101
|
|
102
|
Roithová A, Klimešová K, Pánek J, Will CL, Lührmann R, Staněk D, Girard C. The Sm-core mediates the retention of partially-assembled spliceosomal snRNPs in Cajal bodies until their full maturation. Nucleic Acids Res 2018; 46:3774-3790. [PMID: 29415178 PMCID: PMC5909452 DOI: 10.1093/nar/gky070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 01/23/2023] Open
Abstract
Cajal bodies (CBs) are nuclear non-membrane bound organelles where small nuclear ribonucleoprotein particles (snRNPs) undergo their final maturation and quality control before they are released to the nucleoplasm. However, the molecular mechanism how immature snRNPs are targeted and retained in CBs has yet to be described. Here, we microinjected and expressed various snRNA deletion mutants as well as chimeric 7SK, Alu or bacterial SRP non-coding RNAs and provide evidence that Sm and SMN binding sites are necessary and sufficient for CB localization of snRNAs. We further show that Sm proteins, and specifically their GR-rich domains, are important for accumulating snRNPs in CBs. Accordingly, core snRNPs containing the Sm proteins, but not naked snRNAs, restore the formation of CBs after their depletion. Finally, we show that immature but not fully assembled snRNPs are able to induce CB formation and that microinjection of an excess of U2 snRNP-specific proteins, which promotes U2 snRNP maturation, chases U2 snRNA from CBs. We propose that the accessibility of the Sm ring represents the molecular basis for the quality control of the final maturation of snRNPs and the sequestration of immature particles in CBs.
Collapse
Affiliation(s)
- Adriana Roithová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Klára Klimešová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Pánek
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Cindy L Will
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - David Staněk
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Cyrille Girard
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
103
|
Phosphorylation by Prp4 kinase releases the self-inhibition of FgPrp31 in Fusarium graminearum. Curr Genet 2018; 64:1261-1274. [PMID: 29671102 DOI: 10.1007/s00294-018-0838-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
Abstract
Prp31 is one of the key tri-snRNP components essential for pre-mRNA splicing although its exact molecular function is not well studied. In a previous study, suppressor mutations were identified in the PRP31 ortholog in two spontaneous suppressors of Fgprp4 mutant deleted of the only kinase of the spliceosome in Fusarium graminearum. To further characterize the function of FgPrp31 and its relationship with FgPrp4 kinase, in this study we identified additional suppressor mutations in FgPrp31 and determined the suppressive effects of selected mutations. In total, 28 of the 35 suppressors had missense or nonsense mutations in the C terminus 465-594 aa (CT130) region of FgPrp31. The other 7 had missense or deletion mutations in the 7-64 aa region. The nonsense mutation at R464 in FgPRP31 resulted in the truncation of CT130 that contains all the putative Prp4 kinase-phosphorylation sites reported in humans, and partially rescued intron splicing defects of Fgprp4. The CT130 of FgPrp31 displayed self-inhibitory interaction with the N-terminal 1-463 (N463) region, which was reduced or abolished by the L532P, D534G, or G529D mutation in yeast two-hybrid assays. The N463 region, but not full-length FgPrp31, interacted with the N-terminal region of FgBrr2, one main U5 snRNP protein. The L532P mutation in FgPrp31 increased its interaction with FgBrr2. In contrast, suppressor mutations in FgPrp31 reduced its interaction with FgPrp6, another key component of tri-snRNP. Furthermore, we showed that FgPrp31 was phosphorylated by FgPrp4 in vivo. Site-directed mutagenesis analysis showed that phosphorylation at multiple sites in FgPrp31 is necessary to suppress Fgprp4, and S520 and S521 are important FgPrp4-phosphorylation sites. Overall, these results indicated that phosphorylation by FgPrp4 at multiple sites may release the self-inhibitory binding of FgPrp31 and affect its interaction with other components of tri-snRNP during spliceosome activation.
Collapse
|
104
|
Vindry C, Marnef A, Broomhead H, Twyffels L, Ozgur S, Stoecklin G, Llorian M, Smith CW, Mata J, Weil D, Standart N. Dual RNA Processing Roles of Pat1b via Cytoplasmic Lsm1-7 and Nuclear Lsm2-8 Complexes. Cell Rep 2018; 20:1187-1200. [PMID: 28768202 PMCID: PMC5554784 DOI: 10.1016/j.celrep.2017.06.091] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/12/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
Pat1 RNA-binding proteins, enriched in processing bodies (P bodies), are key players in cytoplasmic 5' to 3' mRNA decay, activating decapping of mRNA in complex with the Lsm1-7 heptamer. Using co-immunoprecipitation and immunofluorescence approaches coupled with RNAi, we provide evidence for a nuclear complex of Pat1b with the Lsm2-8 heptamer, which binds to the spliceosomal U6 small nuclear RNA (snRNA). Furthermore, we establish the set of interactions connecting Pat1b/Lsm2-8/U6 snRNA/SART3 and additional U4/U6.U5 tri-small nuclear ribonucleoprotein particle (tri-snRNP) components in Cajal bodies, the site of snRNP biogenesis. RNA sequencing following Pat1b depletion revealed the preferential upregulation of mRNAs normally found in P bodies and enriched in 3' UTR AU-rich elements. Changes in >180 alternative splicing events were also observed, characterized by skipping of regulated exons with weak donor sites. Our data demonstrate the dual role of a decapping enhancer in pre-mRNA processing as well as in mRNA decay via distinct nuclear and cytoplasmic Lsm complexes.
Collapse
Affiliation(s)
- Caroline Vindry
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Aline Marnef
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse UT3, 31062 Toulouse, France
| | - Helen Broomhead
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Laure Twyffels
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Sevim Ozgur
- Max Planck Institute of Biochemistry, Am Klopferspitz, 82152 Martinsried, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, 69047 Heidelberg, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), 69047 Heidelberg, Germany; German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 68167 Mannheim, Germany
| | - Miriam Llorian
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Christopher W Smith
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Dominique Weil
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie du développement Paris Seine - Institut de Biologie Paris Seine (LBD - IBPS), 75005 Paris, France
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| |
Collapse
|
105
|
Transcriptome-wide discovery of coding and noncoding RNA-binding proteins. Proc Natl Acad Sci U S A 2018; 115:E3879-E3887. [PMID: 29636419 DOI: 10.1073/pnas.1718406115] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transcriptome-wide identification of RNA-binding proteins (RBPs) is a prerequisite for understanding the posttranscriptional gene regulation networks. However, proteomic profiling of RBPs has been mostly limited to polyadenylated mRNA-binding proteins, leaving RBPs on nonpoly(A) RNAs, including most noncoding RNAs (ncRNAs) and pre-mRNAs, largely undiscovered. Here we present a click chemistry-assisted RNA interactome capture (CARIC) strategy, which enables unbiased identification of RBPs, independent of the polyadenylation state of RNAs. CARIC combines metabolic labeling of RNAs with an alkynyl uridine analog and in vivo RNA-protein photocross-linking, followed by click reaction with azide-biotin, affinity enrichment, and proteomic analysis. Applying CARIC, we identified 597 RBPs in HeLa cells, including 130 previously unknown RBPs. These newly discovered RBPs can likely bind ncRNAs, thus uncovering potential involvement of ncRNAs in processes previously unknown to be ncRNA-related, such as proteasome function and intermediary metabolism. The CARIC strategy should be broadly applicable across various organisms to complete the census of RBPs.
Collapse
|
106
|
Didychuk AL, Butcher SE, Brow DA. The life of U6 small nuclear RNA, from cradle to grave. RNA (NEW YORK, N.Y.) 2018; 24:437-460. [PMID: 29367453 PMCID: PMC5855946 DOI: 10.1261/rna.065136.117] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Removal of introns from precursor messenger RNA (pre-mRNA) and some noncoding transcripts is an essential step in eukaryotic gene expression. In the nucleus, this process of RNA splicing is carried out by the spliceosome, a multi-megaDalton macromolecular machine whose core components are conserved from yeast to humans. In addition to many proteins, the spliceosome contains five uridine-rich small nuclear RNAs (snRNAs) that undergo an elaborate series of conformational changes to correctly recognize the splice sites and catalyze intron removal. Decades of biochemical and genetic data, along with recent cryo-EM structures, unequivocally demonstrate that U6 snRNA forms much of the catalytic core of the spliceosome and is highly dynamic, interacting with three snRNAs, the pre-mRNA substrate, and >25 protein partners throughout the splicing cycle. This review summarizes the current state of knowledge on how U6 snRNA is synthesized, modified, incorporated into snRNPs and spliceosomes, recycled, and degraded.
Collapse
Affiliation(s)
- Allison L Didychuk
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
107
|
Wilkinson ME, Lin PC, Plaschka C, Nagai K. Cryo-EM Studies of Pre-mRNA Splicing: From Sample Preparation to Model Visualization. Annu Rev Biophys 2018; 47:175-199. [PMID: 29494253 DOI: 10.1146/annurev-biophys-070317-033410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The removal of noncoding introns from pre-messenger RNA (pre-mRNA) is an essential step in eukaryotic gene expression and is catalyzed by a dynamic multi-megadalton ribonucleoprotein complex called the spliceosome. The spliceosome assembles on pre-mRNA substrates by the stepwise addition of small nuclear ribonucleoprotein particles and numerous protein factors. Extensive remodeling is required to form the RNA-based active site and to mediate the pre-mRNA branching and ligation reactions. In the past two years, cryo-electron microscopy (cryo-EM) structures of spliceosomes captured in different assembly and catalytic states have greatly advanced our understanding of its mechanism. This was made possible by long-standing efforts in the purification of spliceosome intermediates as well as recent developments in cryo-EM imaging and computational methodology. The resulting high-resolution densities allow for de novo model building in core regions of the complexes. In peripheral and less ordered regions, the combination of cross-linking, bioinformatics, biochemical, and genetic data is essential for accurate modeling. Here, we summarize these achievements and highlight the critical steps in obtaining near-atomic resolution structures of the spliceosome.
Collapse
Affiliation(s)
- Max E Wilkinson
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; , , ,
| | - Pei-Chun Lin
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; , , ,
| | - Clemens Plaschka
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; , , ,
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; , , ,
| |
Collapse
|
108
|
Politis A, Schmidt C. Structural characterisation of medically relevant protein assemblies by integrating mass spectrometry with computational modelling. J Proteomics 2018; 175:34-41. [DOI: 10.1016/j.jprot.2017.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 01/14/2023]
|
109
|
Galej WP, Toor N, Newman AJ, Nagai K. Molecular Mechanism and Evolution of Nuclear Pre-mRNA and Group II Intron Splicing: Insights from Cryo-Electron Microscopy Structures. Chem Rev 2018; 118:4156-4176. [PMID: 29377672 DOI: 10.1021/acs.chemrev.7b00499] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nuclear pre-mRNA splicing and group II intron self-splicing both proceed by two-step transesterification reactions via a lariat intron intermediate. Recently determined cryo-electron microscopy (cryo-EM) structures of catalytically active spliceosomes revealed the RNA-based catalytic core and showed how pre-mRNA substrates and reaction products are positioned in the active site. These findings highlight a strong structural similarity to the group II intron active site, strengthening the notion that group II introns and spliceosomes evolved from a common ancestor. Prp8, the largest and most conserved protein in the spliceosome, cradles the active site RNA. Prp8 and group II intron maturase have a similar domain architecture, suggesting that they also share a common evolutionary origin. The interactions between maturase and key group II intron RNA elements, such as the exon-binding loop and domains V and VI, are recapitulated in the interactions between Prp8 and key elements in the spliceosome's catalytic RNA core. Structural comparisons suggest that the extensive RNA scaffold of the group II intron was gradually replaced by proteins as the spliceosome evolved. A plausible model of spliceosome evolution is discussed.
Collapse
Affiliation(s)
- Wojciech P Galej
- EMBL Grenoble , 71 Avenue des Martyrs , 38042 Grenoble Cedex 09 , France
| | - Navtej Toor
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Andrew J Newman
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| |
Collapse
|
110
|
Haselbach D, Komarov I, Agafonov DE, Hartmuth K, Graf B, Dybkov O, Urlaub H, Kastner B, Lührmann R, Stark H. Structure and Conformational Dynamics of the Human Spliceosomal B act Complex. Cell 2018; 172:454-464.e11. [PMID: 29361316 DOI: 10.1016/j.cell.2018.01.010] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 01/05/2018] [Indexed: 11/19/2022]
Abstract
The spliceosome is a highly dynamic macromolecular complex that precisely excises introns from pre-mRNA. Here we report the cryo-EM 3D structure of the human Bact spliceosome at 3.4 Å resolution. In the Bact state, the spliceosome is activated but not catalytically primed, so that it is functionally blocked prior to the first catalytic step of splicing. The spliceosomal core is similar to the yeast Bact spliceosome; important differences include the presence of the RNA helicase aquarius and peptidyl prolyl isomerases. To examine the overall dynamic behavior of the purified spliceosome, we developed a principal component analysis-based approach. Calculating the energy landscape revealed eight major conformational states, which we refined to higher resolution. Conformational differences of the highly flexible structural components between these eight states reveal how spliceosomal components contribute to the assembly of the spliceosome, allowing it to generate a dynamic interaction network required for its subsequent catalytic activation.
Collapse
Affiliation(s)
- David Haselbach
- Department for Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ilya Komarov
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Dmitry E Agafonov
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Klaus Hartmuth
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Benjamin Graf
- Department for Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Olexandr Dybkov
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytic Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Str. 40, 37073 Göttingen, Germany
| | - Berthold Kastner
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Reinhard Lührmann
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Holger Stark
- Department for Structural Dynamics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
111
|
Chan S, Sridhar P, Kirchner R, Lock YJ, Herbert Z, Buonamici S, Smith P, Lieberman J, Petrocca F. Basal-A Triple-Negative Breast Cancer Cells Selectively Rely on RNA Splicing for Survival. Mol Cancer Ther 2017; 16:2849-2861. [PMID: 28878028 PMCID: PMC5997774 DOI: 10.1158/1535-7163.mct-17-0461] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 12/25/2022]
Abstract
Prognosis of triple-negative breast cancer (TNBC) remains poor. To identify shared and selective vulnerabilities of basal-like TNBC, the most common TNBC subtype, a directed siRNA lethality screen was performed in 7 human breast cancer cell lines, focusing on 154 previously identified dependency genes of 1 TNBC line. Thirty common dependency genes were identified, including multiple proteasome and RNA splicing genes, especially those associated with the U4/U6.U5 tri-snRNP complex (e.g., PRPF8, PRPF38A). PRPF8 or PRPF38A knockdown or the splicing modulator E7107 led to widespread intronic retention and altered splicing of transcripts involved in multiple basal-like TNBC dependencies, including protein homeostasis, mitosis, and apoptosis. E7107 treatment suppressed the growth of basal-A TNBC cell line and patient-derived basal-like TNBC xenografts at a well-tolerated dose. The antitumor response was enhanced by adding the proteasome inhibitor bortezomib. Thus, inhibiting both splicing and the proteasome might be an effective approach for treating basal-like TNBC. Mol Cancer Ther; 16(12); 2849-61. ©2017 AACR.
Collapse
Affiliation(s)
- Stefanie Chan
- Division of Computational Biomedicine, Department of Surgery, Boston University School of Medicine, Boston, Massachusetts
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Praveen Sridhar
- Division of Computational Biomedicine, Department of Surgery, Boston University School of Medicine, Boston, Massachusetts
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Rory Kirchner
- Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Ying Jie Lock
- Division of Computational Biomedicine, Department of Surgery, Boston University School of Medicine, Boston, Massachusetts
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Zach Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Peter Smith
- H3 Biomedicine Inc., Cambridge, Massachusetts
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.
| | - Fabio Petrocca
- Division of Computational Biomedicine, Department of Surgery, Boston University School of Medicine, Boston, Massachusetts.
- Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
112
|
Bai R, Yan C, Wan R, Lei J, Shi Y. Structure of the Post-catalytic Spliceosome from Saccharomyces cerevisiae. Cell 2017; 171:1589-1598.e8. [PMID: 29153833 DOI: 10.1016/j.cell.2017.10.038] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/12/2017] [Accepted: 10/23/2017] [Indexed: 01/02/2023]
Abstract
Removal of an intron from a pre-mRNA by the spliceosome results in the ligation of two exons in the post-catalytic spliceosome (known as the P complex). Here, we present a cryo-EM structure of the P complex from Saccharomyces cerevisiae at an average resolution of 3.6 Å. The ligated exon is held in the active site through RNA-RNA contacts. Three bases at the 3' end of the 5' exon remain anchored to loop I of U5 small nuclear RNA, and the conserved AG nucleotides of the 3'-splice site (3'SS) are specifically recognized by the invariant adenine of the branch point sequence, the guanine base at the 5' end of the 5'SS, and an adenine base of U6 snRNA. The 3'SS is stabilized through an interaction with the 1585-loop of Prp8. The P complex structure provides a view on splice junction formation critical for understanding the complete splicing cycle.
Collapse
Affiliation(s)
- Rui Bai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China; Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Shilongshan Road No. 18, Xihu District, Hangzhou 310064, Zhejiang Province, China.
| |
Collapse
|
113
|
Accommodating Protein Dynamics in the Modeling of Chemical Crosslinks. Structure 2017; 25:1751-1757.e5. [DOI: 10.1016/j.str.2017.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/21/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022]
|
114
|
The spliceosomal proteins PPIH and PRPF4 exhibit bi-partite binding. Biochem J 2017; 474:3689-3704. [PMID: 28935721 DOI: 10.1042/bcj20170366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 01/04/2023]
Abstract
Pre-mRNA splicing is a dynamic, multistep process that is catalyzed by the RNA (ribonucleic acid)-protein complex called the spliceosome. The spliceosome contains a core set of RNAs and proteins that are conserved in all organisms that perform splicing. In higher organisms, peptidyl-prolyl isomerase H (PPIH) directly interacts with the core protein pre-mRNA processing factor 4 (PRPF4) and both integrate into the pre-catalytic spliceosome as part of the tri-snRNP (small nuclear RNA-protein complex) subcomplex. As a first step to understand the protein interactions that dictate PPIH and PRPF4 function, we expressed and purified soluble forms of each protein and formed a complex between them. We found two sites of interaction between PPIH and the N-terminus of PRPF4, an unexpected result. The N-terminus of PRPF4 is an intrinsically disordered region and does not adopt secondary structure in the presence of PPIH. In the absence of an atomic resolution structure, we used mutational analysis to identify point mutations that uncouple these two binding sites and find that mutations in both sites are necessary to break up the complex. A discussion of how this bipartite interaction between PPIH and PRPF4 may modulate spliceosomal function is included.
Collapse
|
115
|
snRNP proteins in health and disease. Semin Cell Dev Biol 2017; 79:92-102. [PMID: 29037818 DOI: 10.1016/j.semcdb.2017.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 01/16/2023]
Abstract
Split gene architecture of most human genes requires removal of intervening sequences by mRNA splicing that occurs on large multiprotein complexes called spliceosomes. Mutations compromising several spliceosomal components have been recorded in degenerative syndromes and haematological neoplasia, thereby highlighting the importance of accurate splicing execution in homeostasis of assorted adult tissues. Moreover, insufficient splicing underlies defective development of craniofacial skeleton and upper extremities. This review summarizes recent advances in the understanding of splicing factor function deduced from cryo-EM structures. We combine these data with the characterization of splicing factors implicated in hereditary or somatic disorders, with a focus on potential functional consequences the mutations may elicit in spliceosome assembly and/or performance. Given aberrant splicing or perturbations in splicing efficiency substantially underpin disease pathogenesis, profound understanding of the mis-splicing principles may open new therapeutic vistas. In three major sections dedicated to retinal dystrophies, hereditary acrofacial syndromes, and haematological malignancies, we delineate the noticeable variety of conditions associated with dysfunctional splicing and accentuate recurrent patterns in splicing defects.
Collapse
|
116
|
Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H, Höbartner C, Sloan KE, Bohnsack MT. Human METTL16 is a N6-methyladenosine (m 6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep 2017; 18:2004-2014. [PMID: 29051200 DOI: 10.15252/embr.201744940] [Citation(s) in RCA: 502] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/17/2017] [Accepted: 09/28/2017] [Indexed: 01/05/2023] Open
Abstract
N6-methyladenosine (m6A) is a highly dynamic RNA modification that has recently emerged as a key regulator of gene expression. While many m6A modifications are installed by the METTL3-METTL14 complex, others appear to be introduced independently, implying that additional human m6A methyltransferases remain to be identified. Using crosslinking and analysis of cDNA (CRAC), we reveal that the putative human m6A "writer" protein METTL16 binds to the U6 snRNA and other ncRNAs as well as numerous lncRNAs and pre-mRNAs. We demonstrate that METTL16 is responsible for N6-methylation of A43 of the U6 snRNA and identify the early U6 biogenesis factors La, LARP7 and the methylphosphate capping enzyme MEPCE as METTL16 interaction partners. Interestingly, A43 lies within an essential ACAGAGA box of U6 that base pairs with 5' splice sites of pre-mRNAs during splicing, suggesting that METTL16-mediated modification of this site plays an important role in splicing regulation. The identification of METTL16 as an active m6A methyltransferase in human cells expands our understanding of the mechanisms by which the m6A landscape is installed on cellular RNAs.
Collapse
Affiliation(s)
- Ahmed S Warda
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Kretschmer
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Philipp Hackert
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Claudia Höbartner
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August-University, Göttingen, Germany
| | - Katherine E Sloan
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany .,Göttingen Center for Molecular Biosciences, Georg-August-University, Göttingen, Germany
| |
Collapse
|
117
|
Fica SM, Nagai K. Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Nat Struct Mol Biol 2017; 24:791-799. [PMID: 28981077 DOI: 10.1038/nsmb.3463] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022]
Abstract
The spliceosome excises introns from pre-messenger RNAs using an RNA-based active site that is cradled by a dynamic protein scaffold. A recent revolution in cryo-electron microscopy (cryo-EM) has led to near-atomic-resolution structures of key spliceosome complexes that provide insight into the mechanism of activation, splice site positioning, catalysis, protein rearrangements and ATPase-mediated dynamics of the active site. The cryo-EM structures rationalize decades of observations from genetic and biochemical studies and provide a molecular framework for future functional studies.
Collapse
|
118
|
Henning LM, Santos KF, Sticht J, Jehle S, Lee CT, Wittwer M, Urlaub H, Stelzl U, Wahl MC, Freund C. A new role for FBP21 as regulator of Brr2 helicase activity. Nucleic Acids Res 2017; 45:7922-7937. [PMID: 28838205 PMCID: PMC5570060 DOI: 10.1093/nar/gkx535] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/19/2017] [Indexed: 02/01/2023] Open
Abstract
Splicing of eukaryotic pre-mRNA is carried out by the spliceosome, which assembles stepwise on each splicing substrate. This requires the concerted action of snRNPs and non-snRNP accessory proteins, the functions of which are often not well understood. Of special interest are B complex factors that enter the spliceosome prior to catalytic activation and may alter splicing kinetics and splice site selection. One of these proteins is FBP21, for which we identified several spliceosomal binding partners in a yeast-two-hybrid screen, among them the RNA helicase Brr2. Biochemical and biophysical analyses revealed that an intrinsically disordered region of FBP21 binds to an extended surface of the C-terminal Sec63 unit of Brr2. Additional contacts in the C-terminal helicase cassette are required for allosteric inhibition of Brr2 helicase activity. Furthermore, the direct interaction between FBP21 and the U4/U6 di-snRNA was found to reduce the pool of unwound U4/U6 di-snRNA. Our results suggest FBP21 as a novel key player in the regulation of Brr2.
Collapse
Affiliation(s)
- Lisa M Henning
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Karine F Santos
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Jana Sticht
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany.,BioSupraMol Gerätezentrum, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Stefanie Jehle
- Max-Planck-Insitute for Molecular Genetics, Ihnestraße 63-74, Berlin 14195, Germany
| | - Chung-Tien Lee
- Max-Planck-Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, Göttingen 37077, Germany.,University Medical Center Goettingen, Bioanalytics, Department of Clinical Chemistry, Robert Koch Strasse 40, Göttingen 37075, Germany
| | - Malte Wittwer
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Henning Urlaub
- Max-Planck-Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, Göttingen 37077, Germany.,University Medical Center Goettingen, Bioanalytics, Department of Clinical Chemistry, Robert Koch Strasse 40, Göttingen 37075, Germany
| | - Ulrich Stelzl
- Max-Planck-Insitute for Molecular Genetics, Ihnestraße 63-74, Berlin 14195, Germany
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany.,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert- Einstein-Straße 15, Berlin 12489, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| |
Collapse
|
119
|
Schmidt C, Urlaub H. Combining cryo-electron microscopy (cryo-EM) and cross-linking mass spectrometry (CX-MS) for structural elucidation of large protein assemblies. Curr Opin Struct Biol 2017; 46:157-168. [DOI: 10.1016/j.sbi.2017.10.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/21/2017] [Accepted: 10/05/2017] [Indexed: 01/11/2023]
|
120
|
Earl LA, Falconieri V, Milne JL, Subramaniam S. Cryo-EM: beyond the microscope. Curr Opin Struct Biol 2017; 46:71-78. [PMID: 28646653 PMCID: PMC5683925 DOI: 10.1016/j.sbi.2017.06.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/31/2017] [Accepted: 06/06/2017] [Indexed: 01/18/2023]
Abstract
The pace at which cryo-EM is being adopted as a mainstream tool in structural biology has continued unabated over the past year. Initial successes in obtaining near-atomic resolution structures with cryo-EM were enabled to a large extent by advances in microscope and detector technology. Here, we review some of the complementary technical improvements that are helping sustain the cryo-EM revolution. We highlight advances in image processing that permit high resolution structure determination even in the presence of structural and conformational heterogeneity. We also review selected examples where biochemical strategies for membrane protein stabilization facilitate cryo-EM structure determination, and discuss emerging approaches for further improving the preparation of reliable plunge-frozen specimens.
Collapse
Affiliation(s)
- Lesley A Earl
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Veronica Falconieri
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jacqueline Ls Milne
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
121
|
Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat Rev Mol Cell Biol 2017; 18:655-670. [DOI: 10.1038/nrm.2017.86] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
122
|
Scheres SH, Nagai K. CryoEM structures of spliceosomal complexes reveal the molecular mechanism of pre-mRNA splicing. Curr Opin Struct Biol 2017; 46:130-139. [PMID: 28888105 DOI: 10.1016/j.sbi.2017.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023]
Abstract
The spliceosome is an intricate molecular machine which catalyses the removal of introns from eukaryotic mRNA precursors by two trans-esterification reactions (branching and exon ligation) to produce mature mRNA with uninterrupted protein coding sequences. The structures of the spliceosome in several key states determined by electron cryo-microscopy have greatly advanced our understanding of its molecular mechanism. The catalytic RNA core is formed during the activation of the fully assembled B to Bact complex and remains largely unchanged throughout the splicing cycle. RNA helicases and step specific factors regulate docking and undocking of the substrates (branch site and 3' splice site) to the single RNA-based active site to catalyse the two trans-esterification reactions.
Collapse
Affiliation(s)
- Sjors Hw Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
123
|
Chen Z, Gui B, Zhang Y, Xie G, Li W, Liu S, Xu B, Wu C, He L, Yang J, Yi X, Yang X, Sun L, Liang J, Shang Y. Identification of a 35S U4/U6.U5 tri-small nuclear ribonucleoprotein (tri-snRNP) complex intermediate in spliceosome assembly. J Biol Chem 2017; 292:18113-18128. [PMID: 28878014 DOI: 10.1074/jbc.m117.797357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/28/2017] [Indexed: 11/06/2022] Open
Abstract
The de novo assembly and post-splicing reassembly of the U4/U6.U5 tri-snRNP remain to be investigated. We report here that ZIP, a protein containing a CCCH-type zinc finger and a G-patch domain, as characterized by us previously, regulates pre-mRNA splicing independent of RNA binding. We found that ZIP physically associates with the U4/U6.U5 tri-small nuclear ribonucleoprotein (tri-snRNP). Remarkably, the ZIP-containing tri-snRNP, which has a sedimentation coefficient of ∼35S, is a tri-snRNP that has not been described previously. We also found that the 35S tri-snRNP contains hPrp24, indicative of a state in which the U4/U6 di-snRNP is integrating with the U5 snRNP. We found that the 35S tri-snRNP is enriched in the Cajal body, indicating that it is an assembly intermediate during 25S tri-snRNP maturation. We showed that the 35S tri-snRNP also contains hPrp43, in which ATPase/RNA helicase activities are stimulated by ZIP. Our study identified, for the first time, a tri-snRNP intermediate, shedding new light on the de novo assembly and recycling of the U4/U6.U5 tri-snRNP.
Collapse
Affiliation(s)
- Zhe Chen
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Bin Gui
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yu Zhang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guojia Xie
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wanjin Li
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shumeng Liu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Bosen Xu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chongyang Wu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lin He
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianguo Yang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xia Yi
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiaohan Yang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Luyang Sun
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jing Liang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yongfeng Shang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China, .,the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China, and.,the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
124
|
Cryo-EM Structure of a Pre-catalytic Human Spliceosome Primed for Activation. Cell 2017; 170:701-713.e11. [DOI: 10.1016/j.cell.2017.07.011] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/22/2017] [Accepted: 07/11/2017] [Indexed: 11/19/2022]
|
125
|
Sperling J, Sperling R. Structural studies of the endogenous spliceosome - The supraspliceosome. Methods 2017; 125:70-83. [PMID: 28412289 PMCID: PMC5546952 DOI: 10.1016/j.ymeth.2017.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/01/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
Pre-mRNA splicing is executed in mammalian cell nuclei within a huge (21MDa) and highly dynamic molecular machine - the supraspliceosome - that individually package pre-mRNA transcripts of different sizes and number of introns into complexes of a unique structure, indicating their universal nature. Detailed structural analysis of this huge and complex structure requires a stepwise approach using hybrid methods. Structural studies of the supraspliceosome by room temperature electron tomography, cryo-electron tomography, and scanning transmission electron microscope mass measurements revealed that it is composed of four native spliceosomes, each resembling an in vitro assembled spliceosome, which are connected by the pre-mRNA. It also elucidated the arrangement of the native spliceosomes within the intact supraspliceosome. Native spliceosomes and supraspliceosomes contain all five spliceosomal U snRNPs together with other splicing factors, and are active in splicing. The structure of the native spliceosome, at a resolution of 20Å, was determined by cryo-electron microscopy, and a unique spatial arrangement of the spliceosomal U snRNPs within the native spliceosome emerged from in silico studies. The supraspliceosome also harbor components for all pre-mRNA processing activities. Thus the supraspliceosome - the endogenous spliceosome - is a stand-alone complete macromolecular machine capable of performing splicing, alternative splicing, and encompass all nuclear pre-mRNA processing activities that the pre-mRNA has to undergo before it can exit from the nucleus to the cytoplasm to encode for protein. Further high-resolution cryo-electron microscopy studies of the endogenous spliceosome are required to decipher the regulation of alternative splicing, and elucidate the network of processing activities within it.
Collapse
Affiliation(s)
- Joseph Sperling
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ruth Sperling
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
126
|
Shi Y. The Spliceosome: A Protein-Directed Metalloribozyme. J Mol Biol 2017; 429:2640-2653. [PMID: 28733144 DOI: 10.1016/j.jmb.2017.07.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 11/15/2022]
Abstract
Pre-mRNA splicing is executed by the ribonucleoprotein machinery spliceosome. Nearly 40 years after the discovery of pre-mRNA splicing, the atomic structure of the spliceosome has finally come to light. Four distinct conformational states of the yeast spliceosome have been captured at atomic or near-atomic resolutions. Two catalytic metal ions at the active site are specifically coordinated by the U6 small nuclear RNA (snRNA) and catalyze both the branching reaction and the exon ligation. Of the three snRNAs in the fully assembled spliceosome, U5 and U6, along with 30 contiguous nucleotides of U2 at its 5'-end, remain structurally rigid throughout the splicing reaction. The rigidity of these RNA elements is safeguarded by Prp8 and 16 core protein components, which maintain the same overall conformation in all structurally characterized spliceosomes during the splicing reaction. Only the sequences downstream of nucleotide 30 of U2 snRNA are mobile; their movement, directed by the protein components, delivers the intron branch site into the close proximity of the 5'-splice site for the branching reaction. A set of additional structural rearrangement is required for exon ligation, and the lariat junction is moved out of the active site for recruitment of the 3'-splice site and 3'-exon. The spliceosome is proven to be a protein-directed metalloribozyme.
Collapse
Affiliation(s)
- Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310064, Zhejiang Province, Province, China.
| |
Collapse
|
127
|
RNA splicing in human disease and in the clinic. Clin Sci (Lond) 2017; 131:355-368. [PMID: 28202748 DOI: 10.1042/cs20160211] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/06/2016] [Accepted: 12/15/2016] [Indexed: 01/12/2023]
Abstract
Defects at the level of the pre-mRNA splicing process represent a major cause of human disease. Approximately 15-50% of all human disease mutations have been shown to alter functioning of basic and auxiliary splicing elements. These elements are required to ensure proper processing of pre-mRNA splicing molecules, with their disruption leading to misprocessing of the pre-mRNA molecule and disease. The splicing process is a complex process, with much still to be uncovered before we are able to accurately predict whether a reported genomic sequence variant (GV) represents a splicing-associated disease mutation or a harmless polymorphism. Furthermore, even when a mutation is correctly identified as affecting the splicing process, there still remains the difficulty of providing an exact evaluation of the potential impact on disease onset, severity and duration. In this review, we provide a brief overview of splicing diagnostic methodologies, from in silico bioinformatics approaches to wet lab in vitro and in vivo systems to evaluate splicing efficiencies. In particular, we provide an overview of how the latest developments in high-throughput sequencing can be applied to the clinic, and are already changing clinical approaches.
Collapse
|
128
|
Plaschka C, Lin PC, Nagai K. Structure of a pre-catalytic spliceosome. Nature 2017; 546:617-621. [PMID: 28530653 PMCID: PMC5503131 DOI: 10.1038/nature22799] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/02/2017] [Indexed: 12/12/2022]
Abstract
Intron removal requires assembly of the spliceosome on precursor mRNA (pre-mRNA) and extensive remodelling to form the spliceosome's catalytic centre. Here we report the cryo-electron microscopy structure of the yeast Saccharomyces cerevisiae pre-catalytic B complex spliceosome at near-atomic resolution. The mobile U2 small nuclear ribonucleoprotein particle (snRNP) associates with U4/U6.U5 tri-snRNP through the U2/U6 helix II and an interface between U4/U6 di-snRNP and the U2 snRNP SF3b-containing domain, which also transiently contacts the helicase Brr2. The 3' region of the U2 snRNP is flexibly attached to the SF3b-containing domain and protrudes over the concave surface of tri-snRNP, where the U1 snRNP may reside before its release from the pre-mRNA 5' splice site. The U6 ACAGAGA sequence forms a hairpin that weakly tethers the 5' splice site. The B complex proteins Prp38, Snu23 and Spp381 bind the Prp8 N-terminal domain and stabilize U6 ACAGAGA stem-pre-mRNA and Brr2-U4 small nuclear RNA interactions. These results provide important insights into the events leading to active site formation.
Collapse
MESH Headings
- Base Sequence
- Biocatalysis
- Catalytic Domain
- Cryoelectron Microscopy
- Introns/genetics
- Models, Biological
- Models, Molecular
- Nuclear Proteins/chemistry
- Nuclear Proteins/metabolism
- Protein Binding
- Protein Domains
- Protein Stability
- RNA Helicases/chemistry
- RNA Helicases/metabolism
- RNA Helicases/ultrastructure
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Precursors/ultrastructure
- RNA Splice Sites/genetics
- RNA Splicing
- RNA Splicing Factors/chemistry
- RNA Splicing Factors/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/metabolism
- Ribonucleoprotein, U2 Small Nuclear/chemistry
- Ribonucleoprotein, U2 Small Nuclear/metabolism
- Ribonucleoprotein, U4-U6 Small Nuclear/chemistry
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- Ribonucleoprotein, U5 Small Nuclear/chemistry
- Ribonucleoprotein, U5 Small Nuclear/metabolism
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/metabolism
- Saccharomyces cerevisiae/chemistry
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
- Saccharomyces cerevisiae Proteins/ultrastructure
- Spliceosomes/chemistry
- Spliceosomes/metabolism
- Spliceosomes/ultrastructure
Collapse
Affiliation(s)
- Clemens Plaschka
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Pei-Chun Lin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
129
|
Grewal CS, Kent OA, MacMillan AM. Radical probing of spliceosome assembly. Methods 2017; 125:16-24. [PMID: 28669867 DOI: 10.1016/j.ymeth.2017.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/21/2017] [Accepted: 06/24/2017] [Indexed: 10/19/2022] Open
Abstract
Here we describe the synthesis and use of a directed hydroxyl radical probe, tethered to a pre-mRNA substrate, to map the structure of this substrate during the spliceosome assembly process. These studies indicate an early organization and proximation of conserved pre-mRNA sequences during spliceosome assembly. This methodology may be adapted to the synthesis of a wide variety of modified RNAs for use as probes of RNA structure and RNA-protein interaction.
Collapse
Affiliation(s)
- Charnpal S Grewal
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Oliver A Kent
- Princess Margaret Cancer Centre, 101 College St., University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Andrew M MacMillan
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
130
|
van der Feltz C, Hoskins AA. Methodologies for studying the spliceosome's RNA dynamics with single-molecule FRET. Methods 2017; 125:45-54. [PMID: 28529063 DOI: 10.1016/j.ymeth.2017.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 11/30/2022] Open
Abstract
The spliceosome is an extraordinarily dynamic molecular machine in which significant changes in composition as well as protein and RNA conformation are required for carrying out pre-mRNA splicing. Single-molecule fluorescence resonance energy transfer (smFRET) can be used to elucidate these dynamics both in well-characterized model systems and in entire spliceosomes. These types of single-molecule data provide novel information about spliceosome components and can be used to identify sub-populations of molecules with unique behaviors. When smFRET is combined with single-molecule fluorescence colocalization, conformational dynamics can be further linked to the presence or absence of a given spliceosome component. Here, we provide a description of experimental considerations, approaches, and workflows for smFRET with an emphasis on applications for the splicing machinery.
Collapse
Affiliation(s)
- Clarisse van der Feltz
- Department of Biochemistry, 433 Babcock Dr., University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aaron A Hoskins
- Department of Biochemistry, 433 Babcock Dr., University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
131
|
Abstract
Proteins and RNA are often found in ribonucleoprotein particles (RNPs), where they function in cellular processes to synthesize proteins (the ribosome), chemically modify RNAs (small nucleolar RNPs), splice pre-mRNAs (the spliceosome), and, on a larger scale, sequester RNAs, degrade them, or process them (P bodies, Cajal bodies, and nucleoli). Each RNA–protein interaction is a story in itself, as both molecules can change conformation, compete for binding sites, and regulate cellular functions. Recent studies of Xist long non-coding RNP, the U4/5/6 tri-small nuclear RNP complex, and an activated state of a spliceosome reveal new features of RNA interactions with proteins, and, although their stories are incomplete, they are already fascinating.
Collapse
Affiliation(s)
- Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, 63110, USA
| |
Collapse
|
132
|
Habeck M. Bayesian Modeling of Biomolecular Assemblies with Cryo-EM Maps. Front Mol Biosci 2017; 4:15. [PMID: 28382301 PMCID: PMC5360716 DOI: 10.3389/fmolb.2017.00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/07/2017] [Indexed: 01/09/2023] Open
Abstract
A growing array of experimental techniques allows us to characterize the three-dimensional structure of large biological assemblies at increasingly higher resolution. In addition to X-ray crystallography and nuclear magnetic resonance in solution, new structure determination methods such cryo-electron microscopy (cryo-EM), crosslinking/mass spectrometry and solid-state NMR have emerged. Often it is not sufficient to use a single experimental method, but complementary data need to be collected by using multiple techniques. The integration of all datasets can only be achieved by computational means. This article describes Inferential structure determination, a Bayesian approach to integrative modeling of biomolecular complexes with hybrid structural data. I will introduce probabilistic models for cryo-EM maps and outline Markov chain Monte Carlo algorithms for sampling model structures from the posterior distribution. I will focus on rigid and flexible modeling with cryo-EM data and discuss some of the computational challenges of Bayesian inference in the context of biomolecular modeling.
Collapse
Affiliation(s)
- Michael Habeck
- Statistical Inverse Problems in Biophysics, Max Planck Institute for Biophysical ChemistryGöttingen, Germany; Felix Bernstein Institute for Mathematical Statistics in the Biosciences, University of GöttingenGöttingen, Germany
| |
Collapse
|
133
|
Björk P, Wieslander L. Integration of mRNP formation and export. Cell Mol Life Sci 2017; 74:2875-2897. [PMID: 28314893 PMCID: PMC5501912 DOI: 10.1007/s00018-017-2503-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Abstract
Expression of protein-coding genes in eukaryotes relies on the coordinated action of many sophisticated molecular machineries. Transcription produces precursor mRNAs (pre-mRNAs) and the active gene provides an environment in which the pre-mRNAs are processed, folded, and assembled into RNA–protein (RNP) complexes. The dynamic pre-mRNPs incorporate the growing transcript, proteins, and the processing machineries, as well as the specific protein marks left after processing that are essential for export and the cytoplasmic fate of the mRNPs. After release from the gene, the mRNPs move by diffusion within the interchromatin compartment, making up pools of mRNPs. Here, splicing and polyadenylation can be completed and the mRNPs recruit the major export receptor NXF1. Export competent mRNPs interact with the nuclear pore complex, leading to export, concomitant with compositional and conformational changes of the mRNPs. We summarize the integrated nuclear processes involved in the formation and export of mRNPs.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
134
|
Sidarovich A, Will CL, Anokhina MM, Ceballos J, Sievers S, Agafonov DE, Samatov T, Bao P, Kastner B, Urlaub H, Waldmann H, Lührmann R. Identification of a small molecule inhibitor that stalls splicing at an early step of spliceosome activation. eLife 2017; 6. [PMID: 28300534 PMCID: PMC5354520 DOI: 10.7554/elife.23533] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/26/2017] [Indexed: 11/13/2022] Open
Abstract
Small molecule inhibitors of pre-mRNA splicing are important tools for identifying new spliceosome assembly intermediates, allowing a finer dissection of spliceosome dynamics and function. Here, we identified a small molecule that inhibits human pre-mRNA splicing at an intermediate stage during conversion of pre-catalytic spliceosomal B complexes into activated Bact complexes. Characterization of the stalled complexes (designated B028) revealed that U4/U6 snRNP proteins are released during activation before the U6 Lsm and B-specific proteins, and before recruitment and/or stable incorporation of Prp19/CDC5L complex and other Bact complex proteins. The U2/U6 RNA network in B028 complexes differs from that of the Bact complex, consistent with the idea that the catalytic RNA core forms stepwise during the B to Bact transition and is likely stabilized by the Prp19/CDC5L complex and related proteins. Taken together, our data provide new insights into the RNP rearrangements and extensive exchange of proteins that occurs during spliceosome activation. DOI:http://dx.doi.org/10.7554/eLife.23533.001
Collapse
Affiliation(s)
- Anzhalika Sidarovich
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Cindy L Will
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Maria M Anokhina
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Javier Ceballos
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sonja Sievers
- Compound Management and Screening Center, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Dmitry E Agafonov
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Timur Samatov
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Penghui Bao
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Berthold Kastner
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytics Group, Institute for Clinical Chemistry Göttingen, University Medical Center, Göttingen, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
135
|
Mayerle M, Guthrie C. Genetics and biochemistry remain essential in the structural era of the spliceosome. Methods 2017; 125:3-9. [PMID: 28132896 DOI: 10.1016/j.ymeth.2017.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/23/2017] [Indexed: 12/31/2022] Open
Abstract
The spliceosome is not a single macromolecular machine. Rather it is a collection of dynamic heterogeneous subcomplexes that rapidly interconvert throughout the course of a typical splicing cycle. Because of this, for many years the only high resolution structures of the spliceosome available were of smaller, isolated protein or RNA components. Consequently much of our current understanding of the spliceosome derives from biochemical and genetic techniques. Now with the publication of multiple, high resolution structures of the spliceosome, some question the relevance of traditional biochemical and genetic techniques to the splicing field. We argue such techniques are not only relevant, but vital for an in depth mechanistic understanding of pre-mRNA splicing.
Collapse
Affiliation(s)
- Megan Mayerle
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
136
|
Bertram K, Agafonov DE, Liu WT, Dybkov O, Will CL, Hartmuth K, Urlaub H, Kastner B, Stark H, Lührmann R. Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nature 2017; 542:318-323. [DOI: 10.1038/nature21079] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/04/2017] [Indexed: 12/18/2022]
|
137
|
Sridhara SC, Carvalho S, Grosso AR, Gallego-Paez LM, Carmo-Fonseca M, de Almeida SF. Transcription Dynamics Prevent RNA-Mediated Genomic Instability through SRPK2-Dependent DDX23 Phosphorylation. Cell Rep 2017; 18:334-343. [DOI: 10.1016/j.celrep.2016.12.050] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/13/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022] Open
|
138
|
Montemayor EJ, Didychuk AL, Liao H, Hu P, Brow DA, Butcher SE. Structure and conformational plasticity of the U6 small nuclear ribonucleoprotein core. Acta Crystallogr D Struct Biol 2017; 73:1-8. [PMID: 28045380 PMCID: PMC5331471 DOI: 10.1107/s2059798316018222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/14/2016] [Indexed: 11/10/2022] Open
Abstract
U6 small nuclear RNA (snRNA) is a key component of the active site of the spliceosome, a large ribonucleoprotein complex that catalyzes the splicing of precursor messenger RNA. Prior to its incorporation into the spliceosome, U6 is bound by the protein Prp24, which facilitates unwinding of the U6 internal stem-loop (ISL) so that it can pair with U4 snRNA. A previously reported crystal structure of the `core' of the U6 small nuclear ribonucleoprotein (snRNP) contained an ISL-stabilized A62G mutant of U6 bound to all four RNA-recognition motif (RRM) domains of Prp24 [Montemayor et al. (2014), Nature Struct. Mol. Biol. 21, 544-551]. The structure revealed a novel topology containing interlocked rings of protein and RNA that was not predicted by prior biochemical and genetic data. Here, the crystal structure of the U6 snRNP core with a wild-type ISL is reported. This complex crystallized in a new space group, apparently owing in part to the presence of an intramolecular cross-link in RRM1 that was not observed in the previously reported U6-A62G structure. The structure exhibits the same protein-RNA interface and maintains the unique interlocked topology. However, the orientation of the wild-type ISL is altered relative to the A62G mutant structure, suggesting inherent structural dynamics that may facilitate its pairing with U4. Consistent with their similar architectures in the crystalline state, the wild-type and A62G variants of U6 exhibit similar Prp24-binding affinities and electrophoretic mobilities when analyzed by gel-shift assay.
Collapse
Affiliation(s)
- Eric J. Montemayor
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Allison L. Didychuk
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Honghong Liao
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Panzhou Hu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David A. Brow
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samuel E. Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
139
|
Zhong Z, Yan M, Sun W, Wu Z, Han L, Zhou Z, Zheng F, Chen J. Two novel mutations in PRPF3 causing autosomal dominant retinitis pigmentosa. Sci Rep 2016; 6:37840. [PMID: 27886254 PMCID: PMC5122955 DOI: 10.1038/srep37840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/02/2016] [Indexed: 11/10/2022] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous set of hereditary eye diseases, characterized by selective death of photoreceptor cells in the retina, resulting in progressive visual impairment. Approximately 20–40% of RP cases are autosomal dominant RP (ADRP). In this study, a Chinese ADRP family previously localized to the region between D1S2819 and D1S2635 was sequenced via whole-exome sequencing and a variant c.1345C > G (p.R449G) was identified in PRPF3. The Sanger sequencing was performed in probands of additional 95 Chinese ADRP families to investigate the contribution of PRPF3 to ADRP in Chinese population and another variant c.1532A > C (p.H511P) was detected in one family. These two variants, co-segregate with RP in two families respectively and both variants are predicted to be pathological. This is the first report about the spectrum of PRPF3 mutations in Chinese population, leading to the identification of two novel PRPF3 mutations. Only three clustered mutations in PRPF3 have been identified so far in several populations and all are in exon 11. Our study expands the spectrum of PRPF3 mutations in RP. We also demonstrate that PRPF3 mutations are responsible for 2.08% of ADRP families in this cohort indicating that PRPF3 mutations might be relatively rare in Chinese ADRP patients.
Collapse
Affiliation(s)
- Zilin Zhong
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Ming Yan
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wan Sun
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Zehua Wu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Liyun Han
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| | - Zheng Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianjun Chen
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China.,Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
140
|
Absmeier E, Becke C, Wollenhaupt J, Santos KF, Wahl MC. Interplay of cis- and trans-regulatory mechanisms in the spliceosomal RNA helicase Brr2. Cell Cycle 2016; 16:100-112. [PMID: 27880071 DOI: 10.1080/15384101.2016.1255384] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RNA helicase Brr2 is implicated in multiple phases of pre-mRNA splicing and thus requires tight regulation. Brr2 can be auto-inhibited via a large N-terminal region folding back onto its helicase core and auto-activated by a catalytically inactive C-terminal helicase cassette. Furthermore, it can be regulated in trans by the Jab1 domain of the Prp8 protein, which can inhibit Brr2 by intermittently inserting a C-terminal tail in the enzyme's RNA-binding tunnel or activate the helicase after removal of this tail. Presently it is unclear, whether these regulatory mechanisms functionally interact and to which extent they are evolutionarily conserved. Here, we report crystal structures of Saccharomyces cerevisiae and Chaetomium thermophilum Brr2-Jab1 complexes, demonstrating that Jab1-based inhibition of Brr2 presumably takes effect in all eukaryotes but is implemented via organism-specific molecular contacts. Moreover, the structures show that Brr2 auto-inhibition can act in concert with Jab1-mediated inhibition, and suggest that the N-terminal region influences how the Jab1 C-terminal tail interacts at the RNA-binding tunnel. Systematic RNA binding and unwinding studies revealed that the N-terminal region and the Jab1 C-terminal tail specifically interfere with accommodation of double-stranded and single-stranded regions of an RNA substrate, respectively, mutually reinforcing each other. Additionally, such analyses show that regulation based on the N-terminal region requires the presence of the inactive C-terminal helicase cassette. Together, our results outline an intricate system of regulatory mechanisms, which control Brr2 activities during snRNP assembly and splicing.
Collapse
Affiliation(s)
- Eva Absmeier
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany
| | - Christian Becke
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany
| | - Jan Wollenhaupt
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany
| | - Karine F Santos
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany
| | - Markus C Wahl
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany.,b Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography , Berlin , Germany
| |
Collapse
|
141
|
Xu C, Ishikawa H, Izumikawa K, Li L, He H, Nobe Y, Yamauchi Y, Shahjee HM, Wu XH, Yu YT, Isobe T, Takahashi N, Min J. Structural insights into Gemin5-guided selection of pre-snRNAs for snRNP assembly. Genes Dev 2016; 30:2376-2390. [PMID: 27881600 PMCID: PMC5131778 DOI: 10.1101/gad.288340.116] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/26/2016] [Indexed: 12/26/2022]
Abstract
Xu et al. show that the WD40 domain of Gemin5 is both necessary and sufficient for binding the Sm site of pre-snRNAs. They also determined the crystal structures of the WD40 domain of Gemin5 in complex with the Sm site or m7G cap of pre-snRNA. In cytoplasm, the survival of motor neuron (SMN) complex delivers pre-small nuclear RNAs (pre-snRNAs) to the heptameric Sm ring for the assembly of the ring complex on pre-snRNAs at the conserved Sm site [A(U)4–6G]. Gemin5, a WD40 protein component of the SMN complex, is responsible for recognizing pre-snRNAs. In addition, Gemin5 has been reported to specifically bind to the m7G cap. In this study, we show that the WD40 domain of Gemin5 is both necessary and sufficient for binding the Sm site of pre-snRNAs by isothermal titration calorimetry (ITC) and mutagenesis assays. We further determined the crystal structures of the WD40 domain of Gemin5 in complex with the Sm site or m7G cap of pre-snRNA, which reveal that the WD40 domain of Gemin5 recognizes the Sm site and m7G cap of pre-snRNAs via two distinct binding sites by respective base-specific interactions. In addition, we also uncovered a novel role of Gemin5 in escorting the truncated forms of U1 pre-snRNAs for proper disposal. Overall, the elucidated Gemin5 structures will contribute to a better understanding of Gemin5 in small nuclear ribonucleic protein (snRNP) biogenesis as well as, potentially, other cellular activities.
Collapse
Affiliation(s)
- Chao Xu
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei Science Center of CAS, Chinese Academy of Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China.,Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China.,Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hideaki Ishikawa
- Department of Applied Biological Science, Graduate School of Agriculture and Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Fuchu-Shi, Tokyo 183-8509, Japan
| | - Keiichi Izumikawa
- Department of Applied Biological Science, Graduate School of Agriculture and Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Fuchu-Shi, Tokyo 183-8509, Japan
| | - Li Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hao He
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yuko Nobe
- Department of Chemistry, Tokyo Metropolitan University, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Tokyo Metropolitan University, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Hanief M Shahjee
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Xian-Hui Wu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Toshiaki Isobe
- Department of Chemistry, Tokyo Metropolitan University, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Nobuhiro Takahashi
- Department of Applied Biological Science, Graduate School of Agriculture and Global Innovation Research Organization, Tokyo University of Agriculture and Technology, Fuchu-Shi, Tokyo 183-8509, Japan
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
142
|
Jin W, Wang Y, Liu CP, Yang N, Jin M, Cong Y, Wang M, Xu RM. Structural basis for snRNA recognition by the double-WD40 repeat domain of Gemin5. Genes Dev 2016; 30:2391-2403. [PMID: 27881601 PMCID: PMC5131779 DOI: 10.1101/gad.291377.116] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/17/2016] [Indexed: 12/21/2022]
Abstract
Assembly of the spliceosomal small nuclear ribonucleoparticle (snRNP) core requires the participation of the multisubunit SMN (survival of motor neuron) complex, which contains SMN and several Gemin proteins. The SMN and Gemin2 subunits directly bind Sm proteins, and Gemin5 is required for snRNP biogenesis and has been implicated in snRNA recognition. The RNA sequence required for snRNP assembly includes the Sm site and an adjacent 3' stem-loop, but a precise understanding of Gemin5's RNA-binding specificity is lacking. Here we show that the N-terminal half of Gemin5, which is composed of two juxtaposed seven-bladed WD40 repeat domains, recognizes the Sm site. The tandem WD40 repeat domains are rigidly held together to form a contiguous RNA-binding surface. RNA-contacting residues are located mostly on loops between β strands on the apical surface of the WD40 domains. Structural and biochemical analyses show that base-stacking interactions involving four aromatic residues and hydrogen bonding by a pair of arginines are crucial for specific recognition of the Sm sequence. We also show that an adenine immediately 5' to the Sm site is required for efficient binding and that Gemin5 can bind short RNA oligos in an alternative mode. Our results provide mechanistic understandings of Gemin5's snRNA-binding specificity as well as valuable insights into the molecular mechanism of RNA binding by WD40 repeat proteins in general.
Collapse
Affiliation(s)
- Wenxing Jin
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao-Pei Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Jin
- University of Chinese Academy of Sciences, Beijing 100049, China.,National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yao Cong
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201210, China
| | - Mingzhu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
143
|
Absmeier E, Santos KF, Wahl MC. Functions and regulation of the Brr2 RNA helicase during splicing. Cell Cycle 2016; 15:3362-3377. [PMID: 27792457 DOI: 10.1080/15384101.2016.1249549] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pre-mRNA splicing entails the stepwise assembly of an inactive spliceosome, its catalytic activation, splicing catalysis and spliceosome disassembly. Transitions in this reaction cycle are accompanied by compositional and conformational rearrangements of the underlying RNA-protein interaction networks, which are driven and controlled by 8 conserved superfamily 2 RNA helicases. The Ski2-like helicase, Brr2, provides the key remodeling activity during spliceosome activation and is additionally implicated in the catalytic and disassembly phases of splicing, indicating that Brr2 needs to be tightly regulated during splicing. Recent structural and functional analyses have begun to unravel how Brr2 regulation is established via multiple layers of intra- and inter-molecular mechanisms. Brr2 has an unusual structure, including a long N-terminal region and a catalytically inactive C-terminal helicase cassette, which can auto-inhibit and auto-activate the enzyme, respectively. Both elements are essential, also serve as protein-protein interaction devices and the N-terminal region is required for stable Brr2 association with the tri-snRNP, tri-snRNP stability and retention of U5 and U6 snRNAs during spliceosome activation in vivo. Furthermore, a C-terminal region of the Prp8 protein, comprising consecutive RNase H-like and Jab1/MPN-like domains, can both up- and down-regulate Brr2 activity. Biochemical studies revealed an intricate cross-talk among the various cis- and trans-regulatory mechanisms. Comparison of isolated Brr2 to electron cryo-microscopic structures of yeast and human U4/U6•U5 tri-snRNPs and spliceosomes indicates how some of the regulatory elements exert their functions during splicing. The various modulatory mechanisms acting on Brr2 might be exploited to enhance splicing fidelity and to regulate alternative splicing.
Collapse
Affiliation(s)
- Eva Absmeier
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany
| | - Karine F Santos
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany
| | - Markus C Wahl
- a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany.,b Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography , Berlin , Germany
| |
Collapse
|
144
|
Rohlman CE, Blanco MR, Walter NG. Putting Humpty-Dumpty Together: Clustering the Functional Dynamics of Single Biomolecular Machines Such as the Spliceosome. Methods Enzymol 2016; 581:257-283. [PMID: 27793282 DOI: 10.1016/bs.mie.2016.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The spliceosome is a biomolecular machine that, in all eukaryotes, accomplishes site-specific splicing of introns from precursor messenger RNAs (pre-mRNAs) with high fidelity. Operating at the nanometer scale, where inertia and friction have lost the dominant role they play in the macroscopic realm, the spliceosome is highly dynamic and assembles its active site around each pre-mRNA anew. To understand the structural dynamics underlying the molecular motors, clocks, and ratchets that achieve functional accuracy in the yeast spliceosome (a long-standing model system), we have developed single-molecule fluorescence resonance energy transfer (smFRET) approaches that report changes in intra- and intermolecular interactions in real time. Building on our work using hidden Markov models (HMMs) to extract kinetic and conformational state information from smFRET time trajectories, we recognized that HMM analysis of individual state transitions as independent stochastic events is insufficient for a biomolecular machine as complex as the spliceosome. In this chapter, we elaborate on the recently developed smFRET-based Single-Molecule Cluster Analysis (SiMCAn) that dissects the intricate conformational dynamics of a pre-mRNA through the splicing cycle in a model-free fashion. By leveraging hierarchical clustering techniques developed for Bioinformatics, SiMCAn efficiently analyzes large datasets to first identify common molecular behaviors. Through a second level of clustering based on the abundance of dynamic behaviors exhibited by defined functional intermediates that have been stalled by biochemical or genetic tools, SiMCAn then efficiently assigns pre-mRNA FRET states and transitions to specific splicing complexes, with the potential to find heretofore undescribed conformations. SiMCAn thus arises as a general tool to analyze dynamic cellular machines more broadly.
Collapse
Affiliation(s)
| | - M R Blanco
- Single Molecule Analysis Group and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States
| | - N G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
145
|
Takizawa Y, Binshtein E, Erwin AL, Pyburn TM, Mittendorf KF, Ohi MD. While the revolution will not be crystallized, biochemistry reigns supreme. Protein Sci 2016; 26:69-81. [PMID: 27673321 DOI: 10.1002/pro.3054] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/22/2016] [Indexed: 12/14/2022]
Abstract
Single-particle cryo-electron microscopy (EM) is currently gaining attention for the ability to calculate structures that reach sub-5 Å resolutions; however, the technique is more than just an alternative approach to X-ray crystallography. Molecular machines work via dynamic conformational changes, making structural flexibility the hallmark of function. While the dynamic regions in molecules are essential, they are also the most challenging to structurally characterize. Single-particle EM has the distinct advantage of being able to directly visualize purified molecules without the formation of ordered arrays of molecules locked into identical conformations. Additionally, structures determined using single-particle EM can span resolution ranges from very low- to atomic-levels (>30-1.8 Å), sometimes even in the same structure. The ability to accommodate various resolutions gives single-particle EM the unique capacity to structurally characterize dynamic regions of biological molecules, thereby contributing essential structural information needed for the development of molecular models that explain function. Further, many important molecular machines are intrinsically dynamic and compositionally heterogeneous. Structures of these complexes may never reach sub-5 Å resolutions due to this flexibility required for function. Thus, the biochemical quality of the sample, as well as, the calculation and interpretation of low- to mid-resolution cryo-EM structures (30-8 Å) remains critical for generating insights into the architecture of many challenging biological samples that cannot be visualized using alternative techniques.
Collapse
Affiliation(s)
- Yoshimasa Takizawa
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, 37232.,Center for Structural Biology Vanderbilt University, Nashville, Tennessee, 37232
| | - Elad Binshtein
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, 37232.,Center for Structural Biology Vanderbilt University, Nashville, Tennessee, 37232
| | - Amanda L Erwin
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, 37232.,Center for Structural Biology Vanderbilt University, Nashville, Tennessee, 37232
| | - Tasia M Pyburn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, 37232.,Center for Structural Biology Vanderbilt University, Nashville, Tennessee, 37232
| | - Kathleen F Mittendorf
- Vanderbilt-Ingram Cancer Center Vanderbilt University Medical Center, Nashville, Tennessee, 37232
| | - Melanie D Ohi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, 37232.,Center for Structural Biology Vanderbilt University, Nashville, Tennessee, 37232
| |
Collapse
|
146
|
Unravelling biological macromolecules with cryo-electron microscopy. Nature 2016; 537:339-46. [PMID: 27629640 DOI: 10.1038/nature19948] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/15/2016] [Indexed: 12/11/2022]
Abstract
Knowledge of the three-dimensional structures of proteins and other biological macromolecules often aids understanding of how they perform complicated tasks in the cell. Because many such tasks involve the cleavage or formation of chemical bonds, structural characterization at the atomic level is most useful. Developments in the electron microscopy of frozen hydrated samples (cryo-electron microscopy) are providing unprecedented opportunities for the structural characterization of biological macromolecules. This is resulting in a wave of information about processes in the cell that were impossible to characterize with existing techniques in structural biology.
Collapse
|
147
|
Abstract
Spliceosomal snRNPs are complex particles that proceed through a fascinating maturation pathway. Several steps of this pathway are closely linked to nuclear non-membrane structures called Cajal bodies. In this review, I summarize the last 20 y of research in this field. I primarily focus on snRNP biogenesis, specifically on the steps that involve Cajal bodies. I also evaluate the contribution of the Cajal body in snRNP quality control and discuss the role of snRNPs in Cajal body formation.
Collapse
Affiliation(s)
- David Staněk
- a Institute of Molecular Genetics, Czech Academy of Sciences , Prague , Czech Republic
| |
Collapse
|
148
|
Abstract
Transcription and splicing are fundamental steps in gene expression. These processes have been studied intensively over the past four decades, and very recent findings are challenging some of the formerly established ideas. In particular, splicing was shown to occur much faster than previously thought, with the first spliced products observed as soon as splice junctions emerge from RNA polymerase II (Pol II). Splicing was also found coupled to a specific phosphorylation pattern of Pol II carboxyl-terminal domain (CTD), suggesting a new layer of complexity in the CTD code. Moreover, phosphorylation of the CTD may be scarcer than expected, and other post-translational modifications of the CTD are emerging with unanticipated roles in gene expression regulation.
Collapse
Affiliation(s)
- Noélia Custódio
- a Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisboa , Portugal
| | - Maria Carmo-Fonseca
- a Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
149
|
Affiliation(s)
- Brian Kosmyna
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York 10461-1975, USA
| | - Charles C Query
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York 10461-1975, USA
| |
Collapse
|
150
|
DeHaven AC, Norden IS, Hoskins AA. Lights, camera, action! Capturing the spliceosome and pre-mRNA splicing with single-molecule fluorescence microscopy. WILEY INTERDISCIPLINARY REVIEWS. RNA 2016; 7:683-701. [PMID: 27198613 PMCID: PMC4990488 DOI: 10.1002/wrna.1358] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/20/2016] [Accepted: 04/04/2016] [Indexed: 11/06/2022]
Abstract
The process of removing intronic sequences from a precursor to messenger RNA (pre-mRNA) to yield a mature mRNA transcript via splicing is an integral step in eukaryotic gene expression. Splicing is carried out by a cellular nanomachine called the spliceosome that is composed of RNA components and dozens of proteins. Despite decades of study, many fundamentals of spliceosome function have remained elusive. Recent developments in single-molecule fluorescence microscopy have afforded new tools to better probe the spliceosome and the complex, dynamic process of splicing by direct observation of single molecules. These cutting-edge technologies enable investigators to monitor the dynamics of specific splicing components, whole spliceosomes, and even cotranscriptional splicing within living cells. WIREs RNA 2016, 7:683-701. doi: 10.1002/wrna.1358 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Alexander C. DeHaven
- Integrated Program in Biochemistry, U. Wisconsin-Madison, Madison, WI 53706
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706
| | - Ian S. Norden
- Integrated Program in Biochemistry, U. Wisconsin-Madison, Madison, WI 53706
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706
| | - Aaron A. Hoskins
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|