101
|
Chen X, Zhong S, Zhan Y, Zhang X. CRISPR-Cas9 applications in T cells and adoptive T cell therapies. Cell Mol Biol Lett 2024; 29:52. [PMID: 38609863 PMCID: PMC11010303 DOI: 10.1186/s11658-024-00561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
T cell immunity is central to contemporary cancer and autoimmune therapies, encompassing immune checkpoint blockade and adoptive T cell therapies. Their diverse characteristics can be reprogrammed by different immune challenges dependent on antigen stimulation levels, metabolic conditions, and the degree of inflammation. T cell-based therapeutic strategies are gaining widespread adoption in oncology and treating inflammatory conditions. Emerging researches reveal that clustered regularly interspaced palindromic repeats-associated protein 9 (CRISPR-Cas9) genome editing has enabled T cells to be more adaptable to specific microenvironments, opening the door to advanced T cell therapies in preclinical and clinical trials. CRISPR-Cas9 can edit both primary T cells and engineered T cells, including CAR-T and TCR-T, in vivo and in vitro to regulate T cell differentiation and activation states. This review first provides a comprehensive summary of the role of CRISPR-Cas9 in T cells and its applications in preclinical and clinical studies for T cell-based therapies. We also explore the application of CRISPR screen high-throughput technology in editing T cells and anticipate the current limitations of CRISPR-Cas9, including off-target effects and delivery challenges, and envisioned improvements in related technologies for disease screening, diagnosis, and treatment.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Cardiology, Cardiovascular Institute of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Shuhan Zhong
- Department of Hematology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, 310003, China
| | - Yonghao Zhan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Xuepei Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
102
|
Zhang J, Chen W, Chen G, Flannick J, Fikse E, Smerin G, Degner K, Yang Y, Xu C, Consortium AMP-T2D-GENES, Li Y, Hanover JA, Simonds WF. Ancestry-specific high-risk gene variant profiling unmasks diabetes-associated genes. Hum Mol Genet 2024; 33:655-666. [PMID: 36255737 PMCID: PMC11000659 DOI: 10.1093/hmg/ddac255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022] Open
Abstract
How ancestry-associated genetic variance affects disparities in the risk of polygenic diseases and influences the identification of disease-associated genes warrants a deeper understanding. We hypothesized that the discovery of genes associated with polygenic diseases may be limited by the overreliance on single-nucleotide polymorphism (SNP)-based genomic investigation, as most significant variants identified in genome-wide SNP association studies map to introns and intergenic regions of the genome. To overcome such potential limitations, we developed a gene-constrained, function-based analytical method centered on high-risk variants (hrV) that encode frameshifts, stopgains or splice site disruption. We analyzed the total number of hrV per gene in populations of different ancestry, representing a total of 185 934 subjects. Using this analysis, we developed a quantitative index of hrV (hrVI) across 20 428 genes within each population. We then applied hrVI analysis to the discovery of genes associated with type 2 diabetes mellitus (T2DM), a polygenic disease with ancestry-related disparity. HrVI profiling and gene-to-gene comparisons of ancestry-specific hrV between the case (20 781 subjects) and control (24 440 subjects) populations in the T2DM national repository identified 57 genes associated with T2DM, 40 of which were discoverable only by ancestry-specific analysis. These results illustrate how a function-based, ancestry-specific analysis of genetic variations can accelerate the identification of genes associated with polygenic diseases. Besides T2DM, such analysis may facilitate our understanding of the genetic basis for other polygenic diseases that are also greatly influenced by environmental and behavioral factors, such as obesity, hypertension and Alzheimer's disease.
Collapse
Affiliation(s)
- Jianhua Zhang
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, United States
| | - Weiping Chen
- Genomic Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, United States
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, United States
| | - Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, MD 20892, United States
| | - Jason Flannick
- Metabolism Program, Broad Institute, Cambridge, MA 02142, United States
| | - Emma Fikse
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, United States
| | - Glenda Smerin
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, United States
| | - Katherine Degner
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, United States
| | - Yanqin Yang
- Laboratory of Transplantation Genomics, National Heart Lung and Blood Institute; National Institutes of Health, Bethesda, MD 20892, United States
| | - Catherine Xu
- Genomic Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, United States
| | | | - Yulong Li
- Milton S. Hershey Medical Center, Division of Endocrinology, Diabetes and Metabolism, Penn State University, Hershey, PA 17033, United States
| | - John A Hanover
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, United States
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, United States
| |
Collapse
|
103
|
Djajawi TM, Wichmann J, Vervoort SJ, Kearney CJ. Tumor immune evasion: insights from CRISPR screens and future directions. FEBS J 2024; 291:1386-1399. [PMID: 37971319 DOI: 10.1111/febs.17003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Despite the clinical success of cancer immunotherapies including immune checkpoint blockade and adoptive cellular therapies across a variety of cancer types, many patients do not respond or ultimately relapse; however, the molecular underpinnings of this are not fully understood. Thus, a system-level understating of the routes to tumor immune evasion is required to inform the design of the next generation of immunotherapy approaches. CRISPR screening approaches have proved extremely powerful in identifying genes that promote tumor immune evasion or sensitize tumor cells to destruction by the immune system. These large-scale efforts have brought to light decades worth of fundamental immunology and have uncovered the key immune-evasion pathways subverted in cancers in an acquired manner in patients receiving immune-modulatory therapies. The comprehensive discovery of the main pathways involved in immune evasion has spurred the development and application of novel immune therapies to target this process. Although successful, conventional CRISPR screening approaches are hampered by a number of limitations, which obfuscate a complete understanding of the precise molecular regulation of immune evasion in cancer. Here, we provide a perspective on screening approaches to interrogate tumor-lymphocyte interactions and their limitations, and discuss further development of technologies to improve such approaches and discovery capability.
Collapse
Affiliation(s)
- Tirta Mario Djajawi
- Olivia Newton-John Cancer Research Institute, Heidelberg, Vic., Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Vic., Australia
| | - Johannes Wichmann
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Stephin J Vervoort
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Conor J Kearney
- Olivia Newton-John Cancer Research Institute, Heidelberg, Vic., Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Vic., Australia
| |
Collapse
|
104
|
Wessels HH, Stirn A, Méndez-Mancilla A, Kim EJ, Hart SK, Knowles DA, Sanjana NE. Prediction of on-target and off-target activity of CRISPR-Cas13d guide RNAs using deep learning. Nat Biotechnol 2024; 42:628-637. [PMID: 37400521 DOI: 10.1038/s41587-023-01830-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/16/2023] [Indexed: 07/05/2023]
Abstract
Transcriptome engineering applications in living cells with RNA-targeting CRISPR effectors depend on accurate prediction of on-target activity and off-target avoidance. Here we design and test ~200,000 RfxCas13d guide RNAs targeting essential genes in human cells with systematically designed mismatches and insertions and deletions (indels). We find that mismatches and indels have a position- and context-dependent impact on Cas13d activity, and mismatches that result in G-U wobble pairings are better tolerated than other single-base mismatches. Using this large-scale dataset, we train a convolutional neural network that we term targeted inhibition of gene expression via gRNA design (TIGER) to predict efficacy from guide sequence and context. TIGER outperforms the existing models at predicting on-target and off-target activity on our dataset and published datasets. We show that TIGER scoring combined with specific mismatches yields the first general framework to modulate transcript expression, enabling the use of RNA-targeting CRISPRs to precisely control gene dosage.
Collapse
Affiliation(s)
- Hans-Hermann Wessels
- New York Genome Center, New York City, NY, USA
- Department of Biology, New York University, New York City, NY, USA
| | - Andrew Stirn
- New York Genome Center, New York City, NY, USA
- Department of Computer Science, Columbia University, New York City, NY, USA
| | - Alejandro Méndez-Mancilla
- New York Genome Center, New York City, NY, USA
- Department of Biology, New York University, New York City, NY, USA
| | - Eric J Kim
- Department of Computer Science, Columbia University, New York City, NY, USA
| | - Sydney K Hart
- New York Genome Center, New York City, NY, USA
- Department of Biology, New York University, New York City, NY, USA
| | - David A Knowles
- New York Genome Center, New York City, NY, USA.
- Department of Computer Science, Columbia University, New York City, NY, USA.
- Data Science Institute, Columbia University, New York City, NY, USA.
- Department of Systems Biology, Columbia University, New York City, NY, USA.
| | - Neville E Sanjana
- New York Genome Center, New York City, NY, USA.
- Department of Biology, New York University, New York City, NY, USA.
| |
Collapse
|
105
|
Montero JJ, Trozzo R, Sugden M, Öllinger R, Belka A, Zhigalova E, Waetzig P, Engleitner T, Schmidt-Supprian M, Saur D, Rad R. Genome-scale pan-cancer interrogation of lncRNA dependencies using CasRx. Nat Methods 2024; 21:584-596. [PMID: 38409225 PMCID: PMC11009108 DOI: 10.1038/s41592-024-02190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024]
Abstract
Although long noncoding RNAs (lncRNAs) dominate the transcriptome, their functions are largely unexplored. The extensive overlap of lncRNAs with coding and regulatory sequences restricts their systematic interrogation by DNA-directed perturbation. Here we developed genome-scale lncRNA transcriptome screening using Cas13d/CasRx. We show that RNA targeting overcomes limitations inherent to other screening methods, thereby considerably expanding the explorable space of the lncRNAome. By evolving the screening system toward pan-cancer applicability, it supports molecular and phenotypic data integration to contextualize screening hits or infer lncRNA function. We thereby addressed challenges posed by the enormous transcriptome size and tissue specificity through a size-reduced multiplexed gRNA library termed Albarossa, targeting 24,171 lncRNA genes. Its rational design incorporates target prioritization based on expression, evolutionary conservation and tissue specificity, thereby reconciling high discovery power and pan-cancer representation with scalable experimental throughput. Applied across entities, the screening platform identified numerous context-specific and common essential lncRNAs. Our work sets the stage for systematic exploration of lncRNA biology in health and disease.
Collapse
Affiliation(s)
- Juan J Montero
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany.
| | - Riccardo Trozzo
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Maya Sugden
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Alexander Belka
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Ekaterina Zhigalova
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Paul Waetzig
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Institute for Experimental Cancer Therapy, School of Medicine, Technische Universität München, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
106
|
Nagy TL, Strickland E, Weiner OD. Neutrophils actively swell to potentiate rapid migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.15.540704. [PMID: 37292824 PMCID: PMC10245588 DOI: 10.1101/2023.05.15.540704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While the involvement of actin polymerization in cell migration is well-established, much less is known about the role of transmembrane water flow in cell motility. Here, we investigate the role of water influx in a prototypical migrating cell, the neutrophil, which undergoes rapid, directed movement to sites of injury and infection. Chemoattractant exposure both increases cell volume and potentiates migration, but the causal link between these processes is not known. We combine single cell volume measurements and a genome-wide CRISPR screen to identify the regulators of chemoattractant-induced neutrophil swelling, including NHE1, AE2, PI3K-gamma, and CA2. Through NHE1 inhibition in primary human neutrophils, we show that cell swelling is both necessary and sufficient for the potentiation of migration following chemoattractant stimulation. Our data demonstrate that chemoattractant-driven cell swelling complements cytoskeletal rearrangements to enhance migration speed.
Collapse
Affiliation(s)
- Tamas L Nagy
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Evelyn Strickland
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
107
|
Sun J, Qu J, Zhao C, Zhang X, Liu X, Wang J, Wei C, Liu X, Wang M, Zeng P, Tang X, Ling X, Qing L, Jiang S, Chen J, Chen TSR, Kuang Y, Gao J, Zeng X, Huang D, Yuan Y, Fan L, Yu H, Ding J. Precise prediction of phase-separation key residues by machine learning. Nat Commun 2024; 15:2662. [PMID: 38531854 DOI: 10.1038/s41467-024-46901-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Understanding intracellular phase separation is crucial for deciphering transcriptional control, cell fate transitions, and disease mechanisms. However, the key residues, which impact phase separation the most for protein phase separation function have remained elusive. We develop PSPHunter, which can precisely predict these key residues based on machine learning scheme. In vivo and in vitro validations demonstrate that truncating just 6 key residues in GATA3 disrupts phase separation, enhancing tumor cell migration and inhibiting growth. Glycine and its motifs are enriched in spacer and key residues, as revealed by our comprehensive analysis. PSPHunter identifies nearly 80% of disease-associated phase-separating proteins, with frequent mutated pathological residues like glycine and proline often residing in these key residues. PSPHunter thus emerges as a crucial tool to uncover key residues, facilitating insights into phase separation mechanisms governing transcriptional control, cell fate transitions, and disease development.
Collapse
Affiliation(s)
- Jun Sun
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiale Qu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cai Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinyao Zhang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinyu Liu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia Wang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chao Wei
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinyi Liu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mulan Wang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pengguihang Zeng
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiuxiao Tang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoru Ling
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Li Qing
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaoshuai Jiang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiahao Chen
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tara S R Chen
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Yalan Kuang
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Jinhang Gao
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Xiaoxi Zeng
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China
| | - Dongfeng Huang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Yong Yuan
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China.
| | - Lili Fan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Haopeng Yu
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China.
| | - Junjun Ding
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, China.
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
108
|
Li J, Zhao D, Zhang T, Xiong H, Hu M, Liu H, Zhao F, Sun X, Fan P, Qian Y, Wang D, Lai L, Sui T, Li Z. Precise large-fragment deletions in mammalian cells and mice generated by dCas9-controlled CRISPR/Cas3. SCIENCE ADVANCES 2024; 10:eadk8052. [PMID: 38489357 PMCID: PMC10942115 DOI: 10.1126/sciadv.adk8052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
Currently, the Cas9 and Cas12a systems are widely used for genome editing, but their ability to precisely generate large chromosome fragment deletions is limited. Type I-E CRISPR mediates broad and unidirectional DNA degradation, but controlling the size of Cas3-mediated DNA deletions has proven elusive thus far. Here, we demonstrate that the endonuclease deactivation of Cas9 (dCas9) can precisely control Cas3-mediated large-fragment deletions in mammalian cells. In addition, we report the elimination of the Y chromosome and precise retention of the Sry gene in mice using CRISPR/Cas3 and dCas9-controlled CRISPR/Cas3, respectively. In conclusion, dCas9-controlled CRISPR/Cas3-mediated precise large-fragment deletion provides an approach for establishing animal models by chromosome elimination. This method also holds promise as a potential therapeutic strategy for treating fragment mutations or human aneuploidy diseases that involve additional chromosomes.
Collapse
Affiliation(s)
- Jinze Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Ding Zhao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Tao Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Haoyang Xiong
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Mingyang Hu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Hongmei Liu
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Feiyu Zhao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Xiaodi Sun
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Peng Fan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Yuqiang Qian
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Di Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Tingting Sui
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| |
Collapse
|
109
|
Rossmanith W, Giegé P, Hartmann RK. Discovery, structure, mechanisms, and evolution of protein-only RNase P enzymes. J Biol Chem 2024; 300:105731. [PMID: 38336295 PMCID: PMC10941002 DOI: 10.1016/j.jbc.2024.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The endoribonuclease RNase P is responsible for tRNA 5' maturation in all domains of life. A unique feature of RNase P is the variety of enzyme architectures, ranging from dual- to multi-subunit ribonucleoprotein forms with catalytic RNA subunits to protein-only enzymes, the latter occurring as single- or multi-subunit forms or homo-oligomeric assemblies. The protein-only enzymes evolved twice: a eukaryal protein-only RNase P termed PRORP and a bacterial/archaeal variant termed homolog of Aquifex RNase P (HARP); the latter replaced the RNA-based enzyme in a small group of thermophilic bacteria but otherwise coexists with the ribonucleoprotein enzyme in a few other bacteria as well as in those archaea that also encode a HARP. Here we summarize the history of the discovery of protein-only RNase P enzymes and review the state of knowledge on structure and function of bacterial HARPs and eukaryal PRORPs, including human mitochondrial RNase P as a paradigm of multi-subunit PRORPs. We also describe the phylogenetic distribution and evolution of PRORPs, as well as possible reasons for the spread of PRORPs in the eukaryal tree and for the recruitment of two additional protein subunits to metazoan mitochondrial PRORP. We outline potential applications of PRORPs in plant biotechnology and address diseases associated with mutations in human mitochondrial RNase P genes. Finally, we consider possible causes underlying the displacement of the ancient RNA enzyme by a protein-only enzyme in a small group of bacteria.
Collapse
Affiliation(s)
- Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna, Austria.
| | - Philippe Giegé
- Institute for Plant Molecular Biology, IBMP-CNRS, University of Strasbourg, Strasbourg, France.
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
110
|
Gao H, Qiu Z, Wang X, Zhang X, Zhang Y, Dai J, Liang Z. Recent advances in genome-scale engineering in Escherichia coli and their applications. ENGINEERING MICROBIOLOGY 2024; 4:100115. [PMID: 39628784 PMCID: PMC11611031 DOI: 10.1016/j.engmic.2023.100115] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 12/06/2024]
Abstract
Owing to the rapid advancement of genome engineering technologies, the scale of genome engineering has expanded dramatically. Genome editing has progressed from one genomic alteration at a time that could only be employed in few species, to the simultaneous generation of multiple modifications across many genomic loci in numerous species. The development and recent advances in multiplex automated genome engineering (MAGE)-associated technologies and clustered regularly interspaced short palindromic repeats and their associated protein (CRISPR-Cas)-based approaches, together with genome-scale synthesis technologies offer unprecedented opportunities for advancing genome-scale engineering in a broader range. These approaches provide new tools to generate strains with desired phenotypes, understand the complexity of biological systems, and directly evolve a genome with novel features. Here, we review the recent major advances in genome-scale engineering tools developed for Escherichia coli, focusing on their applications in identifying essential genes, genome reduction, recoding, and beyond.
Collapse
Affiliation(s)
- Hui Gao
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics. Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhichao Qiu
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), L’ Hospitalet de Llobregat, Barcelona 08908, Spain
- Faculty of Pharmacy and Food Science, Barcelona University, Barcelona 08028, Spain
| | - Xuan Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiyuan Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yujia Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- College of Life Sciences, Northwest A&F University, Shaanxi 712100, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics. Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhuobin Liang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
111
|
Elbatsh AMO, Amin-Mansour A, Haberkorn A, Textor C, Ebel N, Renard E, Koch LM, Groenveld FC, Piquet M, Naumann U, Ruddy DA, Romanet V, Martínez Gómez JM, Shirley MD, Wipfli P, Schnell C, Wartmann M, Rausch M, Jager MJ, Levesque MP, Maira SM, Manchado E. INPP5A phosphatase is a synthetic lethal target in GNAQ and GNA11-mutant melanomas. NATURE CANCER 2024; 5:481-499. [PMID: 38233483 PMCID: PMC10965444 DOI: 10.1038/s43018-023-00710-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
Activating mutations in GNAQ/GNA11 occur in over 90% of uveal melanomas (UMs), the most lethal melanoma subtype; however, targeting these oncogenes has proven challenging and inhibiting their downstream effectors show limited clinical efficacy. Here, we performed genome-scale CRISPR screens along with computational analyses of cancer dependency and gene expression datasets to identify the inositol-metabolizing phosphatase INPP5A as a selective dependency in GNAQ/11-mutant UM cells in vitro and in vivo. Mutant cells intrinsically produce high levels of the second messenger inositol 1,4,5 trisphosphate (IP3) that accumulate upon suppression of INPP5A, resulting in hyperactivation of IP3-receptor signaling, increased cytosolic calcium and p53-dependent apoptosis. Finally, we show that GNAQ/11-mutant UM cells and patients' tumors exhibit elevated levels of IP4, a biomarker of enhanced IP3 production; these high levels are abolished by GNAQ/11 inhibition and correlate with sensitivity to INPP5A depletion. Our findings uncover INPP5A as a synthetic lethal vulnerability and a potential therapeutic target for GNAQ/11-mutant-driven cancers.
Collapse
Affiliation(s)
- Ahmed M O Elbatsh
- Oncology, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Ali Amin-Mansour
- Oncology, Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - Anne Haberkorn
- Oncology, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Claudia Textor
- PK Sciences, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Nicolas Ebel
- Oncology, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Emilie Renard
- Oncology, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Lisa M Koch
- Oncology, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Femke C Groenveld
- Oncology, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Michelle Piquet
- Oncology, Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - Ulrike Naumann
- Chemical Biology and Therapeutics, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - David A Ruddy
- Oncology, Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - Vincent Romanet
- Oncology, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Julia M Martínez Gómez
- Dermatology Department, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthew D Shirley
- Oncology, Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - Peter Wipfli
- PK Sciences, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Christian Schnell
- Oncology, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Markus Wartmann
- Oncology, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Martin Rausch
- Chemical Biology and Therapeutics, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mitchell P Levesque
- Dermatology Department, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Eusebio Manchado
- Oncology, Novartis Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
112
|
Pacesa M, Pelea O, Jinek M. Past, present, and future of CRISPR genome editing technologies. Cell 2024; 187:1076-1100. [PMID: 38428389 DOI: 10.1016/j.cell.2024.01.042] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
Genome editing has been a transformative force in the life sciences and human medicine, offering unprecedented opportunities to dissect complex biological processes and treat the underlying causes of many genetic diseases. CRISPR-based technologies, with their remarkable efficiency and easy programmability, stand at the forefront of this revolution. In this Review, we discuss the current state of CRISPR gene editing technologies in both research and therapy, highlighting limitations that constrain them and the technological innovations that have been developed in recent years to address them. Additionally, we examine and summarize the current landscape of gene editing applications in the context of human health and therapeutics. Finally, we outline potential future developments that could shape gene editing technologies and their applications in the coming years.
Collapse
Affiliation(s)
- Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Station 19, CH-1015 Lausanne, Switzerland
| | - Oana Pelea
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
113
|
Geller E, Noble MA, Morales M, Gockley J, Emera D, Uebbing S, Cotney JL, Noonan JP. Massively parallel disruption of enhancers active in human neural stem cells. Cell Rep 2024; 43:113693. [PMID: 38271204 PMCID: PMC11078116 DOI: 10.1016/j.celrep.2024.113693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 11/02/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
Changes in gene regulation have been linked to the expansion of the human cerebral cortex and to neurodevelopmental disorders, potentially by altering neural progenitor proliferation. However, the effects of genetic variation within regulatory elements on neural progenitors remain obscure. We use sgRNA-Cas9 screens in human neural stem cells (hNSCs) to disrupt 10,674 genes and 26,385 conserved regions in 2,227 enhancers active in the developing human cortex and determine effects on proliferation. Genes with proliferation phenotypes are associated with neurodevelopmental disorders and show biased expression in specific fetal human brain neural progenitor populations. Although enhancer disruptions overall have weaker effects than gene disruptions, we identify enhancer disruptions that severely alter hNSC self-renewal. Disruptions in human accelerated regions, implicated in human brain evolution, also alter proliferation. Integrating proliferation phenotypes with chromatin interactions reveals regulatory relationships between enhancers and their target genes contributing to neurogenesis and potentially to human cortical evolution.
Collapse
Affiliation(s)
- Evan Geller
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mark A Noble
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Matheo Morales
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jake Gockley
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Deena Emera
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Justin L Cotney
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
114
|
Lv Y, Yang Z, Chen Y, Ma X, Guo M, Zhang C, Jiang X, Wang C, Li Z, Tai Z, Wang X, Zhang S, Ma S, Qin C. A Potent SOS1 PROTAC Degrader with Synergistic Efficacy in Combination with KRAS G12C Inhibitor. J Med Chem 2024; 67:2487-2511. [PMID: 38316747 DOI: 10.1021/acs.jmedchem.3c01598] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
AMG510, as the first approved inhibitor for KRASG12C mutation, has shown promising efficacy in nonsmall-cell lung cancer and colorectal cancer harboring KRASG12C mutation. However, the moderate response rate and the rapid emergence of acquired resistance limit the therapeutic potential of AMG510, highlighting the need for the development of combination strategies. Here, we observed the suppression of RAS-MAPK signaling induced by AMG510 was prolonged and enhanced by SOS1 knockdown. Thus, we design, synthesize, and characterize a potent and specific SOS1 degrader 23. Compound 23 showed efficient SOS1 degradation in KRAS-driven cancer cells and achieved significant antiproliferative potency. Importantly, the combination of 23 with AMG510 suppressed RAS signaling feedback activation, showing synergistic effects against KRASG12C mutant cells in vitro and in vivo. Our findings demonstrated that KRASG12C inhibition plus SOS1 degradation as a potential therapeutic strategy to improve antitumor response and overcome acquired resistance to KRASG12C inhibitor.
Collapse
Affiliation(s)
- Yan Lv
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Zixuan Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yiming Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xuepei Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Mengqi Guo
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Chengwei Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiaolin Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Chengli Wang
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Zhuoyue Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Zhengfu Tai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiao Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Siqi Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Shumin Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
| | - Chong Qin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
115
|
Ludwig M, Birkeland A, Smith J, Gensterblum-Miller E, Zhai JI, Kulkarni A, Jiang H, Brenner C. A Genome Wide CRISPR Pro filing Approach Identi fies Mechanisms of Cisplatin Resistance in Head and Neck Squamous Cell Carcinoma. RESEARCH SQUARE 2024:rs.3.rs-3922565. [PMID: 38464196 PMCID: PMC10925415 DOI: 10.21203/rs.3.rs-3922565/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is a lethal disease with poor survival rates, especially for cancers arising in the oral cavity or larynx. Cisplatin is a key chemotherapeutic for HNSCC; however poor survival rates may be partially due to cisplatin resistance observed in some HNSCCs. Here, we examined the utility of genome-wide CRISPR knockout profiling for nominating pivotal mechanisms of cisplatin resistance in HNSCC models. Methods We characterized the cisplatin sensitivity of 18 HNSCC cell lines. Next, we used a genome-wide CRISPR/Cas9 library to identify genes involved in cisplatin resistance. We next performed validation assays in the UM-SCC-49 cell line model. Results Our data prioritized 207 genes as pivotal for cisplatin resistance in HNSCC, including novel genes VGLL3, CIRHA1, NCOR1, SPANXA1, MAP2K7, ULK1, and CDK16. Gene set enrichment analysis identified several NOTCH family genes comprising the top pathway driving cisplatin resistance, which we then validated using a targeted NOTCH1 knockout model. Interestingly, we noted that HNSCC models with natural NOTCH pathway alterations including single allele mutations and/or frameshift alterations had diverse responses to cisplatin treatment suggesting that complex and multi-faceted mechanisms contribute to cisplatin resistance in HNSCC. Conclusions Collectively, our study validates a genome-wide CRISPR/Cas9 approach for the discovery of resistance mechanisms in HNSCC, adds to the growing evidence that NOTCH1 status should be evaluated as a biomarker of cisplatin response and provides a framework for future work aimed at overcoming cisplatin resistance.
Collapse
|
116
|
Xu W, Yao H, Wu Z, Yan X, Jiao Z, Liu Y, Zhang M, Wang D. Oncoprotein SET-associated transcription factor ZBTB11 triggers lung cancer metastasis. Nat Commun 2024; 15:1362. [PMID: 38355937 PMCID: PMC10867109 DOI: 10.1038/s41467-024-45585-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Metastasis is the major cause of lung cancer-related death, but the mechanisms governing lung tumor metastasis remain incompletely elucidated. SE translocation (SET) is overexpressed in lung tumors and correlates with unfavorable prognosis. Here we uncover SET-associated transcription factor, zinc finger and BTB domain-containing protein 11 (ZBTB11), as a prometastatic regulator in lung tumors. SET interacts and collaborates with ZBTB11 to promote lung cancer cell migration and invasion, primarily through SET-ZBTB11 complex-mediated transcriptional activation of matrix metalloproteinase-9 (MMP9). Additionally, by transcriptional repression of proline-rich Gla protein 2 (PRRG2), ZBTB11 links Yes-associated protein 1 (YAP1) activation to drive lung tumor metastasis independently of SET-ZBTB11 complex. Loss of ZBTB11 suppresses distal metastasis in a lung tumor mouse model. Overexpression of ZBTB11 is recapitulated in human metastatic lung tumors and correlates with diminished survival. Our study demonstrates ZBTB11 as a key metastatic regulator and reveals diverse mechanisms by which ZBTB11 modulates lung tumor metastasis.
Collapse
Affiliation(s)
- Wenbin Xu
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Han Yao
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Zhen Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Xiaojun Yan
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Zishan Jiao
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Yajing Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Meng Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Donglai Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
117
|
McFaline-Figueroa JL, Srivatsan S, Hill AJ, Gasperini M, Jackson DL, Saunders L, Domcke S, Regalado SG, Lazarchuck P, Alvarez S, Monnat RJ, Shendure J, Trapnell C. Multiplex single-cell chemical genomics reveals the kinase dependence of the response to targeted therapy. CELL GENOMICS 2024; 4:100487. [PMID: 38278156 PMCID: PMC10879025 DOI: 10.1016/j.xgen.2023.100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 01/28/2024]
Abstract
Chemical genetic screens are a powerful tool for exploring how cancer cells' response to drugs is shaped by their mutations, yet they lack a molecular view of the contribution of individual genes to the response to exposure. Here, we present sci-Plex-Gene-by-Environment (sci-Plex-GxE), a platform for combined single-cell genetic and chemical screening at scale. We highlight the advantages of large-scale, unbiased screening by defining the contribution of each of 522 human kinases to the response of glioblastoma to different drugs designed to abrogate signaling from the receptor tyrosine kinase pathway. In total, we probed 14,121 gene-by-environment combinations across 1,052,205 single-cell transcriptomes. We identify an expression signature characteristic of compensatory adaptive signaling regulated in a MEK/MAPK-dependent manner. Further analyses aimed at preventing adaptation revealed promising combination therapies, including dual MEK and CDC7/CDK9 or nuclear factor κB (NF-κB) inhibitors, as potent means of preventing transcriptional adaptation of glioblastoma to targeted therapy.
Collapse
Affiliation(s)
- José L McFaline-Figueroa
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Andrew J Hill
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Molly Gasperini
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Dana L Jackson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Lauren Saunders
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Silvia Domcke
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Samuel G Regalado
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Paul Lazarchuck
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Sarai Alvarez
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Raymond J Monnat
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
118
|
Bhattacharjee R, Jolly LA, Corbett MA, Wee IC, Rao SR, Gardner AE, Ritchie T, van Hugte EJH, Ciptasari U, Piltz S, Noll JE, Nazri N, van Eyk CL, White M, Fornarino D, Poulton C, Baynam G, Collins-Praino LE, Snel MF, Nadif Kasri N, Hemsley KM, Thomas PQ, Kumar R, Gecz J. Compromised transcription-mRNA export factor THOC2 causes R-loop accumulation, DNA damage and adverse neurodevelopment. Nat Commun 2024; 15:1210. [PMID: 38331934 PMCID: PMC10853216 DOI: 10.1038/s41467-024-45121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
We implicated the X-chromosome THOC2 gene, which encodes the largest subunit of the highly-conserved TREX (Transcription-Export) complex, in a clinically complex neurodevelopmental disorder with intellectual disability as the core phenotype. To study the molecular pathology of this essential eukaryotic gene, we generated a mouse model based on a hypomorphic Thoc2 exon 37-38 deletion variant of a patient with ID, speech delay, hypotonia, and microcephaly. The Thoc2 exon 37-38 deletion male (Thoc2Δ/Y) mice recapitulate the core phenotypes of THOC2 syndrome including smaller size and weight, and significant deficits in spatial learning, working memory and sensorimotor functions. The Thoc2Δ/Y mouse brain development is significantly impacted by compromised THOC2/TREX function resulting in R-loop accumulation, DNA damage and consequent cell death. Overall, we suggest that perturbed R-loop homeostasis, in stem cells and/or differentiated cells in mice and the patient, and DNA damage-associated functional alterations are at the root of THOC2 syndrome.
Collapse
Affiliation(s)
- Rudrarup Bhattacharjee
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Lachlan A Jolly
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mark A Corbett
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ing Chee Wee
- Discipline of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sushma R Rao
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Proteomics, Metabolomics and MS-imaging Core Facility, South Australian Health and Medical Research Institute, and Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Alison E Gardner
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tarin Ritchie
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Eline J H van Hugte
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, 6500, HB, the Netherlands
| | - Ummi Ciptasari
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, 6500, HB, the Netherlands
| | - Sandra Piltz
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Jacqueline E Noll
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide and Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Nazzmer Nazri
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Clare L van Eyk
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Melissa White
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Dani Fornarino
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Cathryn Poulton
- Undiagnosed Diseases Program, Genetic Services of WA, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
| | - Gareth Baynam
- Undiagnosed Diseases Program, Genetic Services of WA, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
- Rare Care Centre, Perth Children's Hospital, Nedlands, WA, 6009, Australia
| | - Lyndsey E Collins-Praino
- Discipline of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Marten F Snel
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Proteomics, Metabolomics and MS-imaging Core Facility, South Australian Health and Medical Research Institute, and Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, 6500, HB, the Netherlands
| | - Kim M Hemsley
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Childhood Dementia Research Group, College of Medicine and Public Health, Flinders Health & Medical Research Institute, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Paul Q Thomas
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
- School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Raman Kumar
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
119
|
Li J, Moretti F, Hidvegi T, Sviben S, Fitzpatrick JAJ, Sundaramoorthi H, Pak SC, Silverman GA, Knapp B, Filipuzzi I, Alford J, Reece-Hoyes J, Nigsch F, Murphy LO, Nyfeler B, Perlmutter DH. Multiple Genes Core to ERAD, Macroautophagy and Lysosomal Degradation Pathways Participate in the Proteostasis Response in α1-Antitrypsin Deficiency. Cell Mol Gastroenterol Hepatol 2024; 17:1007-1024. [PMID: 38336172 PMCID: PMC11053228 DOI: 10.1016/j.jcmgh.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND & AIMS In the classic form of α1-antitrypsin deficiency (ATD), the misfolded α1-antitrypsin Z (ATZ) variant accumulates in the endoplasmic reticulum (ER) of liver cells. A gain-of-function proteotoxic mechanism is responsible for chronic liver disease in a subgroup of homozygotes. Proteostatic response pathways, including conventional endoplasmic reticulum-associated degradation and autophagy, have been proposed as the mechanisms that allow cellular adaptation and presumably protection from the liver disease phenotype. Recent studies have concluded that a distinct lysosomal pathway called endoplasmic reticulum-to-lysosome completely supplants the role of the conventional macroautophagy pathway in degradation of ATZ. Here, we used several state-of-the-art approaches to characterize the proteostatic responses more fully in cellular systems that model ATD. METHODS We used clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing coupled to a cell selection step by fluorescence-activated cell sorter to perform screening for proteostasis genes that regulate ATZ accumulation and combined that with selective genome editing in 2 other model systems. RESULTS Endoplasmic reticulum-associated degradation genes are key early regulators and multiple autophagy genes, from classic as well as from ER-to-lysosome and other newly described ER-phagy pathways, participate in degradation of ATZ in a manner that is temporally regulated and evolves as ATZ accumulation persists. Time-dependent changes in gene expression are accompanied by specific ultrastructural changes including dilation of the ER, formation of globular inclusions, budding of autophagic vesicles, and alterations in the overall shape and component parts of mitochondria. CONCLUSIONS Macroautophagy is a critical component of the proteostasis response to cellular ATZ accumulation and it becomes more important over time as ATZ synthesis continues unabated. Multiple subtypes of macroautophagy and nonautophagic lysosomal degradative pathways are needed to respond to the high concentrations of misfolded protein that characterizes ATD and these pathways are attractive candidates for genetic variants that predispose to the hepatic phenotype.
Collapse
Affiliation(s)
- Jie Li
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | | | - Tunda Hidvegi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Sanja Sviben
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, Missouri
| | - James A J Fitzpatrick
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri; Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri
| | | | - Stephen C Pak
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Gary A Silverman
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Britta Knapp
- Novartis Biomedical Research, Basel, Switzerland
| | | | - John Alford
- Novartis Biomedical Research, Cambridge, Massachusetts
| | | | | | - Leon O Murphy
- Novartis Biomedical Research, Cambridge, Massachusetts
| | - Beat Nyfeler
- Novartis Biomedical Research, Basel, Switzerland
| | - David H Perlmutter
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
120
|
Maeser D, Zhang W, Huang Y, Huang RS. A review of computational methods for predicting cancer drug response at the single-cell level through integration with bulk RNAseq data. Curr Opin Struct Biol 2024; 84:102745. [PMID: 38109840 PMCID: PMC10922290 DOI: 10.1016/j.sbi.2023.102745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
Cancer treatment failure is often attributed to tumor heterogeneity, where diverse malignant cell clones exist within a patient. Despite a growing understanding of heterogeneous tumor cells depicted by single-cell RNA sequencing (scRNA-seq), there is still a gap in the translation of such knowledge into treatment strategies tackling the pervasive issue of therapy resistance. In this review, we survey methods leveraging large-scale drug screens to generate cellular sensitivities to various therapeutics. These methods enable efficient drug screens in scRNA-seq data and serve as the bedrock of drug discovery for specific cancer cell groups. We envision that they will become an indispensable tool for tailoring patient care in the era of heterogeneity-aware precision medicine.
Collapse
Affiliation(s)
- Danielle Maeser
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Weijie Zhang
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Yingbo Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - R Stephanie Huang
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
121
|
Kazimierska M, Leśniewska A, Bakker A, Diepstra A, Kasprzyk ME, Podralska M, Rassek K, Kluiver J, van den Berg A, Rozwadowska N, Dzikiewicz-Krawczyk A. Inhibition of the glutamate-cysteine ligase catalytic subunit with buthionine sulfoximine enhances the cytotoxic effect of doxorubicin and cyclophosphamide in Burkitt lymphoma cells. J Appl Genet 2024; 65:95-101. [PMID: 37917375 PMCID: PMC10789666 DOI: 10.1007/s13353-023-00797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
Burkitt lymphoma (BL) is a highly aggressive lymphoma that mainly affects children and young adults. Chemotherapy is effective in young BL patients but the outcome in adults is less satisfactory. Therefore, there is a need to enhance the cytotoxic effect of drugs used in BL treatment. Glutathione (GSH) is an important antioxidant involved in processes such as regulation of oxidative stress and drug detoxification. Elevated GSH levels have been observed in many cancers and were associated with chemoresistance. We previously identified GCLC, encoding an enzyme involved in GSH biosynthesis, as an essential gene in BL. We now confirm that knockout of GCLC decreases viability of BL cells and that the GCLC protein is overexpressed in BL tissues. Moreover, we demonstrate that buthionine sulfoximine (BSO), a known inhibitor of GCLC, decreases growth of BL cells but does not affect control B cells. Furthermore, we show for the first time that BSO enhances the cytotoxicity of compounds commonly used in BL treatment, doxorubicin, and cyclophosphamide. Given the fact that BSO itself was not toxic to control cells and well-tolerated in clinical trials, combination of chemotherapy with BSO may allow reduction of the doses of cytotoxic drugs required to obtain effective responses in BL patients.
Collapse
Affiliation(s)
- Marta Kazimierska
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | | - Anja Bakker
- Department of Pathology & Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Arjan Diepstra
- Department of Pathology & Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Marta Podralska
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Karolina Rassek
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Joost Kluiver
- Department of Pathology & Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology & Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
122
|
Ahmad M, Imran A, Movileanu L. Overlapping characteristics of weak interactions of two transcriptional regulators with WDR5. Int J Biol Macromol 2024; 258:128969. [PMID: 38158065 PMCID: PMC10922662 DOI: 10.1016/j.ijbiomac.2023.128969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
The WD40 repeat protein 5 (WDR5) is a nuclear hub that critically influences gene expression by interacting with transcriptional regulators. Utilizing the WDR5 binding motif (WBM) site, WDR5 interacts with the myelocytomatosis (MYC), an oncoprotein transcription factor, and the retinoblastoma-binding protein 5 (RbBP5), a scaffolding element of an epigenetic complex. Given the clinical significance of these protein-protein interactions (PPIs), there is a pressing necessity for a quantitative assessment of these processes. Here, we use biolayer interferometry (BLI) to examine interactions of WDR5 with consensus peptide ligands of MYC and RbBP5. We found that both interactions exhibit relatively weak affinities arising from a fast dissociation process. Remarkably, live-cell imaging identified distinctive WDR5 localizations in the absence and presence of full-length binding partners. Although WDR5 tends to accumulate within nucleoli, WBM-mediated interactions with MYC and RbBP5 require their localization outside nucleoli. We utilize fluorescence resonance energy transfer (FRET) microscopy to confirm these weak interactions through a low FRET efficiency of the MYC-WDR5 and RbBP5-WDR5 complexes in living cells. In addition, we evaluate the impact of peptide and small-molecule inhibitors on these interactions. These outcomes form a fundamental basis for further developments to clarify the multitasking role of the WBM binding site of WDR5.
Collapse
Affiliation(s)
- Mohammad Ahmad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA
| | - Ali Imran
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA; Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY 13244, USA; The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
123
|
Covill-Cooke C, Kwizera B, López-Doménech G, Thompson CO, Cheung NJ, Cerezo E, Peterka M, Kittler JT, Kornmann B. Shared structural features of Miro binding control mitochondrial homeostasis. EMBO J 2024; 43:595-614. [PMID: 38267654 PMCID: PMC10897228 DOI: 10.1038/s44318-024-00028-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Miro proteins are universally conserved mitochondrial calcium-binding GTPases that regulate a multitude of mitochondrial processes, including transport, clearance, and lipid trafficking. The exact role of Miro in these functions is unclear but involves binding to a variety of client proteins. How this binding is operated at the molecular level and whether and how it is important for mitochondrial health, however, remains unknown. Here, we show that known Miro interactors-namely, CENPF, Trak, and MYO19-all use a similar short motif to bind the same structural element: a highly conserved hydrophobic pocket in the first calcium-binding domain of Miro. Using these Miro-binding motifs, we identified direct interactors de novo, including MTFR1/2/1L, the lipid transporters Mdm34 and VPS13D, and the ubiquitin E3-ligase Parkin. Given the shared binding mechanism of these functionally diverse clients and its conservation across eukaryotes, we propose that Miro is a universal mitochondrial adaptor coordinating mitochondrial health.
Collapse
Affiliation(s)
- Christian Covill-Cooke
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Brian Kwizera
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Guillermo López-Doménech
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Caleb Od Thompson
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ngaam J Cheung
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Ema Cerezo
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Martin Peterka
- Institute of Biochemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Benoît Kornmann
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
124
|
Yang N, Kong B, Zhu Z, Huang F, Zhang L, Lu T, Chen Y, Zhang Y, Jiang Y. Recent advances in targeted protein degraders as potential therapeutic agents. Mol Divers 2024; 28:309-333. [PMID: 36790583 PMCID: PMC9930057 DOI: 10.1007/s11030-023-10606-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023]
Abstract
Targeted protein degradation (TPD) technology has gradually become widespread in the past 20 years, which greatly boosts the development of disease treatment. Contrary to small inhibitors that act on protein kinases, transcription factors, ion channels, and other targets they can bind to, targeted protein degraders could target "undruggable targets" and overcome drug resistance through ubiquitin-proteasome pathway (UPP) and lysosome pathway. Nowadays, some bivalent degraders such as proteolysis-targeting chimeras (PROTACs) have aroused great interest in drug discovery, and some of them have successfully advanced into clinical trials. In this review, to better understand the mechanism of degraders, we elucidate the targeted protein degraders according to their action process, relying on the ubiquitin-proteasome system or lysosome pathway. Then, we briefly summarize the study of PROTACs employing different E3 ligases. Subsequently, the effect of protein of interest (POI) ligands, linker, and E3 ligands on PROTAC degradation activity is also discussed in detail. Other novel technologies based on UPP and lysosome pathway have been discussed in this paper such as in-cell click-formed proteolysis-targeting chimeras (CLIPTACs), molecular glues, Antibody-PROTACs (Ab-PROTACs), autophagy-targeting chimeras, and lysosome-targeting chimeras. Based on the introduction of these degradation technologies, we can clearly understand the action process and degradation mechanism of these approaches. From this perspective, it will be convenient to obtain the development status of these drugs, choose appropriate degradation methods to achieve better disease treatment and provide basis for future research and simultaneously distinguish the direction of future research efforts.
Collapse
Affiliation(s)
- Na Yang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Bo Kong
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Zhaohong Zhu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Fei Huang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Liliang Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yadong Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
| | - Yanmin Zhang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
| | - Yulei Jiang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
125
|
Liang Y, Luo H, Lin Y, Gao F. Recent advances in the characterization of essential genes and development of a database of essential genes. IMETA 2024; 3:e157. [PMID: 38868518 PMCID: PMC10989110 DOI: 10.1002/imt2.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 06/14/2024]
Abstract
Over the past few decades, there has been a significant interest in the study of essential genes, which are crucial for the survival of an organism under specific environmental conditions and thus have practical applications in the fields of synthetic biology and medicine. An increasing amount of experimental data on essential genes has been obtained with the continuous development of technological methods. Meanwhile, various computational prediction methods, related databases and web servers have emerged accordingly. To facilitate the study of essential genes, we have established a database of essential genes (DEG), which has become popular with continuous updates to facilitate essential gene feature analysis and prediction, drug and vaccine development, as well as artificial genome design and construction. In this article, we summarized the studies of essential genes, overviewed the relevant databases, and discussed their practical applications. Furthermore, we provided an overview of the main applications of DEG and conducted comprehensive analyses based on its latest version. However, it should be noted that the essential gene is a dynamic concept instead of a binary one, which presents both opportunities and challenges for their future development.
Collapse
Affiliation(s)
| | - Hao Luo
- Department of PhysicsTianjin UniversityTianjinChina
| | - Yan Lin
- Department of PhysicsTianjin UniversityTianjinChina
| | - Feng Gao
- Department of PhysicsTianjin UniversityTianjinChina
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin UniversityTianjinChina
- SynBio Research PlatformCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinChina
| |
Collapse
|
126
|
Morshedzadeh F, Ghanei M, Lotfi M, Ghasemi M, Ahmadi M, Najari-Hanjani P, Sharif S, Mozaffari-Jovin S, Peymani M, Abbaszadegan MR. An Update on the Application of CRISPR Technology in Clinical Practice. Mol Biotechnol 2024; 66:179-197. [PMID: 37269466 PMCID: PMC10239226 DOI: 10.1007/s12033-023-00724-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/13/2023] [Indexed: 06/05/2023]
Abstract
The CRISPR/Cas system, an innovative gene-editing tool, is emerging as a promising technique for genome modifications. This straightforward technique was created based on the prokaryotic adaptive immune defense mechanism and employed in the studies on human diseases that proved enormous therapeutic potential. A genetically unique patient mutation in the process of gene therapy can be corrected by the CRISPR method to treat diseases that traditional methods were unable to cure. However, introduction of CRISPR/Cas9 into the clinic will be challenging because we still need to improve the technology's effectiveness, precision, and applications. In this review, we first describe the function and applications of the CRISPR-Cas9 system. We next delineate how this technology could be utilized for gene therapy of various human disorders, including cancer and infectious diseases and highlight the promising examples in the field. Finally, we document current challenges and the potential solutions to overcome these obstacles for the effective use of CRISPR-Cas9 in clinical practice.
Collapse
Affiliation(s)
- Firouzeh Morshedzadeh
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Ghasemi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Ahmadi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Parisa Najari-Hanjani
- Department of Medical Genetics, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Samaneh Sharif
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Mozaffari-Jovin
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Peymani
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
127
|
Harris SE, Alexis MS, Giri G, Cavazos FF, Murn J, Aleman MM, Burge CB, Dominguez D. Understanding species-specific and conserved RNA-protein interactions in vivo and in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577729. [PMID: 38352439 PMCID: PMC10862761 DOI: 10.1101/2024.01.29.577729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
While evolution is often considered from a DNA- and protein-centric view, RNA-based regulation can also impact gene expression and protein sequences. Here we examined interspecies differences in RNA-protein interactions using the conserved neuronal RNA binding protein, Unkempt (UNK) as model. We find that roughly half of mRNAs bound in human are also bound in mouse. Unexpectedly, even when transcript-level binding was conserved across species differential motif usage was prevalent. To understand the biochemical basis of UNK-RNA interactions, we reconstituted the human and mouse UNK-RNA interactomes using a high-throughput biochemical assay. We uncover detailed features driving binding, show that in vivo patterns are captured in vitro, find that highly conserved sites are the strongest bound, and associate binding strength with downstream regulation. Furthermore, subtle sequence differences surrounding motifs are key determinants of species-specific binding. We highlight the complex features driving protein-RNA interactions and how these evolve to confer species-specific regulation.
Collapse
Affiliation(s)
- Sarah E. Harris
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC
| | - Maria S. Alexis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
- Current address: Remix Therapeutics, Cambridge, MA
| | - Gilbert Giri
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC
| | | | - Jernej Murn
- Department of Biochemistry, University of California, Riverside, CA
- Center for RNA Biology and Medicine, Riverside, CA
| | - Maria M. Aleman
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC
| | | | - Daniel Dominguez
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC
- RNA Discovery Center, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
128
|
Lin K, Chang YC, Billmann M, Ward HN, Le K, Hassan AZ, Bhojoo U, Chan K, Costanzo M, Moffat J, Boone C, Bielinsky AK, Myers CL. A scalable platform for efficient CRISPR-Cas9 chemical-genetic screens of DNA damage-inducing compounds. Sci Rep 2024; 14:2508. [PMID: 38291084 PMCID: PMC10828508 DOI: 10.1038/s41598-024-51735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Current approaches to define chemical-genetic interactions (CGIs) in human cell lines are resource-intensive. We designed a scalable chemical-genetic screening platform by generating a DNA damage response (DDR)-focused custom sgRNA library targeting 1011 genes with 3033 sgRNAs. We performed five proof-of-principle compound screens and found that the compounds' known modes-of-action (MoA) were enriched among the compounds' CGIs. These scalable screens recapitulated expected CGIs at a comparable signal-to-noise ratio (SNR) relative to genome-wide screens. Furthermore, time-resolved CGIs, captured by sequencing screens at various time points, suggested an unexpected, late interstrand-crosslinking (ICL) repair pathway response to camptothecin-induced DNA damage. Our approach can facilitate screening compounds at scale with 20-fold fewer resources than commonly used genome-wide libraries and produce biologically informative CGI profiles.
Collapse
Affiliation(s)
- Kevin Lin
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Ya-Chu Chang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Maximilian Billmann
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Henry N Ward
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Khoi Le
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Arshia Z Hassan
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Urvi Bhojoo
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Katherine Chan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael Costanzo
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Charles Boone
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA.
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, USA.
| |
Collapse
|
129
|
Lyon GJ, Longo J, Garcia A, Inusa F, Marchi E, Shi D, Dörfel M, Arnesen T, Aldabe R, Lyons S, Nashat MA, Bolton D. Evaluating possible maternal effect lethality and genetic background effects in Naa10 knockout mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.27.538618. [PMID: 37163119 PMCID: PMC10168333 DOI: 10.1101/2023.04.27.538618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting approximately 80% of all human proteins. The human essential X-linked gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. There is extensive genetic variation in humans with missense, splice-site, and C-terminal frameshift variants in NAA10. In mice, Naa10 is not an essential gene, as there exists a paralogous gene, Naa12, that substantially rescues Naa10 knockout mice from embryonic lethality, whereas double knockouts (Naa10-/Y Naa12-/-) are embryonic lethal. However, the phenotypic variability in the mice is nonetheless quite extensive, including piebaldism, skeletal defects, small size, hydrocephaly, hydronephrosis, and neonatal lethality. Here we replicate these phenotypes with new genetic alleles in mice, but we demonstrate their modulation by genetic background and environmental effects. We cannot replicate a prior report of "maternal effect lethality" for heterozygous Naa10-/X female mice, but we do observe a small amount of embryonic lethality in the Naa10-/Y male mice on the inbred genetic background in this different animal facility.
Collapse
Affiliation(s)
- Gholson J. Lyon
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
- Biology PhD Program, The Graduate Center, The City University of New York, New York, USA
| | - Joseph Longo
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| | - Andrew Garcia
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
- Biology PhD Program, The Graduate Center, The City University of New York, New York, USA
| | - Fatima Inusa
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| | - Elaine Marchi
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| | - Daniel Shi
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| | - Max Dörfel
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, New York, USA
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Rafael Aldabe
- Division of Gene Therapy and Regulation of Gene Expression, CIMA, University of Navarra, Pamplona, Spain
| | - Scott Lyons
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, New York, USA
| | - Melissa A. Nashat
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| | - David Bolton
- Molecular Biology Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| |
Collapse
|
130
|
Dharmadhikari AV, Abad MA, Khan S, Maroofian R, Sands TT, Ullah F, Samejima I, Wear MA, Moore KE, Kondakova E, Mitina N, Schaub T, Lee GK, Umandap CH, Berger SM, Iglesias AD, Popp B, Jamra RA, Gabriel H, Rentas S, Rippert AL, Izumi K, Conlin LK, Koboldt DC, Mosher TM, Hickey SE, Albert DVF, Norwood H, Lewanda AF, Dai H, Liu P, Mitani T, Marafi D, Pehlivan D, Posey JE, Lippa N, Vena N, Heinzen EL, Goldstein DB, Mignot C, de Sainte Agathe JM, Al-Sannaa NA, Zamani M, Sadeghian S, Azizimalamiri R, Seifia T, Zaki MS, Abdel-Salam GMH, Abdel-Hamid M, Alabdi L, Alkuraya FS, Dawoud H, Lofty A, Bauer P, Zifarelli G, Afzal E, Zafar F, Efthymiou S, Gossett D, Towne MC, Yeneabat R, Wontakal SN, Aggarwal VS, Rosenfeld JA, Tarabykin V, Ohta S, Lupski JR, Houlden H, Earnshaw WC, Davis EE, Jeyaprakash AA, Liao J. RNA methyltransferase SPOUT1/CENP-32 links mitotic spindle organization with the neurodevelopmental disorder SpADMiSS. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.09.23300329. [PMID: 38260255 PMCID: PMC10802637 DOI: 10.1101/2024.01.09.23300329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
SPOUT1/CENP-32 encodes a putative SPOUT RNA methyltransferase previously identified as a mitotic chromosome associated protein. SPOUT1/CENP-32 depletion leads to centrosome detachment from the spindle poles and chromosome misalignment. Aided by gene matching platforms, we identified 24 individuals with neurodevelopmental delays from 18 families with bi-allelic variants in SPOUT1/CENP-32 detected by exome/genome sequencing. Zebrafish spout1/cenp-32 mutants showed reduction in larval head size with concomitant apoptosis likely associated with altered cell cycle progression. In vivo complementation assays in zebrafish indicated that SPOUT1/CENP-32 missense variants identified in humans are pathogenic. Crystal structure analysis of SPOUT1/CENP-32 revealed that most disease-associated missense variants mapped to the catalytic domain. Additionally, SPOUT1/CENP-32 recurrent missense variants had reduced methyltransferase activity in vitro and compromised centrosome tethering to the spindle poles in human cells. Thus, SPOUT1/CENP-32 pathogenic variants cause an autosomal recessive neurodevelopmental disorder: SpADMiSS ( SPOUT1 Associated Development delay Microcephaly Seizures Short stature) underpinned by mitotic spindle organization defects and consequent chromosome segregation errors.
Collapse
|
131
|
Pons C, van Leeuwen J. Meta-analysis of dispensable essential genes and their interactions with bypass suppressors. Life Sci Alliance 2024; 7:e202302192. [PMID: 37918966 PMCID: PMC10622647 DOI: 10.26508/lsa.202302192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023] Open
Abstract
Genes have been historically classified as essential or non-essential based on their requirement for viability. However, genomic mutations can sometimes bypass the requirement for an essential gene, challenging the binary classification of gene essentiality. Such dispensable essential genes represent a valuable model for understanding the incomplete penetrance of loss-of-function mutations often observed in natural populations. Here, we compiled data from multiple studies on essential gene dispensability in Saccharomyces cerevisiae to comprehensively characterize these genes. In analyses spanning different evolutionary timescales, dispensable essential genes exhibited distinct phylogenetic properties compared with other essential and non-essential genes. Integration of interactions with suppressor genes that can bypass the gene essentiality revealed the high functional modularity of the bypass suppression network. Furthermore, dispensable essential and bypass suppressor gene pairs reflected simultaneous changes in the mutational landscape of S. cerevisiae strains. Importantly, species in which dispensable essential genes were non-essential tended to carry bypass suppressor mutations in their genomes. Overall, our study offers a comprehensive view of dispensable essential genes and illustrates how their interactions with bypass suppressors reflect evolutionary outcomes.
Collapse
Affiliation(s)
- Carles Pons
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Jolanda van Leeuwen
- Center for Integrative Genomics, Bâtiment Génopode, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
132
|
Calame DG, Emrick LT. Functional genomics and small molecules in mitochondrial neurodevelopmental disorders. Neurotherapeutics 2024; 21:e00316. [PMID: 38244259 PMCID: PMC10903096 DOI: 10.1016/j.neurot.2024.e00316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024] Open
Abstract
Mitochondria are critical for brain development and homeostasis. Therefore, pathogenic variation in the mitochondrial or nuclear genome which disrupts mitochondrial function frequently results in developmental disorders and neurodegeneration at the organismal level. Large-scale application of genome-wide technologies to individuals with mitochondrial diseases has dramatically accelerated identification of mitochondrial disease-gene associations in humans. Multi-omic and high-throughput studies involving transcriptomics, proteomics, metabolomics, and saturation genome editing are providing deeper insights into the functional consequence of mitochondrial genomic variation. Integration of deep phenotypic and genomic data through allelic series continues to uncover novel mitochondrial functions and permit mitochondrial gene function dissection on an unprecedented scale. Finally, mitochondrial disease-gene associations illuminate disease mechanisms and thereby direct therapeutic strategies involving small molecules and RNA-DNA therapeutics. This review summarizes progress in functional genomics and small molecule therapeutics in mitochondrial neurodevelopmental disorders.
Collapse
Affiliation(s)
- Daniel G Calame
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Lisa T Emrick
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
133
|
Huang W, Xiong T, Zhao Y, Heng J, Han G, Wang P, Zhao Z, Shi M, Li J, Wang J, Wu Y, Liu F, Xi JJ, Wang Y, Zhang QC. Computational prediction and experimental validation identify functionally conserved lncRNAs from zebrafish to human. Nat Genet 2024; 56:124-135. [PMID: 38195860 PMCID: PMC10786727 DOI: 10.1038/s41588-023-01620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/21/2023] [Indexed: 01/11/2024]
Abstract
Functional studies of long noncoding RNAs (lncRNAs) have been hindered by the lack of methods to assess their evolution. Here we present lncRNA Homology Explorer (lncHOME), a computational pipeline that identifies a unique class of long noncoding RNAs (lncRNAs) with conserved genomic locations and patterns of RNA-binding protein (RBP) binding sites (coPARSE-lncRNAs). Remarkably, several hundred human coPARSE-lncRNAs can be evolutionarily traced to zebrafish. Using CRISPR-Cas12a knockout and rescue assays, we found that knocking out many human coPARSE-lncRNAs led to cell proliferation defects, which were subsequently rescued by predicted zebrafish homologs. Knocking down coPARSE-lncRNAs in zebrafish embryos caused severe developmental delays that were rescued by human homologs. Furthermore, we verified that human, mouse and zebrafish coPARSE-lncRNA homologs tend to bind similar RBPs with their conserved functions relying on specific RBP-binding sites. Overall, our study demonstrates a comprehensive approach for studying the functional conservation of lncRNAs and implicates numerous lncRNAs in regulating vertebrate physiology.
Collapse
Affiliation(s)
- Wenze Huang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Tuanlin Xiong
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuting Zhao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jian Heng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Ge Han
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Pengfei Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhihua Zhao
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Ming Shi
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Juan Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Jiazhen Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yixia Wu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Shandong University, Qingdao, China
| | - Jianzhong Jeff Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China.
| | - Yangming Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
134
|
Sissoko GB, Tarasovetc EV, Marescal O, Grishchuk EL, Cheeseman IM. Higher-order protein assembly controls kinetochore formation. Nat Cell Biol 2024; 26:45-56. [PMID: 38168769 PMCID: PMC10842828 DOI: 10.1038/s41556-023-01313-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
To faithfully segregate chromosomes during vertebrate mitosis, kinetochore-microtubule interactions must be restricted to a single site on each chromosome. Prior work on pair-wise kinetochore protein interactions has been unable to identify the mechanisms that prevent outer kinetochore formation in regions with a low density of CENP-A nucleosomes. To investigate the impact of higher-order assembly on kinetochore formation, we generated oligomers of the inner kinetochore protein CENP-T using two distinct, genetically engineered systems in human cells. Although individual CENP-T molecules interact poorly with outer kinetochore proteins, oligomers that mimic centromeric CENP-T density trigger the robust formation of functional, cytoplasmic kinetochore-like particles. Both in cells and in vitro, each molecule of oligomerized CENP-T recruits substantially higher levels of outer kinetochore components than monomeric CENP-T molecules. Our work suggests that the density dependence of CENP-T restricts outer kinetochore recruitment to centromeres, where densely packed CENP-A recruits a high local concentration of inner kinetochore proteins.
Collapse
Affiliation(s)
- Gunter B Sissoko
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ekaterina V Tarasovetc
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Océane Marescal
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ekaterina L Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
135
|
Martyn GE, Montgomery MT, Jones H, Guo K, Doughty BR, Linder J, Chen Z, Cochran K, Lawrence KA, Munson G, Pampari A, Fulco CP, Kelley DR, Lander ES, Kundaje A, Engreitz JM. Rewriting regulatory DNA to dissect and reprogram gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572268. [PMID: 38187584 PMCID: PMC10769263 DOI: 10.1101/2023.12.20.572268] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Regulatory DNA sequences within enhancers and promoters bind transcription factors to encode cell type-specific patterns of gene expression. However, the regulatory effects and programmability of such DNA sequences remain difficult to map or predict because we have lacked scalable methods to precisely edit regulatory DNA and quantify the effects in an endogenous genomic context. Here we present an approach to measure the quantitative effects of hundreds of designed DNA sequence variants on gene expression, by combining pooled CRISPR prime editing with RNA fluorescence in situ hybridization and cell sorting (Variant-FlowFISH). We apply this method to mutagenize and rewrite regulatory DNA sequences in an enhancer and the promoter of PPIF in two immune cell lines. Of 672 variant-cell type pairs, we identify 497 that affect PPIF expression. These variants appear to act through a variety of mechanisms including disruption or optimization of existing transcription factor binding sites, as well as creation of de novo sites. Disrupting a single endogenous transcription factor binding site often led to large changes in expression (up to -40% in the enhancer, and -50% in the promoter). The same variant often had different effects across cell types and states, demonstrating a highly tunable regulatory landscape. We use these data to benchmark performance of sequence-based predictive models of gene regulation, and find that certain types of variants are not accurately predicted by existing models. Finally, we computationally design 185 small sequence variants (≤10 bp) and optimize them for specific effects on expression in silico. 84% of these rationally designed edits showed the intended direction of effect, and some had dramatic effects on expression (-100% to +202%). Variant-FlowFISH thus provides a powerful tool to map the effects of variants and transcription factor binding sites on gene expression, test and improve computational models of gene regulation, and reprogram regulatory DNA.
Collapse
Affiliation(s)
- Gabriella E Martyn
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Michael T Montgomery
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Hank Jones
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Katherine Guo
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Benjamin R Doughty
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Ziwei Chen
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Kelly Cochran
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Kathryn A Lawrence
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Glen Munson
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anusri Pampari
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Charles P Fulco
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Present Address: Sanofi, Cambridge, MA, USA
| | | | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Jesse M Engreitz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
136
|
Schlabach MR, Lin S, Collester ZR, Wrocklage C, Shenker S, Calnan C, Xu T, Gannon HS, Williams LJ, Thompson F, Dunbar PR, LaMothe RA, Garrett TE, Colletti N, Hohmann AF, Tubo NJ, Bullock CP, Le Mercier I, Sofjan K, Merkin JJ, Keegan S, Kryukov GV, Dugopolski C, Stegmeier F, Wong K, Sharp FA, Cadzow L, Benson MJ. Rational design of a SOCS1-edited tumor-infiltrating lymphocyte therapy using CRISPR/Cas9 screens. J Clin Invest 2023; 133:e163096. [PMID: 38099496 PMCID: PMC10721144 DOI: 10.1172/jci163096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/10/2023] [Indexed: 12/18/2023] Open
Abstract
Cell therapies such as tumor-infiltrating lymphocyte (TIL) therapy have shown promise in the treatment of patients with refractory solid tumors, with improvement in response rates and durability of responses nevertheless sought. To identify targets capable of enhancing the antitumor activity of T cell therapies, large-scale in vitro and in vivo clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 screens were performed, with the SOCS1 gene identified as a top T cell-enhancing target. In murine CD8+ T cell-therapy models, SOCS1 served as a critical checkpoint in restraining the accumulation of central memory T cells in lymphoid organs as well as intermediate (Texint) and effector (Texeff) exhausted T cell subsets derived from progenitor exhausted T cells (Texprog) in tumors. A comprehensive CRISPR tiling screen of the SOCS1-coding region identified sgRNAs targeting the SH2 domain of SOCS1 as the most potent, with an sgRNA with minimal off-target cut sites used to manufacture KSQ-001, an engineered TIL therapy with SOCS1 inactivated by CRISPR/Cas9. KSQ-001 possessed increased responsiveness to cytokine signals and enhanced in vivo antitumor function in mouse models. These data demonstrate the use of CRISPR/Cas9 screens in the rational design of T cell therapies.
Collapse
|
137
|
Kim BJ, Kim I. Joint semiparametric kernel network regression. Stat Med 2023; 42:5247-5265. [PMID: 37724619 DOI: 10.1002/sim.9910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Variable selection and graphical modeling play essential roles in highly correlated and high-dimensional (HCHD) data analysis. Variable selection methods have been developed under both parametric and nonparametric model settings. However, variable selection for nonadditive, nonparametric regression with high-dimensional variables is challenging due to complications in modeling unknown dependence structures among HCHD variables. Gaussian graphical models are a popular and useful tool for investigating the conditional dependence between variables via estimating sparse precision matrices. For a given class of interest, the estimated precision matrices can be mapped onto networks for visualization. However, the limitation of Gaussian graphical models is that they are only applicable to discretized response variables and for the case whenp log ( p ) ≪ n $$ p\log (p)\ll n $$ , wherep $$ p $$ is the number of variables andn $$ n $$ is the sample size. They are necessary to develop a joint method for variable selection and graphical modeling. To the best of our knowledge, the methods for simultaneously selecting variable selection and estimating networks among variables in the semiparametric regression settings are quite limited. Hence, in this paper, we develop a joint semiparametric kernel network regression method to solve this limitation and to provide a connection between them. Our approach is a unified and integrated method that can simultaneously identify important variables and build a network among those variables. We developed our approach under a semiparametric kernel machine regression framework, which can allow for nonlinear or nonadditive associations and complicated interactions among the variables. The advantages of our approach are that it can (1) simultaneously select variables and build a network among HCHD variables under a regression setting; (2) model unknown and complicated interactions among the variables and estimate the network among these variables; (3) allow for any form of semiparametric model, including non-additive, nonparametric model; and (4) provide an interpretable network that considers important variables and a response variable. We demonstrate our approach using a simulation study and real application on genetic pathway-based analysis.
Collapse
Affiliation(s)
- Byung-Jun Kim
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, USA
| | - Inyoung Kim
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
138
|
Hasanzadeh A, Ebadati A, Dastanpour L, Aref AR, Sahandi Zangabad P, Kalbasi A, Dai X, Mehta G, Ghasemi A, Fatahi Y, Joshi S, Hamblin MR, Karimi M. Applications of Innovation Technologies for Personalized Cancer Medicine: Stem Cells and Gene-Editing Tools. ACS Pharmacol Transl Sci 2023; 6:1758-1779. [PMID: 38093832 PMCID: PMC10714436 DOI: 10.1021/acsptsci.3c00102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 02/16/2024]
Abstract
Personalized medicine is a new approach toward safer and even cheaper treatments with minimal side effects and toxicity. Planning a therapy based on individual properties causes an effective result in a patient's treatment, especially in a complex disease such as cancer. The benefits of personalized medicine include not only early diagnosis with high accuracy but also a more appropriate and effective therapeutic approach based on the unique clinical, genetic, and epigenetic features and biomarker profiles of a specific patient's disease. In order to achieve personalized cancer therapy, understanding cancer biology plays an important role. One of the crucial applications of personalized medicine that has gained consideration more recently due to its capability in developing disease therapy is related to the field of stem cells. We review various applications of pluripotent, somatic, and cancer stem cells in personalized medicine, including targeted cancer therapy, cancer modeling, diagnostics, and drug screening. CRISPR-Cas gene-editing technology is then discussed as a state-of-the-art biotechnological advance with substantial impacts on medical and therapeutic applications. As part of this section, the role of CRISPR-Cas genome editing in recent cancer studies is reviewed as a further example of personalized medicine application.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Arefeh Ebadati
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Lida Dastanpour
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Amir R. Aref
- Department
of Medical Oncology and Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Parham Sahandi Zangabad
- Monash
Institute of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical
Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Alireza Kalbasi
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02115, United States
| | - Xiaofeng Dai
- School of
Biotechnology, Jiangnan University, Wuxi 214122, China
- National
Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial
Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Geeta Mehta
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular
Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer
Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Precision
Health, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Amir Ghasemi
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Department
of Materials Science and Engineering, Sharif
University of Technology, Tehran 14588, Iran
| | - Yousef Fatahi
- Nanotechnology
Research Centre, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 14166, Iran
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14166, Iran
- Universal
Scientific Education and Research Network (USERN), Tehran 14166, Iran
| | - Suhasini Joshi
- Chemical
Biology Program, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United States
| | - Michael R. Hamblin
- Laser Research
Centre, Faculty of Health Science, University
of Johannesburg, Doornfontein 2028, South Africa
- Radiation
Biology Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
| | - Mahdi Karimi
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Oncopathology
Research Center, Iran University of Medical
Sciences, Tehran 14535, Iran
- Research
Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 14166, Iran
- Applied
Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 14166, Iran
| |
Collapse
|
139
|
De Kegel B, Ryan CJ. Paralog dispensability shapes homozygous deletion patterns in tumor genomes. Mol Syst Biol 2023; 19:e11987. [PMID: 37963083 DOI: 10.15252/msb.202311987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
Genomic instability is a hallmark of cancer, resulting in tumor genomes having large numbers of genetic aberrations, including homozygous deletions of protein coding genes. That tumor cells remain viable in the presence of such gene loss suggests high robustness to genetic perturbation. In model organisms and cancer cell lines, paralogs have been shown to contribute substantially to genetic robustness-they are generally more dispensable for growth than singletons. Here, by analyzing copy number profiles of > 10,000 tumors, we test the hypothesis that the increased dispensability of paralogs shapes tumor genome evolution. We find that genes with paralogs are more likely to be homozygously deleted and that this cannot be explained by other factors known to influence copy number variation. Furthermore, features that influence paralog dispensability in cancer cell lines correlate with paralog deletion frequency in tumors. Finally, paralogs that are broadly essential in cancer cell lines are less frequently deleted in tumors than non-essential paralogs. Overall, our results suggest that homozygous deletions of paralogs are more frequently observed in tumor genomes because paralogs are more dispensable.
Collapse
Affiliation(s)
- Barbara De Kegel
- School of Computer Science and Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Colm J Ryan
- School of Computer Science and Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
140
|
Tudose C, Bond J, Ryan CJ. Gene essentiality in cancer is better predicted by mRNA abundance than by gene regulatory network-inferred activity. NAR Cancer 2023; 5:zcad056. [PMID: 38035131 PMCID: PMC10683780 DOI: 10.1093/narcan/zcad056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Gene regulatory networks (GRNs) are often deregulated in tumor cells, resulting in altered transcriptional programs that facilitate tumor growth. These altered networks may make tumor cells vulnerable to the inhibition of specific regulatory proteins. Consequently, the reconstruction of GRNs in tumors is often proposed as a means to identify therapeutic targets. While there are examples of individual targets identified using GRNs, the extent to which GRNs can be used to predict sensitivity to targeted intervention in general remains unknown. Here we use the results of genome-wide CRISPR screens to systematically assess the ability of GRNs to predict sensitivity to gene inhibition in cancer cell lines. Using GRNs derived from multiple sources, including GRNs reconstructed from tumor transcriptomes and from curated databases, we infer regulatory gene activity in cancer cell lines from ten cancer types. We then ask, in each cancer type, if the inferred regulatory activity of each gene is predictive of sensitivity to CRISPR perturbation of that gene. We observe slight variation in the correlation between gene regulatory activity and gene sensitivity depending on the source of the GRN and the activity estimation method used. However, we find that there is consistently a stronger relationship between mRNA abundance and gene sensitivity than there is between regulatory gene activity and gene sensitivity. This is true both when gene sensitivity is treated as a binary and a quantitative property. Overall, our results suggest that gene sensitivity is better predicted by measured expression than by GRN-inferred activity.
Collapse
Affiliation(s)
- Cosmin Tudose
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Ireland
| | - Jonathan Bond
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Colm J Ryan
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- School of Computer Science, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
141
|
Lee TW, Hunter FW, Tsai P, Print CG, Wilson WR, Jamieson SMF. Clonal dynamics limits detection of selection in tumour xenograft CRISPR/Cas9 screens. Cancer Gene Ther 2023; 30:1610-1623. [PMID: 37684549 PMCID: PMC10721547 DOI: 10.1038/s41417-023-00664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Transplantable in vivo CRISPR/Cas9 knockout screens, in which cells are edited in vitro and inoculated into mice to form tumours, allow evaluation of gene function in a cancer model that incorporates the multicellular interactions of the tumour microenvironment. To improve our understanding of the key parameters for success with this method, we investigated the choice of cell line, mouse host, tumour harvesting timepoint and guide RNA (gRNA) library size. We found that high gRNA (80-95%) representation was maintained in a HCT116 subline transduced with the GeCKOv2 whole-genome gRNA library and transplanted into NSG mice when tumours were harvested at early (14 d) but not late time points (38-43 d). The decreased representation in older tumours was accompanied by large increases in variance in gRNA read counts, with notable expansion of a small number of random clones in each sample. The variable clonal dynamics resulted in a high level of 'noise' that limited the detection of gRNA-based selection. Using simulated datasets derived from our experimental data, we show that considerable reductions in count variance would be achieved with smaller library sizes. Based on our findings, we suggest a pathway to rationally design adequately powered in vivo CRISPR screens for successful evaluation of gene function.
Collapse
Affiliation(s)
- Tet Woo Lee
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | - Francis W Hunter
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Oncology Therapeutic Area, Janssen Research and Development, Spring House, PA, USA
| | - Peter Tsai
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Cristin G Print
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
142
|
Li Y, Tan M, Sun S, Stea E, Pang B. Targeted CRISPR activation and knockout screenings identify novel doxorubicin transporters. Cell Oncol (Dordr) 2023; 46:1807-1820. [PMID: 37523060 DOI: 10.1007/s13402-023-00847-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
PURPOSE Tissue-specific drug uptake has not been well studied, compared to the deeper understanding of drug resistance mediated by the cellular efflux system such as MDR1 proteins. It has been suggested that many drugs need active or defined transporters to pass the cell membrane. In contrast to efflux components induced after anti-cancer drugs reach the intracellular compartment, drug importers are required for initial drug responses. Furthermore, tissue-specific uptake of anti-cancer drugs may directly impact the side effects of many drugs when they accumulate in healthy tissues. Therefore, linking anti-cancer drugs to their respective drug import transporters would directly help to predict drug responses, whilst minimizing side effects. METHODS To identify drug transporters of the commonly used anti-cancer drug doxorubicin, we performed focused CRISPR activation and knockout genetic screens targeting all potential membrane-associated transporters and proteins. We monitored the direct uptake of doxorubicin by fluorescence-activated cell sorting (FACS) as the screening readout for identifying transporters/proteins directly involved in doxorubicin uptake. RESULTS Integrating the data from these comprehensive CRISPR screenings, we confirmed previously indicated doxorubicin exporters such as ABCB1 and ABCG2 genes, and identified novel doxorubicin importer gene SLC2A3 (GLUT3). Upregulation of SLC2A3 led to higher doxorubicin uptake and better cell killing, indicating SLC2A3 could be a new marker to predict doxorubicin drug response and minimize side effects for the personalized application of this conventional chemotherapeutic drug. CONCLUSIONS Our study provides a comprehensive way for identifying drug transporters, as exemplified by the commonly used anti-cancer drug doxorubicin. The newly identified importers may have direct clinical implications for the personalized application of doxorubicin in treating distinct tumors. Our results also highlight the necessity of combining both CRISPR knockout and CRISPR activation genetic screens to identify drug transporters.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Minkang Tan
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Shengnan Sun
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Elena Stea
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Baoxu Pang
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
143
|
Caillot M, Miloudi H, Taly A, Profitós-Pelejà N, Santos JC, Ribeiro ML, Maitre E, Saule S, Roué G, Jardin F, Sola B. Exportin 1-mediated nuclear/cytoplasmic trafficking controls drug sensitivity of classical Hodgkin's lymphoma. Mol Oncol 2023; 17:2546-2564. [PMID: 36727672 PMCID: PMC10701774 DOI: 10.1002/1878-0261.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/22/2022] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
Exportin 1 (XPO1) is the main nuclear export receptor that controls the subcellular trafficking and the functions of major regulatory proteins. XPO1 is overexpressed in various cancers and small inhibitors of nuclear export (SINEs) have been developed to inhibit XPO1. In primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin's lymphoma (cHL), the XPO1 gene may be mutated on one nucleotide and encodes the mutant XPO1E571K . To understand the impact of mutation on protein function, we studied the response of PMBL and cHL cells to selinexor, a SINE, and ibrutinib, an inhibitor of Bruton tyrosine kinase. XPO1 mutation renders lymphoma cells more sensitive to selinexor due to a faster degradation of mutant XPO1 compared to the wild-type. We further showed that a mistrafficking of p65 (RELA) and p52 (NFκB2) transcription factors between the nuclear and cytoplasmic compartments accounts for the response toward ibrutinib. XPO1 mutation may be envisaged as a biomarker of the response of PMBL and cHL cells and other B-cell hemopathies to SINEs and drugs that target even indirectly the NFκB signaling pathway.
Collapse
Affiliation(s)
| | | | - Antoine Taly
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Nuria Profitós-Pelejà
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Juliana C Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Marcelo L Ribeiro
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Elsa Maitre
- Normandie Univ, INSERM, Unicaen, Caen, France
- Laboratoire d'hématologie, CHU Côte de Nacre, Caen, France
| | - Simon Saule
- Institut Curie, PSL Research University, CNRS, INSERM, Orsay, France
- Université Paris-Sud, Université Paris-Saclay, CNRS, INSERM, Orsay, France
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Fabrice Jardin
- Normandie Univ, INSERM, Unirouen, Rouen, France
- Service d'hématologie, Centre de lutte contre le cancer Henri Becquerel, Rouen, France
| | | |
Collapse
|
144
|
Tan IL, Perez AR, Lew RJ, Sun X, Baldwin A, Zhu YK, Shah MM, Berger MS, Doudna JA, Fellmann C. Targeting the non-coding genome and temozolomide signature enables CRISPR-mediated glioma oncolysis. Cell Rep 2023; 42:113339. [PMID: 37917583 PMCID: PMC10725516 DOI: 10.1016/j.celrep.2023.113339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 07/25/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Glioblastoma (GBM) is the most common lethal primary brain cancer in adults. Despite treatment regimens including surgical resection, radiotherapy, and temozolomide (TMZ) chemotherapy, growth of residual tumor leads to therapy resistance and death. At recurrence, a quarter to a third of all gliomas have hypermutated genomes, with mutational burdens orders of magnitude greater than in normal tissue. Here, we quantified the mutational landscape progression in a patient's primary and recurrent GBM, and we uncovered Cas9-targetable repeat elements. We show that CRISPR-mediated targeting of highly repetitive loci enables rapid elimination of GBM cells, an approach we term "genome shredding." Importantly, in the patient's recurrent GBM, we identified unique repeat sequences with TMZ mutational signature and demonstrated that their CRISPR targeting enables cancer-specific cell ablation. "Cancer shredding" leverages the non-coding genome and therapy-induced mutational signatures for targeted GBM cell depletion and provides an innovative paradigm to develop treatments for hypermutated glioma.
Collapse
Affiliation(s)
- I-Li Tan
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alexendar R Perez
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94131, USA; Silico Therapeutics, San Francisco, CA 94131, USA
| | - Rachel J Lew
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Xiaoyu Sun
- Silico Therapeutics, San Francisco, CA 94131, USA
| | - Alisha Baldwin
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yong K Zhu
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mihir M Shah
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94131, USA
| | - Jennifer A Doudna
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christof Fellmann
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
145
|
Xu D, Tang L, Zhou J, Wang F, Cao H, Huang Y, Kapranov P. Evidence for widespread existence of functional novel and non-canonical human transcripts. BMC Biol 2023; 21:271. [PMID: 38001496 PMCID: PMC10675921 DOI: 10.1186/s12915-023-01753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Fraction of functional sequence in the human genome remains a key unresolved question in Biology and the subject of vigorous debate. While a plethora of studies have connected a significant fraction of human DNA to various biochemical processes, the classical definition of function requires evidence of effects on cellular or organismal fitness that such studies do not provide. Although multiple high-throughput reverse genetics screens have been developed to address this issue, they are limited to annotated genomic elements and suffer from non-specific effects, arguing for a strong need to develop additional functional genomics approaches. RESULTS In this work, we established a high-throughput lentivirus-based insertional mutagenesis strategy as a forward genetics screen tool in aneuploid cells. Application of this approach to human cell lines in multiple phenotypic screens suggested the presence of many yet uncharacterized functional elements in the human genome, represented at least in part by novel exons of known and novel genes. The novel transcripts containing these exons can be massively, up to thousands-fold, induced by specific stresses, and at least some can represent bi-cistronic protein-coding mRNAs. CONCLUSIONS Altogether, these results argue that many unannotated and non-canonical human transcripts, including those that appear as aberrant splice products, have biological relevance under specific biological conditions.
Collapse
Affiliation(s)
- Dongyang Xu
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Lu Tang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Junjun Zhou
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Fang Wang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Huifen Cao
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Yu Huang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China.
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
146
|
Xiao Y, Hale S, Awasthee N, Meng C, Zhang X, Liu Y, Ding H, Huo Z, Lv D, Zhang W, He M, Zheng G, Liao D. HDAC3 and HDAC8 PROTAC dual degrader reveals roles of histone acetylation in gene regulation. Cell Chem Biol 2023; 30:1421-1435.e12. [PMID: 37572669 PMCID: PMC10802846 DOI: 10.1016/j.chembiol.2023.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 05/19/2023] [Accepted: 07/22/2023] [Indexed: 08/14/2023]
Abstract
HDAC3 and HDAC8 have critical biological functions and represent highly sought-after therapeutic targets. Because histone deacetylases (HDACs) have a very conserved catalytic domain, developing isozyme-selective inhibitors remains challenging. HDAC3/8 also have deacetylase-independent activity, which cannot be blocked by conventional enzymatic inhibitors. Proteolysis-targeting chimeras (PROTACs) can selectively degrade a target enzyme, abolishing both enzymatic and scaffolding function. Here, we report a novel HDAC3/8 dual degrader YX968 that induces highly potent, rapid, and selective degradation of both HDAC3/8 without triggering pan-HDAC inhibitory effects. Unbiased quantitative proteomic experiments confirmed its high selectivity. HDAC3/8 degradation by YX968 does not induce histone hyperacetylation and broad transcriptomic perturbation. Thus, histone hyperacetylation may be a major factor for altering transcription. YX968 promotes apoptosis and kills cancer cells with a high potency in vitro. YX968 thus represents a new probe for dissecting the complex biological functions of HDAC3/8.
Collapse
Affiliation(s)
- Yufeng Xiao
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Seth Hale
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nikee Awasthee
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chengcheng Meng
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Xuan Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Yi Liu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Haocheng Ding
- Department of Biostatistics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Dongwen Lv
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
147
|
Wang YL, Zhao WW, Shi J, Wan XB, Zheng J, Fan XJ. Liquid-liquid phase separation in DNA double-strand breaks repair. Cell Death Dis 2023; 14:746. [PMID: 37968256 PMCID: PMC10651886 DOI: 10.1038/s41419-023-06267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
DNA double-strand breaks (DSBs) are the fatal type of DNA damage mostly induced by exposure genome to ionizing radiation or genotoxic chemicals. DSBs are mainly repaired by homologous recombination (HR) and nonhomologous end joining (NHEJ). To repair DSBs, a large amount of DNA repair factors was observed to be concentrated at the end of DSBs in a specific spatiotemporal manner to form a repair center. Recently, this repair center was characterized as a condensate derived from liquid-liquid phase separation (LLPS) of key DSBs repair factors. LLPS has been found to be the mechanism of membraneless organelles formation and plays key roles in a variety of biological processes. In this review, the recent advances and mechanisms of LLPS in the formation of DSBs repair-related condensates are summarized.
Collapse
Affiliation(s)
- Yun-Long Wang
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Wan-Wen Zhao
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jie Shi
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xiang-Bo Wan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jian Zheng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xin-Juan Fan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
| |
Collapse
|
148
|
Sun KY, Bai X, Chen S, Bao S, Kapoor M, Zhang C, Backman J, Joseph T, Maxwell E, Mitra G, Gorovits A, Mansfield A, Boutkov B, Gokhale S, Habegger L, Marcketta A, Locke A, Kessler MD, Sharma D, Staples J, Bovijn J, Gelfman S, Gioia AD, Rajagopal V, Lopez A, Varela JR, Alegre J, Berumen J, Tapia-Conyer R, Kuri-Morales P, Torres J, Emberson J, Collins R, Regeneron Genetics Center, RGC-ME Cohort Partners, Cantor M, Thornton T, Kang HM, Overton J, Shuldiner AR, Cremona ML, Nafde M, Baras A, Abecasis G, Marchini J, Reid JG, Salerno W, Balasubramanian S. A deep catalog of protein-coding variation in 985,830 individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539329. [PMID: 37214792 PMCID: PMC10197621 DOI: 10.1101/2023.05.09.539329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Coding variants that have significant impact on function can provide insights into the biology of a gene but are typically rare in the population. Identifying and ascertaining the frequency of such rare variants requires very large sample sizes. Here, we present the largest catalog of human protein-coding variation to date, derived from exome sequencing of 985,830 individuals of diverse ancestry to serve as a rich resource for studying rare coding variants. Individuals of African, Admixed American, East Asian, Middle Eastern, and South Asian ancestry account for 20% of this Exome dataset. Our catalog of variants includes approximately 10.5 million missense (54% novel) and 1.1 million predicted loss-of-function (pLOF) variants (65% novel, 53% observed only once). We identified individuals with rare homozygous pLOF variants in 4,874 genes, and for 1,838 of these this work is the first to document at least one pLOF homozygote. Additional insights from the RGC-ME dataset include 1) improved estimates of selection against heterozygous loss-of-function and identification of 3,459 genes intolerant to loss-of-function, 83 of which were previously assessed as tolerant to loss-of-function and 1,241 that lack disease annotations; 2) identification of regions depleted of missense variation in 457 genes that are tolerant to loss-of-function; 3) functional interpretation for 10,708 variants of unknown or conflicting significance reported in ClinVar as cryptic splice sites using splicing score thresholds based on empirical variant deleteriousness scores derived from RGC-ME; and 4) an observation that approximately 3% of sequenced individuals carry a clinically actionable genetic variant in the ACMG SF 3.1 list of genes. We make this important resource of coding variation available to the public through a variant allele frequency browser. We anticipate that this report and the RGC-ME dataset will serve as a valuable reference for understanding rare coding variation and help advance precision medicine efforts.
Collapse
Affiliation(s)
| | | | - Siying Chen
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Suying Bao
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Adam Locke
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | | | | | - Jesus Alegre
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM)
| | - Jaime Berumen
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM)
| | - Roberto Tapia-Conyer
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM)
| | - Pablo Kuri-Morales
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM)
| | - Jason Torres
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jonathan Emberson
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Rory Collins
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | - Mona Nafde
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | |
Collapse
|
149
|
Zhang W, Maeser D, Lee A, Huang Y, Gruener RF, Abdelbar IG, Jena S, Patel AG, Huang RS. Inferring therapeutic vulnerability within tumors through integration of pan-cancer cell line and single-cell transcriptomic profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.29.564598. [PMID: 37961545 PMCID: PMC10634928 DOI: 10.1101/2023.10.29.564598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Single-cell RNA sequencing greatly advanced our understanding of intratumoral heterogeneity through identifying tumor subpopulations with distinct biologies. However, translating biological differences into treatment strategies is challenging, as we still lack tools to facilitate efficient drug discovery that tackles heterogeneous tumors. One key component of such approaches tackles accurate prediction of drug response at the single-cell level to offer therapeutic options to specific cell subpopulations. Here, we present a transparent computational framework (nicknamed scIDUC) to predict therapeutic efficacies on an individual-cell basis by integrating single-cell transcriptomic profiles with large, data-rich pan-cancer cell line screening datasets. Our method achieves high accuracy, with predicted sensitivities easily able to separate cells into their true cellular drug resistance status as measured by effect size (Cohen's d > 1.0). More importantly, we examine our method's utility with three distinct prospective tests covering different diseases (rhabdomyosarcoma, pancreatic ductal adenocarcinoma, and castration-resistant prostate cancer), and in each our predicted results are accurate and mirrored biological expectations. In the first two, we identified drugs for cell subpopulations that are resistant to standard-of-care (SOC) therapies due to intrinsic resistance or effects of tumor microenvironments. Our results showed high consistency with experimental findings from the original studies. In the third test, we generated SOC therapy resistant cell lines, used scIDUC to identify efficacious drugs for the resistant line, and validated the predictions with in-vitro experiments. Together, scIDUC quickly translates scRNA-seq data into drug response for individual cells, displaying the potential as a first-line tool for nuanced and heterogeneity-aware drug discovery.
Collapse
Affiliation(s)
- Weijie Zhang
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Danielle Maeser
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Adam Lee
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Yingbo Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Robert F Gruener
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Israa G Abdelbar
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
- Clinical Pharmacy Practice Department, The British University in Egypt, El Sherouk, 11837, Egypt
| | - Sampreeti Jena
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Anand G Patel
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - R Stephanie Huang
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
150
|
Zhou H, Hao X, Zhang P, He S. Noncoding RNA mutations in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1812. [PMID: 37544928 DOI: 10.1002/wrna.1812] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Cancer is driven by both germline and somatic genetic changes. Efforts have been devoted to characterizing essential genetic variations in cancer initiation and development. Most attention has been given to mutations in protein-coding genes and associated regulatory elements such as promoters and enhancers. The development of sequencing technologies and in silico and experimental methods has allowed further exploration of cancer predisposition variants and important somatic mutations in noncoding RNAs, mainly for long noncoding RNAs and microRNAs. Association studies including GWAS have revealed hereditary variations including SNPs and indels in lncRNA or miRNA genes and regulatory regions. These mutations altered RNA secondary structures, expression levels, and target recognition and then conferred cancer predisposition to carriers. Whole-exome/genome sequencing comparing cancer and normal tissues has revealed important somatic mutations in noncoding RNA genes. Mutation hotspots and somatic copy number alterations have been identified in various tumor-associated noncoding RNAs. Increasing focus and effort have been devoted to studying the noncoding region of the genome. The complex genetic network of cancer initiation is being unveiled. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xinpei Hao
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|