101
|
Song Q, Hou Y, Zhang Y, Liu J, Wang Y, Fu J, Zhang C, Cao M, Cui Y, Zhang X, Wang X, Zhang J, Liu C, Zhang Y, Wang P. Integrated multi-omics approach revealed cellular senescence landscape. Nucleic Acids Res 2022; 50:10947-10963. [PMID: 36243980 PMCID: PMC9638896 DOI: 10.1093/nar/gkac885] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/27/2022] [Accepted: 10/01/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular senescence is a complex multifactorial biological phenomenon that plays essential roles in aging, and aging-related diseases. During this process, the senescent cells undergo gene expression altering and chromatin structure remodeling. However, studies on the epigenetic landscape of senescence using integrated multi-omics approaches are limited. In this research, we performed ATAC-seq, RNA-seq and ChIP-seq on different senescent types to reveal the landscape of senescence and identify the prime regulatory elements. We also obtained 34 key genes and deduced that NAT1, PBX1 and RRM2, which interacted with each other, could be the potential markers of aging and aging-related diseases. In summary, our work provides the landscape to study accessibility dynamics and transcriptional regulations in cellular senescence. The application of this technique in different types of senescence allows us to identify the regulatory elements responsible for the substantial regulation of transcription, providing the insights into molecular mechanisms of senescence.
Collapse
Affiliation(s)
- Qiao Song
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Yuli Hou
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Yiyin Zhang
- Shanghai Jiayin Biotechnology, Shanghai 200092, PR China
| | - Jing Liu
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Yaqi Wang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Jingxuan Fu
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Chi Zhang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Min Cao
- Department of Clinical Laboratory, Beijing Huairou Hospital, Beijing 101400, PR China
| | - Yuting Cui
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Xiaomin Zhang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Xiaoling Wang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Jingjing Zhang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Congcong Liu
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Yingzhen Zhang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| | - Peichang Wang
- Department of Clinical laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, Beijing 100053, PR China
| |
Collapse
|
102
|
Research on Werner Syndrome: Trends from Past to Present and Future Prospects. Genes (Basel) 2022; 13:genes13101802. [PMID: 36292687 PMCID: PMC9601476 DOI: 10.3390/genes13101802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
A rare and autosomal recessive premature aging disorder, Werner syndrome (WS) is characterized by the early onset of aging-associated diseases, including shortening stature, alopecia, bilateral cataracts, skin ulcers, diabetes, osteoporosis, arteriosclerosis, and chromosomal instability, as well as cancer predisposition. WRN, the gene responsible for WS, encodes DNA helicase with a 3′ to 5′ exonuclease activity, and numerous studies have revealed that WRN helicase is involved in the maintenance of chromosome stability through actions in DNA, e.g., DNA replication, repair, recombination, and epigenetic regulation via interaction with DNA repair factors, telomere-binding proteins, histone modification enzymes, and other DNA metabolic factors. However, although these efforts have elucidated the cellular functions of the helicase in cell lines, they have not been linked to the treatment of the disease. Life expectancy has improved for WS patients over the past three decades, and it is hoped that a fundamental treatment for the disease will be developed. Disease-specific induced pluripotent stem (iPS) cells have been established, and these are expected to be used in drug discovery and regenerative medicine for WS patients. In this article, we review trends in research to date and present some perspectives on WS research with regard to the application of pluripotent stem cells. Furthermore, the elucidation of disease mechanisms and drug discovery utilizing the vast amount of scientific data accumulated to date will be discussed.
Collapse
|
103
|
A stem cell aging framework, from mechanisms to interventions. Cell Rep 2022; 41:111451. [DOI: 10.1016/j.celrep.2022.111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
|
104
|
Abstract
Over the course of a human lifespan, genome integrity erodes, leading to an increased abundance of several types of chromatin changes. The abundance of DNA lesions (chemical perturbations to nucleotides) increases with age, as does the number of genomic mutations and transcriptional disruptions caused by replication or transcription of those lesions, respectively. At the epigenetic level, precise DNA methylation patterns degrade, likely causing increasingly stochastic variations in gene expression. Similarly, the tight regulation of histone modifications begins to unravel. The genomic instability caused by these mechanisms allows transposon element reactivation and remobilization, further mutations, gene dysregulation, and cytoplasmic chromatin fragments. This cumulative genomic instability promotes cell signaling events that drive cell fate decisions and extracellular communications known to disrupt tissue homeostasis and regeneration. In this Review, we focus on age-related epigenetic changes and their interactions with age-related genomic changes that instigate these events.
Collapse
Affiliation(s)
- Carolina Soto-Palma
- Institute on the Biology of Aging and Metabolism
- Department of Biochemistry, Molecular Biology, and Biophysics
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism
- Department of Biochemistry, Molecular Biology, and Biophysics
| | - Christopher D. Faulk
- Institute on the Biology of Aging and Metabolism
- Department of Animal Science, and
| | - Xiao Dong
- Institute on the Biology of Aging and Metabolism
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
105
|
Della Valle F, Reddy P, Yamamoto M, Liu P, Saera-Vila A, Bensaddek D, Zhang H, Prieto Martinez J, Abassi L, Celii M, Ocampo A, Nuñez Delicado E, Mangiavacchi A, Aiese Cigliano R, Rodriguez Esteban C, Horvath S, Izpisua Belmonte JC, Orlando V. LINE-1 RNA causes heterochromatin erosion and is a target for amelioration of senescent phenotypes in progeroid syndromes. Sci Transl Med 2022; 14:eabl6057. [PMID: 35947677 DOI: 10.1126/scitranslmed.abl6057] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Constitutive heterochromatin is responsible for genome repression of DNA enriched in repetitive sequences, telomeres, and centromeres. During physiological and pathological premature aging, heterochromatin homeostasis is profoundly compromised. Here, we showed that LINE-1 (Long Interspersed Nuclear Element-1; L1) RNA accumulation was an early event in both typical and atypical human progeroid syndromes. L1 RNA negatively regulated the enzymatic activity of the histone-lysine N-methyltransferase SUV39H1 (suppression of variegation 3-9 homolog 1), resulting in heterochromatin loss and onset of senescent phenotypes in vitro. Depletion of L1 RNA in dermal fibroblast cells from patients with different progeroid syndromes using specific antisense oligonucleotides (ASOs) restored heterochromatin histone 3 lysine 9 and histone 3 lysine 27 trimethylation marks, reversed DNA methylation age, and counteracted the expression of senescence-associated secretory phenotype genes such as p16, p21, activating transcription factor 3 (ATF3), matrix metallopeptidase 13 (MMP13), interleukin 1a (IL1a), BTG anti-proliferation factor 2 (BTG2), and growth arrest and DNA damage inducible beta (GADD45b). Moreover, systemic delivery of ASOs rescued the histophysiology of tissues and increased the life span of a Hutchinson-Gilford progeria syndrome mouse model. Transcriptional profiling of human and mouse samples after L1 RNA depletion demonstrated that pathways associated with nuclear chromatin organization, cell proliferation, and transcription regulation were enriched. Similarly, pathways associated with aging, inflammatory response, innate immune response, and DNA damage were down-regulated. Our results highlight the role of L1 RNA in heterochromatin homeostasis in progeroid syndromes and identify a possible therapeutic approach to treat premature aging and related syndromes.
Collapse
Affiliation(s)
- Francesco Della Valle
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Sciences and Engineering Division BESE, KAUST Environmental Epigenetics Program, Thuwal, Saudi Arabia
| | - Pradeep Reddy
- Salk Institute for Biological Studies, La Jolla, CA, USA.,Altos Labs, San Diego, CA, USA
| | - Mako Yamamoto
- Salk Institute for Biological Studies, La Jolla, CA, USA.,Altos Labs, San Diego, CA, USA
| | - Peng Liu
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Sciences and Engineering Division BESE, KAUST Environmental Epigenetics Program, Thuwal, Saudi Arabia
| | | | - Dalila Bensaddek
- King Abdullah University of Science and Technology (KAUST), Bioscience Core Lab
| | - Huoming Zhang
- King Abdullah University of Science and Technology (KAUST), Bioscience Core Lab
| | | | - Leila Abassi
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Sciences and Engineering Division BESE, KAUST Environmental Epigenetics Program, Thuwal, Saudi Arabia
| | - Mirko Celii
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Sciences and Engineering Division BESE, KAUST Environmental Epigenetics Program, Thuwal, Saudi Arabia
| | | | | | - Arianna Mangiavacchi
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Sciences and Engineering Division BESE, KAUST Environmental Epigenetics Program, Thuwal, Saudi Arabia
| | | | | | | | | | - Valerio Orlando
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Sciences and Engineering Division BESE, KAUST Environmental Epigenetics Program, Thuwal, Saudi Arabia
| |
Collapse
|
106
|
Sikder S, Arunkumar G, Melters DP, Dalal Y. Breaking the aging epigenetic barrier. Front Cell Dev Biol 2022; 10:943519. [PMID: 35966762 PMCID: PMC9366916 DOI: 10.3389/fcell.2022.943519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Aging is an inexorable event occurring universally for all organisms characterized by the progressive loss of cell function. However, less is known about the key events occurring inside the nucleus in the process of aging. The advent of chromosome capture techniques and extensive modern sequencing technologies have illuminated a rather dynamic structure of chromatin inside the nucleus. As cells advance along their life cycle, chromatin condensation states alter which leads to a different epigenetic landscape, correlated with modified gene expression. The exact factors mediating these changes in the chromatin structure and function remain elusive in the context of aging cells. The accumulation of DNA damage, reactive oxygen species and loss of genomic integrity as cells cease to divide can contribute to a tumor stimulating environment. In this review, we focus on genomic and epigenomic changes occurring in an aged cell which can contribute to age-related tumor formation.
Collapse
Affiliation(s)
| | | | | | - Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States
| |
Collapse
|
107
|
Mendez-Bermudez A, Lototska L, Pousse M, Tessier F, Croce O, Latrick CM, Cherdyntseva V, Nassour J, Xiaohua J, Lu Y, Abbadie C, Gagos S, Ye J, Gilson E. Selective pericentromeric heterochromatin dismantling caused by TP53 activation during senescence. Nucleic Acids Res 2022; 50:7493-7510. [PMID: 35819196 PMCID: PMC9303393 DOI: 10.1093/nar/gkac603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular senescence triggers various types of heterochromatin remodeling that contribute to aging. However, the age-related mechanisms that lead to these epigenetic alterations remain elusive. Here, we asked how two key aging hallmarks, telomere shortening and constitutive heterochromatin loss, are mechanistically connected during senescence. We show that, at the onset of senescence, pericentromeric heterochromatin is specifically dismantled consisting of chromatin decondensation, accumulation of DNA breakages, illegitimate recombination and loss of DNA. This process is caused by telomere shortening or genotoxic stress by a sequence of events starting from TP53-dependent downregulation of the telomere protective protein TRF2. The resulting loss of TRF2 at pericentromeres triggers DNA breaks activating ATM, which in turn leads to heterochromatin decondensation by releasing KAP1 and Lamin B1, recombination and satellite DNA excision found in the cytosol associated with cGAS. This TP53–TRF2 axis activates the interferon response and the formation of chromosome rearrangements when the cells escape the senescent growth arrest. Overall, these results reveal the role of TP53 as pericentromeric disassembler and define the basic principles of how a TP53-dependent senescence inducer hierarchically leads to selective pericentromeric dismantling through the downregulation of TRF2.
Collapse
Affiliation(s)
- Aaron Mendez-Bermudez
- Department of Geriatrics, Medical center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University school of Medicine; International laboratory in Hematology, Cancer and Aging, Pôle Sino-Français de Recherches en Sciences du Vivant et Génomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CNRS/INSERM/University Côte d'Azur.,Université Côte d'Azur, CNRS, INSERM, IRCAN, Faculty of Medicine Nice, France
| | - Liudmyla Lototska
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Faculty of Medicine Nice, France
| | - Melanie Pousse
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Faculty of Medicine Nice, France
| | - Florent Tessier
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Faculty of Medicine Nice, France
| | - Oliver Croce
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Faculty of Medicine Nice, France
| | - Chrysa M Latrick
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Faculty of Medicine Nice, France
| | - Veronica Cherdyntseva
- Laboratory of Genetics, Center of Experimental Medicine and Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Joe Nassour
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Jiang Xiaohua
- School of Biomedical Sciences, The Chinese University of Hong Kong
| | - Yiming Lu
- Department of Geriatrics, Medical center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University school of Medicine; International laboratory in Hematology, Cancer and Aging, Pôle Sino-Français de Recherches en Sciences du Vivant et Génomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CNRS/INSERM/University Côte d'Azur
| | - Corinne Abbadie
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Sarantis Gagos
- Laboratory of Genetics, Center of Experimental Medicine and Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Jing Ye
- Department of Geriatrics, Medical center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University school of Medicine; International laboratory in Hematology, Cancer and Aging, Pôle Sino-Français de Recherches en Sciences du Vivant et Génomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CNRS/INSERM/University Côte d'Azur
| | - Eric Gilson
- Department of Geriatrics, Medical center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University school of Medicine; International laboratory in Hematology, Cancer and Aging, Pôle Sino-Français de Recherches en Sciences du Vivant et Génomique, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CNRS/INSERM/University Côte d'Azur.,Université Côte d'Azur, CNRS, INSERM, IRCAN, Faculty of Medicine Nice, France.,Department of medical genetics, CHU, Nice, France
| |
Collapse
|
108
|
Crochemore C, Cimmaruta C, Fernández-Molina C, Ricchetti M. Reactive Species in Progeroid Syndromes and Aging-Related Processes. Antioxid Redox Signal 2022; 37:208-228. [PMID: 34428933 DOI: 10.1089/ars.2020.8242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Significance: Reactive species have been classically considered causative of age-related degenerative processes, but the scenario appears considerably more complex and to some extent counterintuitive than originally anticipated. The impact of reactive species in precocious aging syndromes is revealing new clues to understand and perhaps challenge the resulting degenerative processes. Recent Advances: Our understanding of reactive species has considerably evolved, including their hormetic effect (beneficial at a certain level, harmful beyond this level), the occurrence of diverse hormetic peaks in different cell types and organisms, and the extended type of reactive species that are relevant in biological processes. Our understanding of the impact of reactive species has also expanded from the dichotomic damaging/signaling role to modulation of gene expression. Critical Issues: These new concepts are affecting the study of aging and diseases where aging is greatly accelerated. We discuss how notions arising from the study of the underlying mechanisms of a progeroid disease, Cockayne syndrome, represent a paradigm shift that may shed a new light in understanding the role of reactive species in age-related degenerative processes. Future Issues: Future investigations urge to explore established and emerging notions to elucidate the multiple contributions of reactive species in degenerative processes linked to pathophysiological aging and their possible amelioration. Antioxid. Redox Signal. 37, 208-228.
Collapse
Affiliation(s)
- Clément Crochemore
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France.,Sup'Biotech, Villejuif, France
| | - Chiara Cimmaruta
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France
| | - Cristina Fernández-Molina
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France.,Sorbonne Universités, UPMC, University of Paris 06, Paris, France
| | - Miria Ricchetti
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France
| |
Collapse
|
109
|
Excessive branched-chain amino acid accumulation restricts mesenchymal stem cell-based therapy efficacy in myocardial infarction. Signal Transduct Target Ther 2022; 7:171. [PMID: 35654769 PMCID: PMC9163108 DOI: 10.1038/s41392-022-00971-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) delivered into the post-ischemic heart milieu have a low survival and retention rate, thus restricting the cardioreparative efficacy of MSC-based therapy. Chronic ischemia results in metabolic reprogramming in the heart, but little is known about how these metabolic changes influence implanted MSCs. Here, we found that excessive branched-chain amino acid (BCAA) accumulation, a metabolic signature seen in the post-ischemic heart, was disadvantageous to the retention and cardioprotection of intramyocardially injected MSCs. Discovery-driven experiments revealed that BCAA at pathological levels sensitized MSCs to stress-induced cell death and premature senescence via accelerating the loss of histone 3 lysine 9 trimethylation (H3K9me3). A novel mTORC1/DUX4/KDM4E axis was identified as the cause of BCAA-induced H3K9me3 loss and adverse phenotype acquisition. Enhancing BCAA catabolic capability in MSCs via genetic/pharmacological approaches greatly improved their adaptation to the high BCAA milieu and strengthened their cardioprotective efficacy. We conclude that aberrant BCAA accumulation is detrimental to implanted MSCs via a previously unknown metabolite-signaling-epigenetic mechanism, emphasizing that the metabolic changes of the post-ischemic heart crucially influence the fate of implanted MSCs and their therapeutic benefits.
Collapse
|
110
|
Liu Z, Belmonte JCI, Zhang W, Qu J, Liu GH. Deciphering aging at three-dimensional genomic resolution. CELL INSIGHT 2022; 1:100034. [PMID: 37193050 PMCID: PMC10120299 DOI: 10.1016/j.cellin.2022.100034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 05/18/2023]
Abstract
Aging is characterized by progressive functional declines at the organismal, organic, and cellular levels and increased susceptibility to aging-related diseases. Epigenetic alteration is a hallmark of aging, senescent cells show epigenomic changes at multiple scales, such as 3D genome reorganization, alterations of histone modifications and chromatin accessibility, and DNA hypomethylation. Chromosome conformation capture (3C)-based technologies have enabled the generation of key information on genomic reorganizations during senescence. A comprehensive understanding of epigenomic alterations during aging will yield important insights into the underlying epigenetic mechanism for aging regulation, the identification of aging-related biomarkers, and the development of potential aging intervention targets.
Collapse
Affiliation(s)
- Zunpeng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| |
Collapse
|
111
|
Gulla S, Reddy MC, Reddy VC, Chitta S, Bhanoori M, Lomada D. Role of thymus in health and disease. Int Rev Immunol 2022; 42:347-363. [PMID: 35593192 DOI: 10.1080/08830185.2022.2064461] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/26/2022] [Accepted: 04/04/2022] [Indexed: 01/04/2023]
Abstract
The thymus is a primary lymphoid organ, essential for the development of T-cells that will protect from invading pathogens, immune disorders, and cancer. The thymus decreases in size and cellularity with age referred to as thymus involution or atrophy. This involution causes decreased T-cell development and decreased naive T-cell emigration to the periphery, increased proportion of memory T cells, and a restricted, altered T-cell receptor (TCR) repertoire. The changes in composition and function of the circulating T cell pool as a result of thymic involution led to increased susceptibility to infectious diseases including the recent COVID and a higher risk for autoimmune disorders and cancers. Thymic involution consisting of both structural and functional loss of the thymus has a deleterious effect on T cell development, T cell selection, and tolerance. The mechanisms which act on the structural (cortex and medulla) matrix of the thymus, the gradual accumulation of genetic mutations, and altered gene expressions may lead to immunosenescence as a result of thymus involution. Understanding the molecular mechanisms behind thymic involution is critical for identifying diagnostic biomarkers and targets for treatment help to develop strategies to mitigate thymic involution-associated complications. This review is focused on the consequences of thymic involution in infections, immune disorders, and diseases, identifying potential checkpoints and potential approaches to sustain or restore the function of the thymus particularly in elderly and immune-compromised individuals.
Collapse
Affiliation(s)
- Surendra Gulla
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Vajra C Reddy
- Katuri Medical College and Hospital, Chinnakondrupadu, Guntur, India
| | | | - Manjula Bhanoori
- Department of Biochemistry, Osmania University, Hyderabad, Telangana State, India
| | - Dakshayani Lomada
- Department of Genetics and Genomics, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| |
Collapse
|
112
|
Liu Z, Ji Q, Ren J, Yan P, Wu Z, Wang S, Sun L, Wang Z, Li J, Sun G, Liang C, Sun R, Jiang X, Hu J, Ding Y, Wang Q, Bi S, Wei G, Cao G, Zhao G, Wang H, Zhou Q, Belmonte JCI, Qu J, Zhang W, Liu GH. Large-scale chromatin reorganization reactivates placenta-specific genes that drive cellular aging. Dev Cell 2022; 57:1347-1368.e12. [PMID: 35613614 DOI: 10.1016/j.devcel.2022.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/24/2022] [Accepted: 05/02/2022] [Indexed: 01/10/2023]
Abstract
Nuclear deformation, a hallmark frequently observed in senescent cells, is presumed to be associated with the erosion of chromatin organization at the nuclear periphery. However, how such gradual changes in higher-order genome organization impinge on local epigenetic modifications to drive cellular mechanisms of aging has remained enigmatic. Here, through large-scale epigenomic analyses of isogenic young, senescent, and progeroid human mesenchymal progenitor cells (hMPCs), we delineate a hierarchy of integrated structural state changes that manifest as heterochromatin loss in repressive compartments, euchromatin weakening in active compartments, switching in interfacing topological compartments, and increasing epigenetic entropy. We found that the epigenetic de-repression unlocks the expression of pregnancy-specific beta-1 glycoprotein (PSG) genes that exacerbate hMPC aging and serve as potential aging biomarkers. Our analyses provide a rich resource for uncovering the principles of epigenomic landscape organization and its changes in cellular aging and for identifying aging drivers and intervention targets with a genome-topology-based mechanism.
Collapse
Affiliation(s)
- Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengze Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Liang Sun
- NHC Beijing Institute of Geriatrics, NHC Key Laboratory of Geriatrics, Institute of Geriatric Medicine of Chinese Academy of Medical Sciences, National Center of Gerontology/ Beijing Hospital, Beijing 100730, China; Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Run Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianli Hu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijia Bi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Bio-Medical Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoguang Zhao
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | | | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
113
|
Lyu Y, Ge Y. Toward Elucidating Epigenetic and Metabolic Regulation of Stem Cell Lineage Plasticity in Skin Aging. Front Cell Dev Biol 2022; 10:903904. [PMID: 35663405 PMCID: PMC9160930 DOI: 10.3389/fcell.2022.903904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Skin is the largest organ in human body, harboring a plethora of cell types and serving as the organismal barrier. Skin aging such as wrinkling and hair graying is graphically pronounced, and the molecular mechanisms behind these phenotypic manifestations are beginning to unfold. As in many other organs and tissues, epigenetic and metabolic deregulations have emerged as key aging drivers. Particularly in the context of the skin epithelium, the epigenome and metabolome coordinately shape lineage plasticity and orchestrate stem cell function during aging. Our review discusses recent studies that proposed molecular mechanisms that drive the degeneration of hair follicles, a major appendage of the skin. By focusing on skin while comparing it to model organisms and adult stem cells of other tissues, we summarize literature on genotoxic stress, nutritional sensing, metabolic rewiring, mitochondrial activity, and epigenetic regulations of stem cell plasticity. Finally, we speculate about the rejuvenation potential of rate-limiting upstream signals during aging and the dominant role of the tissue microenvironment in dictating aged epithelial stem cell function.
Collapse
Affiliation(s)
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
114
|
Ruiz-Aparicio PF, Vernot JP. Bone Marrow Aging and the Leukaemia-Induced Senescence of Mesenchymal Stem/Stromal Cells: Exploring Similarities. J Pers Med 2022; 12:jpm12050716. [PMID: 35629139 PMCID: PMC9147878 DOI: 10.3390/jpm12050716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 12/17/2022] Open
Abstract
Bone marrow aging is associated with multiple cellular dysfunctions, including perturbed haematopoiesis, the propensity to haematological transformation, and the maintenance of leukaemia. It has been shown that instructive signals from different leukemic cells are delivered to stromal cells to remodel the bone marrow into a supportive leukemic niche. In particular, cellular senescence, a physiological program with both beneficial and deleterious effects on the health of the organisms, may be responsible for the increased incidence of haematological malignancies in the elderly and for the survival of diverse leukemic cells. Here, we will review the connection between BM aging and cellular senescence and the role that these processes play in leukaemia progression. Specifically, we discuss the role of mesenchymal stem cells as a central component of the supportive niche. Due to the specificity of the genetic defects present in leukaemia, one would think that bone marrow alterations would also have particular changes, making it difficult to envisage a shared therapeutic use. We have tried to summarize the coincident features present in BM stromal cells during aging and senescence and in two different leukaemias, acute myeloid leukaemia, with high frequency in the elderly, and B-acute lymphoblastic leukaemia, mainly a childhood disease. We propose that mesenchymal stem cells are similarly affected in these different leukaemias, and that the changes that we observed in terms of cellular function, redox balance, genetics and epigenetics, soluble factor repertoire and stemness are equivalent to those occurring during BM aging and cellular senescence. These coincident features may be used to explore strategies useful to treat various haematological malignancies.
Collapse
Affiliation(s)
- Paola Fernanda Ruiz-Aparicio
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence:
| |
Collapse
|
115
|
Liu F, Chen J, Li Z, Meng X. Recent Advances in Epigenetics of Age-Related Kidney Diseases. Genes (Basel) 2022; 13:genes13050796. [PMID: 35627181 PMCID: PMC9142069 DOI: 10.3390/genes13050796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023] Open
Abstract
Renal aging has attracted increasing attention in today’s aging society, as elderly people with advanced age are more susceptible to various kidney disorders such as acute kidney injury (AKI) and chronic kidney disease (CKD). There is no clear-cut universal mechanism for identifying age-related kidney diseases, and therefore, they pose a considerable medical and public health challenge. Epigenetics refers to the study of heritable modifications in the regulation of gene expression that do not require changes in the underlying genomic DNA sequence. A variety of epigenetic modifiers such as histone deacetylases (HDAC) inhibitors and DNA methyltransferase (DNMT) inhibitors have been proposed as potential biomarkers and therapeutic targets in numerous fields including cardiovascular diseases, immune system disease, nervous system diseases, and neoplasms. Accumulating evidence in recent years indicates that epigenetic modifications have been implicated in renal aging. However, no previous systematic review has been performed to systematically generalize the relationship between epigenetics and age-related kidney diseases. In this review, we aim to summarize the recent advances in epigenetic mechanisms of age-related kidney diseases as well as discuss the application of epigenetic modifiers as potential biomarkers and therapeutic targets in the field of age-related kidney diseases. In summary, the main types of epigenetic processes including DNA methylation, histone modifications, non-coding RNA (ncRNA) modulation have all been implicated in the progression of age-related kidney diseases, and therapeutic targeting of these processes will yield novel therapeutic strategies for the prevention and/or treatment of age-related kidney diseases.
Collapse
Affiliation(s)
- Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Zhenqiong Li
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Correspondence: (Z.L.); (X.M.)
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.L.); (X.M.)
| |
Collapse
|
116
|
Vojnits K, Nakanishi M, Porras D, Kim Y, Feng Z, Golubeva D, Bhatia M. Developing CRISPR/Cas9-Mediated Fluorescent Reporter Human Pluripotent Stem-Cell Lines for High-Content Screening. Molecules 2022; 27:molecules27082434. [PMID: 35458632 PMCID: PMC9025795 DOI: 10.3390/molecules27082434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022] Open
Abstract
Application of the CRISPR/Cas9 system to knock in fluorescent proteins to endogenous genes of interest in human pluripotent stem cells (hPSCs) has the potential to facilitate hPSC-based disease modeling, drug screening, and optimization of transplantation therapy. To evaluate the capability of fluorescent reporter hPSC lines for high-content screening approaches, we targeted EGFP to the endogenous OCT4 locus. Resulting hPSC–OCT4–EGFP lines generated expressed EGFP coincident with pluripotency markers and could be adapted to multi-well formats for high-content screening (HCS) campaigns. However, after long-term culture, hPSCs transiently lost their EGFP expression. Alternatively, through EGFP knock-in to the AAVS1 locus, we established a stable and consistent EGFP-expressing hPSC–AAVS1–EGFP line that maintained EGFP expression during in vitro hematopoietic and neural differentiation. Thus, hPSC–AAVS1–EGFP-derived sensory neurons could be adapted to a high-content screening platform that can be applied to high-throughput small-molecule screening and drug discovery campaigns. Our observations are consistent with recent findings indicating that high-frequency on-target complexities appear following CRISPR/Cas9 genome editing at the OCT4 locus. In contrast, we demonstrate that the AAVS1 locus is a safe genomic location in hPSCs with high gene expression that does not impact hPSC quality and differentiation. Our findings suggest that the CRISPR/Cas9-integrated AAVS1 system should be applied for generating stable reporter hPSC lines for long-term HCS approaches, and they underscore the importance of careful evaluation and selection of the applied reporter cell lines for HCS purposes.
Collapse
|
117
|
Liang C, Ke Q, Liu Z, Ren J, Zhang W, Hu J, Wang Z, Chen H, Xia K, Lai X, Wang Q, Yang K, Li W, Wu Z, Wang C, Yan H, Jiang X, Ji Z, Ma M, Long X, Wang S, Wang H, Sun H, Belmonte J, Qu J, Xiang A, Liu GH. BMAL1 moonlighting as a gatekeeper for LINE1 repression and cellular senescence in primates. Nucleic Acids Res 2022; 50:3323-3347. [PMID: 35286396 PMCID: PMC8989534 DOI: 10.1093/nar/gkac146] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 11/13/2022] Open
Abstract
Aging in humans is intricately linked with alterations in circadian rhythms concomitant with physiological decline and stem cell exhaustion. However, whether the circadian machinery directly regulates stem cell aging, especially in primates, remains poorly understood. In this study, we found that deficiency of BMAL1, the only non-redundant circadian clock component, results in an accelerated aging phenotype in both human and cynomolgus monkey mesenchymal progenitor cells (MPCs). Unexpectedly, this phenotype was mainly attributed to a transcription-independent role of BMAL1 in stabilizing heterochromatin and thus preventing activation of the LINE1-cGAS-STING pathway. In senescent primate MPCs, we observed decreased capacity of BMAL1 to bind to LINE1 and synergistic activation of LINE1 expression. Likewise, in the skin and muscle tissues from the BMAL1-deficient cynomolgus monkey, we observed destabilized heterochromatin and aberrant LINE1 transcription. Altogether, these findings uncovered a noncanonical role of BMAL1 in stabilizing heterochromatin to inactivate LINE1 that drives aging in primate cells.
Collapse
Affiliation(s)
- Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqi Zhang
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianli Hu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Kai Xia
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xingqiang Lai
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuan Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Haoteng Yan
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Miyang Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Long
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100032, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Chongqing Renji Hospital, University of Chinese Academy of Sciences, Chongqing 400062, China
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | | | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
118
|
Zhao H, Ji Q, Wu Z, Wang S, Ren J, Yan K, Wang Z, Hu J, Chu Q, Hu H, Cai Y, Wang Q, Huang D, Ji Z, Li J, Belmonte JCI, Song M, Zhang W, Qu J, Liu GH. Destabilizing heterochromatin by APOE mediates senescence. NATURE AGING 2022; 2:303-316. [PMID: 35368774 DOI: 10.1038/s43587-022-00186-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 02/01/2022] [Indexed: 04/30/2023]
Abstract
Apolipoprotein E (APOE) is a component of lipoprotein particles that function in the homeostasis of cholesterol and other lipids. Although APOE is genetically associated with human longevity and Alzheimer's disease, its mechanistic role in aging is largely unknown. Here, we used human genetic, stress-induced and physiological cellular aging models to explore APOE-driven processes in stem cell homeostasis and aging. We report that in aged human mesenchymal progenitor cells (MPCs), APOE accumulation is a driver for cellular senescence. By contrast, CRISPR-Cas9-mediated deletion of APOE endows human MPCs with resistance to cellular senescence. Mechanistically, we discovered that APOE functions as a destabilizer for heterochromatin. Specifically, increased APOE leads to the degradation of nuclear lamina proteins and a heterochromatin-associated protein KRAB-associated protein 1 via the autophagy-lysosomal pathway, thereby disrupting heterochromatin and causing senescence. Altogether, our findings uncover a role of APOE as an epigenetic mediator of senescence and provide potential targets to ameliorate aging-related diseases.
Collapse
Affiliation(s)
- Hongkai Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Science and Technology of China, Hefei, China
| | - Qianzhao Ji
- University of the Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zeming Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Chongqing Renji Hospital, University of the Chinese Academy of Sciences, Chongqing, China
| | - Jie Ren
- University of the Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jianli Hu
- University of the Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Qun Chu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Huifang Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qiaoran Wang
- University of the Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Daoyuan Huang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | | | - Moshi Song
- University of the Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Weiqi Zhang
- University of the Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Chinese Academy of Sciences Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- China National Center for Bioinformation, Beijing, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Science and Technology of China, Hefei, China.
- University of the Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Guang-Hui Liu
- University of the Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
119
|
Wasserzug‐Pash P, Rothman R, Reich E, Zecharyahu L, Schonberger O, Weiss Y, Srebnik N, Cohen‐Hadad Y, Weintraub A, Ben‐Ami I, Holzer H, Klutstein M. Loss of heterochromatin and retrotransposon silencing as determinants in oocyte aging. Aging Cell 2022; 21:e13568. [PMID: 35166017 PMCID: PMC8920445 DOI: 10.1111/acel.13568] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/11/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Mammalian oocyte quality reduces with age. We show that prior to the occurrence of significant aneuploidy (9M in mouse), heterochromatin histone marks are lost, and oocyte maturation is impaired. This loss occurs in both constitutive and facultative heterochromatin marks but not in euchromatic active marks. We show that heterochromatin loss with age also occurs in human prophase I-arrested oocytes. Moreover, heterochromatin loss is accompanied in mouse oocytes by an increase in RNA processing and associated with an elevation in L1 and IAP retrotransposon expression and in DNA damage and DNA repair proteins nuclear localization. Artificial inhibition of the heterochromatin machinery in young oocytes causes an elevation in retrotransposon expression and oocyte maturation defects. Inhibiting retrotransposon reverse-transcriptase through azidothymidine (AZT) treatment in older oocytes partially rescues their maturation defects and activity of the DNA repair machinery. Moreover, activating the heterochromatin machinery via treatment with the SIRT1 activating molecule SRT-1720, or overexpression of Sirt1 or Ezh2 via plasmid electroporation into older oocytes causes an upregulation in constitutive heterochromatin, downregulation of retrotransposon expression, and elevated maturation rates. Collectively, our work demonstrates a significant process in oocyte aging, characterized by the loss of heterochromatin-associated chromatin marks and activation of specific retrotransposons, which cause DNA damage and impair oocyte maturation.
Collapse
Affiliation(s)
- Peera Wasserzug‐Pash
- Institute of Dental SciencesFaculty of Dental MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Rachel Rothman
- Institute of Dental SciencesFaculty of Dental MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Eli Reich
- Institute of Dental SciencesFaculty of Dental MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Lital Zecharyahu
- Institute of Dental SciencesFaculty of Dental MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - Oshrat Schonberger
- IVF UnitDepartment of Obstetrics and GynecologyShaare Zedek Medical Center and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Yifat Weiss
- IVF UnitDepartment of Obstetrics and GynecologyShaare Zedek Medical Center and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Naama Srebnik
- IVF UnitDepartment of Obstetrics and GynecologyShaare Zedek Medical Center and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Yaara Cohen‐Hadad
- IVF UnitDepartment of Obstetrics and GynecologyShaare Zedek Medical Center and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Amir Weintraub
- IVF UnitDepartment of Obstetrics and GynecologyShaare Zedek Medical Center and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Ido Ben‐Ami
- IVF UnitDepartment of Obstetrics and GynecologyShaare Zedek Medical Center and Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Hananel Holzer
- Department of Obstetrics and GynecologyHadassah‐Hebrew University Medical CenterKiryat HadassahJerusalemIsrael
| | - Michael Klutstein
- Institute of Dental SciencesFaculty of Dental MedicineThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
120
|
Crouch J, Shvedova M, Thanapaul RJRS, Botchkarev V, Roh D. Epigenetic Regulation of Cellular Senescence. Cells 2022; 11:672. [PMID: 35203320 PMCID: PMC8870565 DOI: 10.3390/cells11040672] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Senescence is a complex cellular stress response that abolishes proliferative capacity and generates a unique secretory pattern that is implicated in organismal aging and age-related disease. How a cell transitions to a senescent state is multifactorial and often requires transcriptional regulation of multiple genes. Epigenetic alterations to DNA and chromatin are powerful regulators of genome architecture and gene expression, and they play a crucial role in mediating the induction and maintenance of senescence. This review will highlight the changes in chromatin, DNA methylation, and histone alterations that establish and maintain cellular senescence, alongside the specific epigenetic regulation of the senescence-associated secretory phenotype (SASP).
Collapse
Affiliation(s)
- Jack Crouch
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| | - Maria Shvedova
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| | - Rex Jeya Rajkumar Samdavid Thanapaul
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| | - Vladimir Botchkarev
- Department of Dermatology, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Daniel Roh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA; (J.C.); (M.S.); (R.J.R.S.T.)
| |
Collapse
|
121
|
Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor. Cell Discov 2022; 8:6. [PMID: 35102134 PMCID: PMC8803930 DOI: 10.1038/s41421-021-00361-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/05/2021] [Indexed: 01/07/2023] Open
Abstract
Regenerative capacity declines throughout evolution and with age. In this study, we asked whether metabolic programs underlying regenerative capability might be conserved across species, and if so, whether such metabolic drivers might be harnessed to promote tissue repair. To this end, we conducted metabolomic analyses in two vertebrate organ regeneration models: the axolotl limb blastema and antler stem cells. To further reveal why young individuals have higher regenerative capacity than the elderly, we also constructed metabolic profiles for primate juvenile and aged tissues, as well as young and aged human stem cells. In joint analyses, we uncovered that active pyrimidine metabolism and fatty acid metabolism correlated with higher regenerative capacity. Furthermore, we identified a set of regeneration-related metabolite effectors conserved across species. One such metabolite is uridine, a pyrimidine nucleoside, which can rejuvenate aged human stem cells and promote regeneration of various tissues in vivo. These observations will open new avenues for metabolic intervention in tissue repair and regeneration.
Collapse
|
122
|
SETDB1-like MET-2 promotes transcriptional silencing and development independently of its H3K9me-associated catalytic activity. Nat Struct Mol Biol 2022; 29:85-96. [PMID: 35102319 PMCID: PMC8850192 DOI: 10.1038/s41594-021-00712-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022]
Abstract
Transcriptionally silenced heterochromatin bearing methylation of histone H3 on lysine 9 (H3K9me) is critical for maintaining organismal viability and tissue integrity. Here we show that in addition to ensuring H3K9me, MET-2, the Caenorhabditis elegans homolog of the SETDB1 histone methyltransferase, has a noncatalytic function that contributes to gene repression. Subnuclear foci of MET-2 coincide with H3K9me deposition, yet these foci also form when MET-2 is catalytically deficient and H3K9me is compromised. Whereas met-2 deletion triggers a loss of silencing and increased histone acetylation, foci of catalytically deficient MET-2 maintain silencing of a subset of genes, blocking acetylation on H3K9 and H3K27. In normal development, this noncatalytic MET-2 activity helps to maintain fertility. Under heat stress MET-2 foci disperse, coinciding with increased acetylation and transcriptional derepression. Our study suggests that the noncatalytic, focus-forming function of this SETDB1-like protein and its intrinsically disordered cofactor LIN-65 is physiologically relevant. Genetic and genome-wide analysis of a catalytically deficient SETDB1-like enzyme, MET-2, in Caenorhabditiselegans reveals that MET-2 promotes transcriptional silencing and fertility through both H3K9 methylation and focus formation, which blocks histone acetylation.
Collapse
|
123
|
Pouikli A, Tessarz P. Epigenetic alterations in stem cell ageing-a promising target for age-reversing interventions? Brief Funct Genomics 2022; 21:35-42. [PMID: 33738480 PMCID: PMC8789308 DOI: 10.1093/bfgp/elab010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ageing is accompanied by loss of tissue integrity and organismal homeostasis partly due to decline in stem cell function. The age-associated decrease in stem cell abundance and activity is often referred to as stem cell exhaustion and is considered one major hallmark of ageing. Importantly, stem cell proliferation and differentiation potential are tightly coupled to the cellular epigenetic state. Thus, research during the last years has started to investigate how the epigenome regulates stem cell function upon ageing. Here, we summarize the role of epigenetic regulation in stem cell fate decisions and we review the impact of age-related changes of the epigenome on stem cell activity. Finally, we discuss how targeted interventions on the epigenetic landscape might delay ageing and extend health-span.
Collapse
Affiliation(s)
| | - Peter Tessarz
- Corresponding author: Peter Tessarz, Max Planck Research Group ``Chromatin and Ageing'', Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931 Cologne, Germany. Tel: +4922137970680; Fax: +492213797088680; E-mail:
| |
Collapse
|
124
|
Farrell C, Vaquero-Sedas MI, Cubiles MD, Thompson M, Vega-Vaquero A, Pellegrini M, Vega-Palas MA. A complex network of interactions governs DNA methylation at telomeric regions. Nucleic Acids Res 2022; 50:1449-1464. [PMID: 35061900 PMCID: PMC8860613 DOI: 10.1093/nar/gkac012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
DNA methylation modulates telomere function. In Arabidopsis thaliana, telomeric regions have a bimodal chromatin organization with unmethylated telomeres and methylated subtelomeres. To gain insight into this organization we have generated TAIR10-Tel, a modified version of the Arabidopsis reference genome with additional sequences at most chromosome ends. TAIR10-Tel has allowed us to analyse DNA methylation at nucleotide resolution level in telomeric regions. We have analysed the wild-type strain and mutants that encode inactive versions of all currently known relevant methyltransferases involved in cytosine methylation. These analyses have revealed that subtelomeric DNA methylation extends 1 to 2 kbp from Interstitial Telomeric Sequences (ITSs) that abut or are very near to telomeres. However, DNA methylation drops at the telomeric side of the telomere-subtelomere boundaries and disappears at the inner part of telomeres. We present a comprehensive and integrative model for subtelomeric DNA methylation that should help to decipher the mechanisms that govern the epigenetic regulation of telomeres. This model involves a complex network of interactions between methyltransferases and subtelomeric DNA sequences.
Collapse
Affiliation(s)
- Colin Farrell
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA90095, USA
| | - María I Vaquero-Sedas
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, IBVF (CSIC-US), Seville, E41092, Spain
| | - María D Cubiles
- Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas, Universidad de Sevilla, Seville, E41012, Spain
| | - Michael Thompson
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA90095, USA
| | - Alejandro Vega-Vaquero
- Escuela Técnica Superior de Ingeniería Informática, Universidad de Sevilla, Seville, E41012, Spain
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA90095, USA.,Institute of Genomics and Proteomics, Los Angeles, CA90095, USA
| | - Miguel A Vega-Palas
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, IBVF (CSIC-US), Seville, E41092, Spain
| |
Collapse
|
125
|
Yeom S, Oh J, Lee JS. Spreading-dependent or independent Sir2-mediated gene silencing in budding yeast. Genes Genomics 2022; 44:359-367. [PMID: 35034281 DOI: 10.1007/s13258-021-01203-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND In the budding yeast Saccharomyces cerevisiae, a silent chromatin structure is formed at three distinct loci, including telomeres, rDNA, and mating-type loci, which silence the expression of genes within their structures. Sir2 is the only common factor, regulating the three silent chromatin regions. S. cerevisiae has 32 telomeres, but studies on gene silencing in budding yeast have been performed using some reporter genes, artificially inserted in the telomeric regions. Therefore, insights into the global landscape of Sir-dependent silencing of genes within the silent chromatin regions are required. OBJECTIVE This study aimed to obtain global insights into Sir2-dependent gene silencing on all silent chromatin regions in budding yeast. METHODS RNA-sequencing was performed to identify genes that are silenced by Sir2. By comparing with the chromatin immunoprecipitation-sequencing (ChIP-seq) of Sir2 in the wild-type strain, we confirmed Sir2-regulated genes. RESULTS Using Sir2 ChIP-seq data, we identified that the Sir2 binding domain length caused by Sir2 spreading from the chromosomal end is different in each telomere in budding yeast. Expression of most subtelomeric genes increased in the ∆sir2 strain. Some Sir2-regulated subtelomeric genes were positioned within the telomeric Sir2-binding domain, while the others were outside the Sir2-binding domain. In addition, Sir2 was bound to the mating-type loci and rDNA region, and gene expression increased in the ∆sir2 strain. CONCLUSION We concluded that S. cerevisiae has two modes of Sir2-mediated gene silencing: one is dependent on chromatin binding and spreading of Sir2, and the other is independent of spreading of Sir2.
Collapse
Affiliation(s)
- Soojin Yeom
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea
| | - Junsoo Oh
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
126
|
Abstract
SIRT3 is an NAD+-dependent deacetylase in the mitochondria with an extensive ability to regulate mitochondrial morphology and function. It has been reported that SIRT3 participates in the occurrence and development of many aging-related diseases. Osteoporosis is a common aging-related disease characterized by decreased bone mass and fragility fractures, which has caused a huge burden on society. Current research shows that SIRT3 is involved in the physiological processes of senescence of bone marrow mesenchymal stem cells (BMSCs), differentiation of BMSCs and osteoclasts. However, the specific effects and mechanisms of SIRT3 in osteoporosis are not clear. In the current review, we elaborated on the physiological functions of SIRT3, the cell types involved in bone remodeling, and the role of SIRT3 in osteoporosis. Furthermore, it also provided a theoretical basis for SIRT3 as a therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Siwang Hu
- The Orthopaedic Center, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| | - Shuangshuang Wang
- Department of Cardiology, Wenling First People’s Hospital (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
- *Correspondence: Shuangshuang Wang,
| |
Collapse
|
127
|
Guo P, Liu Y, Geng F, Daman AW, Liu X, Zhong L, Ravishankar A, Lis R, Barcia Durán JG, Itkin T, Tang F, Zhang T, Xiang J, Shido K, Ding BS, Wen D, Josefowicz SZ, Rafii S. Histone variant H3.3 maintains adult haematopoietic stem cell homeostasis by enforcing chromatin adaptability. Nat Cell Biol 2022; 24:99-111. [PMID: 34961794 PMCID: PMC9166935 DOI: 10.1038/s41556-021-00795-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/14/2021] [Indexed: 01/25/2023]
Abstract
Histone variants and the associated post-translational modifications that govern the stemness of haematopoietic stem cells (HSCs) and differentiation thereof into progenitors (HSPCs) have not been well defined. H3.3 is a replication-independent H3 histone variant in mammalian systems that is enriched at both H3K4me3- and H3K27me3-marked bivalent genes as well as H3K9me3-marked endogenous retroviral repeats. Here we show that H3.3, but not its chaperone Hira, prevents premature HSC exhaustion and differentiation into granulocyte-macrophage progenitors. H3.3-null HSPCs display reduced expression of stemness and lineage-specific genes with a predominant gain of H3K27me3 marks at their promoter regions. Concomitantly, loss of H3.3 leads to a reduction of H3K9me3 marks at endogenous retroviral repeats, opening up binding sites for the interferon regulatory factor family of transcription factors, allowing the survival of rare, persisting H3.3-null HSCs. We propose a model whereby H3.3 maintains adult HSC stemness by safeguarding the delicate interplay between H3K27me3 and H3K9me3 marks, enforcing chromatin adaptability.
Collapse
Affiliation(s)
- Peipei Guo
- Department of Medicine, Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA.
- Fibrosis Research Center, Mount Sinai-National Jewish Respiratory Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Ying Liu
- Department of Medicine, Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| | - Fuqiang Geng
- Department of Medicine, Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| | - Andrew W Daman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Xiaoyu Liu
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Liangwen Zhong
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Arjun Ravishankar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Raphael Lis
- Department of Medicine, Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA
| | - José Gabriel Barcia Durán
- Department of Medicine, Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| | - Tomer Itkin
- Department of Medicine, Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| | - Fanying Tang
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Tuo Zhang
- Weill Cornell Genomics Core Facility, New York, NY, USA
| | - Jenny Xiang
- Weill Cornell Genomics Core Facility, New York, NY, USA
| | - Koji Shido
- Department of Medicine, Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
| | - Bi-Sen Ding
- Department of Medicine, Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA
- Fibrosis Research Center, Mount Sinai-National Jewish Respiratory Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Duancheng Wen
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Steven Z Josefowicz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shahin Rafii
- Department of Medicine, Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
128
|
Cai Y, Wang S, Qu J, Belmonte JCI, Liu GH. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:231-238. [PMID: 35303745 PMCID: PMC8968747 DOI: 10.1093/stcltm/szab012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/17/2021] [Indexed: 11/14/2022] Open
Abstract
Stem cell therapies, including stem cell transplantation and rejuvenation of stem cells in situ, are promising avenues for tackling a broad range of diseases. Stem cells can both self-renew and differentiate into other cell types, and play a significant role in the regulation of tissue homeostasis and regeneration after cell degeneration or injury. However, stem cell exhaustion or dysfunction increases with age and impedes the normal function of multiple tissues and systems. Thus, stem cell therapies could provide a solution to aging and age-associated diseases. Here, we discuss recent advances in understanding the mechanisms that regulate stem cell regeneration. We also summarize potential strategies for rejuvenating stem cells that leverage intrinsic and extrinsic factors. These approaches may pave the way toward therapeutic interventions aiming at extending both health and life span.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, People’s Republic of China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, People’s Republic of China
- Aging Translational Medicine Center, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, People’s Republic of China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Corresponding author: Jing Qu, PhD, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, People’s Republic of China. Tel: +86-10-64807768;
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Juan Carlos Izpisúa-Belmonte, PhD, Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA, USA. Tel: (858) 453-4100 x1130;
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, People’s Republic of China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, People’s Republic of China
- Guanghui Liu, PhD, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 3A Datun Road, Chaoyang District, Beijing 100101, People’s Republic of China. Tel: +86-10-64807852;
| |
Collapse
|
129
|
Lee JY, Davis I, Youth EHH, Kim J, Churchill G, Godwin J, Korstanje R, Beck S. Misexpression of genes lacking CpG islands drives degenerative changes during aging. SCIENCE ADVANCES 2021; 7:eabj9111. [PMID: 34910517 PMCID: PMC8673774 DOI: 10.1126/sciadv.abj9111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/26/2021] [Indexed: 05/14/2023]
Abstract
Cellular aging is characterized by disruption of the nuclear lamina and its associated heterochromatin. How these structural changes within the nucleus contribute to age-related degeneration of the organism is unclear. Genes lacking CpG islands (CGI− genes) generally associate with heterochromatin when they are inactive. Here, we show that the expression of these genes is globally activated in aged cells and tissues. This CGI− gene misexpression is a common feature of normal and pathological aging in mice and humans. We report evidence that CGI− gene up-regulation is directly responsible for age-related physiological deterioration, notably for increased secretion of inflammatory mediators.
Collapse
Affiliation(s)
- Jun-Yeong Lee
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Ian Davis
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Elliot H. H. Youth
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04609, USA
- Brown University, Providence, RI 02912, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - James Godwin
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04609, USA
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Samuel Beck
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04609, USA
| |
Collapse
|
130
|
Hsu TY, Hsu LN, Chen SY, Juang BT. MUT-7 Provides Molecular Insight into the Werner Syndrome Exonuclease. Cells 2021; 10:cells10123457. [PMID: 34943966 PMCID: PMC8700014 DOI: 10.3390/cells10123457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 11/24/2022] Open
Abstract
Werner syndrome (WS) is a rare recessive genetic disease characterized by premature aging. Individuals with this disorder develop normally during childhood, but their physiological conditions exacerbate the aging process in late adolescence. WS is caused by mutation of the human WS gene (WRN), which encodes two main domains, a 3′-5′ exonuclease and a 3′-5′ helicase. Caenorhabditis elegans expresses human WRN orthologs as two different proteins: MUT-7, which has a 3′-5′ exonuclease domain, and C. elegans WRN-1 (CeWRN-1), which has only helicase domains. These unique proteins dynamically regulate olfactory memory in C. elegans, providing insight into the molecular roles of WRN domains in humans. In this review, we specifically focus on characterizing the function of MUT-7 in small interfering RNA (siRNA) synthesis in the cytoplasm and the roles of siRNA in directing nuclear CeWRN-1 loading onto a heterochromatin complex to induce negative feedback regulation. Further studies on the different contributions of the 3′-5′ exonuclease and helicase domains in the molecular mechanism will provide clues to the accelerated aging processes in WS.
Collapse
Affiliation(s)
- Tsung-Yuan Hsu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
- Department of Cell and Tissue Biology, University of California, 513 Parnassus, San Francisco, CA 94143, USA
| | - Ling-Nung Hsu
- Occupational Safety and Health Office, Fu Jen Catholic University Hospital, New Taipei City 243, Taiwan;
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
| | - Bi-Tzen Juang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence:
| |
Collapse
|
131
|
Su X, Zhang H, Lei F, Wang R, Lin T, Liao L. Epigenetic therapy attenuates oxidative stress in BMSCs during ageing. J Cell Mol Med 2021; 26:375-384. [PMID: 34874118 PMCID: PMC8743666 DOI: 10.1111/jcmm.17089] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress, a hallmark of ageing, inhibits the osteogenic differentiation of bone marrow-derived mesenchymal stem cells in long bone. The dysfunction of the cellular antioxidant defence system is a critical cause of oxidative stress, but the mechanism of the decline of antioxidant defence in senescent stem cells remains elusive. Here, we found that EZH2, an epigenetic regulator of histone methylation, acted as a suppressor of the antioxidative defence system in BMSCs from the femur. The increased EZH2 led to a decrease in the levels of antioxidant enzymes and exaggerated oxidative damage in aged BMSCs, resulting in the defect of bone formation and regeneration. Mechanistically, EZH2 enhanced the modification of H3K27me3 on the promoter of Foxo1 and suppressed its function to activate the downstream genes in antioxidant defence. Moreover, epigenetic therapy targeting EZH2-mediated H3K27me3 modification largely recovered the antioxidant defence in BMSCs and attenuate oxidative damage, leading to the recovery of the osteogenesis in old BMSCs. Taken together, our findings revealed novel crosstalk between histone epigenetic modification and oxidative stress during stem cell ageing, suggesting a possibility of epigenetic therapy in the recovery of BMSCs senescence and treatment of age-related bone disease.
Collapse
Affiliation(s)
- Xiaoxia Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry & Engineering Research Center of Oral Translational Medicine & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haoyu Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry & Engineering Research Center of Oral Translational Medicine & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fengzhen Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Rui Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Tingting Lin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry & Engineering Research Center of Oral Translational Medicine & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
132
|
Hu C, Zhang K, Jiang F, Wang H, Shao Q. Epigenetic modifications in thymic epithelial cells: an evolutionary perspective for thymus atrophy. Clin Epigenetics 2021; 13:210. [PMID: 34819170 PMCID: PMC8612001 DOI: 10.1186/s13148-021-01197-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/08/2021] [Indexed: 02/06/2023] Open
Abstract
Background The thymic microenvironment is mainly comprised of thymic epithelial cells, the cytokines, exosomes, surface molecules, and hormones from the cells, and plays a vital role in the development, differentiation, maturation and homeostasis of T lymphocytes. However, the thymus begins to degenerate as early as the second year of life and continues through aging in human beings, leading to a decreased output of naïve T cells, the limited TCR diversity and an expansion of monoclonal memory T cells in the periphery organs. These alternations will reduce the adaptive immune response to tumors and emerging infectious diseases, such as COVID-19, also it is easier to suffer from autoimmune diseases in older people. In the context of global aging, it is important to investigate and clarify the causes and mechanisms of thymus involution. Main body Epigenetics include histone modification, DNA methylation, non-coding RNA effects, and chromatin remodeling. In this review, we discuss how senescent thymic epithelial cells determine and control age-related thymic atrophy, how this process is altered by epigenetic modification. How the thymus adipose influences the dysfunctions of the thymic epithelial cells, and the prospects of targeting thymic epithelial cells for the treatment of thymus atrophy. Conclusion Epigenetic modifications are emerging as key regulators in governing the development and senescence of thymic epithelial cells. It is beneficial to re-establish effective thymopoiesis, identify the potential therapeutic strategy and rejuvenate the immune function in the elderly.
Collapse
Affiliation(s)
- Cexun Hu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Keyu Zhang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Feng Jiang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hui Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. .,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| | - Qixiang Shao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. .,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China. .,Jiangsu College of Nursing, School of Medical Science and Laboratory Medicine, Huai'an, 223002, Jiangsu, People's Republic of China.
| |
Collapse
|
133
|
Wakim JG, Sandholtz SH, Spakowitz AJ. Impact of chromosomal organization on epigenetic drift and domain stability revealed by physics-based simulations. Biophys J 2021; 120:4932-4943. [PMID: 34687722 DOI: 10.1016/j.bpj.2021.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/07/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
We examine the relationship between the size of domains of epigenetic marks and the stability of those domains using our theoretical model that captures the physical mechanisms governing the maintenance of epigenetic modifications. We focus our study on histone H3 lysine-9 trimethylation, one of the most common and consequential epigenetic marks with roles in chromatin compaction and gene repression. Our model combines the effects of methyl spreading by methyltransferases and chromatin segregation into heterochromatin and euchromatin because of preferential heterochromatin protein 1 (HP1) binding. Our model indicates that, although large methylated domains are passed successfully from one chromatin generation to the next, small alterations to the methylation sequence are not maintained during chromatin replication. Using our predictive model, we investigate the size required for an epigenetic domain to persist over chromatin generations while surrounded by a much larger domain of opposite methylation and compaction state. We find that there is a critical size threshold in the hundreds-of-nucleosomes scale above which an epigenetic domain will be reliably maintained over generations. The precise size of the threshold differs for heterochromatic and euchromatic domains. Our results are consistent with natural alterations to the epigenetic sequence occurring during embryonic development and due to age-related epigenetic drift.
Collapse
Affiliation(s)
- Joseph G Wakim
- Department of Chemical Engineering, Stanford University, Stanford, California
| | | | - Andrew J Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, California; Department of Materials Science and Engineering, Stanford University, Stanford, California; Biophysics Program, Stanford University, Stanford, California; Department of Applied Physics, Stanford University, Stanford, California.
| |
Collapse
|
134
|
McCauley BS, Sun L, Yu R, Lee M, Liu H, Leeman DS, Huang Y, Webb AE, Dang W. Altered Chromatin States Drive Cryptic Transcription in Aging Mammalian Stem Cells. ACTA ACUST UNITED AC 2021; 1:684-697. [PMID: 34746802 DOI: 10.1038/s43587-021-00091-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A repressive chromatin state featuring trimethylated lysine 36 on histone H3 (H3K36me3) and DNA methylation suppresses cryptic transcription in embryonic stem cells. Cryptic transcription is elevated with age in yeast and nematodes, and reducing it extends yeast lifespan, though whether this occurs in mammals is unknown. We show that cryptic transcription is elevated in aged mammalian stem cells, including murine hematopoietic stem cells (mHSCs) and neural stem cells (NSCs) and human mesenchymal stem cells (hMSCs). Precise mapping allowed quantification of age-associated cryptic transcription in hMSCs aged in vitro. Regions with significant age-associated cryptic transcription have a unique chromatin signature: decreased H3K36me3 and increased H3K4me1, H3K4me3, and H3K27ac with age. Genomic regions undergoing such changes resemble known promoter sequences and are bound by TBP even in young cells. Hence, the more permissive chromatin state at intragenic cryptic promoters likely underlies increased cryptic transcription in aged mammalian stem cells.
Collapse
Affiliation(s)
- Brenna S McCauley
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luyang Sun
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruofan Yu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Minjung Lee
- Center for Epigenetics & Disease Prevention, Institute of Bioscience and Technology, Texas A&M University, Houston, TX 77030, USA.,Department of Translational Molecular Pathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Haiying Liu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dena S Leeman
- Department of Genetics, Stanford University, Stanford, CA, 94305 USA.,Department of Discovery Immunology, Genentech, Inc. 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yun Huang
- Center for Epigenetics & Disease Prevention, Institute of Bioscience and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Weiwei Dang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
135
|
Abstract
Sporadic late-onset Alzheimer's disease (SLOAD) and familial early-onset Alzheimer's disease (FEOAD) associated with dominant mutations in APP, PSEN1 and PSEN2, are thought to represent a spectrum of the same disorder based on near identical behavioral and histopathological features. Hence, FEOAD transgenic mouse models have been used in past decades as a surrogate to study SLOAD pathogenic mechanisms and as the gold standard to validate drugs used in clinical trials. Unfortunately, such research has yielded little output in terms of therapeutics targeting the disease's development and progression. In this short review, we interrogate the widely accepted view of one, dimorphic disease through the prism of the Bmi1+/- mouse model and the distinct chromatin signatures observed between SLOAD and FEOAD brains.
Collapse
Affiliation(s)
| | - Ryan Hogan
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Anthony Flamier
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Gilbert Bernier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont; Department of Neurosciences, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
136
|
Large-scale chemical screen identifies Gallic acid as a geroprotector for human stem cells. Protein Cell 2021; 13:532-539. [PMID: 34542813 PMCID: PMC9226226 DOI: 10.1007/s13238-021-00872-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 11/10/2022] Open
|
137
|
The Sound of Silence: How Silenced Chromatin Orchestrates the Repair of Double-Strand Breaks. Genes (Basel) 2021; 12:genes12091415. [PMID: 34573397 PMCID: PMC8467445 DOI: 10.3390/genes12091415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
The eukaryotic nucleus is continuously being exposed to endogenous and exogenous sources that cause DNA breaks, whose faithful repair requires the activity of dedicated nuclear machineries. DNA is packaged into a variety of chromatin domains, each characterized by specific molecular properties that regulate gene expression and help maintain nuclear structure. These different chromatin environments each demand a tailored response to DNA damage. Silenced chromatin domains in particular present a major challenge to the cell’s DNA repair machinery due to their specific biophysical properties and distinct, often repetitive, DNA content. To this end, we here discuss the interplay between silenced chromatin domains and DNA damage repair, specifically double-strand breaks, and how these processes help maintain genome stability.
Collapse
|
138
|
Kato H, Maezawa Y. Atherosclerosis and Cardiovascular Diseases in Progeroid Syndromes. J Atheroscler Thromb 2021; 29:439-447. [PMID: 34511576 PMCID: PMC9100459 DOI: 10.5551/jat.rv17061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) and Werner syndrome (WS) are two of the representative genetic progeroid syndromes and have been widely studied in the field of aging research. HGPS is a pediatric disease in which premature aging symptoms appear in early childhood, and death occurs at an average age of 14.5 years, mainly due to cardiovascular disease (CVD). Conversely, WS patients exhibit accelerated aging phenotypes after puberty and die in their 50s due to CVD and malignant tumors. Both diseases are models of human aging, leading to a better understanding of the aging-associated development of CVD. In this review, we discuss the pathogenesis and treatment of atherosclerotic diseases presented by both progeroid syndromes with the latest findings.
Collapse
Affiliation(s)
- Hisaya Kato
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine.,Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital
| |
Collapse
|
139
|
前澤 善. [Basic science of Werner syndrome]. Nihon Ronen Igakkai Zasshi 2021; 58:402-408. [PMID: 34483166 DOI: 10.3143/geriatrics.58.402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- 善朗 前澤
- 千葉大学大学院医学研究院内分泌代謝・血液・老年内科学
| |
Collapse
|
140
|
Qiao ZB, Lu JZ, Zhang L, Cao HX, Bai ZH, Qi YY, Zhu HY, Zhang SM, Bao Y, Jia WW, Liu ZM. CRISPR/Cas9 mediated generation of a iPSC line EHTJUi005-A-1 with homozygous knockout of the SUV39H1 gene. Stem Cell Res 2021; 56:102519. [PMID: 34464854 DOI: 10.1016/j.scr.2021.102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/03/2021] [Accepted: 08/21/2021] [Indexed: 11/28/2022] Open
Abstract
SUV39H1 is a histone methyltransferase involve numerous biological processes, including of aging, embryo development, tumor growth and mitosis via catalysis of dimethylation and trimethylation of lysine 9 of histone H3. Here we report a human induced pluripotent stem cell line (EHTJUi005-A-1) which is generated from a wildtype human iPSC previously established in our laboratory, and this iPSC has a homozygous knockout of 8 bp in Exon 2 of SUV39H1. This iPSC model provides a valuable resource to study epigenetic regulation in extensive biological processes as mentioned above.
Collapse
Affiliation(s)
- Zhi-Bin Qiao
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ji-Zhen Lu
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lu Zhang
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hong-Xia Cao
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhi-Hui Bai
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yi-Yao Qi
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Han-Yu Zhu
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shou-Mei Zhang
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yan Bao
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wen-Wen Jia
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Zhong-Min Liu
- Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
141
|
Zhang H, Li J, Ren J, Sun S, Ma S, Zhang W, Yu Y, Cai Y, Yan K, Li W, Hu B, Chan P, Zhao GG, Belmonte JCI, Zhou Q, Qu J, Wang S, Liu GH. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell 2021; 12:695-716. [PMID: 34052996 PMCID: PMC8403220 DOI: 10.1007/s13238-021-00852-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
The hippocampus plays a crucial role in learning and memory, and its progressive deterioration with age is functionally linked to a variety of human neurodegenerative diseases. Yet a systematic profiling of the aging effects on various hippocampal cell types in primates is still missing. Here, we reported a variety of new aging-associated phenotypic changes of the primate hippocampus. These include, in particular, increased DNA damage and heterochromatin erosion with time, alongside loss of proteostasis and elevated inflammation. To understand their cellular and molecular causes, we established the first single-nucleus transcriptomic atlas of primate hippocampal aging. Among the 12 identified cell types, neural transiently amplifying progenitor cell (TAPC) and microglia were most affected by aging. In-depth dissection of gene-expression dynamics revealed impaired TAPC division and compromised neuronal function along the neurogenesis trajectory; additionally elevated pro-inflammatory responses in the aged microglia and oligodendrocyte, as well as dysregulated coagulation pathways in the aged endothelial cells may contribute to a hostile microenvironment for neurogenesis. This rich resource for understanding primate hippocampal aging may provide potential diagnostic biomarkers and therapeutic interventions against age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Center for Bioinformation, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
- Sino-Danish Center for Education and Research, Beijing, 101408, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Center for Bioinformation, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Center for Bioinformation, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China
- Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Piu Chan
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Guo-Guang Zhao
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | | | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
142
|
Mejia-Ramirez E, Geiger H, Florian MC. Loss of epigenetic polarity is a hallmark of hematopoietic stem cell aging. Hum Mol Genet 2021; 29:R248-R254. [PMID: 32821941 DOI: 10.1093/hmg/ddaa189] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/01/2023] Open
Abstract
Changes of polarity in somatic stem cells upon aging or disease lead to a functional deterioration of stem cells and consequently loss of tissue homeostasis, likely due to changes in the mode (symmetry versus asymmetry) of stem cell divisions. Changes in polarity of epigenetic markers (or 'epi-polarity') in stem cells, which are linked to alterations in chromatin architecture, might explain how a decline in the frequency of epipolar stem cells can have a long-lasting impact on the function of especially aging stem cells. The drift in epipolarity might represent a novel therapeutic target to improve stem cell function upon aging or disease. Here we review basic biological principles of epigenetic polarity, with a special focus on epipolarity and aging of hematopoietic stem cells.
Collapse
Affiliation(s)
- Eva Mejia-Ramirez
- Program of Regenerative Medicine, IDIBELL and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), Av. Granvia 199, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Hartmut Geiger
- Institute of Molecular Medicine, University of Ulm, James-Franck-Ring 11c, 89081, Ulm, Germany
| | - M Carolina Florian
- Program of Regenerative Medicine, IDIBELL and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), Av. Granvia 199, 08908 L'Hospitalet de Llobregat, Barcelona, Spain.,Institute of Molecular Medicine, University of Ulm, James-Franck-Ring 11c, 89081, Ulm, Germany
| |
Collapse
|
143
|
Gudmundsrud R, Skjånes TH, Gilmour BC, Caponio D, Lautrup S, Fang EF. Crosstalk among DNA Damage, Mitochondrial Dysfunction, Impaired Mitophagy, Stem Cell Attrition, and Senescence in the Accelerated Ageing Disorder Werner Syndrome. Cytogenet Genome Res 2021; 161:297-304. [PMID: 34433164 DOI: 10.1159/000516386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Werner syndrome (WS) is an accelerated ageing disease caused by multiple mutations in the gene encoding the Werner DNA helicase (WRN). The major clinical features of WS include wrinkles, grey hair, osteoporosis, and metabolic phenomena such as atherosclerosis, diabetes, and fatty liver, and resemble those seen in normal ageing, but occur earlier, in middle age. Defective DNA repair resulting from mutations in WRN explain the majority of the clinical features of WS, but the underlying mechanisms driving the larger metabolic dysfunction remain elusive. Recent studies in animal models of WS and in WS patient cells and blood samples suggest the involvement of impaired mitophagy, NAD+ depletion, and accumulation of damaged mitochondria in metabolic dysfunction. This mini-review summarizes recent progress in the understanding of the molecular mechanisms of metabolic dysfunction in WS, with the involvement of DNA damage, mitochondrial dysfunction, mitophagy reduction, stem cell impairment, and senescence. Future studies on NAD+ and mitophagy may shed light on potential therapeutic strategies for the WS patients.
Collapse
Affiliation(s)
- Ruben Gudmundsrud
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Tarjei H Skjånes
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Brian C Gilmour
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Domenica Caponio
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Sofie Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.,The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| |
Collapse
|
144
|
Stead ER, Bjedov I. Balancing DNA repair to prevent ageing and cancer. Exp Cell Res 2021; 405:112679. [PMID: 34102225 PMCID: PMC8361780 DOI: 10.1016/j.yexcr.2021.112679] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
DNA damage is a constant stressor to the cell. Persistent damage to the DNA over time results in an increased risk of mutation and an accumulation of mutations with age. Loss of efficient DNA damage repair can lead to accelerated ageing phenotypes or an increased cancer risk, and the trade-off between cancer susceptibility and longevity is often driven by the cell's response to DNA damage. High levels of mutations in DNA repair mutants often leads to excessive cell death and stem cell exhaustion which may promote premature ageing. Stem cells themselves have distinct characteristics that enable them to retain low mutation rates. However, when mutations do arise, stem cell clonal expansion can also contribute to age-related tissue dysfunction as well as heightened cancer risk. In this review, we will highlight increasing DNA damage and mutation accumulation as hallmarks common to both ageing and cancer. We will propose that anti-ageing interventions might be cancer preventative and discuss the mechanisms through which they may act.
Collapse
Affiliation(s)
- Eleanor Rachel Stead
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street London, London WC1E 6DD, UK
| | - Ivana Bjedov
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street London, London WC1E 6DD, UK; University College London, Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
145
|
Yang Y, Liu S, He C, Chen Z, Lyu T, Zeng L, Wang L, Zhang F, Chen H, Zhao RC. Long Non-coding RNA Regulation of Mesenchymal Stem Cell Homeostasis and Differentiation: Advances, Challenges, and Perspectives. Front Cell Dev Biol 2021; 9:711005. [PMID: 34368161 PMCID: PMC8339964 DOI: 10.3389/fcell.2021.711005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
Given the self-renewal, multi-differentiation, immunoregulatory, and tissue maintenance properties, mesenchymal stem cells (MSCs) are promising candidates for stem cell-based therapies. Breakthroughs have been made in uncovering MSCs as key contributors to homeostasis and the regenerative repair of tissues and organs derived from three germ layers. MSC differentiation into specialized cell types is sophisticatedly regulated, and accumulating evidence suggests long non-coding RNAs (lncRNAs) as the master regulators of various biological processes including the maintenance of homeostasis and multi-differentiation functions through epigenetic, transcriptional, and post-translational mechanisms. LncRNAs are ubiquitous and generally referred to as non-coding transcripts longer than 200 bp. Most lncRNAs are evolutionary conserved and species-specific; however, the weak conservation of their sequences across species does not affect their diverse biological functions. Although numerous lncRNAs have been annotated and studied, they are nevertheless only the tip of the iceberg; the rest remain to be discovered. In this review, we characterize MSC functions in homeostasis and highlight recent advances on the functions and mechanisms of lncRNAs in regulating MSC homeostasis and differentiation. We also discuss the current challenges and perspectives for understanding the roles of lncRNAs in MSC functions in homeostasis, which could help develop promising targets for MSC-based therapies.
Collapse
Affiliation(s)
- Yanlei Yang
- Key Laboratory of the Ministry of Education, Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Beijing Key Laboratory (No. BZO381), School of Basic Medicine, Center of Excellence in Tissue Engineering, Peking Union Medical College Hospital, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Suying Liu
- Key Laboratory of the Ministry of Education, Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chengmei He
- Key Laboratory of the Ministry of Education, Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhilei Chen
- Key Laboratory of the Ministry of Education, Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Taibiao Lyu
- Key Laboratory of the Ministry of Education, Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liuting Zeng
- Key Laboratory of the Ministry of Education, Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Li Wang
- Key Laboratory of the Ministry of Education, Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Fengchun Zhang
- Key Laboratory of the Ministry of Education, Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hua Chen
- Key Laboratory of the Ministry of Education, Department of Rheumatology and Clinical Immunology, Clinical Immunology Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Robert Chunhua Zhao
- Beijing Key Laboratory (No. BZO381), School of Basic Medicine, Center of Excellence in Tissue Engineering, Peking Union Medical College Hospital, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
146
|
Weirich S, Khella MS, Jeltsch A. Structure, Activity and Function of the Suv39h1 and Suv39h2 Protein Lysine Methyltransferases. Life (Basel) 2021; 11:life11070703. [PMID: 34357075 PMCID: PMC8303541 DOI: 10.3390/life11070703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
SUV39H1 and SUV39H2 were the first protein lysine methyltransferases that were identified more than 20 years ago. Both enzymes introduce di- and trimethylation at histone H3 lysine 9 (H3K9) and have important roles in the maintenance of heterochromatin and gene repression. They consist of a catalytically active SET domain and a chromodomain, which binds H3K9me2/3 and has roles in enzyme targeting and regulation. The heterochromatic targeting of SUV39H enzymes is further enhanced by the interaction with HP1 proteins and repeat-associated RNA. SUV39H1 and SUV39H2 recognize an RKST motif with additional residues on both sides, mainly K4 in the case of SUV39H1 and G12 in the case of SUV39H2. Both SUV39H enzymes methylate different non-histone proteins including RAG2, DOT1L, SET8 and HupB in the case of SUV39H1 and LSD1 in the case of SUV39H2. Both enzymes are expressed in embryonic cells and have broad expression profiles in the adult body. SUV39H1 shows little tissue preference except thymus, while SUV39H2 is more highly expressed in the brain, testis and thymus. Both enzymes are connected to cancer, having oncogenic or tumor-suppressive roles depending on the tumor type. In addition, SUV39H2 has roles in the brain during early neurodevelopment.
Collapse
Affiliation(s)
- Sara Weirich
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany; (S.W.); (M.S.K.)
| | - Mina S. Khella
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany; (S.W.); (M.S.K.)
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo 11566, Egypt
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany; (S.W.); (M.S.K.)
- Correspondence:
| |
Collapse
|
147
|
Wang W, Zheng Y, Sun S, Li W, Song M, Ji Q, Wu Z, Liu Z, Fan Y, Liu F, Li J, Esteban CR, Wang S, Zhou Q, Belmonte JCI, Zhang W, Qu J, Tang F, Liu GH. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence. Sci Transl Med 2021; 13:13/575/eabd2655. [PMID: 33408182 DOI: 10.1126/scitranslmed.abd2655] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
Understanding the genetic and epigenetic bases of cellular senescence is instrumental in developing interventions to slow aging. We performed genome-wide CRISPR-Cas9-based screens using two types of human mesenchymal precursor cells (hMPCs) exhibiting accelerated senescence. The hMPCs were derived from human embryonic stem cells carrying the pathogenic mutations that cause the accelerated aging diseases Werner syndrome and Hutchinson-Gilford progeria syndrome. Genes whose deficiency alleviated cellular senescence were identified, including KAT7, a histone acetyltransferase, which ranked as a top hit in both progeroid hMPC models. Inactivation of KAT7 decreased histone H3 lysine 14 acetylation, repressed p15INK4b transcription, and alleviated hMPC senescence. Moreover, lentiviral vectors encoding Cas9/sg-Kat7, given intravenously, alleviated hepatocyte senescence and liver aging and extended life span in physiologically aged mice as well as progeroid Zmpste24-/- mice that exhibit a premature aging phenotype. CRISPR-Cas9-based genetic screening is a robust method for systematically uncovering senescence genes such as KAT7, which may represent a therapeutic target for developing aging interventions.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxuan Zheng
- Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeming Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanling Fan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Feifei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Si Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China. .,Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China. .,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
148
|
Novo CL. A Tale of Two States: Pluripotency Regulation of Telomeres. Front Cell Dev Biol 2021; 9:703466. [PMID: 34307383 PMCID: PMC8300013 DOI: 10.3389/fcell.2021.703466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
Inside the nucleus, chromatin is functionally organized and maintained as a complex three-dimensional network of structures with different accessibility such as compartments, lamina associated domains, and membraneless bodies. Chromatin is epigenetically and transcriptionally regulated by an intricate and dynamic interplay of molecular processes to ensure genome stability. Phase separation, a process that involves the spontaneous organization of a solution into separate phases, has been proposed as a mechanism for the timely coordination of several cellular processes, including replication, transcription and DNA repair. Telomeres, the repetitive structures at the end of chromosomes, are epigenetically maintained in a repressed heterochromatic state that prevents their recognition as double-strand breaks (DSB), avoiding DNA damage repair and ensuring cell proliferation. In pluripotent embryonic stem cells, telomeres adopt a non-canonical, relaxed epigenetic state, which is characterized by a low density of histone methylation and expression of telomere non-coding transcripts (TERRA). Intriguingly, this telomere non-canonical conformation is usually associated with chromosome instability and aneuploidy in somatic cells, raising the question of how genome stability is maintained in a pluripotent background. In this review, we will explore how emerging technological and conceptual developments in 3D genome architecture can provide novel mechanistic perspectives for the pluripotent epigenetic paradox at telomeres. In particular, as RNA drives the formation of LLPS, we will consider how pluripotency-associated high levels of TERRA could drive and coordinate phase separation of several nuclear processes to ensure genome stability. These conceptual advances will provide a better understanding of telomere regulation and genome stability within the highly dynamic pluripotent background.
Collapse
Affiliation(s)
- Clara Lopes Novo
- The Francis Crick Institute, London, United Kingdom
- Imperial College London, London, United Kingdom
| |
Collapse
|
149
|
Zhang X, Liu X, Du Z, Wei L, Fang H, Dong Q, Niu J, Li Y, Gao J, Zhang MQ, Xie W, Wang X. The loss of heterochromatin is associated with multiscale three-dimensional genome reorganization and aberrant transcription during cellular senescence. Genome Res 2021; 31:1121-1135. [PMID: 34140314 PMCID: PMC8256869 DOI: 10.1101/gr.275235.121] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/27/2021] [Indexed: 01/10/2023]
Abstract
Heterochromatin remodeling is critical for various cell processes. In particular, the "loss of heterochromatin" phenotype in cellular senescence is associated with the process of aging and age-related disorders. Although biological processes of senescent cells, including senescence-associated heterochromatin foci (SAHF) formation, chromosome compaction, and redistribution of key proteins, have been closely associated with high-order chromatin structure, the relationship between the high-order chromatin reorganization and the loss of heterochromatin phenotype during senescence has not been fully understood. By using senescent and deep senescent fibroblasts induced by DNA damage harboring the "loss of heterochromatin" phenotype, we observed progressive 3D reorganization of heterochromatin during senescence. Facultative and constitutive heterochromatin marked by H3K27me3 and H3K9me3, respectively, show different alterations. Facultative heterochromatin tends to switch from the repressive B-compartment to the active A-compartment, whereas constitutive heterochromatin shows no significant changes at the compartment level but enhanced interactions between themselves. Both types of heterochromatin show increased chromatin accessibility and gene expression leakage during senescence. Furthermore, increased chromatin accessibility in potential CTCF binding sites accompanies the establishment of novel loops in constitutive heterochromatin. Finally, we also observed aberrant expression of repetitive elements, including LTR (long terminal repeat) and satellite classes. Overall, facultative and constitutive heterochromatin show both similar and distinct multiscale alterations in the 3D map, chromatin accessibility, and gene expression leakage. This study provides an epigenomic map of heterochromatin reorganization during senescence.
Collapse
Affiliation(s)
- Xianglin Zhang
- MOE Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Department of Automation, Tsinghua University, Beijing 100084, China
- Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
| | - Xuehui Liu
- MOE Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Department of Automation, Tsinghua University, Beijing 100084, China
- Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- THU-PKU Center for Life Sciences, Beijing 100084, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lei Wei
- MOE Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Department of Automation, Tsinghua University, Beijing 100084, China
- Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
| | - Huan Fang
- MOE Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Department of Automation, Tsinghua University, Beijing 100084, China
- Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
| | - Qiongye Dong
- MOE Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Department of Automation, Tsinghua University, Beijing 100084, China
- Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
| | - Jing Niu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yanda Li
- MOE Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Department of Automation, Tsinghua University, Beijing 100084, China
- Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
| | - Juntao Gao
- MOE Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Department of Automation, Tsinghua University, Beijing 100084, China
- Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
| | - Michael Q Zhang
- Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas, Richardson, Texas 75080-3021, USA
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- THU-PKU Center for Life Sciences, Beijing 100084, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaowo Wang
- MOE Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Department of Automation, Tsinghua University, Beijing 100084, China
- Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
| |
Collapse
|
150
|
Sharma VK, Mehta V, Singh TG. Alzheimer's Disorder: Epigenetic Connection and Associated Risk Factors. Curr Neuropharmacol 2021; 18:740-753. [PMID: 31989902 PMCID: PMC7536832 DOI: 10.2174/1570159x18666200128125641] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/26/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
The gene based therapeutics and drug targets have shown incredible and appreciable advances in alleviating human sufferings and complexities. Epigenetics simply means above genetics or which controls the organism beyond genetics. At present it is very clear that all characteristics of an individual are not determined by DNA alone, rather the environment, stress, life style and nutrition play a vital part in determining the response of an organism. Thus, nature (genetic makeup) and nurture (exposure) play equally important roles in the responses observed, both at the cellular and organism levels. Epigenetics influence plethora of complications at cellular and molecular levels that includes cancer, metabolic and cardiovascular complications including neurological (psychosis) and neurodegenerative disorders (Alzheimer’s disease, Parkinson disease etc.). The epigenetic mechanisms include DNA methylation, histone modification and non coding RNA which have substantial impact on progression and pathways linked to Alzheimer’s disease. The epigenetic mechanism gets deregulated in Alzheimer’s disease and is characterized by DNA hyper methylation, deacetylation of histones and general repressed chromatin state which alter gene expression at the transcription level by upregulation, downregulation or silencing of genes. Thus, the processes or modulators of these epigenetic processes have shown vast potential as a therapeutic target in Alzheimer’s disease.
Collapse
Affiliation(s)
| | - Vineet Mehta
- Govt. College of Pharmacy, Rohru, District Shimla, Himachal Pradesh-171207, India
| | | |
Collapse
|