101
|
Functional and structural basis of extreme conservation in vertebrate 5' untranslated regions. Nat Genet 2021; 53:729-741. [PMID: 33821006 PMCID: PMC8825242 DOI: 10.1038/s41588-021-00830-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/26/2021] [Indexed: 01/07/2023]
Abstract
The lack of knowledge about extreme conservation in genomes remains a major gap in our understanding of the evolution of gene regulation. Here, we reveal an unexpected role of extremely conserved 5' untranslated regions (UTRs) in noncanonical translational regulation that is linked to the emergence of essential developmental features in vertebrate species. Endogenous deletion of conserved elements within these 5' UTRs decreased gene expression, and extremely conserved 5' UTRs possess cis-regulatory elements that promote cell-type-specific regulation of translation. We further developed in-cell mutate-and-map (icM2), a new methodology that maps RNA structure inside cells. Using icM2, we determined that an extremely conserved 5' UTR encodes multiple alternative structures and that each single nucleotide within the conserved element maintains the balance of alternative structures important to control the dynamic range of protein expression. These results explain how extreme sequence conservation can lead to RNA-level biological functions encoded in the untranslated regions of vertebrate genomes.
Collapse
|
102
|
Overcoming the design, build, test bottleneck for synthesis of nonrepetitive protein-RNA cassettes. Nat Commun 2021; 12:1576. [PMID: 33707432 PMCID: PMC7952577 DOI: 10.1038/s41467-021-21578-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 01/20/2021] [Indexed: 01/03/2023] Open
Abstract
We apply an oligo-library and machine learning-approach to characterize the sequence and structural determinants of binding of the phage coat proteins (CPs) of bacteriophages MS2 (MCP), PP7 (PCP), and Qβ (QCP) to RNA. Using the oligo library, we generate thousands of candidate binding sites for each CP, and screen for binding using a high-throughput dose-response Sort-seq assay (iSort-seq). We then apply a neural network to expand this space of binding sites, which allowed us to identify the critical structural and sequence features for binding of each CP. To verify our model and experimental findings, we design several non-repetitive binding site cassettes and validate their functionality in mammalian cells. We find that the binding of each CP to RNA is characterized by a unique space of sequence and structural determinants, thus providing a more complete description of CP-RNA interaction as compared with previous low-throughput findings. Finally, based on the binding spaces we demonstrate a computational tool for the successful design and rapid synthesis of functional non-repetitive binding-site cassettes. Phage-coat proteins can be used to build synthetic biology parts. Here the authors use an oligo library and machine learning to predict and verify sequences based on binding scores.
Collapse
|
103
|
The internal ribosome entry site of the Dengue virus mRNA is active when cap-dependent translation initiation is inhibited. J Virol 2021; 95:JVI.01998-20. [PMID: 33298544 PMCID: PMC8092825 DOI: 10.1128/jvi.01998-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV) is an enveloped, positive-sense, single-stranded RNA virus belonging to the Flaviviridae family. Translation initiation of the DENV mRNA can occur following a cap-dependent or a cap-independent mechanism. Two non-mutually exclusive cap-independent mechanisms of translation initiation have been described for the DENV mRNA. The first corresponds to a 5'end-dependent internal ribosome entry site (IRES)-independent mechanism, while the second relies on IRES-dependent initiation. In this report, we study the recently discovered DENV IRES. Results show that the DENV IRES is functional in the rabbit reticulocyte (RRL) in vitro translation system. In accordance, the activity of DENV IRES was resistant to the cleavage of eIF4G by the Foot-and-mouth disease virus leader protease in RRL. In cells, the DENV IRES exhibited only a marginal activity under standard culture conditions. The DENV IRES showed weak activity in HEK 293T cells; however, the DENV IRES activity was significantly enhanced in HEK 293T cells expressing the Human rhinovirus 2A protease. These findings suggest that the DENV IRES enables viral protein synthesis under conditions that suppress canonical translation initiation.IMPORTANCE Dengue virus (DENV), the etiological agent of Dengue, a febrile and hemorrhagic disease, infects millions of people per year in tropical and subtropical countries. When infecting cells, DENV induces stress conditions known to inhibit canonical protein synthesis. Under these conditions, DENV mRNA thrives using non-canonical modes of translation initiation. In this study, we characterize the mechanism dependent upon an internal ribosome entry site (IRES). Herein, we describe the activity of the DENV IRES in vitro and cells. We show that in cells, DENV IRES enables the viral mRNA to translate under conditions that suppress canonical translation initiation.
Collapse
|
104
|
Site-specific methylation of 18S ribosomal RNA by SNORD42A is required for acute myeloid leukemia cell proliferation. Blood 2021; 135:2059-2070. [PMID: 32097467 DOI: 10.1182/blood.2019004121] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
Noncoding RNAs, including small nucleolar RNAs (snoRNAs), play important roles in leukemogenesis, but the relevant mechanisms remain incompletely understood. We performed snoRNA-focused CRISPR-Cas9 knockout library screenings that targeted the entire snoRNAnome and corresponding host genes. The C/D box containing SNORD42A was identified as an essential modulator for acute myeloid leukemia (AML) cell survival and proliferation in multiple human leukemia cell lines. In line, SNORD42A was consistently expressed at higher levels in primary AML patient samples than in CD34+ progenitors, monocytes, and granulocytes. Functionally, knockout of SNORD42A reduced colony formation capability and inhibited proliferation. The SNORD42A acts as a C/D box snoRNA and directs 2'-O-methylation at uridine 116 of 18S ribosomal RNA (rRNA). Deletion of SNORD42A decreased 18S-U116 2'-O-methylation, which was associated with a specific decrease in the translation of ribosomal proteins. In line, the cell size of SNORD42A deletion carrying leukemia cells was decreased. Taken together, these findings establish that high-level expression of SNORD42A with concomitant U116 18S rRNA 2'-O-methylation is essential for leukemia cell growth and survival.
Collapse
|
105
|
Miao Q, Ni B, Tang J. Coding potential of circRNAs: new discoveries and challenges. PeerJ 2021; 9:e10718. [PMID: 33552732 PMCID: PMC7819118 DOI: 10.7717/peerj.10718] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
The circular (circ)RNAs are a newly recognized group of noncoding (nc)RNAs. Research to characterize the functional features of circRNAs has uncovered distinctive profiles of conservation, stability, specificity and complexity. However, a new line of evidence has indicated that although circRNAs can function as ncRNAs, such as in the role of miRNA sponges, they are also capable of coding proteins. This discovery is no accident. In the last century, scientist detected the ability of translate in some virus and artificial circRNAs. Artificial circRNA translation products are usually nonfunctional, whereas natural circRNA translation products are completely different. Those new proteins have various functions, which greatly broadens the new ideas and research direction for our research. These series findings also raise questions about whether circRNA is still classified as non-coding RNA. Here, we summarize the evidence concerning translation potential of circRNAs, including synthetic and endogenous circRNA translation ability, and discuss the mechanisms of circRNA translation.
Collapse
Affiliation(s)
- Qingqing Miao
- Dermatology Department of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.,Department of Dermatology, the 901th Hospital of the Joint Logistics Support Force of PLA Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Bing Ni
- Department of Pathophysiology, Third Military Medical University, Chongqing, China
| | - Jun Tang
- Dermatology Department of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.,Department of Dermatology, the 901th Hospital of the Joint Logistics Support Force of PLA Affiliated to Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
106
|
Zhang C, Ding R, Sun Y, Huo ST, He A, Wen C, Chen H, Du WW, Lai W, Wang H. Circular RNA in tumor metastasis. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 23:1243-1257. [PMID: 33717646 PMCID: PMC7907675 DOI: 10.1016/j.omtn.2021.01.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Circular RNAs (circRNAs) are a type of endogenous non-coding RNA that were discovered to regulate gene expression through multiple pathways. Metastasis remains one of the biggest obstacles in cancer treatment. In this review, we focus on circRNAs involved in cancer tumorigenesis and metastasis. We present recently identified tumor-related circRNAs and discuss their functioning in tumor progression and metastasis. These circRNAs are categorized into different functional mechanisms, including microRNA (miRNA) sponging, protein binding, regulation of host genes, translation of circRNAs, and exosomal circRNAs. Additionally, the indirect functions of circRNAs that regulate epithelial-mesenchymal transition and autophagy are also discussed.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510000, Guangdong Province, China.,Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan 510000, Guangdong Province, China.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - RongFang Ding
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510000, Guangdong Province, China
| | - YiCheng Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510000, Guangdong Province, China.,Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan 510000, Guangdong Province, China
| | - Si Tong Huo
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.,School of Medicine, Tsinghua University, Beijing 100084, China
| | - Alina He
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Chang Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510000, Guangdong Province, China.,Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan 510000, Guangdong Province, China
| | - HongHao Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southern Medical University and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510000, Guangdong Province, China.,Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan 510000, Guangdong Province, China
| | - William W Du
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - WeiNan Lai
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China 510515
| | - Huijun Wang
- Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan 510000, Guangdong Province, China
| |
Collapse
|
107
|
Tharakan R, Ubaida-Mohien C, Piao Y, Gorospe M, Ferrucci L. Ribosome profiling analysis of human skeletal muscle identifies reduced translation of mitochondrial proteins with age. RNA Biol 2021; 18:1555-1559. [PMID: 33472542 DOI: 10.1080/15476286.2021.1875647] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
With advancing age, human muscle loses strength and function, but the molecular causes of these losses are unknown. Skeletal muscle shows an age-dependent decline in the levels of different proteins, but whether such decline is associated with reduced translation has not been studied. To address this gap of knowledge, we used the technique of ribosome profiling to study translation in muscle from middle-aged and old individuals. Using ribosome occupancy as a measure of translation status, several mRNAs showed differential translation with age. Older age was associated with lower translation of myosin and titin isoforms and more broadly with the translation of proteins involved in oxidative phosphorylation encoded by the mitochondrial genome. Based on our findings, we propose that mitochondrial proteins are less translated in old skeletal muscle.
Collapse
Affiliation(s)
- Ravi Tharakan
- Translational Gerontology Branch, National Institutes of Health, Baltimore, MD, USA.,Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
108
|
Huang W, Ling Y, Zhang S, Xia Q, Cao R, Fan X, Fang Z, Wang Z, Zhang G. TransCirc: an interactive database for translatable circular RNAs based on multi-omics evidence. Nucleic Acids Res 2021; 49:D236-D242. [PMID: 33074314 PMCID: PMC7778967 DOI: 10.1093/nar/gkaa823] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
TransCirc (https://www.biosino.org/transcirc/) is a specialized database that provide comprehensive evidences supporting the translation potential of circular RNAs (circRNAs). This database was generated by integrating various direct and indirect evidences to predict coding potential of each human circRNA and the putative translation products. Seven types of evidences for circRNA translation were included: (i) ribosome/polysome binding evidences supporting the occupancy of ribosomes onto circRNAs; (ii) experimentally mapped translation initiation sites on circRNAs; (iii) internal ribosome entry site on circRNAs; (iv) published N-6-methyladenosine modification data in circRNA that promote translation initiation; (v) lengths of the circRNA specific open reading frames; (vi) sequence composition scores from a machine learning prediction of all potential open reading frames; (vii) mass spectrometry data that directly support the circRNA encoded peptides across back-splice junctions. TransCirc provides a user-friendly searching/browsing interface and independent lines of evidences to predicte how likely a circRNA can be translated. In addition, several flexible tools have been developed to aid retrieval and analysis of the data. TransCirc can serve as an important resource for investigating the translation capacity of circRNAs and the potential circRNA-encoded peptides, and can be expanded to include new evidences or additional species in the future.
Collapse
Affiliation(s)
- Wendi Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunchao Ling
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sirui Zhang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiguang Xia
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruifang Cao
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaojuan Fan
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhaoyuan Fang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zefeng Wang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guoqing Zhang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
109
|
Leppek K, Byeon GW, Fujii K, Barna M. VELCRO-IP RNA-seq reveals ribosome expansion segment function in translation genome-wide. Cell Rep 2021; 34:108629. [PMID: 33472078 PMCID: PMC8270675 DOI: 10.1016/j.celrep.2020.108629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/07/2020] [Accepted: 12/17/2020] [Indexed: 01/22/2023] Open
Abstract
Roles for ribosomal RNA (rRNA) in gene regulation remain largely unexplored. With hundreds of rDNA units positioned across multiple loci, it is not possible to genetically modify rRNA in mammalian cells, hindering understanding of ribosome function. It remains elusive whether expansion segments (ESs), tentacle-like rRNA extensions that vary in sequence and size across eukaryotic evolution, may have functional roles in translation control. Here, we develop variable expansion segment-ligand chimeric ribosome immunoprecipitation RNA sequencing (VELCRO-IP RNA-seq), a versatile methodology to generate species-adapted ESs and to map specific mRNA regions across the transcriptome that preferentially associate with ESs. Application of VELCRO-IP RNA-seq to a mammalian ES, ES9S, identified a large array of transcripts that are selectively recruited to ribosomes via an ES. We further characterize a set of 5′ UTRs that facilitate cap-independent translation through ES9S-mediated ribosome binding. Thus, we present a technology for studying the enigmatic ESs of the ribosome, revealing their function in gene-specific translation. Leppek et al. develop a pulldown technology employing chimeric yeast ribosomes, VELCRO-IP RNA-seq, to map interactions between ribosomal RNA (rRNA) and mRNAs genome-wide with positional precision. They find that expansion segments (ESs), the extended rRNA tentacles of the ribosome, specifically bind 5′ UTR elements to enable cap-independent translation of select mRNAs.
Collapse
Affiliation(s)
- Kathrin Leppek
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Gun Woo Byeon
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kotaro Fujii
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Maria Barna
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
110
|
Minnee E, Faller WJ. Translation initiation and its relevance in colorectal cancer. FEBS J 2021; 288:6635-6651. [PMID: 33382175 PMCID: PMC9291299 DOI: 10.1111/febs.15690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 01/08/2023]
Abstract
Protein synthesis is one of the most essential processes in every kingdom of life, and its dysregulation is a known driving force in cancer development. Multiple signaling pathways converge on the translation initiation machinery, and this plays a crucial role in regulating differential gene expression. In colorectal cancer, dysregulation of initiation results in translational reprogramming, which promotes the selective translation of mRNAs required for many oncogenic processes. The majority of upstream mutations found in colorectal cancer, including alterations in the WNT, MAPK, and PI3K\AKT pathways, have been demonstrated to play a significant role in translational reprogramming. Many translation initiation factors are also known to be dysregulated, resulting in translational reprogramming during tumor initiation and/or maintenance. In this review, we outline the role of translational reprogramming that occurs during colorectal cancer development and progression and highlight some of the most critical factors affecting the etiology of this disease.
Collapse
Affiliation(s)
- Emma Minnee
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - William James Faller
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
111
|
Yan L, Chen YG. Circular RNAs in Immune Response and Viral Infection. Trends Biochem Sci 2020; 45:1022-1034. [PMID: 32900574 PMCID: PMC7642119 DOI: 10.1016/j.tibs.2020.08.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Circular RNAs (circRNAs) are a diverse class of RNAs with varying sizes, cellular abundance, and biological functions. Investigations from the past decade have revealed that circRNAs are ubiquitously found in eukaryotes and have defined the different biological roles of circRNAs to illuminate this previously unrecognized class of molecules. In the context of the immune system, immune responses and immune-related diseases alter circRNA expression. More recently, several oncogenic double-stranded DNA viruses have been found to encode circRNAs. In this review, we summarize the current understanding of circRNAs and their emerging functions in immune regulation and autoimmune disorders, and discuss the identification and potential roles of viral circRNAs during infections. Finally, we present promising areas for future investigations in the nascent field of circRNAs.
Collapse
Affiliation(s)
- Lichong Yan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Y Grace Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA..
| |
Collapse
|
112
|
Péladeau C, Jasmin BJ. Targeting IRES-dependent translation as a novel approach for treating Duchenne muscular dystrophy. RNA Biol 2020; 18:1238-1251. [PMID: 33164678 DOI: 10.1080/15476286.2020.1847894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Internal-ribosomal entry sites (IRES) are translational elements that allow the initiation machinery to start protein synthesis via internal initiation. IRESs promote tissue-specific translation in stress conditions when conventional cap-dependent translation is inhibited. Since many IRES-containing mRNAs are relevant to diseases, this cellular mechanism is emerging as an attractive therapeutic target for pharmacological and genetic modulations. Indeed, there has been growing interest over the past years in determining the therapeutic potential of IRESs for several disease conditions such as cancer, neurodegeneration and neuromuscular diseases including Duchenne muscular dystrophy (DMD). IRESs relevant for DMD have been identified in several transcripts whose protein product results in functional improvements in dystrophic muscles. Together, these converging lines of evidence indicate that activation of IRES-mediated translation of relevant transcripts in DMD muscle represents a novel and appropriate therapeutic strategy for DMD that warrants further investigation, particularly to identify agents that can modulate their activity.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
113
|
Prats AC, David F, Diallo LH, Roussel E, Tatin F, Garmy-Susini B, Lacazette E. Circular RNA, the Key for Translation. Int J Mol Sci 2020; 21:E8591. [PMID: 33202605 PMCID: PMC7697609 DOI: 10.3390/ijms21228591] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
It was thought until the 1990s that the eukaryotic translation machinery was unable to translate a circular RNA. However internal ribosome entry sites (IRESs) and m6A-induced ribosome engagement sites (MIRESs) were discovered, promoting 5' end-independent translation initiation. Today a new family of so-called "noncoding" circular RNAs (circRNAs) has emerged, revealing the pivotal role of 5' end-independent translation. CircRNAs have a strong impact on translational control via their sponge function, and form a new mRNA family as they are translated into proteins with pathophysiological roles. While there is no more doubt about translation of covalently closed circRNA, the linearity of canonical mRNA is only theoretical: it has been shown for more than thirty years that polysomes exhibit a circular form and mRNA functional circularization has been demonstrated in the 1990s by the interaction of initiation factor eIF4G with poly(A) binding protein. More recently, additional mechanisms of 3'-5' interaction have been reported, including m6A modification. Functional circularization enhances translation via ribosome recycling and acceleration of the translation initiation rate. This update of covalently and noncovalently closed circular mRNA translation landscape shows that RNA with circular shape might be the rule for translation with an important impact on disease development and biotechnological applications.
Collapse
Affiliation(s)
- Anne-Catherine Prats
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1048, Inserm, Université de Toulouse UT3, 1, Avenue Jean Poulhes, BP 84225, 31432 Toulouse CEDEX 4, France; (F.D.); (L.H.D.); (E.R.); (F.T.); (B.G.-S.); (E.L.)
| | | | | | | | | | | | | |
Collapse
|
114
|
Renganaath K, Chong R, Day L, Kosuri S, Kruglyak L, Albert FW. Systematic identification of cis-regulatory variants that cause gene expression differences in a yeast cross. eLife 2020; 9:e62669. [PMID: 33179598 PMCID: PMC7685706 DOI: 10.7554/elife.62669] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Sequence variation in regulatory DNA alters gene expression and shapes genetically complex traits. However, the identification of individual, causal regulatory variants is challenging. Here, we used a massively parallel reporter assay to measure the cis-regulatory consequences of 5832 natural DNA variants in the promoters of 2503 genes in the yeast Saccharomyces cerevisiae. We identified 451 causal variants, which underlie genetic loci known to affect gene expression. Several promoters harbored multiple causal variants. In five promoters, pairs of variants showed non-additive, epistatic interactions. Causal variants were enriched at conserved nucleotides, tended to have low derived allele frequency, and were depleted from promoters of essential genes, which is consistent with the action of negative selection. Causal variants were also enriched for alterations in transcription factor binding sites. Models integrating these features provided modest, but statistically significant, ability to predict causal variants. This work revealed a complex molecular basis for cis-acting regulatory variation.
Collapse
Affiliation(s)
- Kaushik Renganaath
- Department of Genetics, Cell Biology, & Development, University of MinnesotaMinneapolisUnited States
| | - Rockie Chong
- Department of Chemistry & Biochemistry, University of California, Los AngelesLos AngelesUnited States
| | - Laura Day
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Sriram Kosuri
- Department of Chemistry & Biochemistry, University of California, Los AngelesLos AngelesUnited States
| | - Leonid Kruglyak
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Frank W Albert
- Department of Genetics, Cell Biology, & Development, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
115
|
Nobuta R, Machida K, Sato M, Hashimoto S, Toriumi Y, Nakajima S, Suto D, Imataka H, Inada T. eIF4G-driven translation initiation of downstream ORFs in mammalian cells. Nucleic Acids Res 2020; 48:10441-10455. [PMID: 32941651 PMCID: PMC7544200 DOI: 10.1093/nar/gkaa728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
Comprehensive genome-wide analysis has revealed the presence of translational elements in the 3′ untranslated regions (UTRs) of human transcripts. However, the mechanisms by which translation is initiated in 3′ UTRs and the physiological function of their products remain unclear. This study showed that eIF4G drives the translation of various downstream open reading frames (dORFs) in 3′ UTRs. The 3′ UTR of GCH1, which encodes GTP cyclohydrolase 1, contains an internal ribosome entry site (IRES) that initiates the translation of dORFs. An in vitro reconstituted translation system showed that the IRES in the 3′ UTR of GCH1 required eIF4G and conventional translation initiation factors, except eIF4E, for AUG-initiated translation of dORFs. The 3′ UTR of GCH1-mediated translation was resistant to the mTOR inhibitor Torin 1, which inhibits cap-dependent initiation by increasing eIF4E-unbound eIF4G. eIF4G was also required for the activity of various elements, including polyU and poliovirus type 2, a short element thought to recruit ribosomes by base-pairing with 18S rRNA. These findings indicate that eIF4G mediates translation initiation of various ORFs in mammalian cells, suggesting that the 3′ UTRs of mRNAs may encode various products.
Collapse
Affiliation(s)
- Risa Nobuta
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kodai Machida
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan
| | - Misaki Sato
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Satoshi Hashimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yasuhito Toriumi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Shizuka Nakajima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Daiki Suto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroaki Imataka
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji 671-2280, Japan
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
116
|
Lauria F, Bernabò P, Tebaldi T, Groen EJN, Perenthaler E, Maniscalco F, Rossi A, Donzel D, Clamer M, Marchioretto M, Omersa N, Orri J, Dalla Serra M, Anderluh G, Quattrone A, Inga A, Gillingwater TH, Viero G. SMN-primed ribosomes modulate the translation of transcripts related to spinal muscular atrophy. Nat Cell Biol 2020; 22:1239-1251. [PMID: 32958857 PMCID: PMC7610479 DOI: 10.1038/s41556-020-00577-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 08/13/2020] [Indexed: 12/20/2022]
Abstract
The contribution of ribosome heterogeneity and ribosome-associated proteins to the molecular control of proteomes in health and disease remains unclear. Here, we demonstrate that survival motor neuron (SMN) protein-the loss of which causes the neuromuscular disease spinal muscular atrophy (SMA)-binds to ribosomes and that this interaction is tissue-dependent. SMN-primed ribosomes are preferentially positioned within the first five codons of a set of mRNAs that are enriched for translational enhancer sequences in the 5' untranslated region (UTR) and rare codons at the beginning of their coding sequence. These SMN-specific mRNAs are associated with neurogenesis, lipid metabolism, ubiquitination, chromatin regulation and translation. Loss of SMN induces ribosome depletion, especially at the beginning of the coding sequence of SMN-specific mRNAs, leading to impairment of proteins that are involved in motor neuron function and stability, including acetylcholinesterase. Thus, SMN plays a crucial role in the regulation of ribosome fluxes along mRNAs encoding proteins that are relevant to SMA pathogenesis.
Collapse
Affiliation(s)
- Fabio Lauria
- Institute of Biophysics, CNR Unit at Trento, Trento, Italy
| | - Paola Bernabò
- Institute of Biophysics, CNR Unit at Trento, Trento, Italy
| | - Toma Tebaldi
- Department CIBIO, University of Trento, Trento, Italy
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Ewout Joan Nicolaas Groen
- Edinburgh Medical School, Biomedical Sciences & Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Elena Perenthaler
- Institute of Biophysics, CNR Unit at Trento, Trento, Italy
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Federica Maniscalco
- Institute of Biophysics, CNR Unit at Trento, Trento, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Deborah Donzel
- Institute of Biophysics, CNR Unit at Trento, Trento, Italy
| | | | | | - Neža Omersa
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Julia Orri
- Institute of Biophysics, CNR Unit at Trento, Trento, Italy
- La Fundació Jesuïtes Educació, Barcelona, Spain
| | | | | | | | - Alberto Inga
- Department CIBIO, University of Trento, Trento, Italy
| | - Thomas Henry Gillingwater
- Edinburgh Medical School, Biomedical Sciences & Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
117
|
Andrzejewska A, Zawadzka M, Pachulska-Wieczorek K. On the Way to Understanding the Interplay between the RNA Structure and Functions in Cells: A Genome-Wide Perspective. Int J Mol Sci 2020; 21:E6770. [PMID: 32942713 PMCID: PMC7554983 DOI: 10.3390/ijms21186770] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022] Open
Abstract
RNAs adopt specific structures in order to perform their biological activities. The structure of RNA is an important layer of gene expression regulation, and can impact a plethora of cellular processes, starting with transcription, RNA processing, and translation, and ending with RNA turnover. The development of high-throughput technologies has enabled a deeper insight into the sophisticated interplay between the structure of the cellular transcriptome and the living cells environment. In this review, we present the current view on the RNA structure in vivo resulting from the most recent transcriptome-wide studies in different organisms, including mammalians, yeast, plants, and bacteria. We focus on the relationship between the mRNA structure and translation, mRNA stability and degradation, protein binding, and RNA posttranscriptional modifications.
Collapse
Affiliation(s)
| | | | - Katarzyna Pachulska-Wieczorek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Department of Structure and Function of Retrotransposons, Noskowskiego 12/14, 61-704 Poznan, Poland; (A.A.); (M.Z.)
| |
Collapse
|
118
|
Ionizing Radiation and Translation Control: A Link to Radiation Hormesis? Int J Mol Sci 2020; 21:ijms21186650. [PMID: 32932812 PMCID: PMC7555331 DOI: 10.3390/ijms21186650] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Protein synthesis, or mRNA translation, is one of the most energy-consuming functions in cells. Translation of mRNA into proteins is thus highly regulated by and integrated with upstream and downstream signaling pathways, dependent on various transacting proteins and cis-acting elements within the substrate mRNAs. Under conditions of stress, such as exposure to ionizing radiation, regulatory mechanisms reprogram protein synthesis to translate mRNAs encoding proteins that ensure proper cellular responses. Interestingly, beneficial responses to low-dose radiation exposure, known as radiation hormesis, have been described in several models, but the molecular mechanisms behind this phenomenon are largely unknown. In this review, we explore how differences in cellular responses to high- vs. low-dose ionizing radiation are realized through the modulation of molecular pathways with a particular emphasis on the regulation of mRNA translation control.
Collapse
|
119
|
Lyons SM, Kharel P, Akiyama Y, Ojha S, Dave D, Tsvetkov V, Merrick W, Ivanov P, Anderson P. eIF4G has intrinsic G-quadruplex binding activity that is required for tiRNA function. Nucleic Acids Res 2020; 48:6223-6233. [PMID: 32374873 PMCID: PMC7293036 DOI: 10.1093/nar/gkaa336] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
As cells encounter adverse environmental conditions, such as hypoxia, oxidative stress or nutrient deprivation, they trigger stress response pathways to protect themselves until transient stresses have passed. Inhibition of translation is a key component of such cellular stress responses and mounting evidence has revealed the importance of a class of tRNA-derived small RNAs called tiRNAs in this process. The most potent of these small RNAs are those with the capability of assembling into tetrameric G-quadruplex (G4) structures. However, the mechanism by which these small RNAs inhibit translation has yet to be elucidated. Here we show that eIF4G, the major scaffolding protein in the translation initiation complex, directly binds G4s and this activity is required for tiRNA-mediated translation repression. Targeting of eIF4G results in an impairment of 40S ribosome scanning on mRNAs leading to the formation of eIF2α-independent stress granules. Our data reveals the mechanism by which tiRNAs inhibit translation and demonstrates novel activity for eIF4G in the regulation of translation.
Collapse
Affiliation(s)
- Shawn M Lyons
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.,The Genome Science Institute, Boston University School of Medicine, Boston, MA, USA
| | - Prakash Kharel
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yasutoshi Akiyama
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Sandeep Ojha
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA.,The Genome Science Institute, Boston University School of Medicine, Boston, MA, USA
| | - Dhwani Dave
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Vladimir Tsvetkov
- Computational Oncology Group, I.M. Sechenov First Moscow State Medical University , Moscow, Russia.,Federal Research and Clinical Center forPhysical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia.,A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
| | - William Merrick
- Department of Biochemistry, Case Western ReserveUniversity, Cleveland, OH, USA
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul Anderson
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
120
|
Eiermann N, Haneke K, Sun Z, Stoecklin G, Ruggieri A. Dance with the Devil: Stress Granules and Signaling in Antiviral Responses. Viruses 2020; 12:v12090984. [PMID: 32899736 PMCID: PMC7552005 DOI: 10.3390/v12090984] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Cells have evolved highly specialized sentinels that detect viral infection and elicit an antiviral response. Among these, the stress-sensing protein kinase R, which is activated by double-stranded RNA, mediates suppression of the host translation machinery as a strategy to limit viral replication. Non-translating mRNAs rapidly condensate by phase separation into cytosolic stress granules, together with numerous RNA-binding proteins and components of signal transduction pathways. Growing evidence suggests that the integrated stress response, and stress granules in particular, contribute to antiviral defense. This review summarizes the current understanding of how stress and innate immune signaling act in concert to mount an effective response against virus infection, with a particular focus on the potential role of stress granules in the coordination of antiviral signaling cascades.
Collapse
Affiliation(s)
- Nina Eiermann
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Katharina Haneke
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Zhaozhi Sun
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
- Correspondence:
| |
Collapse
|
121
|
Bjedov I, Rallis C. The Target of Rapamycin Signalling Pathway in Ageing and Lifespan Regulation. Genes (Basel) 2020; 11:E1043. [PMID: 32899412 PMCID: PMC7565554 DOI: 10.3390/genes11091043] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022] Open
Abstract
Ageing is a complex trait controlled by genes and the environment. The highly conserved mechanistic target of rapamycin signalling pathway (mTOR) is a major regulator of lifespan in all eukaryotes and is thought to be mediating some of the effects of dietary restriction. mTOR is a rheostat of energy sensing diverse inputs such as amino acids, oxygen, hormones, and stress and regulates lifespan by tuning cellular functions such as gene expression, ribosome biogenesis, proteostasis, and mitochondrial metabolism. Deregulation of the mTOR signalling pathway is implicated in multiple age-related diseases such as cancer, neurodegeneration, and auto-immunity. In this review, we briefly summarise some of the workings of mTOR in lifespan and ageing through the processes of transcription, translation, autophagy, and metabolism. A good understanding of the pathway's outputs and connectivity is paramount towards our ability for genetic and pharmacological interventions for healthy ageing and amelioration of age-related disease.
Collapse
Affiliation(s)
- Ivana Bjedov
- UCL Cancer Institute, Paul O’Gorman Building, 72 Huntley Street, London WC1E 6DD, UK
| | - Charalampos Rallis
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
122
|
Gambardella G, Staiano L, Moretti MN, De Cegli R, Fagnocchi L, Di Tullio G, Polletti S, Braccia C, Armirotti A, Zippo A, Ballabio A, De Matteis MA, di Bernardo D. GADD34 is a modulator of autophagy during starvation. SCIENCE ADVANCES 2020; 6:6/39/eabb0205. [PMID: 32978159 PMCID: PMC7518873 DOI: 10.1126/sciadv.abb0205] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/10/2020] [Indexed: 06/08/2023]
Abstract
Cells respond to starvation by shutting down protein synthesis and by activating catabolic processes, including autophagy, to recycle nutrients. This two-pronged response is mediated by the integrated stress response (ISR) through phosphorylation of eIF2α, which represses protein translation, and by inhibition of mTORC1 signaling, which promotes autophagy also through a stress-responsive transcriptional program. Implementation of such a program, however, requires protein synthesis, thus conflicting with general repression of translation. How is this mismatch resolved? We found that the main regulator of the starvation-induced transcriptional program, TFEB, counteracts protein synthesis inhibition by directly activating expression of GADD34, a component of the protein phosphatase 1 complex that dephosphorylates eIF2α. We discovered that GADD34 plays an essential role in autophagy by tuning translation during starvation, thus enabling lysosomal biogenesis and a sustained autophagic flux. Hence, the TFEB-GADD34 axis integrates the mTORC1 and ISR pathways in response to starvation.
Collapse
Affiliation(s)
- Gennaro Gambardella
- Telethon Institute of Genetics and Medicine, Naples, Italy
- University of Naples Federico II, Department of Chemical Materials and Industrial Engineering, Naples, Italy
| | | | | | | | - Luca Fagnocchi
- Istituto Nazionale di Genetica Molecolare "Romeo ed Erica Invernizzi" (INGM), Milan, Italy
- Chromatin Biology & Epigenetics Lab, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Sara Polletti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | | | | | - Alessio Zippo
- Istituto Nazionale di Genetica Molecolare "Romeo ed Erica Invernizzi" (INGM), Milan, Italy
- Chromatin Biology & Epigenetics Lab, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Naples, Italy
- University of Naples Federico II, Department of Medical and Translation Science, Naples, Italy
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, Naples, Italy.
- University of Naples Federico II, Department of Medical Biotechnologies and Molecular Medicine, Naples, Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine, Naples, Italy.
- University of Naples Federico II, Department of Chemical Materials and Industrial Engineering, Naples, Italy
| |
Collapse
|
123
|
Akirtava C, McManus CJ. Control of translation by eukaryotic mRNA transcript leaders-Insights from high-throughput assays and computational modeling. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1623. [PMID: 32869519 DOI: 10.1002/wrna.1623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
Abstract
Eukaryotic gene expression is tightly regulated during translation of mRNA to protein. Mis-regulation of translation can lead to aberrant proteins which accumulate in cancers and cause neurodegenerative diseases. Foundational studies on model genes established fundamental roles for mRNA 5' transcript leader (TL) sequences in controlling ribosome recruitment, scanning, and initiation. TL cis-regulatory elements and their corresponding trans-acting factors control cap-dependent initiation under unstressed conditions. Under stress, cap-dependent initiation is suppressed, and specific mRNA structures and sequences promote translation of stress-responsive transcripts to remodel the proteome. In this review, we summarize current knowledge of TL functions in translation initiation. We focus on insights from high-throughput analyses of ribosome occupancy, mRNA structure, RNA Binding Protein occupancy, and massively parallel reporter assays. These data-driven approaches, coupled with computational analyses and modeling, have paved the way for a comprehensive understanding of TL functions. Finally, we will discuss areas of future research on the roles of mRNA sequences and structures in translation. This article is categorized under: Translation > Translation Mechanisms RNA Evolution and Genomics > Computational Analyses of RNA RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Christina Akirtava
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Charles Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.,Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
124
|
Wu Q, Wright M, Gogol MM, Bradford WD, Zhang N, Bazzini AA. Translation of small downstream ORFs enhances translation of canonical main open reading frames. EMBO J 2020; 39:e104763. [PMID: 32744758 PMCID: PMC7459409 DOI: 10.15252/embj.2020104763] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/26/2022] Open
Abstract
In addition to canonical open reading frames (ORFs), thousands of translated small ORFs (containing less than 100 codons) have been identified in untranslated mRNA regions (UTRs) across eukaryotes. Small ORFs in 5′ UTRs (upstream (u)ORFs) often repress translation of the canonical ORF within the same mRNA. However, the function of translated small ORFs in the 3′ UTRs (downstream (d)ORFs) is unknown. Contrary to uORFs, we find that translation of dORFs enhances translation of their corresponding canonical ORFs. This translation stimulatory effect of dORFs depends on the number of dORFs, but not the length or peptide they encode. We propose that dORFs represent a new, strong, and universal translation regulatory mechanism in vertebrates.
Collapse
Affiliation(s)
- Qiushuang Wu
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Matthew Wright
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Ning Zhang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
125
|
Heterogeneity in mRNA Translation. Trends Cell Biol 2020; 30:606-618. [DOI: 10.1016/j.tcb.2020.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 11/18/2022]
|
126
|
Decoding mRNA translatability and stability from the 5' UTR. Nat Struct Mol Biol 2020; 27:814-821. [PMID: 32719458 DOI: 10.1038/s41594-020-0465-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/16/2020] [Indexed: 11/09/2022]
Abstract
Precise control of protein synthesis by engineering sequence elements in 5' untranslated regions (5' UTRs) remains a fundamental challenge. To accelerate our understanding of the cis-regulatory code embedded in 5' UTRs, we devised massively parallel reporter assays from a synthetic messenger RNA library composed of over one million 5' UTR variants. A completely randomized 10-nucleotide sequence preceding an upstream open reading frame (uORF) and downstream GFP drives a broad range of translational outputs and mRNA stability in mammalian cells. While efficient translation protects mRNA from degradation, uORF translation triggers mRNA decay in a UPF1-dependent manner. We also identified translational inhibitory elements with G-quadruplexes as marks for mRNA decay in P-bodies. Unexpectedly, an unstructured A-rich element in 5' UTRs destabilizes mRNAs in the absence of translation, although it enables cap-independent translation. Our results not only identify diverse sequence features of 5' UTRs that control mRNA translatability, but they also reveal ribosome-dependent and ribosome-independent mRNA-surveillance pathways.
Collapse
|
127
|
Sas-Chen A, Thomas JM, Matzov D, Taoka M, Nance KD, Nir R, Bryson KM, Shachar R, Liman GLS, Burkhart BW, Gamage ST, Nobe Y, Briney CA, Levy MJ, Fuchs RT, Robb GB, Hartmann J, Sharma S, Lin Q, Florens L, Washburn MP, Isobe T, Santangelo TJ, Shalev-Benami M, Meier JL, Schwartz S. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature 2020; 583:638-643. [PMID: 32555463 PMCID: PMC8130014 DOI: 10.1038/s41586-020-2418-2] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
N4-acetylcytidine (ac4C) is an ancient and highly conserved RNA modification that is present on tRNA and rRNA and has recently been investigated in eukaryotic mRNA1-3. However, the distribution, dynamics and functions of cytidine acetylation have yet to be fully elucidated. Here we report ac4C-seq, a chemical genomic method for the transcriptome-wide quantitative mapping of ac4C at single-nucleotide resolution. In human and yeast mRNAs, ac4C sites are not detected but can be induced-at a conserved sequence motif-via the ectopic overexpression of eukaryotic acetyltransferase complexes. By contrast, cross-evolutionary profiling revealed unprecedented levels of ac4C across hundreds of residues in rRNA, tRNA, non-coding RNA and mRNA from hyperthermophilic archaea. Ac4C is markedly induced in response to increases in temperature, and acetyltransferase-deficient archaeal strains exhibit temperature-dependent growth defects. Visualization of wild-type and acetyltransferase-deficient archaeal ribosomes by cryo-electron microscopy provided structural insights into the temperature-dependent distribution of ac4C and its potential thermoadaptive role. Our studies quantitatively define the ac4C landscape, providing a technical and conceptual foundation for elucidating the role of this modification in biology and disease4-6.
Collapse
Affiliation(s)
- Aldema Sas-Chen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Justin M Thomas
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Donna Matzov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Kellie D Nance
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ronit Nir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Keri M Bryson
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ran Shachar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Geraldy L S Liman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Brett W Burkhart
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Chloe A Briney
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | | | - Ryan T Fuchs
- RNA Research Division, New England Biolabs, Inc, Ipswich, MA, USA
| | - G Brett Robb
- RNA Research Division, New England Biolabs, Inc, Ipswich, MA, USA
| | - Jesse Hartmann
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sunny Sharma
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Qishan Lin
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY, USA
| | | | | | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Thomas J Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Moran Shalev-Benami
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Jordan L Meier
- National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
128
|
Abstract
The stage at which ribosomes are recruited to messenger RNAs (mRNAs) is an elaborate and highly regulated phase of protein synthesis. Upon completion of this step, a ribosome is positioned at an appropriate initiation codon and primed to synthesize the encoded polypeptide product. In most circumstances, this step commits the ribosome to translate the mRNA. We summarize the knowledge regarding the initiation factors implicated in this activity as well as review different mechanisms by which this process is conducted.
Collapse
Affiliation(s)
- Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada; , .,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada.,Department of Oncology, McGill University, Montreal, Quebec H4A 3T2, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada; , .,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
129
|
Mikl M, Pilpel Y, Segal E. High-throughput interrogation of programmed ribosomal frameshifting in human cells. Nat Commun 2020; 11:3061. [PMID: 32546731 PMCID: PMC7297798 DOI: 10.1038/s41467-020-16961-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/28/2020] [Indexed: 12/30/2022] Open
Abstract
Programmed ribosomal frameshifting (PRF) is the controlled slippage of the translating ribosome to an alternative frame. This process is widely employed by human viruses such as HIV and SARS coronavirus and is critical for their replication. Here, we developed a high-throughput approach to assess the frameshifting potential of a sequence. We designed and tested >12,000 sequences based on 15 viral and human PRF events, allowing us to systematically dissect the rules governing ribosomal frameshifting and discover novel regulatory inputs based on amino acid properties and tRNA availability. We assessed the natural variation in HIV gag-pol frameshifting rates by testing >500 clinical isolates and identified subtype-specific differences and associations between viral load in patients and the optimality of PRF rates. We devised computational models that accurately predict frameshifting potential and frameshifting rates, including subtle differences between HIV isolates. This approach can contribute to the development of antiviral agents targeting PRF.
Collapse
Affiliation(s)
- Martin Mikl
- Department of Computer Science and Applied Mathematics, Rehovot, 7610001, Israel.
- Department of Molecular Cell Biology and Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa, 31905, Israel.
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Rehovot, 7610001, Israel.
- Department of Molecular Cell Biology and Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
130
|
Bera A, Lewis SM. Regulation of Epithelial-to-Mesenchymal Transition by Alternative Translation Initiation Mechanisms and Its Implications for Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21114075. [PMID: 32517298 PMCID: PMC7312463 DOI: 10.3390/ijms21114075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Translation initiation plays a critical role in the regulation of gene expression for development and disease conditions. During the processes of development and disease, cells select specific mRNAs to be translated by controlling the use of diverse translation initiation mechanisms. Cells often switch translation initiation from a cap-dependent to a cap-independent mechanism during epithelial-to-mesenchymal transition (EMT), a process that plays an important role in both development and disease. EMT is involved in tumor metastasis because it leads to cancer cell migration and invasion, and is also associated with chemoresistance. In this review we will provide an overview of both the internal ribosome entry site (IRES)-dependent and N6-methyladenosine (m6A)-mediated translation initiation mechanisms and discuss how cap-independent translation enables cells from primary epithelial tumors to achieve a motile mesenchymal-like phenotype, which in turn drives tumor metastasis.
Collapse
Affiliation(s)
- Amit Bera
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada;
| | - Stephen M. Lewis
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada;
- Department of Chemistry & Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
- Correspondence: ; Tel.: +1-506-869-2892
| |
Collapse
|
131
|
Zhao J, Li Y, Wang C, Zhang H, Zhang H, Jiang B, Guo X, Song X. IRESbase: A Comprehensive Database of Experimentally Validated Internal Ribosome Entry Sites. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:129-139. [PMID: 32512182 PMCID: PMC7646085 DOI: 10.1016/j.gpb.2020.03.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 01/21/2023]
Abstract
Internal ribosome entry sites (IRESs) are functional RNA elements that can directly recruit ribosomes to an internal position of the mRNA in a cap-independent manner to initiate translation. Recently, IRES elements have attracted much attention for their critical roles in various processes including translation initiation of a new type of RNA, circular RNA (circRNA), with no 5′ cap to support classical cap-dependent translation. Thus, an integrative data resource of IRES elements with experimental evidence will be useful for further studies. In this study, we present IRESbase, a comprehensive database of IRESs, by curating the experimentally validated functional minimal IRES elements from literature and annotating their host linear and circular RNAs. The current version of IRESbase contains 1328 IRESs, including 774 eukaryotic IRESs and 554 viral IRESs from 11 eukaryotic organisms and 198 viruses, respectively. As IRESbase collects only IRES of minimal length with functional evidence, the median length of IRESs in IRESbase is 174 nucleotides. By mapping IRESs to human circRNAs and long non-coding RNAs (lncRNAs), 2191 circRNAs and 168 lncRNAs were found to contain at least one entire or partial IRES sequence. IRESbase is available at http://reprod.njmu.edu.cn/cgi-bin/iresbase/index.php.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yan Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China; Center of Pathology and Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Cong Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Haotian Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China
| | - Bin Jiang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 211166, China.
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| |
Collapse
|
132
|
Borden KLB, Volpon L. The diversity, plasticity, and adaptability of cap-dependent translation initiation and the associated machinery. RNA Biol 2020; 17:1239-1251. [PMID: 32496897 PMCID: PMC7549709 DOI: 10.1080/15476286.2020.1766179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Translation initiation is a critical facet of gene expression with important impacts that underlie cellular responses to stresses and environmental cues. Its dysregulation in many diseases position this process as an important area for the development of new therapeutics. The gateway translation factor eIF4E is typically considered responsible for ‘global’ or ‘canonical’ m7G cap-dependent translation. However, eIF4E impacts translation of specific transcripts rather than the entire translatome. There are many alternative cap-dependent translation mechanisms that also contribute to the translation capacity of the cell. We review the diversity of these, juxtaposing more recently identified mechanisms with eIF4E-dependent modalities. We also explore the multiplicity of functions played by translation factors, both within and outside protein synthesis, and discuss how these differentially contribute to their ultimate physiological impacts. For comparison, we discuss some modalities for cap-independent translation. In all, this review highlights the diverse mechanisms that engage and control translation in eukaryotes.
Collapse
Affiliation(s)
- Katherine L B Borden
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal , Montreal, Québec, Canada
| | - Laurent Volpon
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal , Montreal, Québec, Canada
| |
Collapse
|
133
|
Dierschke SK, Toro AL, Miller WP, Sunilkumar S, Dennis MD. Diabetes enhances translation of Cd40 mRNA in murine retinal Müller glia via a 4E-BP1/2-dependent mechanism. J Biol Chem 2020; 295:10831-10841. [PMID: 32475820 DOI: 10.1074/jbc.ra120.013711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/27/2020] [Indexed: 11/06/2022] Open
Abstract
Activation of the immune costimulatory molecule cluster of differentiation 40 (CD40) in Müller glia has been implicated in the initiation of diabetes-induced retinal inflammation. Results from previous studies support that CD40 protein expression is elevated in Müller glia of diabetic mice; however, the mechanisms responsible for this increase have not been explored. Here, we evaluated the hypothesis that diabetes augments translation of the Cd40 mRNA. Mice receiving thiamet G (TMG), an inhibitor of the O-GlcNAc hydrolase O-GlcNAcase, exhibited enhanced retinal protein O-GlcNAcylation and increased Cd40 mRNA translation. TMG administration also promoted Cd40 mRNA association with Müller cell-specific ribosomes isolated from the retina of RiboTag mice. Similar effects on O-GlcNAcylation and Cd40 mRNA translation were also observed in the retina of a mouse model of type 1 diabetes. In cultured cells, TMG promoted sequestration of the cap-binding protein eIF4E (eukaryotic translation in initiation factor 4E) by 4E-BP1 (eIF4E-binding protein 1) and enhanced cap-independent Cd40 mRNA translation as assessed by a bicistronic reporter that contained the 5'-UTR of the Cd40 mRNA. Ablation of 4E-BP1/2 prevented the increase in Cd40 mRNA translation in TMG-exposed cells, and expression of a 4E-BP1 variant that constitutively sequesters eIF4E promoted reporter activity. Extending on the cell culture results, we found that in contrast to WT mice, diabetic 4E-BP1/2-deficient mice did not exhibit enhanced retinal Cd40 mRNA translation and failed to up-regulate expression of the inflammatory marker nitric-oxide synthase 2. These findings support a model wherein diabetes-induced O-GlcNAcylation of 4E-BP1 promotes Cd40 mRNA translation in Müller glia.
Collapse
Affiliation(s)
- Sadie K Dierschke
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Allyson L Toro
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - William P Miller
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA .,Department of Ophthalmology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
134
|
Ho JJD, Balukoff NC, Theodoridis PR, Wang M, Krieger JR, Schatz JH, Lee S. A network of RNA-binding proteins controls translation efficiency to activate anaerobic metabolism. Nat Commun 2020; 11:2677. [PMID: 32472050 PMCID: PMC7260222 DOI: 10.1038/s41467-020-16504-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 04/30/2020] [Indexed: 01/30/2023] Open
Abstract
Protein expression evolves under greater evolutionary constraint than mRNA levels, and translation efficiency represents a primary determinant of protein levels during stimuli adaptation. This raises the question as to the translatome remodelers that titrate protein output from mRNA populations. Here, we uncover a network of RNA-binding proteins (RBPs) that enhances the translation efficiency of glycolytic proteins in cells responding to oxygen deprivation. A system-wide proteomic survey of translational engagement identifies a family of oxygen-regulated RBPs that functions as a switch of glycolytic intensity. Tandem mass tag-pulse SILAC (TMT-pSILAC) and RNA sequencing reveals that each RBP controls a unique but overlapping portfolio of hypoxic responsive proteins. These RBPs collaborate with the hypoxic protein synthesis apparatus, operating as a translation efficiency checkpoint that integrates upstream mRNA signals to activate anaerobic metabolism. This system allows anoxia-resistant animals and mammalian cells to initiate anaerobic glycolysis and survive hypoxia. We suggest that an oxygen-sensitive RBP cluster controls anaerobic metabolism to confer hypoxia tolerance. mRNA translation efficiency is regulated in response to stimuli. Here the authors employ mass spectrometry analysis of ribosome fractions and show that under hypoxia, oxygen-sensitive RNA binding proteins enhance the translation efficiency of glycolysis pathway transcripts.
Collapse
Affiliation(s)
- J J David Ho
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Nathan C Balukoff
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Phaedra R Theodoridis
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Miling Wang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jonathan R Krieger
- The SickKids Proteomics, Analytics, Robotics & Chemical Biology Centre (SPARC Biocentre), The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.,Bioinformatics Solutions Inc., Waterloo, ON, N2L 6J2, Canada
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA. .,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA. .,Department of Urology, Miller School of Medicine, University of Miami, Miami, 33136, USA.
| |
Collapse
|
135
|
Barrera A, Olguín V, Vera-Otarola J, López-Lastra M. Cap-independent translation initiation of the unspliced RNA of retroviruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194583. [PMID: 32450258 DOI: 10.1016/j.bbagrm.2020.194583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Retroviruses are a unique family of RNA viruses that utilize a virally encoded reverse transcriptase (RT) to replicate their genomic RNA (gRNA) through a proviral DNA intermediate. The provirus is permanently integrated into the host cell chromosome and is expressed by the host cell transcription, RNA processing, and translation machinery. Retroviral messenger RNAs (mRNAs) entirely resemble a cellular mRNA as they have a 5'cap structure, 5'untranslated region (UTR), an open reading frame (ORF), 3'UTR, and a 3'poly(A) tail. The primary transcription product interacts with the cellular RNA processing machinery and is spliced, exported to the cytoplasm, and translated. However, a proportion of the pre-mRNA subverts typical RNA processing giving rise to the full-length RNA. In the cytoplasm, the full-length retroviral RNA fulfills a dual role acting as mRNA and as the gRNA. Simple retroviruses generate two pools of full-length RNA, one for each purpose. However, complex retroviruses have a single pool of full-length RNA, which is destined for translation or encapsidation. As for eukaryotic mRNAs, translational control of retroviral protein synthesis is mostly exerted at the step of initiation. Interestingly, some retroviral mRNAs, both simple and complex, use a dual mechanism to initiate protein synthesis, a cap-dependent initiation mechanism, or via internal initiation using an internal ribosome entry site (IRES). In this review, we describe and discuss data regarding the molecular mechanism driving the canonical cap-dependent and IRES-mediated translation initiation for retroviral mRNA, focusing the discussion mainly on the most studied retroviral mRNA, the HIV-1 mRNA.
Collapse
Affiliation(s)
- Aldo Barrera
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Valeria Olguín
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Centro de Investigaciones Médicas, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| |
Collapse
|
136
|
uORF Shuffling Fine-Tunes Gene Expression at a Deep Level of the Process. PLANTS 2020; 9:plants9050608. [PMID: 32403214 PMCID: PMC7284334 DOI: 10.3390/plants9050608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 01/01/2023]
Abstract
Upstream open reading frames (uORFs) are present in the 5’ leader sequences (or 5’ untranslated regions) upstream of the protein-coding main ORFs (mORFs) in eukaryotic polycistronic mRNA. It is well known that a uORF negatively affects translation of the mORF. Emerging ribosome profiling approaches have revealed that uORFs themselves, as well as downstream mORFs, can be translated. However, it has also been revealed that plants can fine-tune gene expression by modulating uORF-mediated regulation in some situations. This article reviews several proposed mechanisms that enable genes to escape from uORF-mediated negative regulation and gives insight into the application of uORF-mediated regulation for precisely controlling gene expression.
Collapse
|
137
|
Geng G, Yu C, Li X, Yuan X. A unique internal ribosome entry site representing a dynamic equilibrium state of RNA tertiary structure in the 5'-UTR of Wheat yellow mosaic virus RNA1. Nucleic Acids Res 2020; 48:390-404. [PMID: 31713626 PMCID: PMC7145537 DOI: 10.1093/nar/gkz1073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 02/02/2023] Open
Abstract
Internal ribosome entry sites (IRESes) were first reported in RNA viruses and subsequently identified in cellular mRNAs. In this study, IRES activity of the 5'-UTR in Wheat yellow mosaic virus (WYMV) RNA1 was identified, and the 3'-UTR synergistically enhanced this IRES activity via long-distance RNA-RNA interaction between C80U81and A7574G7575. Within the 5'-UTR, the hairpin 1(H1), flexible hairpin 2 (H2) and linker region (LR1) between H1 and H2 played an essential role in cap-independent translation, which is associated with the structural stability of H1, length of discontinuous stems and nucleotide specificity of the H2 upper loop and the long-distance RNA-RNA interaction sites in LR1. The H2 upper loop is a target region of the eIF4E. Cytosines (C55, C66, C105 and C108) in H1 and H2 and guanines (G73, G79 and G85) in LR1 form discontinuous and alternative base pairing to maintain the dynamic equilibrium state, which is used to elaborately regulate translation at a suitable level. The WYMV RNA1 5'-UTR contains a novel IRES, which is different from reported IRESes because of the dynamic equilibrium state. It is also suggested that robustness not at the maximum level of translation is the selection target during evolution of WYMV RNA1.
Collapse
Affiliation(s)
- Guowei Geng
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, P.R. China
| | - Chengming Yu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, P.R. China
| | - Xiangdong Li
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, P.R. China
| | - Xuefeng Yuan
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, P.R. China
| |
Collapse
|
138
|
Jaud M, Philippe C, Di Bella D, Tang W, Pyronnet S, Laurell H, Mazzolini L, Rouault-Pierre K, Touriol C. Translational Regulations in Response to Endoplasmic Reticulum Stress in Cancers. Cells 2020; 9:cells9030540. [PMID: 32111004 PMCID: PMC7140484 DOI: 10.3390/cells9030540] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
During carcinogenesis, almost all the biological processes are modified in one way or another. Among these biological processes affected, anomalies in protein synthesis are common in cancers. Indeed, cancer cells are subjected to a wide range of stresses, which include physical injuries, hypoxia, nutrient starvation, as well as mitotic, oxidative or genotoxic stresses. All of these stresses will cause the accumulation of unfolded proteins in the Endoplasmic Reticulum (ER), which is a major organelle that is involved in protein synthesis, preservation of cellular homeostasis, and adaptation to unfavourable environment. The accumulation of unfolded proteins in the endoplasmic reticulum causes stress triggering an unfolded protein response in order to promote cell survival or to induce apoptosis in case of chronic stress. Transcription and also translational reprogramming are tightly controlled during the unfolded protein response to ensure selective gene expression. The majority of stresses, including ER stress, induce firstly a decrease in global protein synthesis accompanied by the induction of alternative mechanisms for initiating the translation of mRNA, later followed by a translational recovery. After a presentation of ER stress and the UPR response, we will briefly present the different modes of translation initiation, then address the specific translational regulatory mechanisms acting during reticulum stress in cancers and highlight the importance of translational control by ER stress in tumours.
Collapse
Affiliation(s)
- Manon Jaud
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France; (M.J.); (S.P.); (L.M.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France;
| | - Céline Philippe
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (W.T.); (K.R.-P.)
| | - Doriana Di Bella
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (W.T.); (K.R.-P.)
| | - Weiwei Tang
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (W.T.); (K.R.-P.)
| | - Stéphane Pyronnet
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France; (M.J.); (S.P.); (L.M.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France;
| | - Henrik Laurell
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France;
- Inserm UMR1048, I2MC (Institut des Maladies Métaboliques et Cardiovasculaires), BP 84225, CEDEX 04, 31 432 Toulouse, France
| | - Laurent Mazzolini
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France; (M.J.); (S.P.); (L.M.)
- CNRS ERL5294, CRCT, F-31037 Toulouse, France
| | - Kevin Rouault-Pierre
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (W.T.); (K.R.-P.)
| | - Christian Touriol
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France; (M.J.); (S.P.); (L.M.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France;
- Correspondence:
| |
Collapse
|
139
|
Lei M, Zheng G, Ning Q, Zheng J, Dong D. Translation and functional roles of circular RNAs in human cancer. Mol Cancer 2020; 19:30. [PMID: 32059672 PMCID: PMC7023758 DOI: 10.1186/s12943-020-1135-7] [Citation(s) in RCA: 490] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs (circRNAs) are a new class of non-coding RNAs formed by covalently closed loops through backsplicing. Recent methodologies have enabled in-depth characterization of circRNAs for identification and potential functions. CircRNAs play important roles in various biological functions as microRNA sponges, transcriptional regulators and combining with RNA binding proteins. Recent studies indicated that some cytoplasmic circRNAs can be effectively translated into detectable peptides, which enlightened us on the importance of circRNAs in cellular physiology function. Internal Ribosome Entry site (IRES)- and N6-methyladenosines (m6A)-mediated cap-independent translation initiation have been suggested to be potential mechanism for circRNA translation. To date, several translated circRNAs have been uncovered to play pivotal roles in human cancers. In this review, we introduced the properties and functions of circRNAs, and characterized the possible mechanism of translation initiation and complexity of the translation ability of circRNAs. We summarized the emerging functions of circRNA-encoded proteins in human cancer. The works on circRNA translation will open a hidden human proteome, and enhance us to understand the importance of circRNAs in human cancer, which has been poorly explored so far.
Collapse
Affiliation(s)
- Ming Lei
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guantao Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qianqian Ning
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Dong Dong
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
140
|
Guo AX, Cui JJ, Wang LY, Yin JY. The role of CSDE1 in translational reprogramming and human diseases. Cell Commun Signal 2020; 18:14. [PMID: 31987048 PMCID: PMC6986143 DOI: 10.1186/s12964-019-0496-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Abstract CSDE1 (cold shock domain containing E1) plays a key role in translational reprogramming, which determines the fate of a number of RNAs during biological processes. Interestingly, the role of CSDE1 is bidirectional. It not only promotes and represses the translation of RNAs but also increases and decreases the abundance of RNAs. However, the mechanisms underlying this phenomenon are still unknown. In this review, we propose a “protein-RNA connector” model to explain this bidirectional role and depict its three versions: sequential connection, mutual connection and facilitating connection. As described in this molecular model, CSDE1 binds to RNAs and cooperates with other protein regulators. CSDE1 connects with different RNAs and their regulators for different purposes. The triple complex of CSDE1, a regulator and an RNA reprograms translation in different directions for each transcript. Meanwhile, a number of recent studies have found important roles for CSDE1 in human diseases. This model will help us to understand the role of CSDE1 in translational reprogramming and human diseases. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Ao-Xiang Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jia-Jia Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Lei-Yun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China. .,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China. .,Hunan Provincial Gynecological Cancer Diagnosis and Treatment Engineering Research Center, Changsha, 410078, People's Republic of China. .,Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, 410078, People's Republic of China.
| |
Collapse
|
141
|
Watson SF, Bellora N, Macias S. ILF3 contributes to the establishment of the antiviral type I interferon program. Nucleic Acids Res 2020; 48:116-129. [PMID: 31701124 PMCID: PMC7145544 DOI: 10.1093/nar/gkz1060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Upon detection of viral infections, cells activate the expression of type I interferons (IFNs) and pro-inflammatory cytokines to control viral dissemination. As part of their antiviral response, cells also trigger the translational shutoff response which prevents translation of viral mRNAs and cellular mRNAs in a non-selective manner. Intriguingly, mRNAs encoding for antiviral factors bypass this translational shutoff, suggesting the presence of additional regulatory mechanisms enabling expression of the self-defence genes. Here, we identified the dsRNA binding protein ILF3 as an essential host factor required for efficient translation of the central antiviral cytokine, IFNB1, and a subset of interferon-stimulated genes. By combining polysome profiling and next-generation sequencing, ILF3 was also found to be necessary to establish the dsRNA-induced transcriptional and translational programs. We propose a central role for the host factor ILF3 in enhancing expression of the antiviral defence mRNAs in cellular conditions where cap-dependent translation is compromised.
Collapse
Affiliation(s)
- Samir F Watson
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, UK
| | | | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, UK
| |
Collapse
|
142
|
Wang LY, Cui JJ, Guo CX, Yin JY. A New Way to Discover IRESs in Pathology or Stress Conditions? Harnessing Latest High-Throughput Technologies. Bioessays 2020; 42:e1900180. [PMID: 31909834 DOI: 10.1002/bies.201900180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/10/2019] [Indexed: 11/12/2022]
Abstract
The cellular internal ribosomal entry site (IRES) is one of the most important elements to mediate cap-independent translational initiation, especially under conditions of stress and pathology. However, a high-throughput method to discover IRESs in these conditions is still lacking. Here, a possible way IRES long-read sequencing based on the latest high-throughput technologies is proposed to solve this problem. Based on this design, diversity and integrity of the transcriptome from original samples can be kept. The micro-environment that stimulates or inhibits IRES activity can also be mimicked. By using long read-length sequencing technology, additional experiments that are essential for ruling out the cryptic promoters or splicing events in routine IRES identification processes can be circumvented. It is hoped that this proposed methodology may be adopted for IRES element discovery, hence uncovering the full extent of the role of IRESs in disease, development, and stress. Also see the video abstract here https://youtu.be/JuWBbMzWXS8.
Collapse
Affiliation(s)
- Lei-Yun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, P. R. China
| | - Jia-Jia Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, P. R. China
| | - Cheng-Xian Guo
- Central of Clinic Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, 410013, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, P. R. China.,Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, 410078, P. R. China.,Hunan Provincial Gynecological Cancer Diagnosis and Treatment Engineering Research Center, Changsha, 410078, P. R. China
| |
Collapse
|
143
|
Vincent HA, Ziehr B, Lenarcic EM, Moorman NJ. Human cytomegalovirus pTRS1 stimulates cap-independent translation. Virology 2019; 537:246-253. [PMID: 31539772 PMCID: PMC8281606 DOI: 10.1016/j.virol.2019.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 01/08/2023]
Abstract
Human cytomegalovirus (HCMV) manipulates multiple cellular processes to facilitate virus replication, including the control of mRNA translation. We previously showed that the HCMV TRS1 protein (pTRS1) promotes cap-dependent mRNA translation independent of its ability to antagonize the antiviral protein PKR. Here we find that pTRS1 enhances internal ribosome entry site (IRES) activity using a novel circular RNA reporter that lacks an mRNA cap and poly(A) tail. Additionally, pTRS1 expression increases the activity of cellular IRESs that control the expression of proteins needed for efficient HCMV replication. We find that the ability of pTRS1 to enhance cap-independent translation is separable from its ability to antagonize PKR, but requires the pTRS1 RNA binding domain. Together these data show that pTRS1 stimulates cap-independent translation and suggest a role for pTRS1 in alternative translation initiation pathways during HCMV infection.
Collapse
Affiliation(s)
- Heather A Vincent
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin Ziehr
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erik M Lenarcic
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathaniel J Moorman
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
144
|
Swiatkowska A, Dutkiewicz M, Zydowicz-Machtel P, Szpotkowska J, Janecki DM, Ciesiołka J. Translational Control in p53 Expression: The Role of 5'-Terminal Region of p53 mRNA. Int J Mol Sci 2019; 20:E5382. [PMID: 31671760 PMCID: PMC6862623 DOI: 10.3390/ijms20215382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/14/2019] [Accepted: 10/27/2019] [Indexed: 01/05/2023] Open
Abstract
In this review, the latest research concerning the structure and function of the 5'-terminal region of p53 mRNA was discussed. Special attention was focused on defined structural motifs which are present in this region, as well as their conservation and plausible functional role in translation. It is known that the length of the 5'-terminal region and the structural environment of initiation codons can strongly modulate translation initiation. The ability of this region of p53 mRNA to bind protein factors was also described with special emphasis on general principles that govern, such RNA-protein interactions. The structural alterations within the 5'-terminal region of p53 mRNA and proteins that bind to this region have a strong impact on the rate of mRNA scanning and on translation efficiency in in vitro assays, in selected cell lines, and under stress conditions. Thus, the structural features of the 5'-terminal region of p53 mRNA seem to be very important for translation and for translation regulation mechanisms. Finally, we suggested topics that, in our opinion, should be further explored for better understanding of the mechanisms of the p53 gene expression regulation at the translational level.
Collapse
Affiliation(s)
- Agata Swiatkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Mariola Dutkiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Paulina Zydowicz-Machtel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Joanna Szpotkowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Damian M Janecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Jerzy Ciesiołka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| |
Collapse
|
145
|
Kim HJ. Cell Fate Control by Translation: mRNA Translation Initiation as a Therapeutic Target for Cancer Development and Stem Cell Fate Control. Biomolecules 2019; 9:biom9110665. [PMID: 31671902 PMCID: PMC6921038 DOI: 10.3390/biom9110665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Translation of mRNA is an important process that controls cell behavior and gene regulation because proteins are the functional molecules that determine cell types and function. Cancer develops as a result of genetic mutations, which lead to the production of abnormal proteins and the dysregulation of translation, which in turn, leads to aberrant protein synthesis. In addition, the machinery that is involved in protein synthesis plays critical roles in stem cell fate determination. In the current review, recent advances in the understanding of translational control, especially translational initiation in cancer development and stem cell fate control, are described. Therapeutic targets of mRNA translation such as eIF4E, 4EBP, and eIF2, for cancer treatment or stem cell fate regulation are reviewed. Upstream signaling pathways that regulate and affect translation initiation were introduced. It is important to regulate the expression of protein for normal cell behavior and development. mRNA translation initiation is a key step to regulate protein synthesis, therefore, identifying and targeting molecules that are critical for protein synthesis is necessary and beneficial to develop cancer therapeutics and stem cells fate regulation.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Laboratory of Molecular Stem Cell Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea.
| |
Collapse
|
146
|
Yang Y, Wang Z. IRES-mediated cap-independent translation, a path leading to hidden proteome. J Mol Cell Biol 2019; 11:911-919. [PMID: 31504667 PMCID: PMC6884710 DOI: 10.1093/jmcb/mjz091] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/05/2019] [Accepted: 07/18/2019] [Indexed: 01/06/2023] Open
Abstract
Most eukaryotic mRNAs are translated in a cap-dependent fashion; however, under stress conditions, the cap-independent translation driven by internal ribosomal entry sites (IRESs) can serve as an alternative mechanism for protein production. Many IRESs have been discovered from viral or cellular mRNAs to promote ribosome assembly and initiate translation by recruiting different trans-acting factors. Although the mechanisms of translation initiation driven by viral IRESs are relatively well understood, the existence of cellular IRESs is still under debate due to the limitations of translation reporter systems used to assay IRES activities. A recent screen identified > 1000 putative IRESs from viral and human mRNAs, expanding the scope and mechanism for cap-independent translation. Additionally, a large number of circular RNAs lacking free ends were identified in eukaryotic cells, many of which are found to be translated through IRESs. These findings suggest that IRESs may play a previously unappreciated role in driving translation of the new type of mRNA, implying a hidden proteome produced from cap-independent translation.
Collapse
Affiliation(s)
- Yun Yang
- CAS Key Laboratory of Computational Biology, Biomedical Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, Biomedical Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
147
|
Nachmani D, Bothmer AH, Grisendi S, Mele A, Bothmer D, Lee JD, Monteleone E, Cheng K, Zhang Y, Bester AC, Guzzetti A, Mitchell CA, Mendez LM, Pozdnyakova O, Sportoletti P, Martelli MP, Vulliamy TJ, Safra M, Schwartz S, Luzzatto L, Bluteau O, Soulier J, Darnell RB, Falini B, Dokal I, Ito K, Clohessy JG, Pandolfi PP. Germline NPM1 mutations lead to altered rRNA 2'-O-methylation and cause dyskeratosis congenita. Nat Genet 2019; 51:1518-1529. [PMID: 31570891 PMCID: PMC6858547 DOI: 10.1038/s41588-019-0502-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022]
Abstract
RNA modifications are emerging as key determinants of gene expression. However, compelling genetic demonstrations of their relevance to human disease are lacking. Here, we link ribosomal RNA 2'-O-methylation (2'-O-Me) to the etiology of dyskeratosis congenita. We identify nucleophosmin (NPM1) as an essential regulator of 2'-O-Me on rRNA by directly binding C/D box small nucleolar RNAs, thereby modulating translation. We demonstrate the importance of 2'-O-Me-regulated translation for cellular growth, differentiation and hematopoietic stem cell maintenance, and show that Npm1 inactivation in adult hematopoietic stem cells results in bone marrow failure. We identify NPM1 germline mutations in patients with dyskeratosis congenita presenting with bone marrow failure and demonstrate that they are deficient in small nucleolar RNA binding. Mice harboring a dyskeratosis congenita germline Npm1 mutation recapitulate both hematological and nonhematological features of dyskeratosis congenita. Thus, our findings indicate that impaired 2'-O-Me can be etiological to human disease.
Collapse
Affiliation(s)
- Daphna Nachmani
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anne H Bothmer
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Silvia Grisendi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aldo Mele
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Dietmar Bothmer
- Hochschule Zittau/Görlitz, Institute of Ecology and Environmental Protection, Zittau, Germany
| | - Jonathan D Lee
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Emanuele Monteleone
- Molecular Biotechnology Center and Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Ke Cheng
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yang Zhang
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Assaf C Bester
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alison Guzzetti
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Caitlin A Mitchell
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lourdes M Mendez
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Paolo Sportoletti
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maria-Paola Martelli
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Tom J Vulliamy
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Modi Safra
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Lucio Luzzatto
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Olivier Bluteau
- INSERM UMR944 and CNRS UMR7212, Hôpital Saint-Louis, Paris, France
| | - Jean Soulier
- INSERM UMR944 and CNRS UMR7212, Hôpital Saint-Louis, Paris, France
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Brunangelo Falini
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Inderjeet Dokal
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA
| | - John G Clohessy
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
148
|
Xiang JS, Kaplan M, Dykstra P, Hinks M, McKeague M, Smolke CD. Massively parallel RNA device engineering in mammalian cells with RNA-Seq. Nat Commun 2019; 10:4327. [PMID: 31548547 PMCID: PMC6757056 DOI: 10.1038/s41467-019-12334-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
Synthetic RNA-based genetic devices dynamically control a wide range of gene-regulatory processes across diverse cell types. However, the limited throughput of quantitative assays in mammalian cells has hindered fast iteration and interrogation of sequence space needed to identify new RNA devices. Here we report developing a quantitative, rapid and high-throughput mammalian cell-based RNA-Seq assay to efficiently engineer RNA devices. We identify new ribozyme-based RNA devices that respond to theophylline, hypoxanthine, cyclic-di-GMP, and folinic acid from libraries of ~22,700 sequences in total. The small molecule responsive devices exhibit low basal expression and high activation ratios, significantly expanding our toolset of highly functional ribozyme switches. The large datasets obtained further provide conserved sequence and structure motifs that may be used for rationally guided design. The RNA-Seq approach offers a generally applicable strategy for developing broad classes of RNA devices, thereby advancing the engineering of genetic devices for mammalian systems.
Collapse
Affiliation(s)
- Joy S Xiang
- Department of Bioengineering, 443 Via Ortega, MC 4245, Stanford University, Stanford, CA, 94305, USA
| | - Matias Kaplan
- Department of Bioengineering, 443 Via Ortega, MC 4245, Stanford University, Stanford, CA, 94305, USA
| | - Peter Dykstra
- Department of Bioengineering, 443 Via Ortega, MC 4245, Stanford University, Stanford, CA, 94305, USA
| | - Michaela Hinks
- Department of Bioengineering, 443 Via Ortega, MC 4245, Stanford University, Stanford, CA, 94305, USA
| | - Maureen McKeague
- Department of Pharmacology and Therapeutics, McGill University, 3655 Prom. Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Christina D Smolke
- Department of Bioengineering, 443 Via Ortega, MC 4245, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
149
|
Vainberg Slutskin I, Weinberger A, Segal E. Sequence determinants of polyadenylation-mediated regulation. Genome Res 2019; 29:1635-1647. [PMID: 31530582 PMCID: PMC6771402 DOI: 10.1101/gr.247312.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 08/13/2019] [Indexed: 12/31/2022]
Abstract
The cleavage and polyadenylation reaction is a crucial step in transcription termination and pre-mRNA maturation in human cells. Despite extensive research, the encoding of polyadenylation-mediated regulation of gene expression within the DNA sequence is not well understood. Here, we utilized a massively parallel reporter assay to inspect the effect of over 12,000 rationally designed polyadenylation sequences (PASs) on reporter gene expression and cleavage efficiency. We find that the PAS sequence can modulate gene expression by over five orders of magnitude. By using a uniquely designed scanning mutagenesis data set, we gain mechanistic insight into various modes of action by which the cleavage efficiency affects the sensitivity or robustness of the PAS to mutation. Furthermore, we employ motif discovery to identify both known and novel sequence motifs associated with PAS-mediated regulation. By leveraging the large scale of our data, we train a deep learning model for the highly accurate prediction of RNA levels from DNA sequence alone (R = 0.83). Moreover, we devise unique approaches for predicting exact cleavage sites for our reporter constructs and for endogenous transcripts. Taken together, our results expand our understanding of PAS-mediated regulation, and provide an unprecedented resource for analyzing and predicting PAS for regulatory genomics applications.
Collapse
Affiliation(s)
- Ilya Vainberg Slutskin
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
150
|
Lacerda R, Menezes J, Candeias MM. Alternative Mechanisms of mRNA Translation Initiation in Cellular Stress Response and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:117-132. [PMID: 31342440 DOI: 10.1007/978-3-030-19966-1_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Throughout evolution, eukaryotic cells have devised different mechanisms to cope with stressful environments. When eukaryotic cells are exposed to stress stimuli, they activate adaptive pathways that allow them to restore cellular homeostasis. Most types of stress stimuli have been reported to induce a decrease in overall protein synthesis accompanied by induction of alternative mechanisms of mRNA translation initiation. Here, we present well-studied and recent examples of such stress responses and the alternative translation initiation mechanisms they induce, and discuss the consequences of such regulation for cell homeostasis and oncogenic transformation.
Collapse
Affiliation(s)
- Rafaela Lacerda
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisboa, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisboa, Portugal
| | - Juliane Menezes
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisboa, Portugal.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisboa, Portugal
| | - Marco M Candeias
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisboa, Portugal. .,MaRCU - Molecular and RNA Cancer Unit, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|