101
|
Regulatory T cells in cancer immunosuppression - implications for anticancer therapy. Nat Rev Clin Oncol 2019; 16:356-371. [PMID: 30705439 DOI: 10.1038/s41571-019-0175-7] [Citation(s) in RCA: 1007] [Impact Index Per Article: 167.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regulatory T (Treg) cells, an immunosuppressive subset of CD4+ T cells characterized by the expression of the master transcription factor forkhead box protein P3 (FOXP3), are a component of the immune system with essential roles in maintaining self-tolerance. In addition, Treg cells can suppress anticancer immunity, thereby hindering protective immunosurveillance of neoplasia and hampering effective antitumour immune responses in tumour-bearing hosts, thus promoting tumour development and progression. Identification of the factors that are specifically expressed in Treg cells and/or that influence Treg cell homeostasis and function is important to understanding cancer pathogenesis and to identifying therapeutic targets. Immune-checkpoint inhibitors (ICIs) have provided a paradigm shift in the treatment of cancer. Most immune-checkpoint molecules are expressed in Treg cells, but the effects of ICIs on Treg cells, and thus the contributions of these cells to treatment responses, remain unclear. Notably, evidence indicates that ICIs targeting programmed cell death 1 (PD-1) might enhance the immunosuppressive function of Treg cells, whereas cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitors might deplete these cells. Thus, although manipulation of Treg cells is a promising anticancer therapeutic strategy, approaches to controlling these cells require further research. Herein, we discuss novel insights into the roles of Treg cells in cancer, which can hopefully be used to develop Treg cell-targeted therapies and facilitate immune precision medicine.
Collapse
|
102
|
Tanaka A, Sakaguchi S. Targeting Treg cells in cancer immunotherapy. Eur J Immunol 2019; 49:1140-1146. [PMID: 31257581 DOI: 10.1002/eji.201847659] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/22/2019] [Accepted: 06/25/2019] [Indexed: 02/04/2023]
Abstract
Foxp3-expressing regulatory T (Treg) cells, which are indispensable for preventing autoimmunity, also suppress effective tumor immunity. Treg cells abundantly infiltrate into tumor tissues, which is often associated with poor prognosis in cancer patients. Removal of Treg cells enhances anti-tumor immune responses but may also elicit autoimmunity. A key issue in devising Treg-targeting cancer immunotherapy is, therefore, how to specifically deplete Treg cells infiltrating into tumor tissues without affecting tumor-reactive effector T cells, while suppressing autoimmunity. This can be achieved by differentially controlling Treg and effector T cells by various ways. In this review, we discuss how tumor-infiltrating Foxp3+ Treg cells hamper effective anti-tumor immune responses especially in tumor tissues and how they can be specifically targeted for augmenting tumor immunity but not autoimmunity.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Frontier Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
103
|
Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci 2019; 110:2080-2089. [PMID: 31102428 PMCID: PMC6609813 DOI: 10.1111/cas.14069] [Citation(s) in RCA: 712] [Impact Index Per Article: 118.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
Regulatory T (Treg) cells suppress abnormal/excessive immune responses to self‐ and nonself‐antigens to maintain immune homeostasis. In tumor immunity, Treg cells are involved in tumor development and progression by inhibiting antitumor immunity. There are several Treg cell immune suppressive mechanisms: inhibition of costimulatory signals by CD80 and CD86 expressed by dendritic cells through cytotoxic T‐lymphocyte antigen‐4, interleukin (IL)‐2 consumption by high‐affinity IL‐2 receptors with high CD25 (IL‐2 receptor α‐chain) expression, secretion of inhibitory cytokines, metabolic modulation of tryptophan and adenosine, and direct killing of effector T cells. Infiltration of Treg cells into the tumor microenvironment (TME) occurs in multiple murine and human tumors. Regulatory T cells are chemoattracted to the TME by chemokine gradients such as CCR4‐CCL17/22, CCR8‐CCL1, CCR10‐CCL28, and CXCR3‐CCL9/10/11. Regulatory T cells are then activated and inhibit antitumor immune responses. A high infiltration by Treg cells is associated with poor survival in various types of cancer. Therefore, strategies to deplete Treg cells and control of Treg cell functions to increase antitumor immune responses are urgently required in the cancer immunotherapy field. Various molecules that are highly expressed by Treg cells, such as immune checkpoint molecules, chemokine receptors, and metabolites, have been targeted by Abs or small molecules, but additional strategies are needed to fine‐tune and optimize for augmenting antitumor effects restricted in the TME while avoiding systemic autoimmunity. Here, we provide a brief synopsis of these cells in cancer and how they can be controlled to achieve therapeutic outcomes.
Collapse
Affiliation(s)
- Yoshihiro Ohue
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan.,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
104
|
Kim JH, Kim SC. Paraneoplastic Pemphigus: Paraneoplastic Autoimmune Disease of the Skin and Mucosa. Front Immunol 2019; 10:1259. [PMID: 31214197 PMCID: PMC6558011 DOI: 10.3389/fimmu.2019.01259] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/17/2019] [Indexed: 12/25/2022] Open
Abstract
Paraneoplastic pemphigus (PNP) is a rare but life-threatening mucocutaneous disease mediated by paraneoplastic autoimmunity. Various neoplasms are associated with PNP. Intractable stomatitis and polymorphous cutaneous eruptions, including blisters and lichenoid dermatitis, are characteristic clinical features caused by humoral and cell-mediated autoimmune reactions. Autoreactive T cells and IgG autoantibodies against heterogeneous antigens, including plakin family proteins and desmosomal cadherins, contribute to the pathogenesis of PNP. Several mechanisms of autoimmunity may be at play in this disease on the type of neoplasm present. Diagnosis can be made based on clinical and histopathological features, the presence of anti-plakin autoantibodies, and underlying neoplasms. Immunosuppressive agents and biologics including rituximab have been used for the treatment of PNP; however, the prognosis is poor due to underlying malignancies, severe infections during immunosuppressive treatment, and bronchiolitis obliterans mediated by autoimmunity. In this review, we overview the characteristics of PNP and focus on the immunopathology and the potential pathomechanisms of this disease.
Collapse
Affiliation(s)
- Jong Hoon Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Soo-Chan Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
105
|
Tuncel J, Benoist C, Mathis D. T cell anergy in perinatal mice is promoted by T reg cells and prevented by IL-33. J Exp Med 2019; 216:1328-1344. [PMID: 30988052 PMCID: PMC6547863 DOI: 10.1084/jem.20182002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022] Open
Abstract
Perinatal T cells broadly access nonlymphoid tissues, where they are exposed to sessile tissue antigens. To probe the outcome of such encounters, we examined the defective elimination of self-reactive clones in Aire-deficient mice. Nonlymphoid tissues were sequentially seeded by distinct waves of CD4+ T cells. Early arrivers were mostly Foxp3+ regulatory T (T reg) cells and metabolically active, highly proliferative conventional T cells (T conv cells). T conv cells had unusually high expression of PD-1 and the IL-33 receptor ST2. As T conv cells accumulated in the tissue, they gradually lost expression of ST2, ceased to proliferate, and acquired an anergic phenotype. The transition from effector to anergic state was substantially faster in ST2-deficient perinates, whereas it was abrogated in IL-33-treated mice. A similar dampening of anergy occurred after depletion of perinatal T reg cells. Attenuation of anergy through PD-1 blockade or IL-33 administration promoted the immediate breakdown of tolerance and onset of multiorgan autoimmunity. Hence, regulating IL-33 availability may be critical in maintaining T cell anergy.
Collapse
Affiliation(s)
- Jonatan Tuncel
- Department of Immunology, Harvard Medical School, Boston, MA
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA
| |
Collapse
|
106
|
Huang KW, Jayant K, Lee PH, Yang PC, Hsiao CY, Habib N, Sodergren MH. Positive Immuno-Modulation Following Radiofrequency Assisted Liver Resection in Hepatocellular Carcinoma. J Clin Med 2019; 8:385. [PMID: 30893948 PMCID: PMC6463076 DOI: 10.3390/jcm8030385] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) often develops on a background of chronic inflammation and a complex immunosuppressive network with increased regulatory T cells, impaired CD8⁺ T cells and the secretion of immunosuppressive cytokines. Previous clinical studies have reported a superior disease-free survival (DFS) following a radiofrequency-based ablation or resection in HCC tumours compared to conventional liver resection techniques. The aim of this study was to investigate whether there is any correlation with the use of a radiofrequency-assisted liver resection and clinical outcome. MATERIAL AND METHODS Patients' peripheral blood was collected prior and 7 days following surgery from patients undergoing a liver resection for HCC. There were 5 liver resections performed using CUSA and 6 liver resections with the RF-based device, HabibTM 4X. The primary endpoint of the study was to assess the immunological parameters of circulating immune cell populations as well as serum cytokines. The Student's t-test, chi-square or Fisher's Exact test were applied for statistical comparisons, as appropriate. RESULTS Patients undergoing an RF-assisted liver resection with HabibTM 4X had a significant decrease in the inhibitory Treg cells (p = 0.002) and a significant increase in CD8⁺ T lymphocytes (p = 0.050) and CD4⁺CD45RO⁺/CD4⁺ memory T cells (p = 0.002) compared to those patients undergoing a liver resection with CUSA. It was also noted that the RF-assisted liver resection group had a significant decrease in circulating TGF-ß (p = 0.000), IL10 (p = 0.000) and a significant increase in IFN-gamma (p = 0. 027) and IL-17 compared to the CUSA group. CONCLUSION A liver resection with RF-based device HabibTM 4X was associated with positive immunomodulatory changes in circulating immune cells and circulating cytokines which could explain the significant improvement in DFS.
Collapse
Affiliation(s)
- Kai Wen Huang
- Department of Surgery & Hepatitis Research Center, National Taiwan University Hospital, Taipei 10051, Taiwan.
- Centre of Mini-invasive Interventional Oncology, National Taiwan University Hospital, Taipei 10051, Taiwan.
- Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK.
| | - Kumar Jayant
- Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK.
- Department of Renal Transplant Surgery, Royal Free Hospital, London NW3 2QG, UK.
- Warwick Medical School, University of Warwick, Coventry, CV4 7HL, UK.
| | - Po-Huang Lee
- Department of Surgery & Hepatitis Research Center, National Taiwan University Hospital, Taipei 10051, Taiwan.
- Centre of Mini-invasive Interventional Oncology, National Taiwan University Hospital, Taipei 10051, Taiwan.
| | - Po-Chih Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
- Center for Organ Transplantation and Liver Disease Treatment, Fu Jen Catholic University Hospital, New Taipei City 24352, Taiwan.
- School of Medicine, Fu Jen Catholic University, New Taipei City 24352, Taiwan.
| | - Chih-Yang Hsiao
- Department of Surgery & Hepatitis Research Center, National Taiwan University Hospital, Taipei 10051, Taiwan.
- Centre of Mini-invasive Interventional Oncology, National Taiwan University Hospital, Taipei 10051, Taiwan.
| | - Nagy Habib
- Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK.
| | - Mikael H Sodergren
- Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
107
|
Cammarata I, Martire C, Citro A, Raimondo D, Fruci D, Melaiu O, D'Oria V, Carone C, Peruzzi G, Cerboni C, Santoni A, Sidney J, Sette A, Paroli M, Caccavale R, Milanetti E, Riminucci M, Timperi E, Piconese S, Manzo A, Montecucco C, Scrivo R, Valesini G, Cariani E, Barnaba V. Counter-regulation of regulatory T cells by autoreactive CD8 + T cells in rheumatoid arthritis. J Autoimmun 2019; 99:81-97. [PMID: 30777378 DOI: 10.1016/j.jaut.2019.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/21/2022]
Abstract
The mechanisms whereby autoreactive T cells escape peripheral tolerance establishing thus autoimmune diseases in humans remain an unresolved question. Here, we demonstrate that autoreactive polyfunctional CD8+ T cells recognizing self-antigens (i.e., vimentin, actin cytoplasmic 1, or non-muscle myosin heavy chain 9 epitopes) with high avidity, counter-regulate Tregs by killing them, in a consistent percentage of rheumatoid arthritis (RA) patients. Indeed, these CD8+ T cells express a phenotype and gene profile of effector (eff) cells and, upon antigen-specific activation, kill Tregs indirectly in an NKG2D-dependent bystander fashion in vitro. This data provides a mechanistic basis for the finding showing that AE-specific (CD107a+) CD8+ T killer cells correlate, directly with the disease activity score, and inversely with the percentage of activated Tregs, in both steady state and follow-up studies in vivo. In addition, multiplex immunofluorescence imaging analyses of inflamed synovial tissues in vivo show that a remarkable number of CD8+ T cells express granzyme-B and selectively contact FOXP3+ Tregs, some of which are in an apoptotic state, validating hence the possibility that CD8+ Teff cells can counteract neighboring Tregs within inflamed tissues, by killing them. Alternatively, the disease activity score of a different subset of patients is correlated with the expansion of a peculiar subpopulation of autoreactive low avidity, partially-activated (pa)CD8+ T cells that, despite they conserve the conventional naïve (N) phenotype, produce high levels of tumor necrosis factor (TNF)-α and exhibit a gene expression signature of a progressive activation state. Tregs directly correlate with the expansion of this autoreactive (low avidity) paCD8+ TN cell subset in vivo, and efficiently control their differentiation rather their proliferation in vitro. Interestingly, autoreactive high avidity CD8+ Teff cells or low avidity paCD8+ TN cells are significantly expanded in RA patients who would become non-responders or patients who would become responders to TNF-α inhibitor therapy, respectively. These data provide evidence of a previously undescribed role of such mechanisms in the progression and therapy of RA.
Collapse
Affiliation(s)
- Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Carmela Martire
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Alessandra Citro
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Domenico Raimondo
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma, 00161, Rome, Italy
| | - Doriana Fruci
- Dipartimento di Ematologia/Oncologia, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy
| | - Ombretta Melaiu
- Dipartimento di Ematologia/Oncologia, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; Dipartimento di Biologia, Università di Pisa, 56126, Pisa, Italy
| | - Valentina D'Oria
- Core Facility Research Laboratories, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165, Rome, Italy
| | - Chiara Carone
- Ospedale Civile S. Agostino-Estense, 41126, Modena, Italy
| | - Giovanna Peruzzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Cristina Cerboni
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma, 00161, Rome, Italy; Istituto Pasteur - Fondazione Cenci Bolognetti, 00185, Rome, Italy
| | - Angela Santoni
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma, 00161, Rome, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy; Istituto Pasteur - Fondazione Cenci Bolognetti, 00185, Rome, Italy
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, San Diego, CA, 92121, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, San Diego, CA, 92121, USA
| | - Marino Paroli
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma, Polo Pontino, 04100, Latina, Italy
| | - Rosalba Caccavale
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Sapienza Università di Roma, Polo Pontino, 04100, Latina, Italy
| | - Edoardo Milanetti
- Dipartimento di Fisica, Sapienza Università di Roma, 00185, Rome, Italy
| | - Mara Riminucci
- Dipartimento di Medicina Molecolare, Sapienza Università di Roma, 00161, Rome, Italy
| | - Eleonora Timperi
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Silvia Piconese
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy; Istituto Pasteur - Fondazione Cenci Bolognetti, 00185, Rome, Italy
| | - Antonio Manzo
- Dipartimento di Medicina Interna e Terapia Medica, Fondazione IRCCS Policlinico "San Matteo", Università di Pavia, 27100, Pavia, Italy
| | - Carlomaurizio Montecucco
- Dipartimento di Medicina Interna e Terapia Medica, Fondazione IRCCS Policlinico "San Matteo", Università di Pavia, 27100, Pavia, Italy
| | - Rossana Scrivo
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | - Guido Valesini
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy
| | | | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, 00161, Rome, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161, Rome, Italy; Istituto Pasteur - Fondazione Cenci Bolognetti, 00185, Rome, Italy.
| |
Collapse
|
108
|
Li Y, Teteloshvili N, Tan S, Rao S, Han A, Yang YG, Creusot RJ. Humanized Mice Reveal New Insights Into the Thymic Selection of Human Autoreactive CD8 + T Cells. Front Immunol 2019; 10:63. [PMID: 30778347 PMCID: PMC6369192 DOI: 10.3389/fimmu.2019.00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/11/2019] [Indexed: 11/13/2022] Open
Abstract
Thymic selection constitutes the first checkpoint in T-cell development to purge autoreactive T cells. Most of our understanding of this process comes from animal models because of the challenges of studying thymopoiesis and how T cell receptor (TCR) specificity impacts thymocyte phenotype in humans. We developed a humanized mouse model involving the introduction of autoreactive TCRs and cognate autoantigens that enables the analysis of selection of human T cells in human thymic tissue in vivo. Here, we describe the thymic development of MART1-specific autoreactive CD8+ T cells that normally escape deletion and how their phenotype and survival are affected by introduction of the missing epitope in the hematopoietic lineage. Expression of the epitope in a fraction of hematopoietic cells, including all major types of antigen-presenting cells (APCs), led to profound yet incomplete deletion of these T cells. Upregulation of PD-1 upon antigen encounter occurred through the different stages of thymocyte development. PD-1 and CCR7 expression were mutually exclusive in both transgenic and non-transgenic thymocytes, challenging the view that CCR7 is necessary for negative selection in humans. In the presence of antigen, MART1-reactive T cells down-regulated TCR, CD3, CD8, and CD4 in the thymus and periphery. Moreover, expression of secondary TCRs influences MHC class I-restricted T cells to develop as CD4+, particularly regulatory T cells. This new model constitutes a valuable tool to better understand the development of autoreactive T cells identified in different human autoimmune diseases and the role of different APC subsets in their selection.
Collapse
Affiliation(s)
- Yang Li
- The First Hospital of Jilin University, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China.,Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Nato Teteloshvili
- Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY, United States.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, United States
| | - Shulian Tan
- The First Hospital of Jilin University, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China.,Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Samhita Rao
- Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY, United States.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, United States
| | - Arnold Han
- Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY, United States.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, United States
| | - Yong-Guang Yang
- The First Hospital of Jilin University, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China.,Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Rémi J Creusot
- Columbia Center for Translational Immunology and Department of Medicine, Columbia University Medical Center, New York, NY, United States.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
109
|
Reprogramming responsiveness to checkpoint blockade in dysfunctional CD8 T cells. Proc Natl Acad Sci U S A 2019; 116:2640-2645. [PMID: 30679280 DOI: 10.1073/pnas.1810326116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Established T cell dysfunction is a barrier to antitumor responses, and checkpoint blockade presumably reverses this. Many patients fail to respond to treatment and/or develop autoimmune adverse events. The underlying reason for T cell responsiveness remains elusive. Here, we show that susceptibility to checkpoint blockade is dependent on the activation status of T cells. Newly activated self-specific CD8 T cells respond to checkpoint blockade and cause autoimmunity, which is mitigated by inhibiting the mechanistic target of rapamycin. However, once tolerance is established, self-specific CD8 T cells display a gene signature comparable to tumor-specific CD8 T cells in a fixed state of dysfunction. Tolerant self-specific CD8 T cells do not respond to single or combinatorial dosing of anti-CTLA4, anti-PD-L1, anti-PD-1, anti-LAG-3, and/or anti-TIM-3. Despite this, T cell responsiveness can be induced by vaccination with cognate antigen, which alters the previously fixed transcriptional signature and increases antigen-sensing machinery. Antigenic reeducation of tolerant T cells synergizes with checkpoint blockade to generate functional CD8 T cells, which eliminate tumors without concomitant autoimmunity and are transcriptionally distinct from classic effector T cells. These data demonstrate that responses to checkpoint blockade are dependent on the activation state of a T cell and show that checkpoint blockade-insensitive CD8 T cells can be induced to respond to checkpoint blockade with robust antigenic stimulation to participate in tumor control.
Collapse
|
110
|
The Therapeutic Strategies of Regulatory T Cells in Malignancies and Stem Cell Transplantations. JOURNAL OF ONCOLOGY 2019; 2019:5981054. [PMID: 30693029 PMCID: PMC6332959 DOI: 10.1155/2019/5981054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/09/2018] [Accepted: 12/02/2018] [Indexed: 12/14/2022]
Abstract
Regulatory T cells (Treg cells) are considered one of the main dynamic cell types within the immune system. Because Treg cells suppress immune responses, they have potential roles in immunological self-tolerance and may help to maintain immune homeostasis. Promoting Treg cell function and increasing their numbers might be useful in treating autoimmune disorders, as well as preventing allograft rejection. However, studies of mice and humans demonstrate that Treg cells promote cancer progression and suppress antitumor immunity. Therefore, suppressing Treg cell function or reducing their numbers could support the immune system's response to pathogenic microorganisms and tumors. As a result, there is great interest in investigating the Treg cells role in the treatment of hematological and nonhematological malignancies. Consequently, Treg cells could be a fundamentally important target for pathologies of the immune system. Targeting effector Treg cells could help to distinguish and selectively decrease these cells while preserving other Treg cells needed to suppress autoimmunity. Currently, a promising way to treat malignancies and other autoimmune disorders is stem cell transplantation. Stem cell transplants (SCT) can help to manage the production of Treg cells and also may produce more efficient Treg cells, thereby suppressing clinical disease progression. Specifically, mature T cells within the engrafted stem cells mediate this SCT beneficial effect. During SCT, the recipient's immune system is replaced with a donor, which allows for improved immune system function. In addition, SCT can protect from disease relapse, as graft-versus-host disease (GvHD) in transplant patients can be protective against cancer recurrence. The current review will define the role of regulatory T cells in treatment of malignancy. Additionally, it will summarize current promising research regarding the utility of regulatory T cells in stem cell transplantation.
Collapse
|
111
|
Differential control of human Treg and effector T cells in tumor immunity by Fc-engineered anti-CTLA-4 antibody. Proc Natl Acad Sci U S A 2018; 116:609-618. [PMID: 30587582 DOI: 10.1073/pnas.1812186116] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anti-CTLA-4 mAb is efficacious in enhancing tumor immunity in humans. CTLA-4 is expressed by conventional T cells upon activation and by naturally occurring FOXP3+CD4+ Treg cells constitutively, raising a question of how anti-CTLA-4 mAb can differentially control these functionally opposing T cell populations in tumor immunity. Here we show that FOXP3high potently suppressive effector Treg cells were abundant in melanoma tissues, expressing CTLA-4 at higher levels than tumor-infiltrating CD8+ T cells. Upon in vitro tumor-antigen stimulation of peripheral blood mononuclear cells from healthy individuals or melanoma patients, Fc-region-modified anti-CTLA-4 mAb with high antibody-dependent cell-mediated cytotoxicity (ADCC) and cellular phagocytosis (ADCP) activity selectively depleted CTLA-4+FOXP3+ Treg cells and consequently expanded tumor-antigen-specific CD8+T cells. Importantly, the expansion occurred only when antigen stimulation was delayed several days from the antibody treatment to spare CTLA-4+ activated effector CD8+T cells from mAb-mediated killing. Similarly, in tumor-bearing mice, high-ADCC/ADCP anti-CTLA-4 mAb treatment with delayed tumor-antigen vaccination significantly prolonged their survival and markedly elevated cytokine production by tumor-infiltrating CD8+ T cells, whereas antibody treatment concurrent with vaccination did not. Anti-CTLA-4 mAb modified to exhibit a lesser or no Fc-binding activity failed to show such timing-dependent in vitro and in vivo immune enhancement. Thus, high ADCC anti-CTLA-4 mAb is able to selectively deplete effector Treg cells and evoke tumor immunity depending on the CTLA-4-expressing status of effector CD8+ T cells. These findings are instrumental in designing cancer immunotherapy with mAbs targeting the molecules commonly expressed by FOXP3+ Treg cells and tumor-reactive effector T cells.
Collapse
|
112
|
Culina S, Lalanne AI, Afonso G, Cerosaletti K, Pinto S, Sebastiani G, Kuranda K, Nigi L, Eugster A, Østerbye T, Maugein A, McLaren JE, Ladell K, Larger E, Beressi JP, Lissina A, Appay V, Davidson HW, Buus S, Price DA, Kuhn M, Bonifacio E, Battaglia M, Caillat-Zucman S, Dotta F, Scharfmann R, Kyewski B, Mallone R. Islet-reactive CD8 + T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors. Sci Immunol 2018; 3:3/20/eaao4013. [PMID: 29429978 DOI: 10.1126/sciimmunol.aao4013] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 12/04/2017] [Indexed: 12/23/2022]
Abstract
The human leukocyte antigen-A2 (HLA-A2)-restricted zinc transporter 8186-194 (ZnT8186-194) and other islet epitopes elicit interferon-γ secretion by CD8+ T cells preferentially in type 1 diabetes (T1D) patients compared with controls. We show that clonal ZnT8186-194-reactive CD8+ T cells express private T cell receptors and display equivalent functional properties in T1D and healthy individuals. Ex vivo analyses further revealed that CD8+ T cells reactive to ZnT8186-194 and other islet epitopes circulate at similar frequencies and exhibit a predominantly naïve phenotype in age-matched T1D and healthy donors. Higher frequencies of ZnT8186-194-reactive CD8+ T cells with a more antigen-experienced phenotype were detected in children versus adults, irrespective of disease status. Moreover, some ZnT8186-194-reactive CD8+ T cell clonotypes were found to cross-recognize a Bacteroides stercoris mimotope. Whereas ZnT8 was poorly expressed in thymic medullary epithelial cells, variable thymic expression levels of islet antigens did not modulate the peripheral frequency of their cognate CD8+ T cells. In contrast, ZnT8186-194-reactive cells were enriched in the pancreata of T1D patients versus nondiabetic and type 2 diabetic individuals. Thus, islet-reactive CD8+ T cells circulate in most individuals but home to the pancreas preferentially in T1D patients. We conclude that the activation of this common islet-reactive T cell repertoire and progression to T1D likely require defective peripheral immunoregulation and/or a proinflammatory islet microenvironment.
Collapse
Affiliation(s)
- Slobodan Culina
- INSERM, U1016, Cochin Institute, Paris, France.,CNRS, UMR8104, Cochin Institute, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Ana Ines Lalanne
- INSERM, U1016, Cochin Institute, Paris, France.,CNRS, UMR8104, Cochin Institute, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Georgia Afonso
- INSERM, U1016, Cochin Institute, Paris, France.,CNRS, UMR8104, Cochin Institute, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Karen Cerosaletti
- Benaroya Research Institute, Translational Research Program, Seattle, WA 98101, USA
| | - Sheena Pinto
- Division of Developmental Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, and Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Klaudia Kuranda
- INSERM, U1016, Cochin Institute, Paris, France.,CNRS, UMR8104, Cochin Institute, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, and Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Anne Eugster
- CRTD-DFG Research Center for Regenerative Therapies Dresden, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Thomas Østerbye
- Department of International Health, Immunology and Microbiology, Panum Institute, Copenhagen, Denmark
| | - Alicia Maugein
- INSERM, U1016, Cochin Institute, Paris, France.,CNRS, UMR8104, Cochin Institute, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - James E McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Etienne Larger
- INSERM, U1016, Cochin Institute, Paris, France.,CNRS, UMR8104, Cochin Institute, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Assistance Publique Hôpitaux de Paris, Service de Diabétologie, Cochin Hospital, Paris, France
| | - Jean-Paul Beressi
- Centre Hospitalier de Versailles André Mignot, Service de Diabétologie, Le Chesnay, France
| | - Anna Lissina
- Pierre et Marie Curie Paris 6 University, Sorbonne Paris Cité, Département Hospitalo-Universitaire FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.,INSERM, U1135, CIMI-Paris, Paris, France
| | - Victor Appay
- Pierre et Marie Curie Paris 6 University, Sorbonne Paris Cité, Département Hospitalo-Universitaire FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.,INSERM, U1135, CIMI-Paris, Paris, France
| | - Howard W Davidson
- Barbara Davis Center for Diabetes and Integrated Department of Immunology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Søren Buus
- Department of International Health, Immunology and Microbiology, Panum Institute, Copenhagen, Denmark
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthias Kuhn
- Institut für Medizinische Informatik und Biometrie, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Ezio Bonifacio
- CRTD-DFG Research Center for Regenerative Therapies Dresden, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Manuela Battaglia
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sophie Caillat-Zucman
- Assistance Publique Hôpitaux de Paris, Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Paris, France
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, and Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | - Raphael Scharfmann
- INSERM, U1016, Cochin Institute, Paris, France.,CNRS, UMR8104, Cochin Institute, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Bruno Kyewski
- Division of Developmental Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roberto Mallone
- INSERM, U1016, Cochin Institute, Paris, France. .,CNRS, UMR8104, Cochin Institute, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Assistance Publique Hôpitaux de Paris, Service de Diabétologie, Cochin Hospital, Paris, France
| | | |
Collapse
|
113
|
Dowling MR, Kan A, Heinzel S, Marchingo JM, Hodgkin PD, Hawkins ED. Regulatory T Cells Suppress Effector T Cell Proliferation by Limiting Division Destiny. Front Immunol 2018; 9:2461. [PMID: 30425712 PMCID: PMC6218578 DOI: 10.3389/fimmu.2018.02461] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/04/2018] [Indexed: 11/23/2022] Open
Abstract
Understanding how the strength of an effector T cell response is regulated is a fundamental problem in immunology with implications for immunity to pathogens, autoimmunity, and immunotherapy. The initial magnitude of the T cell response is determined by the sum of independent signals from antigen, co-stimulation and cytokines. By applying quantitative methods, the contribution of each signal to the number of divisions T cells undergo (division destiny) can be measured, and the resultant exponential increase in response magnitude accurately calculated. CD4+CD25+Foxp3+ regulatory T cells suppress self-reactive T cell responses and limit pathogen-directed immune responses before bystander damage occurs. Using a quantitative modeling framework to measure T cell signal integration and response, we show that Tregs modulate division destiny, rather than directly increasing the rate of death or delaying interdivision times. The quantitative effect of Tregs could be mimicked by modulating the availability of stimulatory co-stimuli and cytokines or through the addition of inhibitory signals. Thus, our analysis illustrates the primary effect of Tregs on the magnitude of effector T cell responses is mediated by modifying division destiny of responding cell populations.
Collapse
Affiliation(s)
- Mark R Dowling
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Andrey Kan
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Susanne Heinzel
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Julia M Marchingo
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Philip D Hodgkin
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Edwin D Hawkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
114
|
Enokida T, Nishikawa H. Regulatory T cells, as a target in anticancer immunotherapy. Immunotherapy 2018; 9:623-627. [PMID: 28653572 DOI: 10.2217/imt-2017-0057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Tomohiro Enokida
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan.,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
115
|
Miller ML, McIntosh CM, Williams JB, Wang Y, Hollinger MK, Isaad NJ, Moon JJ, Gajewski TF, Chong AS, Alegre ML. Distinct Graft-Specific TCR Avidity Profiles during Acute Rejection and Tolerance. Cell Rep 2018; 24:2112-2126. [PMID: 30134172 PMCID: PMC6142813 DOI: 10.1016/j.celrep.2018.07.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/19/2018] [Accepted: 07/18/2018] [Indexed: 11/17/2022] Open
Abstract
Mechanisms implicated in robust transplantation tolerance at the cellular level can be broadly categorized into those that inhibit alloreactive T cells intrinsically (clonal deletion and dysfunction) or extrinsically through regulation. Here, we investigated whether additional population-level mechanisms control T cells by examining whether therapeutically induced peripheral transplantation tolerance could influence T cell populations' avidity for alloantigens. Whereas T cells with high avidity preferentially accumulated during acute rejection of allografts, the alloreactive T cells in tolerant recipients retained a low-avidity profile, comparable to naive mice despite evidence of activation. These contrasting avidity profiles upon productive versus tolerogenic stimulation were durable and persisted upon alloantigen re-encounter in the absence of any immunosuppression. Thus, peripheral transplantation tolerance involves control of alloreactive T cells at the population level, in addition to the individual cell level. Controlling expansion or eliminating high-affinity, donor-specific T cells long term may be desirable to achieve robust transplantation tolerance in the clinic.
Collapse
Affiliation(s)
- Michelle L Miller
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, USA
| | - Christine M McIntosh
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, USA
| | - Jason B Williams
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Ying Wang
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, USA
| | - Maile K Hollinger
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, USA
| | - Noel J Isaad
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, USA
| | - James J Moon
- Center for Immunology and Inflammatory Diseases and Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Charlestown, MA 02129, USA
| | - Thomas F Gajewski
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Anita S Chong
- Department of Surgery, Section of Transplantation, The University of Chicago, Chicago, IL 60637, USA
| | - Maria-Luisa Alegre
- Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
116
|
Boniface K, Seneschal J, Picardo M, Taïeb A. Vitiligo: Focus on Clinical Aspects, Immunopathogenesis, and Therapy. Clin Rev Allergy Immunol 2018; 54:52-67. [PMID: 28685247 DOI: 10.1007/s12016-017-8622-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vitiligo is an acquired chronic depigmenting disorder of the skin, with an estimated prevalence of 0.5% of the general population, characterized by the development of white macules resulting from a loss of epidermal melanocytes. The nomenclature has been revised after an extensive international work within the vitiligo global issues consensus conference, and vitiligo (formerly non-segmental vitiligo) is now a consensus umbrella term for all forms of generalized vitiligo. Two other subsets of vitiligo are segmental vitiligo and unclassified/undetermined vitiligo, which corresponds to focal disease and rare variants. A series of hypopigmented disorders may masquerade as vitiligo, and some of them need to be ruled out by specific procedures including a skin biopsy. Multiple mechanisms are involved in melanocyte disappearance, namely genetic predisposition, environmental triggers, metabolic abnormalities, impaired renewal, and altered inflammatory and immune responses. The auto-immune/inflammatory theory is the leading hypothesis because (1) vitiligo is often associated with autoimmune diseases; (2) most vitiligo susceptibility loci identified through genome-wide association studies encode immunomodulatory proteins; and (3) prominent immune cell infiltrates are found in the perilesional margin of actively depigmenting skin. However, other studies support melanocyte intrinsic abnormalities with poor adaptation of melanocytes to stressors leading to melanocyte instability in the basal layer, and release of danger signals important for the activation of the immune system. Recent progress in the understanding of immune pathomechanisms opens interesting perspectives for innovative treatment strategies. The proof of concept in humans of targeting of the IFNγ /Th1 pathway is much awaited. The interplay between oxidative stress and altered immune responses suggests that additional strategies aiming at limiting type I interferon activation pathway as background stabilizing therapies could be an interesting approach in vitiligo. This review covers classification and clinical aspects, pathophysiology with emphasis on immunopathogenesis, and promising therapeutic approaches.
Collapse
Affiliation(s)
- Katia Boniface
- INSERM U1035, ATIP-AVENIR, Université de Bordeaux, Bordeaux, France
| | - Julien Seneschal
- INSERM U1035, ATIP-AVENIR, Université de Bordeaux, Bordeaux, France.,Department of Dermatology and Paediatric Dermatology, National Centre for Rare Skin disorders, Saint-André and Pellegrin Hospital, Bordeaux, France
| | | | - Alain Taïeb
- INSERM U1035, ATIP-AVENIR, Université de Bordeaux, Bordeaux, France. .,Department of Dermatology and Paediatric Dermatology, National Centre for Rare Skin disorders, Saint-André and Pellegrin Hospital, Bordeaux, France. .,Department of Dermatology and Pediatric Dermatology, St André Hospital, Bordeaux University Hospitals, 1 Rue Jean Burguet, 33075, Bordeaux, France.
| |
Collapse
|
117
|
Abstract
CD4+ Foxp3+ regulatory T cells (Tregs) are suppressors of immune activation and play a crucial role in the maintenance of peripheral tolerance. Mutations of Foxp3 result in fatal autoimmunity in multiple organs, including the skin, in both humans and mice. Many studies have demonstrated the altered frequency and functions of Tregs, changes in cytokine and chemokine levels related to Tregs and the differences in genetic background regarding Tregs in autoimmune skin disorders. Recent studies have extended our knowledge of certain properties of Tregs, especially skin-resident Tregs. In addition, some novel therapies have been performed by modulating the number and the function of Tregs. This review focuses on the role of Tregs in some autoimmune skin disorders, including alopecia areata, vitiligo, pemphigoid and pemphigus, and systemic sclerosis, and discusses questions that remain to be addressed.
Collapse
Affiliation(s)
- Hideyuki Ujiie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
118
|
Abstract
INTRODUCTION Regulatory T cells (Treg) characterized by expression of FOXP3 and strong immunosuppressive activity play a key role in regulating homeostasis in health and disease. Areas covered: Human Treg are highly diverse phenotypically and functionally. In the tumor microenvironment (TME), Treg are reprogrammed by the tumor, acquiring an activated phenotype and enhanced suppressor functions. No unique phenotypic markers for Treg accumulating in human tumors exist. Treg are heterogeneous and use numerous mechanisms to mediate suppression, which either silences anti-tumor immune surveillance or prevents tissue damage by activated T cells. Treg plasticity in the TME endows them with dual functionality. Treg frequency in tumors associates either with poor or improved survival. Treg responses to immune checkpoint inhibition (ICI) differ from the restorative effects ICIs induce in other immune cells. Therapies used to silence Treg, including ICIs, are only partly successful. Treg persistence and resistance to depletion are critical for maintaining homeostasis. Expert opinion: Treg emerge as a heterogeneous subset of immunosuppressive T cells, which usually, but not always, favor tumor progression. Treg are also engaged in non-immune activities that benefit the host. Therapeutic silencing of Treg in cancer requires a deeper understanding of Treg activities in human health and disease.
Collapse
Affiliation(s)
- Theresa L Whiteside
- a Departments of Pathology, Immunology and Otolaryngology , University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center , Pittsburgh , PA , USA
| |
Collapse
|
119
|
Shitara K, Nishikawa H. Regulatory T cells: a potential target in cancer immunotherapy. Ann N Y Acad Sci 2018; 1417:104-115. [DOI: 10.1111/nyas.13625] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology; National Cancer Center Hospital East; Chiba Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/EPOC; National Cancer Center; Tokyo/Chiba Japan
- Department of Immunology; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
120
|
Hibino S, Chikuma S, Kondo T, Ito M, Nakatsukasa H, Omata-Mise S, Yoshimura A. Inhibition of Nr4a Receptors Enhances Antitumor Immunity by Breaking Treg-Mediated Immune Tolerance. Cancer Res 2018; 78:3027-3040. [PMID: 29559474 DOI: 10.1158/0008-5472.can-17-3102] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/17/2018] [Accepted: 03/15/2018] [Indexed: 11/16/2022]
Abstract
Enhanced infiltration of regulatory T cells (Treg) into tumor tissue is detrimental to patients with cancer and is closely associated with poor prognosis as they create an immunosuppressive state that suppresses antitumor immune responses. Therefore, breaking Treg-mediated immune tolerance is important when considering cancer immunotherapy. Here, we show that the Nr4a nuclear receptors, key transcription factors maintaining Treg genetic programs, contribute to Treg-mediated suppression of antitumor immunity in the tumor microenvironment. Mice lacking Nr4a1 and Nr4a2 genes specifically in Tregs showed resistance to tumor growth in transplantation models without exhibiting any severe systemic autoimmunity. The chemotherapeutic agent camptothecin and a common cyclooxygenase-2 inhibitor were found to inhibit transcriptional activity and induction of Nr4a factors, and they synergistically exerted antitumor effects. Genetic inactivation or pharmacologic inhibition of Nr4a factors unleashed effector activities of CD8+ cytotoxic T cells and evoked potent antitumor immune responses. These findings demonstrate that inactivation of Nr4a in Tregs breaks immune tolerance toward cancer, and pharmacologic modulation of Nr4a activity may be a novel cancer treatment strategy targeting the immunosuppressive tumor microenvironment.Significance: This study reveals the role of Nr4a transcription factors in Treg-mediated tolerance to antitumor immunity, with possible therapeutic implications for developing effective anticancer therapies. Cancer Res; 78(11); 3027-40. ©2018 AACR.
Collapse
Affiliation(s)
- Sana Hibino
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Taisuke Kondo
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Minako Ito
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroko Nakatsukasa
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Setsuko Omata-Mise
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
121
|
Ehlers MR. Who let the dogs out? The ever-present threat of autoreactive T cells. Sci Immunol 2018; 3:3/20/eaar6602. [PMID: 29429979 DOI: 10.1126/sciimmunol.aar6602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 01/04/2018] [Indexed: 12/25/2022]
Abstract
Islet-reactive cytotoxic CD8+ T cells home to the pancreas in type 1 diabetes but circulate at similar frequencies in patients and healthy controls.
Collapse
Affiliation(s)
- Mario R Ehlers
- Immunology, Lilly Research Laboratories, Eli Lilly and Company, San Diego, CA 92121, USA.
| |
Collapse
|
122
|
Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood 2018; 131:58-67. [PMID: 29118008 PMCID: PMC6317697 DOI: 10.1182/blood-2017-06-741033] [Citation(s) in RCA: 816] [Impact Index Per Article: 116.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/31/2017] [Indexed: 02/08/2023] Open
Abstract
CD28 and CTLA-4 are members of a family of immunoglobulin-related receptors that are responsible for various aspects of T-cell immune regulation. The family includes CD28, CTLA-4, and ICOS as well as other proteins, including PD-1, BTLA, and TIGIT. These receptors have both stimulatory (CD28, ICOS) and inhibitory roles (CTLA-4, PD-1, BTLA, and TIGIT) in T-cell function. Increasingly, these pathways are targeted as part of immune modulatory strategies to treat cancers, referred to generically as immune checkpoint blockade, and conversely to treat autoimmunity and CTLA-4 deficiency. Here, we focus on the biology of the CD28/CTLA-4 pathway as a framework for understanding the impacts of therapeutic manipulation of this pathway.
Collapse
Affiliation(s)
- Behzad Rowshanravan
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Neil Halliday
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - David M Sansom
- Institute of Immunity and Transplantation, Division of Infection & Immunity, University College London, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
123
|
Brummelman J, Pilipow K, Lugli E. The Single-Cell Phenotypic Identity of Human CD8+ and CD4+ T Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:63-124. [DOI: 10.1016/bs.ircmb.2018.05.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
124
|
Nishijima H, Kajimoto T, Matsuoka Y, Mouri Y, Morimoto J, Matsumoto M, Kawano H, Nishioka Y, Uehara H, Izumi K, Tsuneyama K, Okazaki IM, Okazaki T, Hosomichi K, Shiraki A, Shibutani M, Mitsumori K, Matsumoto M. Paradoxical development of polymyositis-like autoimmunity through augmented expression of autoimmune regulator (AIRE). J Autoimmun 2018; 86:75-92. [PMID: 28931462 DOI: 10.1016/j.jaut.2017.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 11/22/2022]
Abstract
Autoimmunity is prevented by the function of the autoimmune regulator [AIRE (Aire in mice)], which promotes the expression of a wide variety of tissue-restricted antigens (TRAs) from medullary thymic epithelial cells (mTECs) and from a subset of peripheral antigen-presenting cells (APCs). We examined the effect of additive expression of human AIRE (huAIRE) in a model of autoimmune diabetes in NOD mice. Unexpectedly, we observed that mice expressing augmented AIRE/Aire developed muscle-specific autoimmunity associated with incomplete maturation of mTECs together with impaired expression of Aire-dependent TRAs. This led to failure of deletion of autoreactive T cells together with dramatically reduced production of regulatory T cells in the thymus. In peripheral APCs, expression of costimulatory molecules was augmented. We suggest that levels of Aire expression need to be tightly controlled for maintenance of immunological tolerance. Our results also highlight the importance of coordinated action between central tolerance and peripheral tolerance under the common control of Aire.
Collapse
Affiliation(s)
- Hitoshi Nishijima
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Tatsuya Kajimoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Yoshiki Matsuoka
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Yasuhiro Mouri
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Junko Morimoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Minoru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan; Department of Molecular and Environmental Pathology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Hiroshi Kawano
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan; Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Hisanori Uehara
- Department of Molecular and Environmental Pathology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Keisuke Izumi
- Department of Molecular and Environmental Pathology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Koichi Tsuneyama
- Department of Molecular and Environmental Pathology, Institute of Biomedical Sciences, The University of Tokushima Graduate School, Tokushima 770-8503, Japan
| | - Il-Mi Okazaki
- Division of Immune Regulation, Institute for Genome Research, Tokushima University, Tokushima 770-8503, Japan
| | - Taku Okazaki
- Division of Immune Regulation, Institute for Genome Research, Tokushima University, Tokushima 770-8503, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-0934, Japan
| | - Ayako Shiraki
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kunitoshi Mitsumori
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
125
|
Delpoux A, Michelini RH, Verma S, Lai CY, Omilusik KD, Utzschneider DT, Redwood AJ, Goldrath AW, Benedict CA, Hedrick SM. Continuous activity of Foxo1 is required to prevent anergy and maintain the memory state of CD8 + T cells. J Exp Med 2017; 215:575-594. [PMID: 29282254 PMCID: PMC5789410 DOI: 10.1084/jem.20170697] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/18/2017] [Accepted: 12/06/2017] [Indexed: 12/11/2022] Open
Abstract
Delpoux et al. show, in a model of latent infection, how FOXO1 is required to prevent apoptosis, the acquisition of an anergy phenotype, and to be constantly expressed for maintaining the differentiation state of CD8+ T cells. Upon infection with an intracellular pathogen, cytotoxic CD8+ T cells develop diverse differentiation states characterized by function, localization, longevity, and the capacity for self-renewal. The program of differentiation is determined, in part, by FOXO1, a transcription factor known to integrate extrinsic input in order to specify survival, DNA repair, self-renewal, and proliferation. At issue is whether the state of T cell differentiation is specified by initial conditions of activation or is actively maintained. To study the spectrum of T cell differentiation, we have analyzed an infection with mouse cytomegalovirus, a persistent-latent virus that elicits different cytotoxic T cell responses characterized as acute resolving or inflationary. Our results show that FOXO1 is continuously required for all the phenotypic characteristics of memory-effector T cells such that with acute inactivation of the gene encoding FOXO1, T cells revert to a short-lived effector phenotype, exhibit reduced viability, and manifest characteristics of anergy.
Collapse
Affiliation(s)
- Arnaud Delpoux
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla CA.,Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Rodrigo Hess Michelini
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla CA.,Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Shilpi Verma
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Chen-Yen Lai
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla CA.,Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Kyla D Omilusik
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla CA
| | - Daniel T Utzschneider
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla CA.,Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Alec J Redwood
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Ananda W Goldrath
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla CA
| | - Chris A Benedict
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Stephen M Hedrick
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla CA .,Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
126
|
Abstract
The pathophysiology of vitiligo is becoming increasingly clarified. In non-segmental vitiligo, early factors include activation of innate immunity, inflammasome activation, oxidative stress, and loss of melanocyte adhesion. Nonetheless, the main mechanism leading to non-segmental vitiligo involves an immune-mediated destruction of melanocytes. Anti-melanocyte-specific cytotoxic T cells exert a central role in the final effector stage. Genetic research revealed a multi-genetic inheritance displaying an overlap with other autoimmune disorders. However, some melanocyte-specific genes were also affected. Segmental vitiligo carries a different pathogenesis with most evidence indicating a mosaic skin disorder. Current management includes topical corticosteroids and immunomodulators. Narrow-band ultraviolet B can be used in patients not responding to topical treatment or in patients with extensive disease. Pigment cell transplantation offers an alternative for the treatment of segmental vitiligo or stable non-segmental lesions. Recent findings have revealed new targets for treatment that could lead to more efficient therapies. Targeted immunotherapy may halt the active immune pathways, although combination therapy may still be required to induce satisfying repigmentation. A recently established core set of outcome measures, new measurement instruments, and biomarker research pave the way for future standardized clinical trials.
Collapse
Affiliation(s)
- Reinhart Speeckaert
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Nanja van Geel
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| |
Collapse
|
127
|
|
128
|
Wollheim FA. T-regulatory cells-Triumph of perseverance: The Crafoord Prize for Polyarthritis in 2017. Semin Arthritis Rheum 2017; 47:601-603. [PMID: 29037524 DOI: 10.1016/j.semarthrit.2017.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
Abstract
The Crafoord Prize in Polyarthritis ranks as one of the most prestigious prizes and can be awarded only if the Royal Swedish Academy of Sciences decides the likelihood of prize worthy progress in the field, and at most every 4th year. This has happened only four times since 1982. This year the 5th Laureates were Shimon Sakaguchi, Fred Ramsdell, and Alexander Rudensky with the motivation "for their discoveries relating to regulatory T cells, which counteract harmful immune reactions in arthritis and other autoimmune diseases". Here I review the history of their contributions and its impact in rheumatology.
Collapse
Affiliation(s)
- Frank A Wollheim
- Department of Clinical Sciences, Lund, Rheumatology, Lund University, Lund, Sweden.
| |
Collapse
|
129
|
Ihara F, Sakurai D, Horinaka A, Makita Y, Fujikawa A, Sakurai T, Yamasaki K, Kunii N, Motohashi S, Nakayama T, Okamoto Y. CD45RA -Foxp3 high regulatory T cells have a negative impact on the clinical outcome of head and neck squamous cell carcinoma. Cancer Immunol Immunother 2017; 66:1275-1285. [PMID: 28551813 PMCID: PMC11029772 DOI: 10.1007/s00262-017-2021-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/21/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Although regulatory T cells (Tregs) are thought to play an important role in immune suppression, their clinical significance in head and neck squamous cell carcinoma (HNSCC) is unclear. A recent study reported Tregs could be divided into functional subsets based on the expression of CD45RA and Foxp3. METHOD The frequency of circulating Treg subsets was analyzed in patients with HNSCC and compared with the frequency in patients with benign tumors. The association of Treg subsets with the frequency of lymphocyte subsets, status of progression, clinical course, and prognosis were also examined. RESULTS The frequency of CD4+Foxp3+ Tregs was comparable between HNSCC patients and age-matched benign tumor patients; however, CD45RA-Foxp3high Tregs were significantly increased in HNSCC patients, in particular those with advanced stage tumors. The high frequency of CD45RA-Foxp3high Tregs correlated with a poor prognosis and the low frequency of CD45RA-Foxp3high Tregs before treatment showed a better clinical outcome, even in patients with advanced stage tumors. CD45RA-Foxp3high Treg numbers were decreased after intensive treatments; however, Treg numbers recovered in the early stages of recurrent cases, even before the clinical manifestation. CONCLUSION CD45RA-Foxp3high Tregs are associated with the clinical course of HNSCC and might be a new target for treatment and an early marker of tumor recurrence in HNSCC patients.
Collapse
Affiliation(s)
- Fumie Ihara
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Daiju Sakurai
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Atsushi Horinaka
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yuji Makita
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Akira Fujikawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Toshioki Sakurai
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Kazuki Yamasaki
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Naoki Kunii
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
130
|
Abstract
To limit excessive T cell-mediated inflammatory responses, the immune system has a milieu of inhibitory receptors, called immune checkpoints. Cancer cells have evolved to seize those inhibitory pathways and to prevent T cell-mediated killing of tumor cells. Therefore, immune checkpoint inhibitors (ICI) consisting of blocking antibodies against these receptors present an exciting avenue in the fight against cancer. The last decade has seen the implementation of ICI against a variety of cancer indications that have improved the overall anti-tumor responses and patient survival. However, inflammatory toxicities and autoimmunity are a significant adverse event of ICI therapies. In this review, we will discuss the biology of immune checkpoints, highlight research strategies that may help reduce the incidence of immune-related adverse events associated with ICI therapies, and also suggest investigational approaches to manipulate immune checkpoints to treat primary autoimmune disorders.
Collapse
Affiliation(s)
- Anna S Tocheva
- Department of Medicine, NYU School of Medicine, 450 E 29th Street, Room 806, New York, NY, 10016, USA. .,Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA.
| | - Adam Mor
- Department of Medicine, NYU School of Medicine, 450 E 29th Street, Room 806, New York, NY, 10016, USA. .,Perlmutter Cancer Center, NYU School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
131
|
George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, Shukla S, Lipschitz M, Amin-Mansour A, Raut CP, Carter SL, Hammerman P, Freeman GJ, Wu CJ, Ott PA, Wong KK, Van Allen EM. Loss of PTEN Is Associated with Resistance to Anti-PD-1 Checkpoint Blockade Therapy in Metastatic Uterine Leiomyosarcoma. Immunity 2017; 46:197-204. [PMID: 28228279 DOI: 10.1016/j.immuni.2017.02.001] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/09/2016] [Accepted: 01/24/2017] [Indexed: 12/20/2022]
Abstract
Response to immune checkpoint blockade in mesenchymal tumors is poorly characterized, but immunogenomic dissection of these cancers could inform immunotherapy mediators. We identified a treatment-naive patient who has metastatic uterine leiomyosarcoma and has experienced complete tumor remission for >2 years on anti-PD-1 (pembrolizumab) monotherapy. We analyzed the primary tumor, the sole treatment-resistant metastasis, and germline tissue to explore mechanisms of immunotherapy sensitivity and resistance. Both tumors stained diffusely for PD-L2 and showed sparse PD-L1 staining. PD-1+ cell infiltration significantly decreased in the resistant tumor (p = 0.039). Genomically, the treatment-resistant tumor uniquely harbored biallelic PTEN loss and had reduced expression of two neoantigens that demonstrated strong immunoreactivity with patient T cells in vitro, suggesting long-lasting immunological memory. In this near-complete response to PD-1 blockade in a mesenchymal tumor, we identified PTEN mutations and reduced expression of genes encoding neoantigens as potential mediators of resistance to immune checkpoint therapy.
Collapse
Affiliation(s)
- Suzanne George
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Diana Miao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - George D Demetri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Ludwig Center at Harvard, Boston, MA 02215, USA
| | - Dennis Adeegbe
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA; Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sachet Shukla
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Mikel Lipschitz
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | | | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Scott L Carter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Peter Hammerman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
132
|
Vitiligo: Mechanistic insights lead to novel treatments. J Allergy Clin Immunol 2017; 140:654-662. [DOI: 10.1016/j.jaci.2017.07.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
|
133
|
Rodrigues M, Ezzedine K, Hamzavi I, Pandya AG, Harris JE. New discoveries in the pathogenesis and classification of vitiligo. J Am Acad Dermatol 2017; 77:1-13. [DOI: 10.1016/j.jaad.2016.10.048] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/23/2016] [Accepted: 10/30/2016] [Indexed: 02/07/2023]
|
134
|
|
135
|
Togashi Y, Nishikawa H. Regulatory T Cells: Molecular and Cellular Basis for Immunoregulation. Curr Top Microbiol Immunol 2017; 410:3-27. [PMID: 28879523 DOI: 10.1007/82_2017_58] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD4+ regulatory T cells (Tregs) are a highly immune-suppressive subset of CD4+ T cells, characterized by expression of the master regulatory transcription factor FOXP3. Tregs are proven to play central roles in the maintenance of self-tolerance in healthy individuals. Tregs are involved in maintaining immune homeostasis: they protect hosts from developing autoimmune diseases and allergy, whereas in malignancies, they promote tumor progression by suppressing anti-tumor immunity. Elucidating factors influencing Treg homeostasis and function have important implications for understanding disease pathogenesis and identifying therapeutic opportunities. Thus, the manipulating Tregs for up- or down-regulation of their suppressive function is a new therapeutic strategy for treating various diseases including autoimmune disorders and cancer. This review will focus on recent advances in how Tregs integrate extracellular and intracellular signals to control their survival and stability. Deeper mechanistic understanding of disease-specific Treg development, maintenance, and function could make disease-specific Treg-targeted therapy more effective, resulting in an increase of efficacy and decrease of side effects related to manipulating Tregs.
Collapse
Affiliation(s)
- Yosuke Togashi
- Division of Cancer Immunology, Research Institute/EPOC, National Cancer Center, Tokyo, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/EPOC, National Cancer Center, Tokyo, Japan. .,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
136
|
Abstract
FOXP3-expressing regulatory T (Treg) cells, which suppress aberrant immune response against self-antigens, also suppress anti-tumor immune response. Infiltration of a large number of Treg cells into tumor tissues is often associated with poor prognosis. There is accumulating evidence that the removal of Treg cells is able to evoke and enhance anti-tumor immune response. However, systemic depletion of Treg cells may concurrently elicit deleterious autoimmunity. One strategy for evoking effective tumor immunity without autoimmunity is to specifically target terminally differentiated effector Treg cells rather than all FOXP3+ T cells, because effector Treg cells are the predominant cell type in tumor tissues. Various cell surface molecules, including chemokine receptors such as CCR4, that are specifically expressed by effector Treg cells can be the candidates for depleting effector Treg cells by specific cell-depleting monoclonal antibodies. In addition, other immunological characteristics of effector Treg cells, such as their high expression of CTLA-4, active proliferation, and apoptosis-prone tendency, can be exploited to control specifically their functions. For example, anti-CTLA-4 antibody may kill effector Treg cells or attenuate their suppressive activity. It is hoped that combination of Treg-cell targeting (e.g., by reducing Treg cells or attenuating their suppressive activity in tumor tissues) with the activation of tumor-specific effector T cells (e.g., by cancer vaccine or immune checkpoint blockade) will make the current cancer immunotherapy more effective.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan.,Department of Frontier Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
137
|
Schwarz C, Unger L, Mahr B, Aumayr K, Regele H, Farkas AM, Hock K, Pilat N, Wekerle T. The Immunosuppressive Effect of CTLA4 Immunoglobulin Is Dependent on Regulatory T Cells at Low But Not High Doses. Am J Transplant 2016; 16:3404-3415. [PMID: 27184870 DOI: 10.1111/ajt.13872] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/18/2016] [Accepted: 05/09/2016] [Indexed: 01/25/2023]
Abstract
B7.1/2-targeted costimulation blockade (CTLA4 immunoglobulin [CTLA4-Ig]) is available for immunosuppression after kidney transplantation, but its potentially detrimental impact on regulatory T cells (Tregs) is of concern. We investigated the effects of CTLA4-Ig monotherapy in a fully mismatched heart transplant model (BALB/c onto C57BL/6). CTLA4-Ig was injected chronically (on days 0, 4, 14, and 28 and every 4 weeks thereafter) in dosing regimens paralleling clinical use, shown per mouse: low dose (LD), 0.25 mg (≈10 mg/kg body weight); high dose (HD), 1.25 mg (≈50 mg/kg body weight); and very high dose (VHD), 6.25 mg (≈250 mg/kg body weight). Chronic CTLA4-Ig therapy showed dose-dependent efficacy, with the LD regimen prolonging graft survival and with the HD and VHD regimens leading to >95% long-term graft survival and preserved histology. CTLA4-Ig's effect was immunosuppressive rather than tolerogenic because treatment cessation after ≈3 mo led to rejection. FoxP3-positive Tregs were reduced in naïve mice to a similar degree, independent of the CTLA4-Ig dose, but recovered to normal values in heart recipients under chronic CTLA4-Ig therapy. Treg depletion (anti-CD25) resulted in an impaired outcome under LD therapy but had no detectable effect under HD therapy. Consequently, the immunosuppressive effect of partially effective LD CTLA4-Ig therapy is impaired when Tregs are removed, whereas CTLA4-Ig monotherapy at higher doses effectively maintains graft survival independent of Tregs.
Collapse
Affiliation(s)
- C Schwarz
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - L Unger
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - B Mahr
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - K Aumayr
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - H Regele
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - A M Farkas
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - K Hock
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - N Pilat
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - T Wekerle
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
138
|
Jiang TT, Martinov T, Xin L, Kinder JM, Spanier JA, Fife BT, Way SS. Programmed Death-1 Culls Peripheral Accumulation of High-Affinity Autoreactive CD4 T Cells to Protect against Autoimmunity. Cell Rep 2016; 17:1783-1794. [PMID: 27829150 PMCID: PMC5108556 DOI: 10.1016/j.celrep.2016.10.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/25/2016] [Accepted: 10/13/2016] [Indexed: 01/06/2023] Open
Abstract
Self-reactive CD4 T cells are incompletely deleted during thymic development, and their peripheral seeding highlights the need for additional safeguards to avert autoimmunity. Here, we show an essential role for the coinhibitory molecule programmed death-1 (PD-1) in silencing the activation of high-affinity autoreactive CD4 T cells. Each wave of self-reactive CD4 T cells that escapes thymic deletion autonomously upregulates PD-1 to maintain self-tolerance. By tracking the progeny derived from individual autoreactive CD4 T cell clones, we demonstrate that self-reactive cells with the greatest autoimmune threat and highest self-antigen affinity express the most PD-1. Reciprocally, PD-1 deprivation unleashes high-affinity self-reactive CD4 T cells in target tissues to exacerbate neuronal inflammation and autoimmune diabetes. Reliance on PD-1 to actively maintain self-tolerance may explain why exploiting this pathway by cancerous cells and invasive microbes efficiently subverts protective immunity, and why autoimmune side effects can develop after PD-1-neutralizing checkpoint therapies.
Collapse
Affiliation(s)
- Tony T Jiang
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Tijana Martinov
- Center for Immunology, Department of Medicine, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Lijun Xin
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jeremy M Kinder
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Justin A Spanier
- Center for Immunology, Department of Medicine, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Brian T Fife
- Center for Immunology, Department of Medicine, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA.
| | - Sing Sing Way
- Division of Infectious Diseases and Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
139
|
Nagase H, Takeoka T, Urakawa S, Morimoto-Okazawa A, Kawashima A, Iwahori K, Takiguchi S, Nishikawa H, Sato E, Sakaguchi S, Mori M, Doki Y, Wada H. ICOS+Foxp3+TILs in gastric cancer are prognostic markers and effector regulatory T cells associated withHelicobacter pylori. Int J Cancer 2016; 140:686-695. [DOI: 10.1002/ijc.30475] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 10/11/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Hirotsugu Nagase
- Department of Clinical Research in Tumor Immunology; Graduate School of Medicine, Osaka University; Osaka Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine; Osaka University; Osaka Japan
| | - Tomohira Takeoka
- Department of Clinical Research in Tumor Immunology; Graduate School of Medicine, Osaka University; Osaka Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine; Osaka University; Osaka Japan
| | - Shinya Urakawa
- Department of Clinical Research in Tumor Immunology; Graduate School of Medicine, Osaka University; Osaka Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine; Osaka University; Osaka Japan
| | - Akiko Morimoto-Okazawa
- Department of Clinical Research in Tumor Immunology; Graduate School of Medicine, Osaka University; Osaka Japan
| | - Atsunari Kawashima
- Department of Clinical Research in Tumor Immunology; Graduate School of Medicine, Osaka University; Osaka Japan
| | - Kota Iwahori
- Department of Clinical Research in Tumor Immunology; Graduate School of Medicine, Osaka University; Osaka Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine; Osaka University; Osaka Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology; Exploratory Oncology Research and Clinical Trial Center, National Cancer Center; Chiba Japan
| | - Eiichi Sato
- Department of Pathology; Institute of Medical Science (Medical Research Center), Tokyo Medical University; Tokyo Japan
| | - Shimon Sakaguchi
- Experimental Immunology; WPI Immunology Frontier Research Center, Osaka University; Osaka Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine; Osaka University; Osaka Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine; Osaka University; Osaka Japan
| | - Hisashi Wada
- Department of Clinical Research in Tumor Immunology; Graduate School of Medicine, Osaka University; Osaka Japan
| |
Collapse
|
140
|
Strassner JP, Harris JE. Understanding mechanisms of autoimmunity through translational research in vitiligo. Curr Opin Immunol 2016; 43:81-88. [PMID: 27764715 DOI: 10.1016/j.coi.2016.09.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 12/18/2022]
Abstract
Vitiligo is an autoimmune disease of the skin that leads to life-altering depigmentation and remains difficult to treat. However, clinical observations and translational studies over 30-40 years have led to the development of an insightful working model of disease pathogenesis: Genetic risk spanning both immune and melanocyte functions is pushed over a threshold by known and suspected environmental factors to initiate autoimmune T cell-mediated killing of melanocytes. While under cellular stress, melanocytes appear to signal innate immunity to activate T cells. Once the autoimmune T cell response is established, the IFN-γ-STAT1-CXCL10 signaling axis becomes the primary inflammatory pathway driving both progression and maintenance of vitiligo. This pathway is a tempting target for both existing and developing pharmaceuticals, but further detailing how melanocytes signal their own demise may also lead to new therapeutic targets. Research in vitiligo may be the future key to understand the pathogenesis of organ-specific autoimmunity, as vitiligo is common, reversible, progresses over the life of the individual, has been relatively well-defined, and is quite easy to study using translational and clinical approaches. What is revealed in these studies can lead to innovative treatments and also help elucidate the principles that underlie similar organ-specific autoimmune diseases, especially in cases where the target organ is less accessible.
Collapse
Affiliation(s)
- James P Strassner
- Department of Medicine, Division of Dermatology, University of Massachusetts Medical School, 364 Plantation St., LRB 225, Worcester, MA 01605, USA
| | - John E Harris
- Department of Medicine, Division of Dermatology, University of Massachusetts Medical School, 364 Plantation St., LRB 225, Worcester, MA 01605, USA.
| |
Collapse
|
141
|
Speeckaert R, van Geel N. Targeting CTLA-4, PD-L1 and IDO to modulate immune responses in vitiligo. Exp Dermatol 2016; 26:630-634. [PMID: 27192950 DOI: 10.1111/exd.13069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2016] [Indexed: 01/07/2023]
Abstract
For decades, an extensive debate is continued on the pathophysiology of vitiligo. Numerous hypotheses have been put forward, and many supported by well-documented arguments. Regardless of the initiating steps, most experts agree that an immune-based melanocyte destruction is responsible for the final steps leading to epidermal depigmentation. It is remarkable that currently the only therapeutic approach to counter this phenomenon consists of non-specific local and systemic immunosuppressants. Immunotherapy for melanoma reveals that targeting factors involved in peripheral tolerance are sufficient to break the natural defense mechanisms to develop skin depigmentations. Therapeutically enhancing these immune checkpoints seems therefore a promising long-term therapy for vitiligo. In this viewpoint, we propose this strategy as a promising therapeutic option for vitiligo. Several approaches are proposed with a focus on cytotoxic T-lymphocyte-associated protein 4, programmed death ligand-1 and indoleamine 2,3-dioxygenase.
Collapse
Affiliation(s)
| | - Nanja van Geel
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
142
|
Uchtenhagen H, Rims C, Blahnik G, Chow IT, Kwok WW, Buckner JH, James EA. Efficient ex vivo analysis of CD4+ T-cell responses using combinatorial HLA class II tetramer staining. Nat Commun 2016; 7:12614. [PMID: 27571776 PMCID: PMC5013714 DOI: 10.1038/ncomms12614] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/18/2016] [Indexed: 02/08/2023] Open
Abstract
MHC tetramers are an essential tool for characterizing antigen-specific CD4+ T cells. However, their ex vivo analysis is limited by the large sample requirements. Here we demonstrate a combinatorial staining approach that allows simultaneous characterization of multiple specificities to address this challenge. As proof of principle, we analyse CD4+ T-cell responses to the seasonal influenza vaccine, establishing a frequency hierarchy and examining differences in memory and activation status, lineage commitment and cytokine expression. We also observe cross-reactivity between an established epitope and recent variant and provide a means for probing T-cell receptor cross-reactivity. Using cord blood samples, we correlate the adult frequency hierarchy with the naive precursor frequencies. Last, we use our combinatorial staining approach to demonstrate that rheumatoid arthritis patients on therapy can mount effective responses to influenza vaccination. Together, these results demonstrate the utility of combinatorial tetramer staining and suggest that this approach may have broad applicability in human health and disease.
Collapse
Affiliation(s)
- Hannes Uchtenhagen
- Benaroya Research Institute at Virginia Mason, Translational Research Program, Seattle, Washington 98101, USA
- Neuroimmunology Unit, Department of Neuroscience, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Cliff Rims
- Benaroya Research Institute at Virginia Mason, Translational Research Program, Seattle, Washington 98101, USA
| | - Gabriele Blahnik
- Benaroya Research Institute at Virginia Mason, Diabetes Program, Seattle, Washington 98101, USA
| | - I-Ting Chow
- Benaroya Research Institute at Virginia Mason, Diabetes Program, Seattle, Washington 98101, USA
| | - William W. Kwok
- Benaroya Research Institute at Virginia Mason, Diabetes Program, Seattle, Washington 98101, USA
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Jane H. Buckner
- Benaroya Research Institute at Virginia Mason, Translational Research Program, Seattle, Washington 98101, USA
| | - Eddie A. James
- Benaroya Research Institute at Virginia Mason, Diabetes Program and Tetramer Core Laboratory, Seattle, Washington 98101, USA
| |
Collapse
|
143
|
Decrease in circulating CD25 hi Foxp3 + regulatory T cells following vaccination with the candidate malaria vaccine RTS,S. Vaccine 2016; 34:4618-4625. [DOI: 10.1016/j.vaccine.2016.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 06/20/2016] [Accepted: 07/06/2016] [Indexed: 11/23/2022]
|
144
|
Chellappa S, Lieske NV, Hagness M, Line PD, Taskén K, Aandahl EM. Human regulatory T cells control TCR signaling and susceptibility to suppression in CD4+ T cells. J Leukoc Biol 2016; 100:5-16. [PMID: 26715685 DOI: 10.1189/jlb.2hi0815-334r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/04/2015] [Indexed: 01/24/2023] Open
Abstract
Human CD4(+)CD25(hi)FOXP3(+) regulatory T cells maintain immunologic tolerance and prevent autoimmune and inflammatory immune responses. Regulatory T cells undergo a similar activation cycle as conventional CD4(+) T cells upon antigen stimulation. Here, we demonstrate that T cell receptors and costimulation are required to activate the regulatory T cell suppressive function. Regulatory T cells suppressed the T cell receptor signaling in effector T cells in a time-dependent manner that corresponded with inhibition of cytokine production and proliferation. Modulation of the activation level and thereby the suppressive capacity of regulatory T cells imposed distinct T cell receptor signaling signatures and hyporesponsiveness in suppressed and proliferating effector T cells and established a threshold for effector T cell proliferation. The immune suppression of effector T cells was completely reversible upon removal of regulatory T cells. However, the strength of prior immune suppression by regulatory T cells and corresponding T cell receptor signaling in effector T cells determined the susceptibility to suppression upon later reexposure to regulatory T cells. These findings demonstrate how the strength of the regulatory T cell suppressive function determines intracellular signaling, immune responsiveness, and the later susceptibility of effector T cells to immune suppression and contribute to unveiling the complex interactions between regulatory T cells and effector T cells.
Collapse
Affiliation(s)
- Stalin Chellappa
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Norway; Biotechnology Centre, University of Oslo, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, Norway; K.G. Jebsen Centre for Cancer Immunotherapy, University of Oslo, Norway
| | - Nora V Lieske
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Norway; Biotechnology Centre, University of Oslo, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, Norway; K.G. Jebsen Centre for Cancer Immunotherapy, University of Oslo, Norway
| | - Morten Hagness
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Norway; Biotechnology Centre, University of Oslo, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, Norway; Section for Transplantation Surgery Oslo University Hospital, Oslo, Norway; and
| | - Pål D Line
- Section for Transplantation Surgery Oslo University Hospital, Oslo, Norway; and
| | - Kjetil Taskén
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Norway; Biotechnology Centre, University of Oslo, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, Norway; K.G. Jebsen Centre for Cancer Immunotherapy, University of Oslo, Norway; Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Einar M Aandahl
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Norway; Biotechnology Centre, University of Oslo, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, Norway; Section for Transplantation Surgery Oslo University Hospital, Oslo, Norway; and
| |
Collapse
|
145
|
A Human Trypanosome Suppresses CD8+ T Cell Priming by Dendritic Cells through the Induction of Immune Regulatory CD4+ Foxp3+ T Cells. PLoS Pathog 2016; 12:e1005698. [PMID: 27332899 PMCID: PMC4917094 DOI: 10.1371/journal.ppat.1005698] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/20/2016] [Indexed: 12/14/2022] Open
Abstract
Although CD4+ Foxp3+ T cells are largely described in the regulation of CD4+ T cell responses, their role in the suppression of CD8+ T cell priming is much less clear. Because the induction of CD8+ T cells during experimental infection with Trypanosoma cruzi is remarkably delayed and suboptimal, we raised the hypothesis that this protozoan parasite actively induces the regulation of CD8+ T cell priming. Using an in vivo assay that eliminated multiple variables associated with antigen processing and dendritic cell activation, we found that injection of bone marrow-derived dendritic cells exposed to T. cruzi induced regulatory CD4+ Foxp3+ T cells that suppressed the priming of transgenic CD8+ T cells by peptide-loaded BMDC. This newly described suppressive effect on CD8+ T cell priming was independent of IL-10, but partially dependent on CTLA-4 and TGF-β. Accordingly, depletion of Foxp3+ cells in mice infected with T. cruzi enhanced the response of epitope-specific CD8+ T cells. Altogether, our data uncover a mechanism by which T. cruzi suppresses CD8+ T cell responses, an event related to the establishment of chronic infections. CD8+ T lymphocytes mediate immunity to intracellular pathogens by killing infected cells. However, some pathogens are able to evade the response of CD8+ T cells and, thus, establish chronic infections. This is the case of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. Here, we investigated the basis of the suboptimal response of CD8+ T cells during T. cruzi infection. We observed that cells incubated with the parasite and then adoptively transferred into mice are able to convert an optimal in vivo response of transgenic CD8+ T cells specific to an unrelated epitope into suboptimal. The mechanism of this disturbance relies on the induction of regulatory CD4+ Foxp3+ T cells that interfere with the priming of CD8+ T cells by dendritic cells. These findings illustrate the involvement of regulatory T cells in the regulation of CD8+ T cell priming and contribute to understand how T. cruzi evades host immunity to establish a chronic infection.
Collapse
|
146
|
Rodríguez-Rodríguez N, Apostolidis SA, Fitzgerald L, Meehan BS, Corbett AJ, Manuel Martín-Villa J, McCluskey J, Tsokos GC, Crispín JC. Pro-inflammatory self-reactive T cells are found within murine TCR-αβ(+) CD4(-) CD8(-) PD-1(+) cells. Eur J Immunol 2016; 46:1383-1391. [PMID: 27060346 PMCID: PMC4913481 DOI: 10.1002/eji.201546056] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/23/2016] [Accepted: 03/30/2016] [Indexed: 11/07/2022]
Abstract
TCR-αβ(+) double negative (DN) T cells (CD3(+) TCR-αβ(+) CD4(-) CD8(-) NK1.1(-) CD49b(-) ) represent a minor heterogeneous population in healthy humans and mice. These cells have been ascribed pro-inflammatory and regulatory capacities and are known to expand during the course of several autoimmune diseases. Importantly, previous studies have shown that self-reactive CD8(+) T cells become DN after activation by self-antigens, suggesting that self-reactive T cells may exist within the DN T-cell population. Here, we demonstrate that programmed cell death 1 (PD-1) expression in unmanipulated mice identifies a subset of DN T cells with expression of activation-associated markers and a phenotype that strongly suggests they are derived from self-reactive CD8(+) cells. We also found that, within DN T cells, the PD-1(+) subset generates the majority of pro-inflammatory cytokines. Finally, using a TCR-activation reporter mouse (Nur77-GFP), we confirmed that in the steady-state PD-1(+) DN T cells engage endogenous antigens in healthy mice. In conclusion, we provide evidence that indicates that the PD-1(+) fraction of DN T cells represents self-reactive cells.
Collapse
Affiliation(s)
- Noé Rodríguez-Rodríguez
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Sokratis A. Apostolidis
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Lauren Fitzgerald
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Bronwyn S. Meehan
- The Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Alexandra J. Corbett
- The Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - José Manuel Martín-Villa
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - James McCluskey
- The Department of Microbiology and Immunology, The University of Melbourne and The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - George C. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - José C. Crispín
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
147
|
Nizzoli G, Larghi P, Paroni M, Crosti MC, Moro M, Neddermann P, Caprioli F, Pagani M, De Francesco R, Abrignani S, Geginat J. IL-10 promotes homeostatic proliferation of human CD8(+) memory T cells and, when produced by CD1c(+) DCs, shapes naive CD8(+) T-cell priming. Eur J Immunol 2016; 46:1622-32. [PMID: 27129615 DOI: 10.1002/eji.201546136] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 04/08/2016] [Accepted: 04/22/2016] [Indexed: 01/07/2023]
Abstract
IL-10 is an anti-inflammatory cytokine that inhibits maturation and cytokine production of dendritic cells (DCs). Although mature DCs have the unique capacity to prime CD8(+) CTL, IL-10 can promote CTL responses. To understand these paradoxic findings, we analyzed the role of IL-10 produced by human APC subsets in T-cell responses. IL-10 production was restricted to CD1c(+) DCs and CD14(+) monocytes. Interestingly, it was differentially regulated, since R848 induced IL-10 in DCs, but inhibited IL-10 in monocytes. Autocrine IL-10 had only a weak inhibitory effect on DC maturation, cytokine production, and CTL priming with high-affinity peptides. Nevertheless, it completely blocked cross-priming and priming with low-affinity peptides of a self/tumor-antigen. IL-10 also inhibited CD1c(+) DC-induced CD4(+) T-cell priming and enhanced Foxp3 induction, but was insufficient to induce T-cell IL-10 production. CD1c(+) DC-derived IL-10 had also no effect on DC-induced secondary expansions of memory CTL. However, IL-15-driven, TCR-independent proliferation of memory CTL was enhanced by IL-10. We conclude that DC-derived IL-10 selects high-affinity CTL upon priming. Moreover, IL-10 preserves established CTL memory by enhancing IL-15-dependent homeostatic proliferation. These combined effects on CTL priming and memory maintenance provide a plausible mechanism how IL-10 promotes CTL responses in humans.
Collapse
Affiliation(s)
- Giulia Nizzoli
- Istituto Nazionale di Genetica Molecolare, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Paola Larghi
- Istituto Nazionale di Genetica Molecolare, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Fisiopatologia Medico Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Moira Paroni
- Istituto Nazionale di Genetica Molecolare, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Maria Cristina Crosti
- Istituto Nazionale di Genetica Molecolare, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Monica Moro
- Istituto Nazionale di Genetica Molecolare, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Petra Neddermann
- Istituto Nazionale di Genetica Molecolare, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Flavio Caprioli
- Dipartimento di Fisiopatologia Medico Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy.,Unità Operativa di Gastroenterologia ed Endoscopia, Fondazione IRCCS Cà Granda Ospedale Policlinico, Milan, Italy
| | - Massimiliano Pagani
- Istituto Nazionale di Genetica Molecolare, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Raffaele De Francesco
- Istituto Nazionale di Genetica Molecolare, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare, "Romeo ed Enrica Invernizzi", Milan, Italy.,DISCCO, Dipartimento di Scienze cliniche e di comunità, Università degli Studi di Milano, Milan, Italy
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare, "Romeo ed Enrica Invernizzi", Milan, Italy
| |
Collapse
|
148
|
Takeuchi Y, Nishikawa H. Roles of regulatory T cells in cancer immunity. Int Immunol 2016; 28:401-9. [PMID: 27160722 DOI: 10.1093/intimm/dxw025] [Citation(s) in RCA: 393] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023] Open
Abstract
CD4(+) regulatory T cells (Tregs) expressing the transcription factor FoxP3 are highly immune suppressive and play central roles in the maintenance of self-tolerance and immune homeostasis, yet in malignant tumors they promote tumor progression by suppressing effective antitumor immunity. Indeed, higher infiltration by Tregs is observed in tumor tissues, and their depletion augments antitumor immune responses in animal models. Additionally, increased numbers of Tregs and, in particular, decreased ratios of CD8(+) T cells to Tregs among tumor-infiltrating lymphocytes are correlated with poor prognosis in various types of human cancers. The recent success of cancer immunotherapy represented by immune checkpoint blockade has provided a new insight in cancer treatment, yet more than half of the treated patients did not experience clinical benefits. Identifying biomarkers that predict clinical responses and developing novel immunotherapies are therefore urgently required. Cancer patients whose tumors contain a large number of neoantigens stemming from gene mutations, which have not been previously recognized by the immune system, provoke strong antitumor T-cell responses associated with clinical responses following immune checkpoint blockade, depending on the resistance to Treg-mediated suppression. Thus, integration of a strategy restricting Treg-mediated immune suppression may expand the therapeutic spectrum of cancer immunotherapy towards patients with a lower number of neoantigens. In this review, we address the current understanding of Treg-mediated immune suppressive mechanisms in cancer, the involvement of Tregs in cancer immunotherapy, and strategies for effective and tolerable Treg-targeted therapy.
Collapse
Affiliation(s)
- Yoshiko Takeuchi
- Division of Cancer Immunology, EPOC, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan and
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, EPOC, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan and Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
149
|
Mauvais FX, Diana J, van Endert P. Beta cell antigens in type 1 diabetes: triggers in pathogenesis and therapeutic targets. F1000Res 2016; 5. [PMID: 27158463 PMCID: PMC4847563 DOI: 10.12688/f1000research.7411.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2016] [Indexed: 01/12/2023] Open
Abstract
Research focusing on type 1 diabetes (T1D) autoantigens aims to explore our understanding of these beta cell proteins in order to design assays for monitoring the pathogenic autoimmune response, as well as safe and efficient therapies preventing or stopping it. In this review, we will discuss progress made in the last 5 years with respect to mechanistic understanding, diagnostic monitoring, and therapeutic modulation of the autoantigen-specific cellular immune response in T1D. Some technical progress in monitoring tools has been made; however, the potential of recent technologies for highly multiplexed exploration of human cellular immune responses remains to be exploited in T1D research, as it may be the key to the identification of surrogate markers of disease progression that are still wanting. Detailed analysis of autoantigen recognition by T cells suggests an important role of non-conventional antigen presentation and processing in beta cell-directed autoimmunity, but the impact of this in human T1D has been little explored. Finally, therapeutic administration of autoantigens to T1D patients has produced disappointing results. The application of novel modes of autoantigen administration, careful translation of mechanistic understanding obtained in preclinical studies and
in vitro with human cells, and combination therapies including CD3 antibodies may help to make autoantigen-based immunotherapy for T1D a success story in the future.
Collapse
Affiliation(s)
- François-Xavier Mauvais
- Institut National de la Santé et de la Recherche Médical, Unité 1151, Paris, 75015, France; Centre National de la Recherche Scientifique, UMR8253, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75015, France
| | - Julien Diana
- Institut National de la Santé et de la Recherche Médical, Unité 1151, Paris, 75015, France; Centre National de la Recherche Scientifique, UMR8253, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75015, France
| | - Peter van Endert
- Institut National de la Santé et de la Recherche Médical, Unité 1151, Paris, 75015, France; Centre National de la Recherche Scientifique, UMR8253, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75015, France
| |
Collapse
|
150
|
Abstract
It once seemed clear that negative selection of self-specific T cells in the thymus was the major mechanism of central tolerance. But recent studies, including Legoux et al. (2015) in this issue of Immunity, show that this is not always the case.
Collapse
|