101
|
Verhaert MAM, Aspeslagh S. Immunotherapy efficacy and toxicity: Reviewing the evidence behind patient implementable strategies. Eur J Cancer 2024; 209:114235. [PMID: 39059186 DOI: 10.1016/j.ejca.2024.114235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
The use of immune checkpoint inhibitors (ICI) in cancer treatment is expanding, offering promising outcomes but with an important risk of immune-related adverse events (irAEs). These events, stemming from an overstimulated immune system attacking healthy cells, can necessitate immunosuppressant treatment, disrupt treatment courses, and impact patients' quality of life. The analysis of ICI efficacy data has led to a better understanding of the characteristics of responders. Similarly, we are gaining clearer insights into the characteristics of patients who develop irAEs, prompting an increasing emphasis on modifiable factors associated with irAE risk. These factors include lifestyle choices and the composition of the gut microbiome. Despite comprehensive reviews exploring the microbiome's role in therapy efficacy, understanding its connection with immune-related toxicity remains incomplete. While endeavours to identify predictive biomarkers continue, lifestyle modifications emerge as a promising avenue for enhancing treatment outcomes. This review consolidates the current evidence regarding the impact of the gut microbiome on irAE occurrence. Furthermore, it focuses on actionable strategies for mitigating these adverse events, elucidating the evidence supporting dietary adjustments, supplementation, medication management, and physical activity. With the expanding range of indications for ICI therapy, a significant proportion of oncology patients, including those in early disease stages, are now exposed to these treatments. Acknowledging the importance of averting irAEs in this context, our review offers timely insights crucial for addressing the evolving challenges associated with immunotherapy across diverse oncological settings.
Collapse
Affiliation(s)
- Marthe August Marianne Verhaert
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Sandrine Aspeslagh
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium; Department of Internal Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
102
|
Chatterjee S, Leach ST, Lui K, Mishra A. Symbiotic symphony: Understanding host-microbiota dialogues in a spatial context. Semin Cell Dev Biol 2024; 161-162:22-30. [PMID: 38564842 DOI: 10.1016/j.semcdb.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Modern precision sequencing techniques have established humans as a holobiont that live in symbiosis with the microbiome. Microbes play an active role throughout the life of a human ranging from metabolism and immunity to disease tolerance. Hence, it is of utmost significance to study the eukaryotic host in conjunction with the microbial antigens to obtain a complete picture of the host-microbiome crosstalk. Previous attempts at profiling host-microbiome interactions have been either superficial or been attempted to catalogue eukaryotic transcriptomic profile and microbial communities in isolation. Additionally, the nature of such immune-microbial interactions is not random but spatially organised. Hence, for a holistic clinical understanding of the interplay between hosts and microbiota, it's imperative to concurrently analyze both microbial and host genetic information, ensuring the preservation of their spatial integrity. Capturing these interactions as a snapshot in time at their site of action has the potential to transform our understanding of how microbes impact human health. In examining early-life microbial impacts, the limited presence of communities compels analysis within reduced biomass frameworks. However, with the advent of spatial transcriptomics we can address this challenge and expand our horizons of understanding these interactions in detail. In the long run, simultaneous spatial profiling of host-microbiome dialogues can have enormous clinical implications especially in gaining mechanistic insights into the disease prognosis of localised infections and inflammation. This review addresses the lacunae in host-microbiome research and highlights the importance of profiling them together to map their interactions while preserving their spatial context.
Collapse
Affiliation(s)
- Soumi Chatterjee
- Telethon Kids Institute, Perth Children Hospital, Perth, Western Australia 6009, Australia; Curtin Medical School, Curtin University, Perth, Western Australia 6102, Australia
| | - Steven T Leach
- Discipline Paediatrics, School of Clinical Medicine, University of New South Wales, Sydney 2052, Australia
| | - Kei Lui
- Department of Newborn Care, Royal Hospital for Women and Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney 2052, Australia
| | - Archita Mishra
- Telethon Kids Institute, Perth Children Hospital, Perth, Western Australia 6009, Australia; Curtin Medical School, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
103
|
Yu R, Wang S, Han L. Relevance of harmful intratumoral microbiota in cancer progression and its clinical application. Biomed Pharmacother 2024; 178:117238. [PMID: 39106707 DOI: 10.1016/j.biopha.2024.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024] Open
Abstract
Microorganisms are closely related to human health, and changes in the microbiome can lead to the occurrence of diseases. With advances in sequencing technology and research, it has been discovered that intratumoral microbiota exists in various cancer tissues and differs in various cancers. Microorganism can colonize tumor tissues through intestine of damaged mucosal barrier, proximity to normal tissues and bloodstream circulation. Increasing evidence suggests that intratumoral microbiota promotes tumor progression by increasing genomic instability, affecting host immune systems, promoting tumor migration, and regulating tumor signaling pathways. This review article summarizes the latest progress in intratumoral microbiome research, including the development history of intratumoral microbiota, their composition and sources within tumors, their distribution in various cancer tissues, as well as their role in cancer development. Furthermore, the application of intratumoral microbiota in clinical settings is emphasized and we innovatively summarize the clinical trials involving microbial applications for cancer diagnosis and treatment across different countries.
Collapse
Affiliation(s)
- Runze Yu
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Sheng Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuro injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
104
|
Hu M, Du Y, Li W, Zong X, Du W, Sun H, Liu H, Zhao K, Li J, Farooq MZ, Wu J, Xu Q. Interplay of Food-Derived Bioactive Peptides with Gut Microbiota: Implications for Health and Disease Management. Mol Nutr Food Res 2024; 68:e2400251. [PMID: 39097954 DOI: 10.1002/mnfr.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Indexed: 08/06/2024]
Abstract
Bioactive peptides (BPs) are protein fragments with beneficial effects on metabolism, physiology, and diseases. This review focuses on proteolytic BPs, which are produced by the action of gut microbiota on proteins in food and have demonstrated to influence the composition of gut microbes. And gut microbiota are candidate targets of BPs to alleviate oxidative stress, enhance immunity, and control diseases, including diabetes, hypertension, obesity, cancer, and immune and neurodegenerative diseases. Despite promising results, further research is needed to understand the mechanisms underlying the interactions between BPs and gut microbes, and to identify and screen more BPs for industrial applications. Overall, BPs offer potential as therapeutic agents for various diseases through their interactions with gut microbes, highlighting the importance of continued research in this area.
Collapse
Affiliation(s)
- Mingyang Hu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufeng Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenyue Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaomei Zong
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjuan Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huizeng Sun
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongyun Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ke Zhao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310058, China
| | - Jianxiong Li
- Wuhan Jason Biotech Co., Ltd., Wuhan, 430070, China
| | - Muhammad Zahid Farooq
- Department of Animal Science, University of Veterinary and Animal Science, Lahore, 54000, Pakistan
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
105
|
Zhao M, Tian J, Hou W, Yin L, Li W. Global research trends on the associations between the microbiota and lung cancer: a visualization bibliometric analysis (2008-2023). Front Microbiol 2024; 15:1416385. [PMID: 39282557 PMCID: PMC11392740 DOI: 10.3389/fmicb.2024.1416385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Numerous papers have been published on the microbiota in lung cancer in recent years. However, there is still a lack of bibliometric analysis of the microbiota in lung cancer in this field. Our paper did bibliometric analyses and elucidated the knowledge structure and study hotspots related to the microbiota in lung cancer patients. We screened publications reporting on the microbiota in lung cancer from 2008 to 2023 from the Web of Science Core Collection (WoSCC) database, and carried out bibliometric analyses by the application of the VOSviewers, CiteSpace and R package "bibliometrix." The 684 documents enrolled in the analysis were obtained from 331 institutions in 67 regions by 4,661 authors and were recorded in 340 journals. Annual papers are growing rapidly, and the countries of China, the United States and Italy are contributing the most to this area of research. Zhejiang University is the main research organization. Science and Cancer had significant impacts on this area. Zhang Yan had the most articles, and the Bertrand Routy had the most co-cited times. Exploring the mechanism of action of the lung and/or gut microbiota in lung cancer and therapeutic strategies involving immune checkpoint inhibitors in lung cancer are the main topics. Moreover, "gut microbiota," "immunotherapy," and "short-chain fatty acids" are important keywords for upcoming study hotspots. In conclusion, microbiota research offers promising opportunities in lung cancer, with pivotal studies exploring the mechanisms that link lung and gut microbiota to therapeutic strategies, particularly through immune checkpoint inhibitors. Moreover, the gut-lung axis emerges as a novel target for innovative treatments. Further research is essential to unravel the detailed mechanisms of this connection.
Collapse
Affiliation(s)
- Maoyuan Zhao
- Lung Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wang Hou
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liyuan Yin
- Lung Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China
| |
Collapse
|
106
|
Yang K, Wang S, Ding Z, Zhang K, Zhu W, Wang H, Pan M, Li X, Wang H, Yu Z. Unveiling microbial dynamics in lung adenocarcinoma and adjacent nontumor tissues: insights from nicotine exposure and diverse clinical stages via nanopore sequencing technology. Front Cell Infect Microbiol 2024; 14:1397989. [PMID: 39258251 PMCID: PMC11385298 DOI: 10.3389/fcimb.2024.1397989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024] Open
Abstract
Background Lung is the largest mucosal area of the human body and directly connected to the external environment, facing microbial exposure and environmental stimuli. Therefore, studying the internal microorganisms of the lung is crucial for a deeper understanding of the relationship between microorganisms and the occurrence and progression of lung cancer. Methods Tumor and adjacent nontumor tissues were collected from 38 lung adenocarcinoma patients and used nanopore sequencing technology to sequence the 16s full-length sequence of bacteria, and combining bioinformatics methods to identify and quantitatively analyze microorganisms in tissues, as well as to enrich the metabolic pathways of microorganisms. Results the microbial composition in lung adenocarcinoma tissues is highly similar to that in adjacent tissues, but the alpha diversity is significantly lower than that in adjacent tissues. The difference analysis results show that the bacterial communities of Streptococcaceae, Lactobacillaceae, and Neisseriales were significantly enriched in cancer tissues. The results of metabolic pathway analysis indicate that pathways related to cellular communication, transcription, and protein synthesis were significantly enriched in cancer tissue. In addition, clinical staging analysis of nicotine exposure and lung cancer found that Haemophilus, paralinfluenzae, Streptococcus gordonii were significantly enriched in the nicotine exposure group, while the microbiota of Cardiobactereae and Cardiobacterales were significantly enriched in stage II tumors. The microbiota significantly enriched in IA-II stages were Neisseriaeae, Enterobacteriales, and Cardiobacterales, respectively. Conclusion Nanopore sequencing technology was performed on the full length 16s sequence, which preliminarily depicted the microbial changes and enrichment of microbial metabolic pathways in tumor and adjacent nontumor tissues. The relationship between nicotine exposure, tumor progression, and microorganisms was explored, providing a theoretical basis for the treatment of lung cancer through microbial targets.
Collapse
Affiliation(s)
- Kangli Yang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuaifeng Wang
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Zhang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huifen Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengshu Pan
- Department of Grassroots Medical, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiangnan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongmin Wang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
107
|
Shijimaya T, Tahara T, Yamazaki J, Kobayashi S, Matsumoto Y, Nakamura N, Takahashi Y, Tomiyama T, Fukui T, Shibata T, Naganuma M. Microbiome of esophageal endoscopic wash samples is associated with resident flora in the esophagus and incidence of cancer. Sci Rep 2024; 14:19525. [PMID: 39174555 PMCID: PMC11341785 DOI: 10.1038/s41598-024-67410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024] Open
Abstract
Change in mucosal microbiome is associated with various types of cancer in digestive tract. We hypothesized that microbial communities in the esophageal endoscopic wash fluids reflects resident flora in esophageal mucosa that is associated with esophageal carcinoma (EC) risk and/or directly correlates microbiome derived from EC tumor tissue. Studying microbial communities in esophageal endoscopic wash samples would be therefore useful to predict the incidence or risk of EC. We examined microbial communities of the endoscopic wash samples from 45 primary EC and 20 respective non-EC controls using 16S rRNA V3-V4 amplicon sequencing. The result was also compared with microbial communities in matched endoscopic biopsies from EC and non-cancerous esophageal mucosa. Compared with non-EC controls, 6 discriminative bacterial genera were detected in EC patients. Among them, relative abundance ratio of Prevotella and Shuttlewarthia, as well as decrease of genus Prevotella presented good prognostic performance to discriminate EC from controls (area under curve, 0.86, 0.82, respectively). Multivariate analysis showed occurrence of EC was an independent factor associated with decrease of this bacteria. Abundance of genus Prevotella in the esophageal endoscopic wash samples was significantly correlated with the abundance of this bacteria in the matched endoscopic biopsies from non-cancerous esophageal mucosa but not in the EC tissues. Our findings suggest that microbiome composition in the esophageal endoscopic wash samples reflects resident flora in the esophagus and significantly correlates with the incidence of EC.
Collapse
Affiliation(s)
- Takuya Shijimaya
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Tomomitsu Tahara
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan.
| | - Jumpei Yamazaki
- Translational Research Unit, Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Sanshiro Kobayashi
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Yasushi Matsumoto
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Naohiro Nakamura
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Yu Takahashi
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Takashi Tomiyama
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Toshiro Fukui
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Tomoyuki Shibata
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Makoto Naganuma
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
108
|
Shi Y, Li X, Zhang J. Systematic review on the role of the gut microbiota in tumors and their treatment. Front Endocrinol (Lausanne) 2024; 15:1355387. [PMID: 39175566 PMCID: PMC11338852 DOI: 10.3389/fendo.2024.1355387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Tumors present a formidable health risk with limited curability and high mortality; existing treatments face challenges in addressing the unique tumor microenvironment (hypoxia, low pH, and high permeability), necessitating the development of new therapeutic approaches. Under certain circumstances, certain bacteria, especially anaerobes or parthenogenetic anaerobes, accumulate and proliferate in the tumor environment. This phenomenon activates a series of responses in the body that ultimately produce anti-tumor effects. These bacteria can target and colonize the tumor microenvironment, promoting responses aimed at targeting and fighting tumor cells. Understanding and exploiting such interactions holds promise for innovative therapeutic strategies, potentially augmenting existing treatments and contributing to the development of more effective and targeted approaches to fighting tumors. This paper reviews the tumor-promoting mechanisms and anti-tumor effects of the digestive tract microbiome and describes bacterial therapeutic strategies for tumors, including natural and engineered anti-tumor strategies.
Collapse
Affiliation(s)
- Ying Shi
- School of Pharmacy, University College London, London, United Kingdom
- China Medical University Joint Queen’s University of Belfast, China Medical University, Shenyang, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
109
|
Ji G, Zhao J, Si X, Song W. Targeting bacterial metabolites in tumor for cancer therapy: An alternative approach for targeting tumor-associated bacteria. Adv Drug Deliv Rev 2024; 211:115345. [PMID: 38834140 DOI: 10.1016/j.addr.2024.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Emerging evidence reveal that tumor-associated bacteria (TAB) can facilitate the initiation and progression of multiple types of cancer. Recent work has emphasized the significant role of intestinal microbiota, particularly bacteria, plays in affecting responses to chemo- and immuno-therapies. Hence, it seems feasible to improve cancer treatment outcomes by targeting intestinal bacteria. While considering variable richness of the intestinal microbiota and diverse components among individuals, direct manipulating the gut microbiota is complicated in clinic. Tumor initiation and progression requires the gut microbiota-derived metabolites to contact and reprogram neoplastic cells. Hence, directly targeting tumor-associated bacteria metabolites may have the potential to provide alternative and innovative strategies to bypass the gut microbiota for cancer therapy. As such, there are great opportunities to explore holistic approaches that incorporates TAB-derived metabolites and related metabolic signals modulation for cancer therapy. In this review, we will focus on key opportunistic areas by targeting TAB-derived metabolites and related metabolic signals, but not bacteria itself, for cancer treatment, and elucidate future challenges that need to be addressed in this emerging field.
Collapse
Affiliation(s)
- Guofeng Ji
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jingjing Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China.
| |
Collapse
|
110
|
Lucchetti M, Aina KO, Grandmougin L, Jäger C, Pérez Escriva P, Letellier E, Mosig AS, Wilmes P. An Organ-on-Chip Platform for Simulating Drug Metabolism Along the Gut-Liver Axis. Adv Healthc Mater 2024; 13:e2303943. [PMID: 38452399 DOI: 10.1002/adhm.202303943] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The human microbiome significantly influences drug metabolism through the gut-liver axis, leading to modified drug responses and potential toxicity. Due to the complex nature of the human gut environment, the understanding of microbiome-driven impacts on these processes is limited. To address this, a multiorgan-on-a-chip (MOoC) platform that combines the human microbial-crosstalk (HuMiX) gut-on-chip (GoC) and the Dynamic42 liver-on-chip (LoC), mimicking the bidirectional interconnection between the gut and liver known as the gut-liver axis, is introduced. This platform supports the viability and functionality of intestinal and liver cells. In a proof-of-concept study, the metabolism of irinotecan, a widely used colorectal cancer drug, is imitated within the MOoC. Utilizing liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), irinotecan metabolites are tracked, confirming the platform's ability to represent drug metabolism along the gut-liver axis. Further, using the authors' gut-liver platform, it is shown that the colorectal cancer-associated gut bacterium, Escherichia coli, modifies irinotecan metabolism through the transformation of its inactive metabolite SN-38G into its toxic metabolite SN-38. This platform serves as a robust tool for investigating the intricate interplay between gut microbes and pharmaceuticals, offering a representative alternative to animal models and providing novel drug development strategies.
Collapse
Affiliation(s)
- Mara Lucchetti
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, L-4362, Luxembourg
| | | | - Léa Grandmougin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, L-4362, Luxembourg
| | - Christian Jäger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, L-4362, Luxembourg
| | - Pau Pérez Escriva
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belval, L-4362, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belval, L-4362, Luxembourg
| | - Alexander S Mosig
- Institute of Biochemistry II, Jena University Hospital, D-07747, Jena, Germany
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, L-4362, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belval, L-4362, Luxembourg
| |
Collapse
|
111
|
Kwon SY, Thi-Thu Ngo H, Son J, Hong Y, Min JJ. Exploiting bacteria for cancer immunotherapy. Nat Rev Clin Oncol 2024; 21:569-589. [PMID: 38840029 DOI: 10.1038/s41571-024-00908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Immunotherapy has revolutionized the treatment of cancer but continues to be constrained by limited response rates, acquired resistance, toxicities and high costs, which necessitates the development of new, innovative strategies. The discovery of a connection between the human microbiota and cancer dates back 4,000 years, when local infection was observed to result in tumour eradication in some individuals. However, the true oncological relevance of the intratumoural microbiota was not recognized until the turn of the twentieth century. The intratumoural microbiota can have pivotal roles in both the pathogenesis and treatment of cancer. In particular, intratumoural bacteria can either promote or inhibit cancer growth via remodelling of the tumour microenvironment. Over the past two decades, remarkable progress has been made preclinically in engineering bacteria as agents for cancer immunotherapy; some of these bacterial products have successfully reached the clinical stages of development. In this Review, we discuss the characteristics of intratumoural bacteria and their intricate interactions with the tumour microenvironment. We also describe the many strategies used to engineer bacteria for use in the treatment of cancer, summarizing contemporary data from completed and ongoing clinical trials. The work described herein highlights the potential of bacteria to transform the landscape of cancer therapy, bridging ancient wisdom with modern scientific innovation.
Collapse
Affiliation(s)
- Seong-Young Kwon
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea
| | - Hien Thi-Thu Ngo
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Biochemistry, Hanoi Medical University, Hanoi, Vietnam
| | - Jinbae Son
- CNCure Biotech, Jeonnam, Republic of Korea
| | - Yeongjin Hong
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- CNCure Biotech, Jeonnam, Republic of Korea
- Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Chonnam National University, Jeonnam, Republic of Korea
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea.
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- CNCure Biotech, Jeonnam, Republic of Korea.
- Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- National Immunotherapy Innovation Center, Chonnam National University, Jeonnam, Republic of Korea.
| |
Collapse
|
112
|
Zhao L, Kan Y, Wang L, Pan J, Li Y, Zhu H, Yang Z, Xiao L, Fu X, Peng F, Ren H. Roles of long non‑coding RNA SNHG16 in human digestive system cancer (Review). Oncol Rep 2024; 52:106. [PMID: 38940337 PMCID: PMC11234248 DOI: 10.3892/or.2024.8765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/26/2024] [Indexed: 06/29/2024] Open
Abstract
The incidence of tumors in the human digestive system is relatively high, including esophageal cancer, liver cancer, pancreatic cancer, gastric cancer and colorectal cancer. These malignancies arise from a complex interplay of environmental and genetic factors. Among them, long non‑coding RNAs (lncRNAs), which cannot be translated into proteins, serve an important role in the development, progression, migration and prognosis of tumors. Small nucleolar RNA host gene 16 (SNHG16) is a typical lncRNA, and its relationship with digestive system tumors has been widely explored. The prevailing hypothesis suggests that the principal molecular mechanism of SNHG16 in digestive system tumors involves it functioning as a competitive endogenous RNA that interacts with other proteins, regulates various genes and influences a downstream target molecule. The present review summarizes recent research on the relationship between SNHG16 and numerous types of digestive system cancer, encompassing its biological functions, underlying mechanisms and potential clinical implications. Furthermore, it outlines the association between SNHG16 expression and pertinent risk factors, such as smoking, infection and diet. The present review indicated the promise of SNHG16 as a potential biomarker and therapeutic target in human digestive system cancer.
Collapse
Affiliation(s)
- Lujie Zhao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Yuling Kan
- Central Laboratory of Binzhou People's Hospital, Binzhou, Shandong 256600, P.R. China
| | - Lu Wang
- School of Clinical Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Jiquan Pan
- School of Clinical Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Yun Li
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Haiyan Zhu
- Department of Medical Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
- Department of Medical Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhongfa Yang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Lin Xiao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Xinhua Fu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Fujun Peng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
- Weifang Key Laboratory of Collaborative Innovation of Intelligent Diagnosis and Treatment and Molecular Diseases, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Haipeng Ren
- Department of Medical Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
- Department of Medical Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
113
|
Liu W, Li Y, Wu P, Guo X, Xu Y, Jin L, Zhao D. The intratumoral microbiota: a new horizon in cancer immunology. Front Cell Infect Microbiol 2024; 14:1409464. [PMID: 39135638 PMCID: PMC11317474 DOI: 10.3389/fcimb.2024.1409464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
Over the past decade, advancements in high-throughput sequencing technologies have led to a qualitative leap in our understanding of the role of the microbiota in human diseases, particularly in oncology. Despite the low biomass of the intratumoral microbiota, it remains a crucial component of the tumor immune microenvironment, displaying significant heterogeneity across different tumor tissues and individual patients. Although immunotherapy has emerged a major strategy for treating tumors, patient responses to these treatments vary widely. Increasing evidence suggests that interactions between the intratumoral microbiota and the immune system can modulate host tumor immune responses, thereby influencing the effectiveness of immunotherapy. Therefore, it is critical to gain a deep understanding of how the intratumoral microbiota shapes and regulates the tumor immune microenvironment. Here, we summarize the latest advancements on the role of the intratumoral microbiota in cancer immunity, exploring the potential mechanisms through which immune functions are influenced by intratumoral microbiota within and outside the gut barrier. We also discuss the impact of the intratumoral microbiota on the response to cancer immunotherapy and its clinical applications, highlighting future research directions and challenges in this field. We anticipate that the valuable insights into the interactions between cancer immunity and the intratumoral microbiota provided in this review will foster the development of microbiota-based tumor therapies.
Collapse
Affiliation(s)
- Wei Liu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Yuming Li
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Ping Wu
- General Surgery Department of Liaoyuan Central Hospital, Jilin, China
| | - Xinyue Guo
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Yifei Xu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Lianhai Jin
- Low Pressure and Low Oxygen Environment and Health Intervention Innovation Center, Jilin Medical University, Jilin, China
| | - Donghai Zhao
- College of Basic Medicine, Jilin Medical University, Jilin, China
| |
Collapse
|
114
|
Song M, Zhang S, Zhang Z, Guo L, Liang W, Li C, Wang Z. Bacillus coagulans restores pathogen-induced intestinal dysfunction via acetate-FFAR2-NF-κB-MLCK-MLC axis in Apostichopus japonicus. mSystems 2024; 9:e0060224. [PMID: 38940521 PMCID: PMC11265352 DOI: 10.1128/msystems.00602-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 06/29/2024] Open
Abstract
Skin ulceration syndrome (SUS) is currently the main disease threatening Apostichopus japonicus aquaculture due to its higher mortality rate and infectivity, which is caused by Vibrio splendidus. Our previous studies have demonstrated that SUS is accompanied by intestinal microbiota (IM) dysbiosis, alteration of short-chain fatty acids (SCFAs) content and the damage to the intestinal barrier. However, the mediating effect of IM on intestine dysfunction is largely unknown. Herein, we conducted comprehensive intestinal microbiota transplantation (IMT) to explore the link between IM and SUS development. Furthermore, we isolated and identified a Bacillus coagulans strain with an ability to produce acetic acid from both healthy individual and SUS individual with IM from healthy donors. We found that dysbiotic IM and intestinal barrier function in SUS recipients A. japonicus could be restored by IM from healthy donors. The B. coagulans strain could restore IM community and intestinal barrier function. Consistently, acetate supply also restores intestinal homeostasis of SUS-diseased and V. splendidus-infected A. japonicus. Mechanically, acetate was found to specifically bind to its receptor-free fatty acid receptor 2 (FFAR2) to mediate IM structure community and intestinal barrier function. Knockdown of FFAR2 by transfection of specific FFAR2 siRNA could hamper acetate-mediated intestinal homeostasis in vivo. Furthermore, we confirmed that acetate/FFAR2 could inhibit V. splendidus-activated NF-κB-MLCK-MLC signaling pathway to restore intestinal epithelium integrity and upregulated the expression of ZO-1 and Occludin. Our findings provide the first evidence that B. coagulans restores pathogen-induced intestinal barrier dysfunction via acetate/FFAR2-NF-κB-MLCK-MLC axis, which provides new insights into the control and prevention of SUS outbreak from an ecological perspective.IMPORTANCESkin ulceration syndrome (SUS) as a main disease in Apostichopus japonicus aquaculture has severely restricted the developmental A. japonicus aquaculture industry. Intestinal microbiota (IM) has been studied extensively due to its immunomodulatory properties. Short-chain fatty acids (SCFAs) as an essential signal molecule for microbial regulation of host health also have attracted wide attention. Therefore, it is beneficial to explore the link between IM and SUS for prevention and control of SUS. In the study, the contribution of IM to SUS development has been examined. Additionally, our research further validated the restoration of SCFAs on intestinal barrier dysfunction caused by SUS via isolating SCFAs-producing bacteria. Notably, this restoration might be achieved by inhibition of NF-κB-MLCK-MLC signal pathway, which could be activated by V. splendidus. These findings may have important implications for exploration of the role of IM in SUS occurrence and provide insight into the SUS treatment.
Collapse
Affiliation(s)
- Mingshan Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Shanshan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Liyuan Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Weikang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhonghua Wang
- Shandong Beiyou Biotechnology Co.,Ltd., Weifang, China
| |
Collapse
|
115
|
Gómez García AM, López Muñoz F, García-Rico E. The Microbiota in Cancer: A Secondary Player or a Protagonist? Curr Issues Mol Biol 2024; 46:7812-7831. [PMID: 39194680 DOI: 10.3390/cimb46080463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
The intestinal microbiota and the human body are in a permanent interaction. There is a symbiotic relationship in which the microbiota plays a vitally important role in the performance of numerous functions, including digestion, metabolism, the development of lymphoid tissue, defensive functions, and other processes. It is a true metabolic organ essential for life and has potential involvement in various pathological states, including cancer and pathologies other than those of a digestive nature. A growing topic of great interest for its implications is the relationship between the microbiota and cancer. Dysbiosis plays a role in oncogenesis, tumor progression, and even the response to cancer treatment. The effect of the microbiota on tumor development goes beyond a local effect having a systemic effect. Another aspect of great interest regarding the intestinal microbiota is its relationship with drugs, modifying their activity. There is increasing evidence that the microbiota influences the therapeutic activity and side effects of antineoplastic drugs and also modulates the response of several tumors to antineoplastic therapy through immunological circuits. These data suggest the manipulation of the microbiota as a possible adjuvant to improve oncological treatment. Is it possible to manipulate the microbiota for therapeutic purposes?
Collapse
Affiliation(s)
- Ana María Gómez García
- Internal Medicine Unit, Hospital Universitario HM Madrid, 28015 Madrid, Spain
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco López Muñoz
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Eduardo García-Rico
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
- Medical Oncology Unit, Hospital Universitario HM Torrelodones, 28250 Torrelodones, Spain
| |
Collapse
|
116
|
Kulecka M, Czarnowski P, Bałabas A, Turkot M, Kruczkowska-Tarantowicz K, Żeber-Lubecka N, Dąbrowska M, Paszkiewicz-Kozik E, Walewski J, Ługowska I, Koseła-Paterczyk H, Rutkowski P, Kluska A, Piątkowska M, Jagiełło-Gruszfeld A, Tenderenda M, Gawiński C, Wyrwicz L, Borucka M, Krzakowski M, Zając L, Kamiński M, Mikula M, Ostrowski J. Microbial and Metabolic Gut Profiling across Seven Malignancies Identifies Fecal Faecalibacillus intestinalis and Formic Acid as Commonly Altered in Cancer Patients. Int J Mol Sci 2024; 25:8026. [PMID: 39125593 PMCID: PMC11311272 DOI: 10.3390/ijms25158026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The key association between gut dysbiosis and cancer is already known. Here, we used whole-genome shotgun sequencing (WGS) and gas chromatography/mass spectrometry (GC/MS) to conduct metagenomic and metabolomic analyses to identify common and distinct taxonomic configurations among 40, 45, 71, 34, 50, 60, and 40 patients with colorectal cancer, stomach cancer, breast cancer, lung cancer, melanoma, lymphoid neoplasms and acute myeloid leukemia (AML), respectively, and compared the data with those from sex- and age-matched healthy controls (HC). α-diversity differed only between the lymphoid neoplasm and AML groups and their respective HC, while β-diversity differed between all groups and their HC. Of 203 unique species, 179 and 24 were under- and over-represented, respectively, in the case groups compared with HC. Of these, Faecalibacillus intestinalis was under-represented in each of the seven groups studied, Anaerostipes hadrus was under-represented in all but the stomach cancer group, and 22 species were under-represented in the remaining five case groups. There was a marked reduction in the gut microbiome cancer index in all case groups except the AML group. Of the short-chain fatty acids and amino acids tested, the relative concentration of formic acid was significantly higher in each of the case groups than in HC, and the abundance of seven species of Faecalibacterium correlated negatively with most amino acids and formic acid, and positively with the levels of acetic, propanoic, and butanoic acid. We found more differences than similarities between the studied malignancy groups, with large variations in diversity, taxonomic/metabolomic profiles, and functional assignments. While the results obtained may demonstrate trends rather than objective differences that correlate with different types of malignancy, the newly developed gut microbiota cancer index did distinguish most of the cancer cases from HC. We believe that these data are a promising step forward in the search for new diagnostic and predictive tests to assess intestinal dysbiosis among cancer patients.
Collapse
Affiliation(s)
- Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Paweł Czarnowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Aneta Bałabas
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Maryla Turkot
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Kamila Kruczkowska-Tarantowicz
- Department of Internal Medicine and Hematology, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Ewa Paszkiewicz-Kozik
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Jan Walewski
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Iwona Ługowska
- Early Phase Clinical Trials Unit, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Hanna Koseła-Paterczyk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Magdalena Piątkowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Agnieszka Jagiełło-Gruszfeld
- Department of Breast Cancer & Reconstructive Surgery, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michał Tenderenda
- Department of Oncological Surgery and Neuroendocrine Tumors, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Cieszymierz Gawiński
- Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Cancer Research Institute, 02-781 Warsaw, Poland
| | - Lucjan Wyrwicz
- Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Cancer Research Institute, 02-781 Warsaw, Poland
| | - Magdalena Borucka
- Department of Lung and Chest Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Maciej Krzakowski
- Department of Lung and Chest Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Leszek Zając
- Department of Gastrointestinal Surgical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michał Kamiński
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| |
Collapse
|
117
|
Lang Y, Zhong C, Guo L, Liu Z, Zuo D, Chen X, Ding L, Huang B, Li B, Yuan Y, Niu Y, Qiu J, Qian C. Monoacylglycerol acyltransferase-2 inhibits colorectal carcinogenesis in APC min+/- mice. iScience 2024; 27:110205. [PMID: 39055928 PMCID: PMC11269928 DOI: 10.1016/j.isci.2024.110205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/18/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Monoacylglycerol acyltransferase-2 (MOGAT2), encodes MOGAT enzyme in the re-synthesis of triacylglycerol and protects from metabolism disorders. While, its precise involvement in colorectal cancer (CRC) progression remains inadequately understood. Our study demonstrated that knockout of Mogat2 in Apcmin/+ mice expedited intestinal tumor growth and progression, indicating that Mogat2 plays a tumor-suppressing role in CRC. Mechanically, Mogat2 deletion resulted in a significant alter the gut microbiota, while Fecal Microbiota Transplantation (FMT) experiments demonstrated that the gut microbiota in Mogat2 deleted mice promoted tumor growth. Furthermore, we identified Mogat2 as a functional regulator suppressing CRC cell proliferation and tumor growth by inhibiting the NF-κB signaling pathway in vivo. Collectively, these results provide novel insights into the protective double roles of Mogat2, inhibiting of NF-κB pathway and keeping gut microbiota homeostasis in colorectal cancer, which may help the development of novel cancer treatments for CRC.
Collapse
Affiliation(s)
- Yanhong Lang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, P.R. China
| | - Chengrui Zhong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Lingling Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Zhijie Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Dinglan Zuo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Xi Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Liuyan Ding
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Bijun Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Binkui Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, P.R. China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, P.R. China
| | - Yi Niu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jiliang Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, P.R. China
| | - Chaonan Qian
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, 9 Ciji Road, Huangpu District, Guangzhou 510555, P.R. China
| |
Collapse
|
118
|
Gu Y, Mu Q, Cheng D. Androgens in cervical cancer: Their role in epidemiology and biology. iScience 2024; 27:110155. [PMID: 39021790 PMCID: PMC11253156 DOI: 10.1016/j.isci.2024.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
This comprehensive review delves into the significance of androgens in cervical cancer, examining both epidemiological evidence and the underlying biological mechanisms. Cervical cancer ranks as the fourth most prevalent cancer among women globally, with disproportionately higher incidence and mortality rates in less developed regions where cervical human papillomavirus (HPV) screening remains limited. Recent research highlights the previously underexplored role of androgens in cervical cancer. Notably, cervical tissues house androgen receptors, and elevated levels of endogenous androgens have been linked to an increased risk of cervical cancer. Androgens exert their influence on the development and progression of cervical cancer by impacting key cellular processes, including proliferation, apoptosis, differentiation, and epithelial cell transformation. Furthermore, specific HPV subtypes may interact with androgens, potentially modulating HPV-related cellular degeneration and transformation. In light of these findings, it is evident that androgens assume a crucial role in cervical cancer's pathogenesis. Consequently, further investigations are warranted to deepen our understanding of the intricate relationship between androgens and cervical cancer. Such knowledge advancements can facilitate improved strategies for early prevention and treatment of cervical cancer, especially in regions with limited HPV screening access. This review underscores the importance of considering androgens as a vital component of the multifaceted landscape of cervical cancer etiology and progression, ultimately contributing to more effective clinical interventions.
Collapse
Affiliation(s)
- Yang Gu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China
| | - Qing Mu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China
| | - Dali Cheng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China
| |
Collapse
|
119
|
Hoffmann G, Lukarska M, Clare RH, Masters EK, Johnston KL, Ford L, Turner JD, Ward SA, Taylor MJ, Jensen MR, Palencia A. Targeting a microbiota Wolbachian aminoacyl-tRNA synthetase to block its pathogenic host. SCIENCE ADVANCES 2024; 10:eado1453. [PMID: 38985862 PMCID: PMC11235159 DOI: 10.1126/sciadv.ado1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
The interplay between humans and their microbiome is crucial for various physiological processes, including nutrient absorption, immune defense, and maintaining homeostasis. Microbiome alterations can directly contribute to diseases or heighten their likelihood. This relationship extends beyond humans; microbiota play vital roles in other organisms, including eukaryotic pathogens causing severe diseases. Notably, Wolbachia, a bacterial microbiota, is essential for parasitic worms responsible for lymphatic filariasis and onchocerciasis, devastating human illnesses. Given the lack of rapid cures for these infections and the limitations of current treatments, new drugs are imperative. Here, we disrupt Wolbachia's symbiosis with pathogens using boron-based compounds targeting an unprecedented Wolbachia enzyme, leucyl-tRNA synthetase (LeuRS), effectively inhibiting its growth. Through a compound demonstrating anti-Wolbachia efficacy in infected cells, we use biophysical experiments and x-ray crystallography to elucidate the mechanism behind Wolbachia LeuRS inhibition. We reveal that these compounds form adenosine-based adducts inhibiting protein synthesis. Overall, our study underscores the potential of disrupting key microbiota to control infections.
Collapse
Affiliation(s)
- Guillaume Hoffmann
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Drug Targets in Human Diseases, INSERM U1209, CNRS UMR 5309, Université Grenoble-Alpes, Grenoble 38000, France
| | - Maria Lukarska
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Drug Targets in Human Diseases, INSERM U1209, CNRS UMR 5309, Université Grenoble-Alpes, Grenoble 38000, France
| | - Rachel H. Clare
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Ellen K.G. Masters
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Kelly L. Johnston
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Louise Ford
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Joseph D. Turner
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Steve A. Ward
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Mark J. Taylor
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | | | - Andrés Palencia
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Drug Targets in Human Diseases, INSERM U1209, CNRS UMR 5309, Université Grenoble-Alpes, Grenoble 38000, France
| |
Collapse
|
120
|
LiYa L, XinSheng Z, Xiang H, Zhao L, Lu L, XiuMing L, Ye L, Jing C, KeMing Z, HongChi W, Jing X, Yang C, Xiu C, HongBo L, ShuQin Y, Fang L, YingHua L. A cross-sectional survey study on the correlation analysis of nutritional status and intestinal flora in patients with esophageal cancer. Front Nutr 2024; 11:1424039. [PMID: 39070256 PMCID: PMC11275563 DOI: 10.3389/fnut.2024.1424039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Objective This study aims to examine the nutritional status of individuals diagnosed with esophageal cancer and compare the nutritional indicators and intestinal flora between malnourished and non-malnourished patients. The findings aim to contribute to the early prevention of malnutrition and the development of interventions targeting the intestinal flora to treat esophageal cancer. Methods An 80-patient sample of hospitalized individuals with esophageal cancer was selected from the radiotherapy department of our hospital between July 2021 and July 2022 to evaluate NRS2002 scores and PG-SGA scores. This cross-sectional analysis aimed to examine the disparities in dietary nutrient intake, blood indicators, body composition, and fecal intestinal flora between malnourished and non-malnourished patients with esophageal cancer. Additionally, we randomly selected 40 cases to predict and analyze the relationship between intestinal flora and malnutrition. Results The incidence of nutritional risk and malnutrition in patients with esophageal cancer was 62.5% and 60%, respectively. The low intake of carbohydrates and dietary fiber in the malnutrition group was statistically significant compared to those in the non-malnutrition group (P < 0.05). The albumin (ALB) level was lower in the malnutrition group than in the non-malnutrition group, while the C-reactive protein (CRP) level was higher; these differences were also statistically significant (P < 0.05). The basal metabolic rate, phase angle, body cell mass, muscle mass, skeletal muscle index, and fat-free mass index in the malnutrition group all decreased compared to the non-malnutrition group. The extracellular water/total body water was higher than that in the non-malnutrition group, which was also statistically significant (P < 0.05). As shown by 16S rDNA sequencing of fecal intestinal flora, there was no significant difference in α and β diversity between the malnutrition and non-malnutrition groups; at the genus level, significant differences were observed for Selimonas, Clostridioides, Dielma, Lactobacillus, and [Eubacterium]_siraeum_group. However, Dielma, Sellimonas, and Clostridioides were significantly lower in the malnutrition group than in the non-malnutrition group, while Anaerococcus, Atopobium, Eubacterium_siraeum_group, and Lactobacillus were significantly higher in the malnutrition group. Correlation analysis between different genera and clinical indicators showed that Lactobacillus was positively correlated with ALB, dietary energy, intracellular water/total body water (ICW/TBW), phase angle (PA), muscle mass (MM), skeletal muscle mass (SMM), body cell mass (BCM), basal metabolic rate (BMR), appendicular skeletal muscle mass (ASMM), total body water (TBW), fat-free mass index (FFMI), skeletal muscle index (SMI), fat-free mass (FFM), Weight, body mass index (BMI) (r > 0, P < 0.05), but negatively correlated with PG-SGA score, NRS2002 score, and extracellular water/total body water (ECW/TBW) (r < 0, P < 0.05). Based on PG-SGA, there was only a low accuracy for identifying nutrient deficiency (most areas under curve (AUC) values fell within 0.5 to 0.7, or even lower), with Lachnoclostridium's AUC being 0.688 (CI = 0.518-0.858) and Lactobacillus_salivarius_g_Lactobacillus's AUC being 0.257 (CI = 0.098-0.416). A KEGG functional analysis based on 16S data indicated potential differences affecting glucose metabolism pathways and the synthesis or division of DNA, influencing the onset, development, and prognosis of esophageal cancer patients. Conclusion Esophageal cancer patients are more likely to be malnourished. The nutritional status of these patients is closely linked to the intake of carbohydrates and fiber, albumin levels, inflammation levels, and lean body mass. Furthermore, the patient's intestinal flora composition plays a significant role in their nutritional well-being. Consequently, modulating the intestinal flora holds promise as a potential therapeutic approach for addressing malnutrition in esophageal cancer patients. Clinical trial registration ChiCTR2100048141.
Collapse
Affiliation(s)
- Li LiYa
- Department of Nutrition, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhang XinSheng
- Department of Nutrition, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Huang Xiang
- Department of Radiation Oncology, Fifth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Liu Zhao
- Department of Nutrition, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Liu Lu
- Department of Nutrition, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lv XiuMing
- Department of Clinical Nutrition, Hebei Yanda Hospital, Langfang, China
| | - Li Ye
- Department of Radiation Oncology, Fifth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Chen Jing
- Department of Radiation Oncology, Fifth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhang KeMing
- Department of Nutrition, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wang HongChi
- Department of Radiation Oncology, Fifth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xia Jing
- Department of Endocrinology, Jiangyin Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Cong Yang
- Department of Radiation Oncology, Fifth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Cui Xiu
- Department of Nutrition, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Long HongBo
- Department of Nutrition, Fangshan Hospital Beijing University of Chinese Medicine, Beijing, China
| | - You ShuQin
- Department of Endocrinology, Ili Kazakh Autonomous Prefecture, Huocheng County Hospital of Traditional Chinese Medicine, Yili, China
| | - Liu Fang
- Department of Radiation Oncology, Fifth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Liu YingHua
- Department of Nutrition, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
121
|
Tahara T, Shijimaya T, Yamazaki J, Kobayashi S, Horitani A, Matsumoto Y, Nakamura N, Okazaki T, Takahashi Y, Tomiyama T, Honzawa Y, Fukata N, Fukui T, Naganuma M. Fusobacterium Detected in Barrett's Esophagus and Esophageal Adenocarcinoma Tissues. Cancer Invest 2024; 42:469-477. [PMID: 38913915 DOI: 10.1080/07357907.2024.2359980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/22/2024] [Indexed: 06/26/2024]
Abstract
We examined Fusobacterium nucreatum (F. nucleatum) and whole Fusobacterium species (Pan-fusobacterium) in non-neoplastic Barrett's esophagus (BE) from patients without cancer (n = 67; N group), with esophageal adenocarcinoma (EAC) (n = 27) and EAC tissue (n = 22). F. nucleatum was only detectable in 22.7% of EAC tissue. Pan-fusobacterium was enriched in EAC tissue and associated with aggressive clinicopathological features. Amount of Pan-fusobacterium in non-neoplastic BE was correlated with presence of hital hernia and telomere shortening. The result suggested potential association of Fusobacterium species in EAC and BE, featuring clinicpathological and molecular features.
Collapse
Affiliation(s)
- Tomomitsu Tahara
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Takuya Shijimaya
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Jumpei Yamazaki
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Sanshiro Kobayashi
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Anna Horitani
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Yasushi Matsumoto
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Naohiro Nakamura
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Takashi Okazaki
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Yu Takahashi
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Takashi Tomiyama
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Yusuke Honzawa
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Norimasa Fukata
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Toshiro Fukui
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Makoto Naganuma
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
122
|
Sethi Y, Vora V, Anyagwa OE, Turabi N, Abdelwahab M, Kaiwan O, Chopra H, Attia MS, Yahya G, Emran TB, Padda I. Streptomyces Paradigm in Anticancer Therapy: A State-of-the Art Review. CURRENT CANCER THERAPY REVIEWS 2024; 20:386-401. [DOI: 10.2174/0115733947254550230920170230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/09/2023] [Accepted: 08/16/2023] [Indexed: 01/12/2025]
Abstract
Abstract:
Cancer is one of the biggest threats to human health with a global incidence of 23.6 million,
mortality of 10 million, and an estimated 250 million lost in disability-adjusted life years
(DALYs) each year. Moreover, the incidence, mortality, and DALYs have increased over the past
decade by 26.3%, 20.9%, and 16.0%, respectively. Despite significant evolutions in medical therapy
and advances in the DNA microarray, proteomics technology, and targeted therapies, anticancer drug
resistance continues to be a growing concern and invites regular discovery of potent agents. One such
agent is the microbe-producing bioactive compounds like Streptomyces, which are proving increasingly
resourceful in anticancer therapy of the future. Streptomyces, especially the species living in
extreme conditions, produce bioactive compounds with cytolytic and anti-oxidative activity which
can be utilized for producing anticancer and chemo-preventive agents. The efficacy of the derived
compounds has been proven on cell lines and some of these have already established clinical results.
These compounds can potentially be utilized in the treatment of a variety of cancers including but not
limited to colon, lung, breast, GI tract, cervix, and skin cancer. The Streptomyces, thus possess the
armory to fuel the anticancer agents of the future and help address the problem of rising resistance to
currently available anti-cancer drugs. We conducted a state-of-art review using electronic databases
of PubMed, Scopus, and Google scholar with an objective to appraise the currently available literature
on Streptomyces as a source of anti-cancer agents and to compile the clinically significant literature
to update the clinicians.
Collapse
Affiliation(s)
- Yashendra Sethi
- PearResearch, Dehradun 248001, India
- Department of Medicine, Government Doon Medical College, HNB Uttarakhand
Medical Education University, Dehradun, Uttarakhand, India
| | - Vidhi Vora
- Department of Medicine, Government Doon Medical College, HNB Uttarakhand
Medical Education University, Dehradun, Uttarakhand, India
- Department of Medicine, Lokmanya Tilak Municipal
Medical College and Sion Hospital, Maharashtra University of Health Sciences, Mumbai, Maharashtra, India
| | | | | | | | - Oroshay Kaiwan
- Department of Medicine, Government Doon Medical College, HNB Uttarakhand
Medical Education University, Dehradun, Uttarakhand, India
- Department of Medicine, Northeast Ohio Medical University, Ohio,
USA
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences,
Chennai- 602105, Tamil Nadu, India
| | - Mohamed Shah Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University,
Zagazig 44519, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig
44519, Egypt
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Inderbir Padda
- Department of Medicine, Richmond University Medical Centre, Staten Island, NY, USA
| |
Collapse
|
123
|
Li N, Gao L, Ge Y, Zhao L, Wang Y, Bai C. Impact of the gut microbiome on response and toxicity to chemotherapy in advanced esophageal cancer. Heliyon 2024; 10:e32770. [PMID: 38984313 PMCID: PMC11231538 DOI: 10.1016/j.heliyon.2024.e32770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/11/2024] Open
Abstract
Objective To identify the gut bacteria associated with chemotherapeutic outcomes, t characterized the gut microbiota in patients with esophageal squamous cell carcinoma (ESCC) in this prospective study. Design Thirty-one patients with ESCC were enrolled. Chemotherapy was performed with paclitaxel and cisplatin (TP). Fecal samples were collected before and after treatment and analyzed using 16S rRNA sequencing. Results The species with differences in baseline abundance between partial response (PR) and non-PR groups was identified as Bacteroides plebeius (P = 0.043). The baseline abundance of B. plebeius was higher in the responder (R, PR + stable disease (SD)) group (P = 0.045) than in the non-responder (NR). The abundance of B. ovatus was identified as a predictor for distinguishing patients with PR from those without PR (sensitivity, 83.3 %; specificity, 69.6 %). The abundance of B. plebeius was positively associated with the response to PR + SD (R) in predicting responders in the receiver operating characteristic (ROC) curve analysis (area under the ROC curve = 0.865, P = 0.041). The abundance of B. plebeius and B.uniform was a predictor of grade (G) 3-4 chemotherapy toxicities. The sensitivity and specificity of the established multi-analyte microbial predictive model demonstrated a better predictive ability than a single parameter (B. uniform or B. plebeius). Conclusion The abundance of gut microbiota B. plebeius and B. ovatus are associated with the efficacy of TP chemotherapy in patients with ESCC. The abundance of B. plebeius and B.uniform may related to the toxicity of TP chemotherapy.
Collapse
Affiliation(s)
- Ningning Li
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liwei Gao
- Department of Radiation Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Yuping Ge
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhao
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingyi Wang
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunmei Bai
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
124
|
Knezović D, Milić Roje B, Vilović K, Franković L, Korac-Prlic J, Terzić J. MyD88 Signaling Accompanied by Microbiota Changes Supports Urinary Bladder Carcinogenesis. Int J Mol Sci 2024; 25:7176. [PMID: 39000291 PMCID: PMC11241070 DOI: 10.3390/ijms25137176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Urinary bladder cancer (BC) inflicts a significant impairment of life quality and poses a high mortality risk. Schistosoma haematobium infection can cause BC, and the urinary microbiota of BC patients differs from healthy controls. Importantly, intravesical instillation of the bacterium Bacillus Calmette-Guerin stands as the foremost therapy for non-muscle invasive BC. Hence, studying the receptors and signaling molecules orchestrating bacterial recognition and the cellular response in the context of BC is of paramount importance. Thus, we challenged Toll-like receptor 4 (Tlr4) and myeloid differentiation factor 88 (Myd88) knock-out (KO) mice with N-butyl-N-(4-hydroxylbutyl)-nitrosamine (BBN), a well-known urinary bladder carcinogen. Gut microbiota, gene expression, and urinary bladder pathology were followed. Acute exposure to BBN did not reveal a difference in bladder pathology despite differences in the animal's ability to recognize and react to bacteria. However, chronic treatment resulted in reduced cancer invasiveness among Myd88KO mice while the absence of functional Tlr4 did not influence BC development or progression. These differences correlate with a heightened abundance of the Faecalibaculum genus and the lowest microbial diversity observed among Myd88KO mice. The presented data underscore the important role of microbiota composition and MyD88-mediated signaling during bladder carcinogenesis.
Collapse
Affiliation(s)
- Dora Knezović
- Laboratory for Cancer Research, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia; (D.K.); (B.M.R.); (L.F.); (J.K.-P.)
| | - Blanka Milić Roje
- Laboratory for Cancer Research, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia; (D.K.); (B.M.R.); (L.F.); (J.K.-P.)
| | - Katarina Vilović
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, Spinčićeva 1, 21000 Split, Croatia;
| | - Lucija Franković
- Laboratory for Cancer Research, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia; (D.K.); (B.M.R.); (L.F.); (J.K.-P.)
| | - Jelena Korac-Prlic
- Laboratory for Cancer Research, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia; (D.K.); (B.M.R.); (L.F.); (J.K.-P.)
| | - Janoš Terzić
- Laboratory for Cancer Research, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia; (D.K.); (B.M.R.); (L.F.); (J.K.-P.)
| |
Collapse
|
125
|
Che S, Yan Z, Feng Y, Zhao H. Unveiling the intratumoral microbiota within cancer landscapes. iScience 2024; 27:109893. [PMID: 38799560 PMCID: PMC11126819 DOI: 10.1016/j.isci.2024.109893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Recent advances in cancer research have unveiled a significant yet previously underappreciated aspect of oncology: the presence and role of intratumoral microbiota. These microbial residents, encompassing bacteria, fungi, and viruses within tumor tissues, have been found to exert considerable influence on tumor development, progression, and the efficacy of therapeutic interventions. This review aims to synthesize these groundbreaking discoveries, providing an integrated overview of the identification, characterization, and functional roles of intratumoral microbiota in cancer biology. We focus on elucidating the complex interactions between these microorganisms and the tumor microenvironment, highlighting their potential as novel biomarkers and therapeutic targets. The purpose of this review is to offer a comprehensive understanding of the microbial dimension in cancer, paving the way for innovative approaches in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shusheng Che
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Zhiyong Yan
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266005, Shandong, China
| |
Collapse
|
126
|
Javadi K, Ferdosi-Shahandashti E, Rajabnia M, Khaledi M. Vaginal microbiota and gynecological cancers: a complex and evolving relationship. Infect Agent Cancer 2024; 19:27. [PMID: 38877504 PMCID: PMC11179293 DOI: 10.1186/s13027-024-00590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
The vagina hosts a community of microorganisms known as the vaginal microbiota. This community is relatively stable and straightforward, with Lactobacillus species being the most dominant members. The vaginal microbiota has various functions that are essential for maintaining human health and balance. For example, it can metabolise dietary nutrients, produce growth factors, communicate with other bacteria, modulate the immune system, and prevent the invasion of harmful pathogens. When the vaginal microbiota is disrupted, it can lead to diseases and infections. The observed disturbance is distinguished by a reduction in the prevalence of Lactobacillus and a concurrent rise in the number of other bacterial species that exhibit a higher tolerance to low oxygen levels. Gynecologic cancers are a group of cancers that affect the female reproductive organs and tissues, such as the ovaries, uterus, cervix, vagina, vulva, and endometrium. These cancers are a major global health problem for women. Understanding the complex interactions between the host and the vaginal microorganisms may provide new insights into the prevention and treatment of gynecologic cancers. This could improve the quality of life and health outcomes for women.
Collapse
Affiliation(s)
- Kasra Javadi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Elaheh Ferdosi-Shahandashti
- Biomedical and Microbial Advanced Technologies Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Rajabnia
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Mansoor Khaledi
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
127
|
Lu W, Aihaiti A, Abudukeranmu P, Liu Y, Gao H. Unravelling the role of intratumoral bacteria in digestive system cancers: current insights and future perspectives. J Transl Med 2024; 22:545. [PMID: 38849871 PMCID: PMC11157735 DOI: 10.1186/s12967-024-05320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/18/2024] [Indexed: 06/09/2024] Open
Abstract
Recently, research on the human microbiome, especially concerning the bacteria within the digestive system, has substantially advanced. This exploration has unveiled a complex interplay between microbiota and health, particularly in the context of disease. Evidence suggests that the gut microbiome plays vital roles in digestion, immunity and the synthesis of vitamins and neurotransmitters, highlighting its significance in maintaining overall health. Conversely, disruptions in these microbial communities, termed dysbiosis, have been linked to the pathogenesis of various diseases, including digestive system cancers. These bacteria can influence cancer progression through mechanisms such as DNA damage, modulation of the tumour microenvironment, and effects on the host's immune response. Changes in the composition and function within the tumours can also impact inflammation, immune response and cancer therapy effectiveness. These findings offer promising avenues for the clinical application of intratumoral bacteria for digestive system cancer treatment, including the potential use of microbial markers for early cancer detection, prognostication and the development of microbiome-targeted therapies to enhance treatment outcomes. This review aims to provide a comprehensive overview of the pivotal roles played by gut microbiome bacteria in the development of digestive system cancers. Additionally, we delve into the specific contributions of intratumoral bacteria to digestive system cancer development, elucidating potential mechanisms and clinical implications. Ultimately, this review underscores the intricate interplay between intratumoral bacteria and digestive system cancers, underscoring the pivotal role of microbiome research in transforming diagnostic, prognostic and therapeutic paradigms for digestive system cancers.
Collapse
Affiliation(s)
- Weiqin Lu
- General Surgery, Cancer Center, Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | | | | | - Yajun Liu
- Aksu First People's Hospital, Xinjiang, China
| | - Huihui Gao
- Cancer Center, Department of Hospital Infection Management and Preventive Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
128
|
Luan B, Ge F, Lu X, Li Z, Zhang H, Wu J, Yang Q, Chen L, Zhang W, Chen W. Changes in the fecal microbiota of breast cancer patients based on 16S rRNA gene sequencing: a systematic review and meta-analysis. Clin Transl Oncol 2024; 26:1480-1496. [PMID: 38217684 DOI: 10.1007/s12094-023-03373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/04/2023] [Indexed: 01/15/2024]
Abstract
PURPOSE Breast cancer (BC) is a devastating disease for women. Microbial influences may be involved in the development and progression of breast cancer. This study aimed to investigate the difference in intestinal flora abundance between breast cancer patients and healthy controls (HC) based on previous 16S ribosomal RNA (rRNA) gene sequencing results, which have been scattered and inconsistent in previous studies. MATERIALS AND METHODS In agreement with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), we searched for pertinent literature in Pubmed, Embase, Cochrane Library, and Web of Science databases from build until February 1, 2023. Relative abundance, diversity of intestinal microflora by level, microbial composition, community structure, diversity index, and other related data were extracted. We used a fixed or random effects model for data analysis. We also conducted funnel plot analysis, sensitivity analysis, Egger's, and Begg's tests to assess the bias risk. RESULTS A total of ten studies involving 734 BC patients were enrolled. It was pointed out that there were significant differences in the Chao index between BC and HC in these studies [SMD = - 175.44 (95% CI - 246.50 to - 104.39)]. The relative abundance of Prevotellaceae [SMD = - 0.27 (95% CI - 0.39 to - 0.15)] and Bacteroides [SMD = 0.36 (95% CI 0.23-0.49)] was significantly different. In the included articles, the relative abundance of Prevotellaceae, Ruminococcus, Roseburia inulinivorans, and Faecalibacterium prausnitzii decreased in BC. Accordingly, the relative richness of Erysipelotrichaceae was high in BC. CONCLUSIONS This observational meta-analysis revealed that the changes in gut microbiota were correlated with BC, and the changes in some primary fecal microbiota might affect the beginning of breast cancer.
Collapse
Affiliation(s)
- Biqing Luan
- Department of Breast Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, China
- No. 1 School of Clinical Medicine, Kunming Medical University, Kunming, China
| | - Fei Ge
- Department of Breast Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xingjia Lu
- Department of Breast Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, China
- No. 1 School of Clinical Medicine, Kunming Medical University, Kunming, China
| | - Zhiqiang Li
- Department of Breast Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, China
- No. 1 School of Clinical Medicine, Kunming Medical University, Kunming, China
| | - Hong Zhang
- Department of Breast Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, China
- No. 1 School of Clinical Medicine, Kunming Medical University, Kunming, China
| | - Jingxuan Wu
- Department of Breast Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, China
- No. 1 School of Clinical Medicine, Kunming Medical University, Kunming, China
| | - Qizhi Yang
- Department of Breast Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, China
- No. 1 School of Clinical Medicine, Kunming Medical University, Kunming, China
| | - Liang Chen
- Department of Breast Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Wenzhu Zhang
- Department of Breast Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, China
- No. 1 School of Clinical Medicine, Kunming Medical University, Kunming, China
| | - Wenlin Chen
- Third Department of Breast Surgery, Third Affiliated Hospital, Kunming Medical University, Kunming, China.
| |
Collapse
|
129
|
Yao Z, Huang H, Zhang S, Wang S, Xia Q, Liu Z. Exploring the bladder tissue microbiome in patients with muscle-invasive bladder cancer using 2bRAD-M sequencing. ONCOLOGIE 2024; 26:395-406. [DOI: 10.1515/oncologie-2024-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Abstract
Objectives
The 2bRAD sequencing for Microbiome (2bRAD-M) represents an innovative and streamlined approach for the reconstruction of microbial profiles at the species level. In our investigation, we conducted 2bRAD-M analysis to characterize the microbiome of bladder tissue in patients with muscle-invasive bladder cancer (MIBC).
Methods
15 tumor tissues and 15 paired para-carcinoma tissues were obtained from the bladder excised during surgery. 2bRAD-M sequencing was used to assess the abundance of microorganisms in samples.
Results
The microbial community structure and biodiversity, as assessed at varying taxonomic ranks, exhibited a high degree of similarity between the tumor and paired non-tumor tissues. At the genus level, we observed a notably elevated abundance of Brachybacterium and Haloparvum, coupled with a diminished abundance of Anoxybacillus, Anoxybacillu_A, Deinococcus, NCEH01, and Pseudoxanthomonas_A in the tumor tissues. Meanwhile, at the species level, the non-tumor tissues exhibited an enrichment of Anoxybacillus_A rupiensis, Anoxybacillus flavithermus_G, Klebsiella quasipneumoniae, NCEH01 sp002304505, and Pseudoxanthomonas_A sp004284195. Linear discriminant analysis effect size (LEfSe) identified 29 discriminative features, characterized by significant variations (p<0.5, LDA≥2.0) in relative abundance between the two groups. Furthermore, an analysis of functional predictions utilizing Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt2) also uncovered disparities in the microbial functional composition.
Conclusions
This study identified several microorganisms that exhibit differences between MIBC tumor tissue and adjacent non-tumor tissue using 2bRAD-M sequencing, providing some insights into the potential association between the bladder microbiome and cancer.
Collapse
Affiliation(s)
- Zhipeng Yao
- Department of Urology, Tongji Hospital, Tongji Medical College , 12443 Huazhong University of Science and Technology , Wuhan , China
| | - He Huang
- Department of Urology , The Third People’s Hospital of Hubei Province , Wuhan , China
| | - Sihan Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College , 12443 Huazhong University of Science and Technology , Wuhan , China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College , 12443 Huazhong University of Science and Technology , Wuhan , China
| | - Qidong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College , 12443 Huazhong University of Science and Technology , Wuhan , China
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College , 12443 Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
130
|
Kovaleva O, Podlesnaya P, Gratchev A. Resident Microbiome of Kidney Tumors. Oncol Rev 2024; 18:1393664. [PMID: 38835643 PMCID: PMC11148557 DOI: 10.3389/or.2024.1393664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
Emerging research has uncovered the significance of microbiota in carcinogenesis, with specific bacterial infectious agents linked to around 15% of malignant tumors. This review is focused on the resident kidney microbiome, its composition, and alterations in various diseases. Recent studies have shown that bacteria can infiltrate the kidney, with differences between normal and tumor tissue. These studies have identified distinctive microorganisms unique to both conditions, hinting at their potential clinical relevance. Research into the kidney microbiome diversity reveals differences in tumor tissue, with specific taxa associated with different histological types. Notably, the alpha diversity indices suggest variations in bacterial content between tumor and normal tissue, offering insights into potential diagnostic and prognostic use of these markers. Better studied is the impact of the gut microbiome on therapy efficacy in malignant kidney tumors. Antibiotics, which can alter the gut microbiome, have been linked to survival outcomes in patients receiving targeted therapy and immunotherapy. The findings suggest that the uncontrolled use of antibiotics may not only contribute to bacterial resistance but also disrupt the normal microbiome, potentially influencing the development of oncological diseases. In-depth investigation into the resident kidney microbiome is essential for addressing fundamental and practical aspects of kidney tumor development.
Collapse
Affiliation(s)
- Olga Kovaleva
- N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Polina Podlesnaya
- N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Alexei Gratchev
- N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| |
Collapse
|
131
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
132
|
Zhang L, Yu L. The role of the microscopic world: Exploring the role and potential of intratumoral microbiota in cancer immunotherapy. Medicine (Baltimore) 2024; 103:e38078. [PMID: 38758914 PMCID: PMC11098217 DOI: 10.1097/md.0000000000038078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024] Open
Abstract
Microorganisms, including bacteria, viruses, and fungi, coexist in the human body, forming a symbiotic microbiota that plays a vital role in human health and disease. Intratumoral microbial components have been discovered in various tumor tissues and are closely linked to the occurrence, progression, and treatment results of cancer. The intratumoral microbiota can enhance antitumor immunity through mechanisms such as activating the stimulator of interferon genes signaling pathway, stimulating T and NK cells, promoting the formation of TLS, and facilitating antigen presentation. Conversely, the intratumoral microbiota might suppress antitumor immune responses by increasing reactive oxygen species levels, creating an anti-inflammatory environment, inducing T cell inactivation, and enhancing immune suppression, thereby promoting cancer progression. The impact of intratumoral microbiota on antitumor immunity varies based on microbial composition, interactions with cancer cells, and the cancer's current state. A deep understanding of the complex interactions between intratumoral microbiota and antitumor immunity holds the potential to bring new therapeutic strategies and targets to cancer immunotherapy.
Collapse
Affiliation(s)
- Liqiang Zhang
- Department of Oncology, Weifang Hospital of Traditional Chinese Medicine, Weifang City, Shandong Province, China
| | - Liang Yu
- Department of Cardiac Surgery, Weifang Hospital of Traditional Chinese Medicine, Weifang City, Shandong Province, China
| |
Collapse
|
133
|
Norenhag J, Edfeldt G, Stålberg K, Garcia F, Hugerth LW, Engstrand L, Fransson E, Du J, Schuppe-Koistinen I, Olovsson M. Compositional and functional differences of the vaginal microbiota of women with and without cervical dysplasia. Sci Rep 2024; 14:11183. [PMID: 38755259 PMCID: PMC11099171 DOI: 10.1038/s41598-024-61942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024] Open
Abstract
Alterations in the vaginal microbiota, including both species composition and functional pathways, have been associated with HPV infection and progression of dysplasia to cervical cancer. To further explore this, shotgun metagenomic sequencing was used to taxonomically and functionally characterize the vaginal microbiota of women with and without cervical dysplasia. Women with histologically verified dysplasia (n = 177; low grade dysplasia (LSIL) n = 81, high-grade dysplasia (HSIL) n = 94, cancer n = 2) were compared with healthy controls recruited from the cervical screening programme (n = 177). Women with dysplasia had a higher vaginal microbial diversity, and higher abundances of Gardnerella vaginalis, Aerococcus christensenii, Peptoniphilus lacrimalis and Fannyhessea vaginae, while healthy controls had higher relative abundance of Lactobacillus crispatus. Genes involved in e.g. nucleotide biosynthesis and peptidoglycan biosynthesis were more abundant in women with dysplasia. Healthy controls showed higher abundance of genes important for e.g. amino acid biosynthesis, (especially L-lysine) and sugar degradation. These findings suggest that the microbiota may have a role in creating a pro-oncogenic environment in women with dysplasia. Its role and potential interactions with other components in the microenvironment deserve further exploration.
Collapse
Affiliation(s)
- Johanna Norenhag
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
| | - Gabriella Edfeldt
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Karin Stålberg
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Fabricio Garcia
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Luisa Warchavchik Hugerth
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Emma Fransson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Juan Du
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Ina Schuppe-Koistinen
- Department of Microbiology, Tumor and Cell Biology (MTC), Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Matts Olovsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
134
|
Goswami M, Bose PD. Gut microbial dysbiosis in the pathogenesis of leukemia: an immune-based perspective. Exp Hematol 2024; 133:104211. [PMID: 38527589 DOI: 10.1016/j.exphem.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 03/27/2024]
Abstract
Leukemias are a set of clonal hematopoietic malignant diseases that develop in the bone marrow. Several factors influence leukemia development and progression. Among these, the gut microbiota is a major factor influencing a wide array of its processes. The gut microbial composition is linked to the risk of tumor development and the host's ability to respond to treatment, mostly due to the immune-modulatory effects of their metabolites. Despite such strong evidence, its role in the development of hematologic malignancies still requires attention of investigators worldwide. In this review, we make an effort to discuss the role of host gut microbiota-immune crosstalk in leukemia development and progression. Additionally, we highlight certain recently developed strategies to modify the gut microbial composition that may help to overcome dysbiosis in leukemia patients in the near future.
Collapse
Affiliation(s)
- Mayuri Goswami
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, India
| | - Purabi Deka Bose
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, India.
| |
Collapse
|
135
|
Gao Y, Chen H, Liu Y, Zhang X, Qiu Y, Huang D. Modifiable factors for benign salivary gland neoplasms: A Mendelian randomization study. Oral Dis 2024; 30:2245-2253. [PMID: 37499050 DOI: 10.1111/odi.14682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Observational studies have found associations between smoking, alcohol, radiation, body mass index (BMI), periodontitis, and the hazard of benign salivary gland neoplasms (BSGNs). Nevertheless, the etiology of BSGNs remains unclear. This study aims to assess the causal association between these modifiable factors and the BSGNs. METHODS Genetic instruments associated with exposures at the genome-wide significance level were selected from corresponding genome-wide association studies. The summary statistics for BSGNs were obtained from the FinnGen consortium (2445 cases and 340,054 controls). The inverse variance-weighted method was used as the primary analysis, and several sensitivity analyses were performed to test the reliability. RESULTS Genetically predicted higher lifetime smoking index (odds ratio [OR] = 2.10, p = 0.012) and BMI (OR = 1.58, p = 2.29 × 10-5) were associated with elevated risk of BSGNs, whereas other exposures do not. Sensitivity analyses showed consistency. The causal effect of the lifetime smoking index became more significant after adjusting for BMI (OR = 2.89, p = 0.005) and alcohol consumption (OR = 2.49, p = 0.002). A slight negative association emerged for alcohol consumption with adjustment for cigarettes per day (OR = 0.53, p = 0.034) but disappeared when adjusting for cigarettes per day and BMI. CONCLUSION This study supports the independent causal role of lifetime smoking index and BMI in BSGNs risk.
Collapse
Affiliation(s)
- Yan Gao
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Huihong Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Donghai Huang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| |
Collapse
|
136
|
Yang Z, Zhang S, Ji N, Li J, Chen Q. The evil companion of OSCC: Candida albicans. Oral Dis 2024; 30:1873-1886. [PMID: 37530513 DOI: 10.1111/odi.14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE Microbial dysbiosis and microbiome-induced inflammation may play a role in the etiopathogenesis of oral squamous cell carcinoma (OSCC). Candida albicans (C. albicans) is the most prevalent opportunistic pathogenic fungus in the oral cavity, and Candida infection is considered as one of its high-risk factors. Although oral microbiota-host interactions are closely associated with the development of OSCC, the interrelationship between fungi and OSCC is poorly understood compared to that between bacteria and viruses. RESULTS We accumulated knowledge of the evidence, pathogenic factors, and possible multiple mechanisms by which C. albicans promotes malignant transformation of OSCC, focusing on the induction of epithelial damage, production of carcinogens, and regulation of the tumor microenvironment. In addition, we highlight the latest treatment strategies for Candida infection. CONCLUSION This review provides a new perspective on the interrelationship between C. albicans and OSCC and contributes to the establishment of a systematic and reliable clinical treatment system for OSCC patients with C. albicans infection.
Collapse
Affiliation(s)
- Zhixin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Shiyu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
137
|
Zhang J, Wang P, Wang J, Wei X, Wang M. Unveiling intratumoral microbiota: An emerging force for colorectal cancer diagnosis and therapy. Pharmacol Res 2024; 203:107185. [PMID: 38615875 DOI: 10.1016/j.phrs.2024.107185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Microbes, including bacteria, viruses, fungi, and other eukaryotic organisms, are commonly present in multiple organs of the human body and contribute significantly to both physiological and pathological processes. Nowadays, the development of sequencing technology has revealed the presence and composition of the intratumoral microbiota, which includes Fusobacterium, Bifidobacteria, and Bacteroides, and has shed light on the significant involvement in the progression of colorectal cancer (CRC). Here, we summarized the current understanding of the intratumoral microbiota in CRC and outline the potential translational and clinical applications in the diagnosis, prevention, and treatment of CRC. We focused on reviewing the development of microbial therapies targeting the intratumoral microbiota to improve the efficacy and safety of chemotherapy and immunotherapy for CRC and to identify biomarkers for the diagnosis and prognosis of CRC. Finally, we emphasized the obstacles and potential solutions to translating the knowledge of the intratumoral microbiota into clinical practice.
Collapse
Affiliation(s)
- Jinjing Zhang
- Affiliated Cixi Hospital, Wenzhou Medical University, Zhejiang, China
| | - Penghui Wang
- Affiliated Cixi Hospital, Wenzhou Medical University, Zhejiang, China
| | - Jiafeng Wang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Xiaojie Wei
- Affiliated Cixi Hospital, Wenzhou Medical University, Zhejiang, China.
| | - Mengchuan Wang
- Affiliated Cixi Hospital, Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
138
|
Xin HY, Zou JX, Sun RQ, Hu ZQ, Chen Z, Luo CB, Zhou ZJ, Wang PC, Li J, Yu SY, Liu KX, Fan J, Zhou J, Zhou SL. Characterization of tumor microbiome and associations with prognosis in intrahepatic cholangiocarcinoma. J Gastroenterol 2024; 59:411-423. [PMID: 38461467 DOI: 10.1007/s00535-024-02090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The tumor microbiome has been characterized in several malignancies; however, no previous studies have investigated its role in intrahepatic cholangiocarcinoma (ICC). Hence, we explored the tumor microbiome and its association with prognosis in ICC. METHODS One hundred and twenty-one ICC tumor samples and 89 adjacent normal tissues were profiled by 16S rRNA sequencing. Microbial differences between tumor and adjacent nontumoral liver tissues were assessed. Tumor microbial composition was then evaluated to detect its association with prognosis. Finally, a risk score calculated by the tumor microbiota was accessed by the least absolute shrinkage and selector operator method (Lasso) to predict prognosis of ICC. RESULTS The tumor microbiome displayed a greater diversity than that in adjacent nontumoral liver tissues. Tumor samples were characterized by a higher abundance of Firmicutes, Actinobacteria, Bacteroidetes, and Acidobacteriota. Higher tumor microbial α diversity was associated with lymph node metastasis and predicted shortened overall survival (OS) and recurrence-free survival (RFS). A total of 11 bacteria were selected to generate the risk score by Lasso. This score showed potential in predicting OS, and was an independent risk factor for OS. CONCLUSION In conclusion, our study characterized the tumor microbiome and revealed its role in predicting prognosis in ICC.
Collapse
Affiliation(s)
- Hao-Yang Xin
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Ji-Xue Zou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Rong-Qi Sun
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Zhi-Qiang Hu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Zhuo Chen
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Chu-Bin Luo
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Zheng-Jun Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Peng-Cheng Wang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Jia Li
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Song-Yang Yu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Kai-Xuan Liu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Shao-Lai Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China.
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China.
| |
Collapse
|
139
|
Lin X, Zheng W, Zhao X, Zeng M, Li S, Peng S, Song T, Sun Y. Microbiome in gynecologic malignancies: a bibliometric analysis from 2012 to 2022. Transl Cancer Res 2024; 13:1980-1996. [PMID: 38737701 PMCID: PMC11082697 DOI: 10.21037/tcr-23-1769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/29/2024] [Indexed: 05/14/2024]
Abstract
Microbiome and microbial dysbiosis have been proven to be involved in the carcinogenesis and treatment of gynecologic malignancies. However, there is a noticeable gap in the literature, as no comprehensive papers have covered general information, research status, and research frontiers in this field. This study addressed this gap by exploring the relationship between the gut and female reproductive tract (FRT) microbiome and gynecological cancers from a bibliometric perspective. Using VOSviewer 1.6.18, CiteSpace 6.1.R6, and HistCite Pro 2.1 software, we analyzed data retrieved from the Web of Science (WOS) Core Collection (WoSCC) database. Our dataset, consisting of 204 articles published from 2012 to 2022, revealed a consistent and upward publication trend. The United States and the United Kingdom were the primary driving forces, attributed to their prolificacy, high-quality output, and extensive cooperation. The University of Arizona Cancer Center, which is affiliated with the United States, ranked first among the top ten most prolific institutions. Frontiers in Cellular and Infection Microbiology emerged as the leading publisher. Herbst-Kralovetz MM led as the most productive author. Mitra A was the most influential author. Cervical cancer is notably associated with the microbiome, while endometrial and ovarian cancers are receiving increased attention in the last year. Intersections between the gut microbiome and estrogen are of growing importance. Current research focuses on identifying specific microbial species for etiological diagnosis, while frontiers mainly focus on the anticancer potential of microorganisms, such as regulating the effects of immune checkpoint inhibitors. In conclusion, this study sheds light on a novel and burgeoning direction of research, providing a one-stop overview of the microbiome in gynecologic malignancies. Its findings aim to help young researchers to identify research directions and future trends for ongoing investigations.
Collapse
Affiliation(s)
- Xiaowen Lin
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weiqin Zheng
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaotong Zhao
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengyao Zeng
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shibo Li
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sizheng Peng
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Song
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuhui Sun
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
140
|
Shen J, Sun H, Chu J, Gong X, Liu X. Cervicovaginal microbiota: a promising direction for prevention and treatment in cervical cancer. Infect Agent Cancer 2024; 19:13. [PMID: 38641803 PMCID: PMC11027553 DOI: 10.1186/s13027-024-00573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/18/2024] [Indexed: 04/21/2024] Open
Abstract
Cervical cancer is a common malignancy in women, with high incidence rate and mortality. Persistent infection of high-risk human papillomavirus (HPV) is the most important risk factor for cervical cancer and precancerous lesions. Cervicovaginal microbiota (CVM) plays an essential role in the defense of HPV infections and prevention of subsequent lesions. Dominance of Lactobacillus is the key of CVM homeostasis, which can be regulated by host, exogenous and endogenous factors. Dysbiosis of CVM, including altered microbial, metabolic, and immune signatures, can contribute to persist HPV infection, leading to cervical cancer. However, there is no evidence of the causality between CVM and cervical cancer, and the underlying mechanism remains unexplored. Considering the close correlation between CVM dysbiosis and persistent HPV infection, this review will overview CVM, its role in cervical cancer development and related mechanisms, and the prospects for therapeutic applications.
Collapse
Affiliation(s)
- Jie Shen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 200003, Shanghai, China
| | - Hao Sun
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 200003, Shanghai, China
| | - Jing Chu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 200003, Shanghai, China
| | - Xiaodi Gong
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 200003, Shanghai, China.
| | - Xiaojun Liu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), 200003, Shanghai, China.
| |
Collapse
|
141
|
Yousefi Y, Baines KJ, Maleki Vareki S. Microbiome bacterial influencers of host immunity and response to immunotherapy. Cell Rep Med 2024; 5:101487. [PMID: 38547865 PMCID: PMC11031383 DOI: 10.1016/j.xcrm.2024.101487] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
The gut microbiota influences anti-tumor immunity and can induce or inhibit response to immune checkpoint inhibitors (ICIs). Therefore, microbiome features are being studied as predictive/prognostic biomarkers of patient response to ICIs, and microbiome-based interventions are attractive adjuvant treatments in combination with ICIs. Specific gut-resident bacteria can influence the effectiveness of immunotherapy; however, the mechanism of action on how these bacteria affect anti-tumor immunity and response to ICIs is not fully understood. Nevertheless, early bacterial-based therapeutic strategies have demonstrated that targeting the gut microbiome through various methods can enhance the effectiveness of ICIs, resulting in improved clinical responses in patients with a diverse range of cancers. Therefore, understanding the microbiota-driven mechanisms of response to immunotherapy can augment the success of these interventions, particularly in patients with treatment-refractory cancers.
Collapse
Affiliation(s)
- Yeganeh Yousefi
- Verspeeten Family Cancer Centre, Lawson Health Research Institute, London, ON N6A 5W9, Canada
| | - Kelly J Baines
- Verspeeten Family Cancer Centre, Lawson Health Research Institute, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Saman Maleki Vareki
- Verspeeten Family Cancer Centre, Lawson Health Research Institute, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada; Department of Oncology, Western University, London, ON N6A 3K7, Canada.
| |
Collapse
|
142
|
Lou K, Chi J, Wu J, Ma J, Liu S, Cui Y. Research progress on the microbiota in bladder cancer tumors. Front Cell Infect Microbiol 2024; 14:1374944. [PMID: 38650736 PMCID: PMC11033431 DOI: 10.3389/fcimb.2024.1374944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
The microbiota, also referred to as the microbial community, is a crucial component of the human microenvironment. It is located predominantly in various organs, including the intestines, skin, oral cavity, respiratory tract, and reproductive tract. The microbiota maintains a symbiotic relationship with the human body, influencing physiological and pathological functions to a significant degree. There is increasing evidence linking the microbial flora to human cancers. In contrast to the traditional belief that the urethra and urine of normal individuals are sterile, recent advancements in high-throughput sequencing technology and bacterial cultivation methods have led to the discovery of specific microbial communities in the urethras of healthy individuals. Given the prevalence of bladder cancer (BCa) as a common malignancy of the urinary system, researchers have shifted their focus to exploring the connection between disease development and the unique microbial community within tumors. This shift has led to a deeper investigation into the role of microbiota in the onset, progression, metastasis, prognosis, and potential for early detection of BCa. This article reviews the existing research on the microbiota within BCa tumors and summarizes the findings regarding the roles of different microbes in various aspects of this disease.
Collapse
Affiliation(s)
- Keyuan Lou
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Junpeng Chi
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jian Ma
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shu Liu
- Department of Medical Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yuanshan Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
143
|
Li X, Liu G, Wu W. Progress in Biological Research and Treatment of Pseudomyxoma Peritonei. Cancers (Basel) 2024; 16:1406. [PMID: 38611084 PMCID: PMC11010892 DOI: 10.3390/cancers16071406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Pseudomyxoma peritonei (PMP) is a rare disease characterized by extensive peritoneal implantation and mass secretion of mucus after primary mucinous tumors of the appendix or other organ ruptures. Cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) is currently the preferred treatment, with excellent efficacy and safety, and is associated with breakthrough progress in long-term disease control and prolonged survival. However, the high recurrence rate of PMP is the key challenge in its treatment, which limits the clinical application of multiple rounds of CRS-HIPEC and does not benefit from conventional systemic chemotherapy. Therefore, the development of alternative therapies for patients with refractory or relapsing PMP is critical. The literature related to PMP research progress and treatment was searched in the Web of Science, PubMed, and Google Scholar databases, and a literature review was conducted. The overview of the biological research, treatment status, potential therapeutic strategies, current research limitations, and future directions associated with PMP are presented, focuses on CRS-HIPEC therapy and alternative or combination therapy strategies, and emphasizes the clinical transformation prospects of potential therapeutic strategies such as mucolytic agents and targeted therapy. It provides a theoretical reference for the treatment of PMP and the main directions for future research.
Collapse
Affiliation(s)
- Xi Li
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha 410008, China;
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guodong Liu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha 410008, China;
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wei Wu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha 410008, China;
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
144
|
Zhang J, Wan S, Zhou H, Du J, Li Y, Zhu H, Weng L, Ding X, Wang L. Programmed Nanocloak of Commensal Bacteria-Derived Nanovesicles Amplify Strong Immunoreactivity against Tumor Growth and Metastatic Progression. ACS NANO 2024; 18:9613-9626. [PMID: 38502546 DOI: 10.1021/acsnano.3c13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Recent discoveries in commensal microbiota demonstrate the great promise of intratumoral bacteria as attractive molecular targets of tumors in improving cancer treatment. However, direct leveraging of in vivo antibacterial strategies such as antibiotics to potentiate cancer therapy often leads to uncertain effectiveness, mainly due to poor selectivity and potential adverse effects. Here, building from the clinical discovery that patients with breast cancer featured rich commensal bacteria, we developed an activatable biointerface by encapsulating commensal bacteria-derived extracellular vesicles (BEV) with a responsive nanocloak to potentiate immunoreactivity against intratumoral bacteria and breast cancer. We show that the interfacially cloaked BEV (cBEV) not only overcame serious systemic side responses but also demonstrated heightened immunogenicity by intercellular responsive immunogenicity, facilitating dendritic cell maturation through activating the cGAS-STING pathway. As a preventive measure, vaccination with nanocloaked cBEVs achieved strong protection against bacterial infection, largely providing prophylactic efficiency against tumor challenges. When treated in conjunction with immune checkpoint inhibitor anti-PD-L1 antibodies, the combined approach elicited a potent tumor-specific immune response, synergistically inhibiting tumor progression and mitigating lung metastases.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shuangshuang Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Hao Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiaxin Du
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yaocheng Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Houjuan Zhu
- A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xianguang Ding
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
145
|
Rueda Huélamo MA, Martínez Perlado A, Consoli V, García-Tejedor A, Haros CM, Laparra Llopis JM. Improvement of hepatic innate immunity in chemically-injured livers to develop hepatocarcinoma by a serine type-protease inhibitors enriched extract from Chenopodium quinoa. Food Funct 2024; 15:3600-3614. [PMID: 38469889 DOI: 10.1039/d3fo03083k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Food ingredients have critical effects on the maturation and development of the immune system, which innate - lymphoid (ILCs) and myeloid - cells play key roles as important regulators of energy storage and hepatic fat accumulation. Therefore, the objective of this study is to define potential links between a dietary immunonutritional induction of the selective functional differentiation of monocytes-derived macrophages, ILCs and lipid homeostasis in hepatocarcinoma (HCC)-developing mice. Hepatic chemically injured (diethylnitrosamine/thiacetamide) Rag2-/- and Rag2-/-Il2-/- mice were administered with serine-type protease inhibitors (SETIs) obtained from Chenopodium quinoa. Early HCC-driven immunometabolic imbalances (infiltrated macrophages, glucose homeostasis, hepatic lipid profile, ILCs expansion, inflammatory conditions, microbiota) in animals put under a high-fat diet for 2 weeks were assessed. It was also approached the potential of SETIs to cause functional adaptations of the bioenergetics of human macrophage-like cells (hMLCs) in vitro conditioning their capacity to accumulate fat. It is showed that Rag2-/-Il2-/- mice, lacking ILCs, are resistant to the SETIs-induced hepatic macrophages (CD68+F4/80+) activation. Feeding SETIs to Rag2-/- mice, carrying ILCs, promoted the expansion towards ILC3s (CD117+Nkp46+CD56+) and reduced that of ILC2s (CD117+KLRG1+) into livers. In vitro studies demonstrate that hMLCs, challenged to SETIs, develop a similar phenotype of that found in mice and bioenergetic adaptations leading to increased lipolysis. It is concluded that SETIs promote liver macrophage activation and ILCs adaptations to ameliorate HCC-driven immunometabolic imbalances.
Collapse
Affiliation(s)
- Maria Alicia Rueda Huélamo
- Molecular Immunonutrition Group, Madrid Institute for Advanced Studies in Food (IMDEA-Food), Madrid, Spain.
| | - Alba Martínez Perlado
- Molecular Immunonutrition Group, Madrid Institute for Advanced Studies in Food (IMDEA-Food), Madrid, Spain.
| | - Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria, 6, Catania 95125, Italy
| | - Aurora García-Tejedor
- Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Sciences, Universidad Internacional de Valencia-VIU, Pintor Sorolla 21, 46002 Valencia, Spain
| | - Claudia Monika Haros
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - José Moisés Laparra Llopis
- Molecular Immunonutrition Group, Madrid Institute for Advanced Studies in Food (IMDEA-Food), Madrid, Spain.
| |
Collapse
|
146
|
Chang Y, Gao G, Feng C. Association between gut microbiota and gastric cancers: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1383530. [PMID: 38628871 PMCID: PMC11018925 DOI: 10.3389/fmicb.2024.1383530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Background Gastric cancer (GC) is the fifth most commonly diagnosed cancer worldwide, with its etiology attributed to a complex interplay of genetic, dietary, environmental factors, and infections such as Helicobacter pylori. Despite the known risk factors, the role of gut microbiota in the development of gastric cancer remains insufficiently explored. This study aims to elucidate the causal relationship between gut microbiota and gastric cancer using a two-sample Mendelian Randomization (MR) approach. Methods Utilizing genome-wide association study (GWAS) summary data from the MiBioGen consortium and gastric cancer datasets, we selected instrumental variables for MR analysis based on their association with specific microbiota. We employed several MR methods, including inverse variance weighted (IVW), MR-Egger, weighted median, and others, to estimate the causal effects of gut microbiota diversity on the risk of developing gastric cancer. Results Our analysis identified significant associations between certain gut microbiota and gastric cancer risk. Specifically, taxa such as Clostridium sensustricto1 (OR = 0.540, 95%CI: 0.354-0.823, p = 0.004), Actinomycetales (OR = 0.756, 95%CI: 0.613-0.932, p = 0.009), Selenomonadales (OR = 0.816, 95%CI: 0.666-1.000, p < 0.05), Negativicutes (OR = 0.816, 95%CI: 0.666-1.000, p < 0.05), Rikenellaceae (OR = 0.863, 95%CI: 0.746-0.999, p = 0.048) were found to have a protective effect against gastric cancer. Conversely, an increased risk of gastric cancer was associated with the abundance of Roseburia (OR = 1.342, 95%CI: 1.071-1.681, p = 0.011), Family XI (OR = 1.132, 95%CI: 1.012-1.267, p = 0.030), and Eubacterium brachy group (OR = 1.207, 95%CI: 1.074-1.355, p = 0.002). The findings were robust across various MR methods and were not driven by any single SNP, indicating a genuine causal relationship. Conclusion Our studies have shown that there is a causal relationship between intestinal flora and gastric cancer at the genetic level. Clostridium sensustricto1, Actinomycetales, Rikenellaceae, Selenomonadales, Negativicutes, and Actinomycetaceae as having a protective role against GC, while Roseburia, Family XI, and Eubacterium brachy group were associated with an increased risk.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Anorectal Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Guanzhuang Gao
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Cuncheng Feng
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
147
|
Kalinen S, Kallonen T, Gunell M, Ettala O, Jambor I, Knaapila J, Syvänen KT, Taimen P, Poutanen M, Aronen HJ, Ollila H, Pietilä S, Elo LL, Lamminen T, Hakanen AJ, Munukka E, Boström PJ. Differences in Gut Microbiota Profiles and Microbiota Steroid Hormone Biosynthesis in Men with and Without Prostate Cancer. EUR UROL SUPPL 2024; 62:140-150. [PMID: 38500636 PMCID: PMC10946286 DOI: 10.1016/j.euros.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 03/20/2024] Open
Abstract
Background Although prostate cancer (PCa) is the most common cancer in men in Western countries, there is significant variability in geographical incidence. This might result from genetic factors, discrepancies in screening policies, or differences in lifestyle. Gut microbiota has recently been associated with cancer progression, but its role in PCa is unclear. Objective Characterization of the gut microbiota and its functions associated with PCa. Design setting and participants In a prospective multicenter clinical trial (NCT02241122), the gut microbiota profiles of 181 men with a clinical suspicion of PCa were assessed utilizing 16S rRNA sequencing. Outcome measurements and statistical analysis Sequences were assigned to operational taxonomic units, differential abundance analysis, and α- and β-diversities, and predictive functional analyses were performed. Plasma steroid hormone levels corresponding to the predicted microbiota steroid hormone biosynthesis profiles were investigated. Results and limitations Of 364 patients, 181 were analyzed, 60% of whom were diagnosed with PCa. Microbiota composition and diversity were significantly different in PCa, partially affected by Prevotella 9, the most abundant genus of the cohort, and significantly higher in PCa patients. Predictive functional analyses revealed higher 5-α-reductase, copper absorption, and retinol metabolism in the PCa-associated microbiome. Plasma testosterone was associated negatively with the predicted microbial 5-α-reductase level. Conclusions Gut microbiota of the PCa patients differed significantly compared with benign individuals. Microbial 5-α-reductase, copper absorption, and retinol metabolism are potential mechanisms of action. These findings support the observed association of lifestyle, geography, and PCa incidence. Patient summary In this report, we found that several microbes and potential functions of the gut microbiota are altered in prostate cancer compared with benign cases. These findings suggest that gut microbiota could be the link between environmental factors and prostate cancer.
Collapse
Affiliation(s)
- Sofia Kalinen
- Research Center for Infections and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Teemu Kallonen
- Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
- Clinical Microbiome Bank, Microbe Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Marianne Gunell
- Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
- Clinical Microbiome Bank, Microbe Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Otto Ettala
- Department of Urology, Turku University Hospital and University of Turku, Turku, Finland
| | - Ivan Jambor
- Department of Diagnostic Radiology, Turku University Hospital and University of Turku, Turku, Finland
- Enterprise Service Group - Radiology, Mass General Brigham, Boston, MA
| | - Juha Knaapila
- Department of Urology, Turku University Hospital and University of Turku, Turku, Finland
| | - Kari T. Syvänen
- Department of Urology, Turku University Hospital and University of Turku, Turku, Finland
| | - Pekka Taimen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Pathology, Turku University Hospital, Turku, Finland
| | - Matti Poutanen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hannu J. Aronen
- Department of Diagnostic Radiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Helena Ollila
- Turku Clinical Research Centre, Turku University Hospital, Turku, Finland
| | - Sami Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L. Elo
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Tarja Lamminen
- Department of Urology, Turku University Hospital and University of Turku, Turku, Finland
| | - Antti J. Hakanen
- Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
- Clinical Microbiome Bank, Microbe Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Eveliina Munukka
- Clinical Microbiome Bank, Microbe Center, Turku University Hospital and University of Turku, Turku, Finland
- Biocodex: Biocodex Nordics, Espoo, Finland
| | - Peter J. Boström
- Department of Urology, Turku University Hospital and University of Turku, Turku, Finland
| | | |
Collapse
|
148
|
Fu Y, Li J, Cai W, Huang Y, Liu X, Ma Z, Tang Z, Bian X, Zheng J, Jiang J, Li C. The emerging tumor microbe microenvironment: From delineation to multidisciplinary approach-based interventions. Acta Pharm Sin B 2024; 14:1560-1591. [PMID: 38572104 PMCID: PMC10985043 DOI: 10.1016/j.apsb.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 04/05/2024] Open
Abstract
Intratumoral microbiota has become research hotspots, and emerges as a non-negligent new component of tumor microenvironments (TME), due to its powerful influence on tumor initiation, metastasis, immunosurveillance and prognosis despite in low-biomass. The accumulations of microbes, and their related components and metabolites within tumor tissues, endow TME with additional pluralistic features which are distinct from the conventional one. Therefore, it's definitely necessary to comprehensively delineate the sophisticated landscapes of tumor microbe microenvironment, as well as their functions and related underlying mechanisms. Herein, in this review, we focused on the fields of tumor microbe microenvironment, including the heterogeneity of intratumor microbiota in different types of tumors, the controversial roles of intratumoral microbiota, the basic features of tumor microbe microenvironment (i.e., pathogen-associated molecular patterns (PAMPs), typical microbial metabolites, autophagy, inflammation, multi-faceted immunomodulation and chemoresistance), as well as the multidisciplinary approach-based intervention of tumor microbiome for cancer therapy by applying wild-type or engineered live microbes, microbiota metabolites, antibiotics, synthetic biology and rationally designed biomaterials. We hope our work will provide valuable insight to deeply understand the interplay of cancer-immune-microbial, and facilitate the development of microbes-based tumor-specific treatments.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jia Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Wenyun Cai
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinlong Liu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongyi Ma
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongjie Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
149
|
Cheng C, Wang Z, Ding C, Liu P, Xu X, Li Y, Yan Y, Yin X, Chen B, Gu B. Bronchoalveolar Lavage Fluid Microbiota is Associated with the Diagnosis and Prognosis Evaluation of Lung Cancer. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:125-137. [PMID: 38884058 PMCID: PMC11169441 DOI: 10.1007/s43657-023-00135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 06/18/2024]
Abstract
The gut microbiota and cancer have been demonstrated to be closely related. However, few studies have explored the bronchoalveolar lavage fluid (BALF) microbiota in patients with lung cancer (LC), specifically the microbiota related to progression-free survival (PFS) in LC. A total of 216 BALF samples were collected including 166 LC and 50 benign pulmonary disease (N-LC) samples, and further sequenced using 16S rRNA amplicon sequencing. Enrolled LC patients were followed up, the therapeutic efficacy was assessed, and PFS was calculated. The associated clinical and microbiota sequencing data were deeply analysed. Distinct differences in the microbial profiles were evident in the lower airways of patients with LC and N-LC, which was also found between non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). A combined random forest model was built to distinguish NSCLC from SCLC and reached area under curves (AUCs) of 0.919 (95% CI 86.69-97.1%) and 0.893 (95% CI 79.39-99.29%) in the training and test groups, respectively. The lower alpha diversity of the BALF microbiota in NSCLC patients was significantly associated with reduced PFS, although this link was not observed in SCLC. Specifically, NSCLC with a higher abundance of f_Lachnospiraceae, s_Prevotella nigrescens and f_[Mogibacteriaceae] achieved longer PFS. The enrichment of o_Streptophyta and g_Prevotella was observed in SCLC with worse PFS. This study provided a detailed description of the characteristics of BALF microbiota in patients with NSCLC and SCLC simultaneously and provided insights into the role of the diagnosis and prognosis evaluation. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00135-9.
Collapse
Affiliation(s)
- Chen Cheng
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, 210029 Jiangsu China
| | - Zhifeng Wang
- Department of Bioinformatics, 01Life Institute, Shenzhen, 518000 Guangdong China
| | - Chao Ding
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008 Jiangsu China
| | - Pingli Liu
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006 Jiangsu China
| | - Xiaoqiang Xu
- Department of Bioinformatics, 01Life Institute, Shenzhen, 518000 Guangdong China
| | - Yan Li
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006 Jiangsu China
| | - Yi Yan
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006 Jiangsu China
| | - Xiaocong Yin
- Medical Technology School of Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Bi Chen
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006 Jiangsu China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2Nd Rd, Yuexiu District, Guangzhou, 510000 Guangdong China
| |
Collapse
|
150
|
Zhou L, Zhang W, Fan S, Wang D, Tang D. The value of intratumoral microbiota in the diagnosis and prognosis of tumors. Cell Biochem Funct 2024; 42:e3999. [PMID: 38571320 DOI: 10.1002/cbf.3999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Intratumoral microbiota (ITM) are microorganisms present in tumor cells. ITM participate in tumor development by affecting tumor cells directly and the tumor microenvironment (TME), indirectly. Alterations in ITM instigate changes in tumor DNA, activate oncogenic pathways, induce tumor inflammatory responses, disrupt normal immune activity, and facilitate the secretion of effectors leading to tumor progression, metastasis, or diminished therapeutic effects. ITM varies significantly in different types of cancer cells and disease states. The presence of certain ITM serves as a predictor of various disease states. Thus, ITM predicts tumorigenesis, tumor grade, treatment efficacy, and prognosis, making it a potential tumor biomarker. The present study aimed to determine the mechanisms by which ITM affects tumor development, especially through the TME; highlight the significant potential of ITM in enhancing tumor diagnosis and prognosis; and outline future directions for ITM research, with a focus on the development of innovative tumor markers.
Collapse
Affiliation(s)
- Lujia Zhou
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wenjie Zhang
- School of Medicine, Chongqing University, Chongqing, China
| | - Shiying Fan
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|