endoplasmic reticulum (ER) contains nascent precursor polypeptide gated channels. Circumstantial evidence suggests that these channels are formed by the Sec61p complex. We reconstituted the purified Sec61p complex in a lipid bilayer and characterized its dynamics and regulation. The Sec61p complex is sufficient to form the precursor polypeptide activated channel under co- and posttranslational transport conditions. Activity of the Sec61p channel in both transport modes is induced by direct interaction with precursor protein. The Sec61p complex comprises a highly dynamic pore covering conductances corresponding to channel openings from approximately 6 to 60 A. Its properties are indistinguishable from those we observed with native ER channels, directly demonstrating that these channels are formed by the Sec61p complex.
Collapse
Affiliation(s)
- Andreas Wirth
- Biophysik, Universität Osnabrück, FB Biologie/Chemie, D-49034 Osnabrück, Germany
| | | | | | | | | | | | | |
Collapse
|
135
|
Helmers J, Schmidt D, Glavy JS, Blobel G, Schwartz T. The beta-subunit of the protein-conducting channel of the endoplasmic reticulum functions as the guanine nucleotide exchange factor for the beta-subunit of the signal recognition particle receptor. J Biol Chem 2003; 278:23686-90. [PMID: 12750387 DOI: 10.1074/jbc.c300180200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cotranslational protein transport to the endoplasmic reticulum is controlled by the concerted interaction of three GTPases: the SRP54 subunit of the signal recognition particle (SRP) and the alpha- and beta-subunits of the SRP receptor (SR). SRbeta is related to ADP-ribosylation factor (ARF)-type GTPases, and the recently published crystal structure of SRbeta-GTP in complex with the binding domain of SRalpha suggested that SRbeta, like all ARF-type GT-Pases, requires a guanine nucleotide exchange factor (GEF) for function. Searching the sequence data base, we identified significant sequence similarity between the Sec7 domain of ARF-GEFs and the cytosolic domains of the beta-subunits of the two homologous heterotrimeric protein-conducting channels in yeast. Using a fluorescence nucleotide exchange assay, we show that the beta-subunits of the heterotrimeric protein-conducting channels function as the GEFs for SRbeta. Both the cytosolic domain of Sec61beta as well as the holo-Sec61beta, when part of the isolated trimeric Sec61p complex, function as the GEF for SRbeta, whereas the same Sec61beta, when part of the heptameric complex that facilitates posttranslational protein transport, is inactive as the GEF for SRbeta
Collapse
Affiliation(s)
- Jurgen Helmers
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA.
| | | | | | | | | |
Collapse
|
136
|
Beckmann R, Spahn CM, Frank J, Blobel G. The active 80S ribosome-Sec61 complex. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:543-54. [PMID: 12762056 DOI: 10.1101/sqb.2001.66.543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- R Beckmann
- Laboratory of Cell Biology, Howard Hughes Medical Institute, Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
137
|
Johnson AE, Chen JC, Flanagan JJ, Miao Y, Shao Y, Lin J, Bock PE. Structure, function, and regulation of free and membrane-bound ribosomes: the view from their substrates and products. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:531-41. [PMID: 12762055 DOI: 10.1101/sqb.2001.66.531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- A E Johnson
- Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, Departments of Chemistry and of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
138
|
Koch HG, Moser M, Müller M. Signal recognition particle-dependent protein targeting, universal to all kingdoms of life. Rev Physiol Biochem Pharmacol 2003; 146:55-94. [PMID: 12605305 DOI: 10.1007/s10254-002-0002-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The signal recognition particle (SRP) and its membrane-bound receptor represent a ubiquitous protein-targeting device utilized by organisms as different as bacteria and humans, archaea and plants. The unifying concept of SRP-dependent protein targeting is that SRP binds to signal sequences of newly synthesized proteins as they emerge from the ribosome. In eukaryotes this interaction arrests or retards translation elongation until SRP targets the ribosome-nascent chain complexes via the SRP receptor to the translocation channel. Such channels are present in the endoplasmic reticulum of eukaryotic cells, the thylakoids of chloroplasts, or the plasma membrane of prokaryotes. The minimal functional unit of SRP consists of a signal sequence-recognizing protein and a small RNA. The as yet most complex version is the mammalian SRP whose RNA, together with six proteinaceous subunits, undergo an intricate assembly process. The preferential substrates of SRP possess especially hydrophobic signal sequences. Interactions between SRP and its receptor, the ribosome, the signal sequence, and the target membrane are regulated by GTP hydrolysis. SRP-dependent protein targeting in bacteria and chloroplasts slightly deviate from the canonical mechanism found in eukaryotes. Pro- and eukaryotic cells harbour regulatory mechanisms to prevent a malfunction of the SRP pathway.
Collapse
Affiliation(s)
- H-G Koch
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, 79104, Freiburg, Germany.
| | | | | |
Collapse
|
139
|
Wang HW, Chen Y, Yang H, Chen X, Duan MX, Tai PC, Sui SF. Ring-like pore structures of SecA: implication for bacterial protein-conducting channels. Proc Natl Acad Sci U S A 2003; 100:4221-6. [PMID: 12642659 PMCID: PMC153074 DOI: 10.1073/pnas.0737415100] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SecA, an essential component of the general protein secretion pathway of bacteria, is present in Escherichia coli as soluble and membrane-integral forms. Here we show by electron microscopy that SecA assumes two characteristic forms in the presence of phospholipid monolayers: dumbbell-shaped elongated structures and ring-like pore structures. The ring-like pore structures with diameters of 8 nm and holes of 2 nm are found only in the presence of anionic phospholipids. These ring-like pore structures with larger 3- to 6-nm holes (without staining) were also observed by atomic force microscopic examination. They do not form in solution or in the presence of uncharged phosphatidylcholine. These ring-like phospholipid-induced pore-structures may form the core of bacterial protein-conducting channels through bacterial membranes.
Collapse
Affiliation(s)
- Hong-Wei Wang
- Department of Biological Sciences and Biotechnology, State-Key Laboratory of Biomembranes, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
140
|
de Felipe P, Hughes LE, Ryan MD, Brown JD. Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide. J Biol Chem 2003; 278:11441-8. [PMID: 12522142 DOI: 10.1074/jbc.m211644200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
During co-translational protein import into the endoplasmic reticulum ribosomes are docked onto the translocon. This prevents inappropriate exposure of nascent chains to the cytosol and, conversely, cytosolic factors from gaining access to the nascent chain. We exploited this property of co-translational translocation to examine the mechanism of polypeptide cleavage by the 2A peptide of the foot-and-mouth disease virus. We find that the scission reaction is unaffected by placing 2A into a co-translationally targeted protein. Moreover, the portion of the polypeptide C-terminal to the cleavage site remains in the cytosol unless it contains its own signal sequence. The pattern of cleavage is consistent with the proposal that the 2A-mediated cleavage reaction occurs within the ribosome itself. In addition, our data indicate that the ribosome-translocon complex detects the break in the nascent chain and prevents any downstream protein lacking a signal sequence from gaining access to the endoplasmic reticulum.
Collapse
Affiliation(s)
- Pablo de Felipe
- School of Biology, Centre for Biomolecular Sciences, Biomolecular Sciences Building, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, United Kingdom
| | | | | | | |
Collapse
|
141
|
Pagé N, Gérard-Vincent M, Ménard P, Beaulieu M, Azuma M, Dijkgraaf GJP, Li H, Marcoux J, Nguyen T, Dowse T, Sdicu AM, Bussey H. A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin. Genetics 2003; 163:875-94. [PMID: 12663529 PMCID: PMC1462477 DOI: 10.1093/genetics/163.3.875] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using the set of Saccharomyces cerevisiae mutants individually deleted for 5718 yeast genes, we screened for altered sensitivity to the antifungal protein, K1 killer toxin, that binds to a cell wall beta-glucan receptor and subsequently forms lethal pores in the plasma membrane. Mutations in 268 genes, including 42 in genes of unknown function, had a phenotype, often mild, with 186 showing resistance and 82 hypersensitivity compared to wild type. Only 15 of these genes were previously known to cause a toxin phenotype when mutated. Mutants for 144 genes were analyzed for alkali-soluble beta-glucan levels; 63 showed alterations. Further, mutants for 118 genes with altered toxin sensitivity were screened for SDS, hygromycin B, and calcofluor white sensitivity as indicators of cell surface defects; 88 showed some additional defect. There is a markedly nonrandom functional distribution of the mutants. Many genes affect specific areas of cellular activity, including cell wall glucan and mannoprotein synthesis, secretory pathway trafficking, lipid and sterol biosynthesis, and cell surface signal transduction, and offer new insights into these processes and their integration.
Collapse
Affiliation(s)
- Nicolas Pagé
- Biology Department, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Fons RD, Bogert BA, Hegde RS. Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J Cell Biol 2003; 160:529-39. [PMID: 12578908 PMCID: PMC2173754 DOI: 10.1083/jcb.200210095] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2002] [Revised: 12/30/2002] [Accepted: 12/30/2002] [Indexed: 11/22/2022] Open
Abstract
Although the transport of model proteins across the mammalian ER can be reconstituted with purified Sec61p complex, TRAM, and signal recognition particle receptor, some substrates, such as the prion protein (PrP), are inefficiently or improperly translocated using only these components. Here, we purify a factor needed for proper translocation of PrP and identify it as the translocon-associated protein (TRAP) complex. Surprisingly, TRAP also stimulates vectorial transport of many, but not all, other substrates in a manner influenced by their signal sequences. Comparative analyses of several natural signal sequences suggest that a dependence on TRAP for translocation is not due to any single physical parameter, such as hydrophobicity of the signal sequence. Instead, a functional property of the signal, efficiency of its post-targeting role in initiating substrate translocation, correlates inversely with TRAP dependence. Thus, maximal translocation independent of TRAP can only be achieved with a signal sequence, such as the one from prolactin, whose strong interaction with the translocon mediates translocon gating shortly after targeting. These results identify the TRAP complex as a functional component of the translocon and demonstrate that it acts in a substrate-specific manner to facilitate the initiation of protein translocation.
Collapse
Affiliation(s)
- Ryen D Fons
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
143
|
Abstract
Protein unfolding is an important step in several cellular processes, most interestingly protein degradation by ATP-dependent proteases and protein translocation across some membranes. Unfolding can be catalyzed when the unfoldases change the unfolding pathway of substrate proteins by pulling at their polypeptide chains. The resistance of a protein to unraveling during these processes is not determined by the protein's stability against global unfolding, as measured by temperature or solvent denaturation in vitro. Instead, resistance to unfolding is determined by the local structure that the unfoldase encounters first as it follows the substrate's polypeptide chain from the targeting signal. As unfolding is a necessary step in protein degradation and translocation, the susceptibility to unfolding of substrate proteins contributes to the specificity of these important cellular processes.
Collapse
Affiliation(s)
- Andreas Matouschek
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA.
| |
Collapse
|
144
|
Morgan DG, Ménétret JF, Neuhof A, Rapoport TA, Akey CW. Structure of the mammalian ribosome-channel complex at 17A resolution. J Mol Biol 2002; 324:871-86. [PMID: 12460584 DOI: 10.1016/s0022-2836(02)01111-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The co-translational translocation of proteins into the endoplasmic reticulum (ER) lumen and the biogenesis of membrane proteins require ribosome binding to a membrane channel formed by the Sec61p complex. We now report the 17A structure of a mammalian ribosome-channel complex derived from ER membranes. Atomic models of the ribosomal subunits were aligned to the programmed ribosome from Thermus thermophilus, to provide a common reference frame. The T.thermophilus ribosome, and by extension all known high resolution subunit models, were then docked within our map of the ribosome-channel complex. The structure shows that the ribosome contains a putative tRNA in the exit site, and a comparison with a non-programmed, yeast ribosome suggests that the L1 stalk may function as a gate in the tRNA exit path. We have localized six major expansion segments in the large subunit of the vertebrate ribosome including ES27, and suggest a function for ES30. The large ribosomal subunit is linked to the channel by four connections. We identified regions in the large subunit rRNA and four proteins that may help form the connections. These regions of the ribosome probably serve as a template to guide the assembly of the asymmetric translocation channel. Three of the connections form a picket fence that separates the putative translocation pore from the attachment site of an additional membrane component. The ribosome-channel connections also create an open junction that would allow egress of a nascent chain into the cytosol. At a threshold that is appropriate for the entire complex, the channel is rather solid and the lumenal half of the putative translocation pore is closed. These data suggest that the flow of small molecules across the membrane may be impeded by the channel itself, rather than the ribosome-channel junction.
Collapse
Affiliation(s)
- David Gene Morgan
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston, MA 02118-2526, USA
| | | | | | | | | |
Collapse
|
145
|
De Keyzer J, Van Der Does C, Driessen AJM. Kinetic analysis of the translocation of fluorescent precursor proteins into Escherichia coli membrane vesicles. J Biol Chem 2002; 277:46059-65. [PMID: 12226104 DOI: 10.1074/jbc.m208449200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein secretion in Escherichia coli is mediated by translocase, a multi-subunit membrane protein complex with SecA as ATP-driven motor protein and the SecYEG complex as translocation pore. A fluorescent assay was developed to facilitate kinetic studies of protein translocation. Single cysteine mutants of proOmpA were site-specific labeled with fluorescent dyes, and the SecA and ATP-dependent translocation into inner membrane vesicles and SecYEG proteoliposomes was monitored by means of protease accessibility and in gel fluorescent imaging. The translocation of fluorescently labeled proOmpA was largely independent on the position and the size of the fluorescent label (up to a size of 13-16 A). A fluorophore at the +4 position blocked translocation, but inhibition was completely relieved in the PrlA4 mutant. The kinetics of translocation of the fluorescently labeled proOmpA could be directly monitored by means of fluorescence quenching. Inner membrane vesicles containing wild-type SecYEG were found to translocate proOmpA with a turnover of 4.5 molecules proOmpA/SecYEG complex/min and an apparent K(m) of 180 nm, whereas the PrlA4 mutant showed an almost 10-fold increase in turnover rate and a 3-fold increase of the apparent K(m) for proOmpA translocation.
Collapse
Affiliation(s)
- Jeanine De Keyzer
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
146
|
Carveth K, Buck T, Anthony V, Skach WR. Cooperativity and flexibility of cystic fibrosis transmembrane conductance regulator transmembrane segments participate in membrane localization of a charged residue. J Biol Chem 2002; 277:39507-14. [PMID: 12186867 DOI: 10.1074/jbc.m205759200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polytopic protein topology is established in the endoplasmic reticulum (ER) by sequence determinants encoded throughout the nascent polypeptide. Here we characterize 12 topogenic determinants in the cystic fibrosis transmembrane conductance regulator, and identify a novel mechanism by which a charged residue is positioned within the plane of the lipid bilayer. During cystic fibrosis transmembrane conductance regulator biogenesis, topology of the C-terminal transmembrane domain (TMs 7-12) is directed by alternating signal (TMs 7, 9, and 11) and stop transfer (TMs 8, 10, and 12) sequences. Unlike conventional stop transfer sequences, however, TM8 is unable to independently terminate translocation due to the presence of a single charged residue, Asp(924), within the TM segment. Instead, TM8 stop transfer activity is specifically dependent on TM7, which functions both to initiate translocation and to compensate for the charged residue within TM8. Moreover, even in the presence of TM7, the N terminus of TM8 extends significantly into the ER lumen, suggesting a high degree of flexibility in establishing TM8 transmembrane boundaries. These studies demonstrate that signal sequences can markedly influence stop transfer behavior and indicate that ER translocation machinery simultaneously integrates information from multiple topogenic determinants as they are presented in rapid succession during polytopic protein biogenesis.
Collapse
Affiliation(s)
- Kristin Carveth
- Division of Molecular Medicine, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | |
Collapse
|
147
|
Pool MR, Stumm J, Fulga TA, Sinning I, Dobberstein B. Distinct modes of signal recognition particle interaction with the ribosome. Science 2002; 297:1345-8. [PMID: 12193787 DOI: 10.1126/science.1072366] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Signal recognition particle (SRP), together with its receptor (SR), mediates the targeting of ribosome-nascent chain complexes to the endoplasmic reticulum. Using protein cross-linking, we detected distinct modes in the binding of SRP to the ribosome. During signal peptide recognition, SRP54 is positioned at the exit site close to ribosomal proteins L23a and L35. When SRP54 contacts SR, SRP54 is rearranged such that it is no longer close to L23a. This repositioning may allow the translocon to dock with the ribosome, leading to insertion of the signal peptide into the translocation channel.
Collapse
Affiliation(s)
- Martin R Pool
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), D-69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
148
|
Abstract
The ribosome is a particle made of RNA and protein that is found in abundance in all cells that are actively making protein. It catalyses the messenger RNA-directed synthesis of proteins. Recent structural work has demonstrated a profound involvement of the ribosome's RNA component in all aspects of its function, supporting the hypothesis that proteins were added to the ribosome late in its evolution.
Collapse
Affiliation(s)
- Peter B Moore
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208107, New Haven, Connecticut 06520-8107, USA.
| | | |
Collapse
|
149
|
Wittke S, Dünnwald M, Albertsen M, Johnsson N. Recognition of a subset of signal sequences by Ssh1p, a Sec61p-related protein in the membrane of endoplasmic reticulum of yeast Saccharomyces cerevisiae. Mol Biol Cell 2002; 13:2223-32. [PMID: 12134063 PMCID: PMC117307 DOI: 10.1091/mbc.01-10-0518] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ssh1p of Saccharomyces cerevisiae is related in sequence to Sec61p, a general receptor for signal sequences and the major subunit of the channel that guides proteins across the membrane of the endoplasmic reticulum. The split-ubiquitin technique was used to determine whether Ssh1p serves as an additional receptor for signal sequences in vivo. We measured the interactions between the N(ub)-labeled Ssh1p and C(ub)-translocation substrates bearing four different signal sequences. The so-determined interaction profile of Ssh1p was compared with the signal sequence interaction profile of the correspondingly modified N(ub)-Sec61p. The assay reveals interactions of Ssh1p with the signal sequences of Kar2p and invertase, whereas Sec61p additionally interacts with the signal sequences of Mfalpha1 and carboxypeptidase Y. The measured physical proximity between Ssh1p and the beta-subunit of the signal sequence recognition particle receptor confirms our hypothesis that Ssh1p is directly involved in the cotranslational translocation of proteins across the membrane of the endoplasmic reticulum.
Collapse
|
150
|
Potter MD, Nicchitta CV. Endoplasmic reticulum-bound ribosomes reside in stable association with the translocon following termination of protein synthesis. J Biol Chem 2002; 277:23314-20. [PMID: 11964406 DOI: 10.1074/jbc.m202559200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In current views, translation-coupled ribosome binding to the endoplasmic reticulum (ER) membrane is transient, with association occurring via the signal recognition particle pathway and dissociation occurring upon the termination of protein synthesis. Recent studies indicate, however, that ribosomal subunits remain membrane-bound following the termination of protein synthesis. To define the mechanism of post-termination ribosome association with the ER membrane, membrane-bound ribosomes were detergent-solubilized from tissue culture cells at different stages of the protein synthesis cycle, and the composition of the ribosome-associated membrane protein fraction was determined. We report that ribosomes reside in stable association with the Sec61alpha-translocon following the termination stage of protein synthesis. Additionally, in vitro experiments revealed that solubilized, gradient-purified ribosome-translocon complexes were able to initiate the translation of secretory and cytosolic proteins and were functional in assays of signal sequence recognition. Using this experimental system, synthesis of signal sequence-bearing polypeptides yielded a tight ribosome-translocon junction; synthesis of nascent polypeptides lacking a signal sequence resulted in a disruption of this junction. On the basis of these data, we propose that in situ, ribosomes reside in association with the translocon throughout the cycle of protein synthesis, with membrane release occurring upon translation of proteins lacking topogenic signals.
Collapse
Affiliation(s)
- Matthew D Potter
- Department of Cell Biology, Box 3709, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|